]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/tcp_input.c
net: Do delayed neigh confirmation.
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 int sysctl_tcp_stdurg __read_mostly;
92 int sysctl_tcp_rfc1337 __read_mostly;
93 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94 int sysctl_tcp_frto __read_mostly = 2;
95 int sysctl_tcp_frto_response __read_mostly;
96 int sysctl_tcp_nometrics_save __read_mostly;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_abc __read_mostly;
102 int sysctl_tcp_early_retrans __read_mostly = 2;
103
104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
110 #define FLAG_ECE 0x40 /* ECE in this ACK */
111 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
112 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
113 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
114 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
115 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117
118 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
121 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
122 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
123
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127 /* Adapt the MSS value used to make delayed ack decision to the
128 * real world.
129 */
130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131 {
132 struct inet_connection_sock *icsk = inet_csk(sk);
133 const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 unsigned int len;
135
136 icsk->icsk_ack.last_seg_size = 0;
137
138 /* skb->len may jitter because of SACKs, even if peer
139 * sends good full-sized frames.
140 */
141 len = skb_shinfo(skb)->gso_size ? : skb->len;
142 if (len >= icsk->icsk_ack.rcv_mss) {
143 icsk->icsk_ack.rcv_mss = len;
144 } else {
145 /* Otherwise, we make more careful check taking into account,
146 * that SACKs block is variable.
147 *
148 * "len" is invariant segment length, including TCP header.
149 */
150 len += skb->data - skb_transport_header(skb);
151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 /* If PSH is not set, packet should be
153 * full sized, provided peer TCP is not badly broken.
154 * This observation (if it is correct 8)) allows
155 * to handle super-low mtu links fairly.
156 */
157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 /* Subtract also invariant (if peer is RFC compliant),
160 * tcp header plus fixed timestamp option length.
161 * Resulting "len" is MSS free of SACK jitter.
162 */
163 len -= tcp_sk(sk)->tcp_header_len;
164 icsk->icsk_ack.last_seg_size = len;
165 if (len == lss) {
166 icsk->icsk_ack.rcv_mss = len;
167 return;
168 }
169 }
170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 }
174 }
175
176 static void tcp_incr_quickack(struct sock *sk)
177 {
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180
181 if (quickacks == 0)
182 quickacks = 2;
183 if (quickacks > icsk->icsk_ack.quick)
184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 }
186
187 static void tcp_enter_quickack_mode(struct sock *sk)
188 {
189 struct inet_connection_sock *icsk = inet_csk(sk);
190 tcp_incr_quickack(sk);
191 icsk->icsk_ack.pingpong = 0;
192 icsk->icsk_ack.ato = TCP_ATO_MIN;
193 }
194
195 /* Send ACKs quickly, if "quick" count is not exhausted
196 * and the session is not interactive.
197 */
198
199 static inline bool tcp_in_quickack_mode(const struct sock *sk)
200 {
201 const struct inet_connection_sock *icsk = inet_csk(sk);
202
203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204 }
205
206 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
207 {
208 if (tp->ecn_flags & TCP_ECN_OK)
209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210 }
211
212 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
213 {
214 if (tcp_hdr(skb)->cwr)
215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 }
217
218 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
219 {
220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221 }
222
223 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
224 {
225 if (!(tp->ecn_flags & TCP_ECN_OK))
226 return;
227
228 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
229 case INET_ECN_NOT_ECT:
230 /* Funny extension: if ECT is not set on a segment,
231 * and we already seen ECT on a previous segment,
232 * it is probably a retransmit.
233 */
234 if (tp->ecn_flags & TCP_ECN_SEEN)
235 tcp_enter_quickack_mode((struct sock *)tp);
236 break;
237 case INET_ECN_CE:
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 /* fallinto */
240 default:
241 tp->ecn_flags |= TCP_ECN_SEEN;
242 }
243 }
244
245 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
246 {
247 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
248 tp->ecn_flags &= ~TCP_ECN_OK;
249 }
250
251 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
252 {
253 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
254 tp->ecn_flags &= ~TCP_ECN_OK;
255 }
256
257 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
258 {
259 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
260 return true;
261 return false;
262 }
263
264 /* Buffer size and advertised window tuning.
265 *
266 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
267 */
268
269 static void tcp_fixup_sndbuf(struct sock *sk)
270 {
271 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
272
273 sndmem *= TCP_INIT_CWND;
274 if (sk->sk_sndbuf < sndmem)
275 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
276 }
277
278 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
279 *
280 * All tcp_full_space() is split to two parts: "network" buffer, allocated
281 * forward and advertised in receiver window (tp->rcv_wnd) and
282 * "application buffer", required to isolate scheduling/application
283 * latencies from network.
284 * window_clamp is maximal advertised window. It can be less than
285 * tcp_full_space(), in this case tcp_full_space() - window_clamp
286 * is reserved for "application" buffer. The less window_clamp is
287 * the smoother our behaviour from viewpoint of network, but the lower
288 * throughput and the higher sensitivity of the connection to losses. 8)
289 *
290 * rcv_ssthresh is more strict window_clamp used at "slow start"
291 * phase to predict further behaviour of this connection.
292 * It is used for two goals:
293 * - to enforce header prediction at sender, even when application
294 * requires some significant "application buffer". It is check #1.
295 * - to prevent pruning of receive queue because of misprediction
296 * of receiver window. Check #2.
297 *
298 * The scheme does not work when sender sends good segments opening
299 * window and then starts to feed us spaghetti. But it should work
300 * in common situations. Otherwise, we have to rely on queue collapsing.
301 */
302
303 /* Slow part of check#2. */
304 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
305 {
306 struct tcp_sock *tp = tcp_sk(sk);
307 /* Optimize this! */
308 int truesize = tcp_win_from_space(skb->truesize) >> 1;
309 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
310
311 while (tp->rcv_ssthresh <= window) {
312 if (truesize <= skb->len)
313 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
314
315 truesize >>= 1;
316 window >>= 1;
317 }
318 return 0;
319 }
320
321 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
322 {
323 struct tcp_sock *tp = tcp_sk(sk);
324
325 /* Check #1 */
326 if (tp->rcv_ssthresh < tp->window_clamp &&
327 (int)tp->rcv_ssthresh < tcp_space(sk) &&
328 !sk_under_memory_pressure(sk)) {
329 int incr;
330
331 /* Check #2. Increase window, if skb with such overhead
332 * will fit to rcvbuf in future.
333 */
334 if (tcp_win_from_space(skb->truesize) <= skb->len)
335 incr = 2 * tp->advmss;
336 else
337 incr = __tcp_grow_window(sk, skb);
338
339 if (incr) {
340 incr = max_t(int, incr, 2 * skb->len);
341 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
342 tp->window_clamp);
343 inet_csk(sk)->icsk_ack.quick |= 1;
344 }
345 }
346 }
347
348 /* 3. Tuning rcvbuf, when connection enters established state. */
349
350 static void tcp_fixup_rcvbuf(struct sock *sk)
351 {
352 u32 mss = tcp_sk(sk)->advmss;
353 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
354 int rcvmem;
355
356 /* Limit to 10 segments if mss <= 1460,
357 * or 14600/mss segments, with a minimum of two segments.
358 */
359 if (mss > 1460)
360 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
361
362 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
363 while (tcp_win_from_space(rcvmem) < mss)
364 rcvmem += 128;
365
366 rcvmem *= icwnd;
367
368 if (sk->sk_rcvbuf < rcvmem)
369 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
370 }
371
372 /* 4. Try to fixup all. It is made immediately after connection enters
373 * established state.
374 */
375 static void tcp_init_buffer_space(struct sock *sk)
376 {
377 struct tcp_sock *tp = tcp_sk(sk);
378 int maxwin;
379
380 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
381 tcp_fixup_rcvbuf(sk);
382 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
383 tcp_fixup_sndbuf(sk);
384
385 tp->rcvq_space.space = tp->rcv_wnd;
386
387 maxwin = tcp_full_space(sk);
388
389 if (tp->window_clamp >= maxwin) {
390 tp->window_clamp = maxwin;
391
392 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
393 tp->window_clamp = max(maxwin -
394 (maxwin >> sysctl_tcp_app_win),
395 4 * tp->advmss);
396 }
397
398 /* Force reservation of one segment. */
399 if (sysctl_tcp_app_win &&
400 tp->window_clamp > 2 * tp->advmss &&
401 tp->window_clamp + tp->advmss > maxwin)
402 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
403
404 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
405 tp->snd_cwnd_stamp = tcp_time_stamp;
406 }
407
408 /* 5. Recalculate window clamp after socket hit its memory bounds. */
409 static void tcp_clamp_window(struct sock *sk)
410 {
411 struct tcp_sock *tp = tcp_sk(sk);
412 struct inet_connection_sock *icsk = inet_csk(sk);
413
414 icsk->icsk_ack.quick = 0;
415
416 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
417 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
418 !sk_under_memory_pressure(sk) &&
419 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
420 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
421 sysctl_tcp_rmem[2]);
422 }
423 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
424 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
425 }
426
427 /* Initialize RCV_MSS value.
428 * RCV_MSS is an our guess about MSS used by the peer.
429 * We haven't any direct information about the MSS.
430 * It's better to underestimate the RCV_MSS rather than overestimate.
431 * Overestimations make us ACKing less frequently than needed.
432 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
433 */
434 void tcp_initialize_rcv_mss(struct sock *sk)
435 {
436 const struct tcp_sock *tp = tcp_sk(sk);
437 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
438
439 hint = min(hint, tp->rcv_wnd / 2);
440 hint = min(hint, TCP_MSS_DEFAULT);
441 hint = max(hint, TCP_MIN_MSS);
442
443 inet_csk(sk)->icsk_ack.rcv_mss = hint;
444 }
445 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
446
447 /* Receiver "autotuning" code.
448 *
449 * The algorithm for RTT estimation w/o timestamps is based on
450 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
451 * <http://public.lanl.gov/radiant/pubs.html#DRS>
452 *
453 * More detail on this code can be found at
454 * <http://staff.psc.edu/jheffner/>,
455 * though this reference is out of date. A new paper
456 * is pending.
457 */
458 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
459 {
460 u32 new_sample = tp->rcv_rtt_est.rtt;
461 long m = sample;
462
463 if (m == 0)
464 m = 1;
465
466 if (new_sample != 0) {
467 /* If we sample in larger samples in the non-timestamp
468 * case, we could grossly overestimate the RTT especially
469 * with chatty applications or bulk transfer apps which
470 * are stalled on filesystem I/O.
471 *
472 * Also, since we are only going for a minimum in the
473 * non-timestamp case, we do not smooth things out
474 * else with timestamps disabled convergence takes too
475 * long.
476 */
477 if (!win_dep) {
478 m -= (new_sample >> 3);
479 new_sample += m;
480 } else {
481 m <<= 3;
482 if (m < new_sample)
483 new_sample = m;
484 }
485 } else {
486 /* No previous measure. */
487 new_sample = m << 3;
488 }
489
490 if (tp->rcv_rtt_est.rtt != new_sample)
491 tp->rcv_rtt_est.rtt = new_sample;
492 }
493
494 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
495 {
496 if (tp->rcv_rtt_est.time == 0)
497 goto new_measure;
498 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
499 return;
500 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
501
502 new_measure:
503 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
504 tp->rcv_rtt_est.time = tcp_time_stamp;
505 }
506
507 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
508 const struct sk_buff *skb)
509 {
510 struct tcp_sock *tp = tcp_sk(sk);
511 if (tp->rx_opt.rcv_tsecr &&
512 (TCP_SKB_CB(skb)->end_seq -
513 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
514 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
515 }
516
517 /*
518 * This function should be called every time data is copied to user space.
519 * It calculates the appropriate TCP receive buffer space.
520 */
521 void tcp_rcv_space_adjust(struct sock *sk)
522 {
523 struct tcp_sock *tp = tcp_sk(sk);
524 int time;
525 int space;
526
527 if (tp->rcvq_space.time == 0)
528 goto new_measure;
529
530 time = tcp_time_stamp - tp->rcvq_space.time;
531 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
532 return;
533
534 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
535
536 space = max(tp->rcvq_space.space, space);
537
538 if (tp->rcvq_space.space != space) {
539 int rcvmem;
540
541 tp->rcvq_space.space = space;
542
543 if (sysctl_tcp_moderate_rcvbuf &&
544 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
545 int new_clamp = space;
546
547 /* Receive space grows, normalize in order to
548 * take into account packet headers and sk_buff
549 * structure overhead.
550 */
551 space /= tp->advmss;
552 if (!space)
553 space = 1;
554 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
555 while (tcp_win_from_space(rcvmem) < tp->advmss)
556 rcvmem += 128;
557 space *= rcvmem;
558 space = min(space, sysctl_tcp_rmem[2]);
559 if (space > sk->sk_rcvbuf) {
560 sk->sk_rcvbuf = space;
561
562 /* Make the window clamp follow along. */
563 tp->window_clamp = new_clamp;
564 }
565 }
566 }
567
568 new_measure:
569 tp->rcvq_space.seq = tp->copied_seq;
570 tp->rcvq_space.time = tcp_time_stamp;
571 }
572
573 /* There is something which you must keep in mind when you analyze the
574 * behavior of the tp->ato delayed ack timeout interval. When a
575 * connection starts up, we want to ack as quickly as possible. The
576 * problem is that "good" TCP's do slow start at the beginning of data
577 * transmission. The means that until we send the first few ACK's the
578 * sender will sit on his end and only queue most of his data, because
579 * he can only send snd_cwnd unacked packets at any given time. For
580 * each ACK we send, he increments snd_cwnd and transmits more of his
581 * queue. -DaveM
582 */
583 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
584 {
585 struct tcp_sock *tp = tcp_sk(sk);
586 struct inet_connection_sock *icsk = inet_csk(sk);
587 u32 now;
588
589 inet_csk_schedule_ack(sk);
590
591 tcp_measure_rcv_mss(sk, skb);
592
593 tcp_rcv_rtt_measure(tp);
594
595 now = tcp_time_stamp;
596
597 if (!icsk->icsk_ack.ato) {
598 /* The _first_ data packet received, initialize
599 * delayed ACK engine.
600 */
601 tcp_incr_quickack(sk);
602 icsk->icsk_ack.ato = TCP_ATO_MIN;
603 } else {
604 int m = now - icsk->icsk_ack.lrcvtime;
605
606 if (m <= TCP_ATO_MIN / 2) {
607 /* The fastest case is the first. */
608 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
609 } else if (m < icsk->icsk_ack.ato) {
610 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
611 if (icsk->icsk_ack.ato > icsk->icsk_rto)
612 icsk->icsk_ack.ato = icsk->icsk_rto;
613 } else if (m > icsk->icsk_rto) {
614 /* Too long gap. Apparently sender failed to
615 * restart window, so that we send ACKs quickly.
616 */
617 tcp_incr_quickack(sk);
618 sk_mem_reclaim(sk);
619 }
620 }
621 icsk->icsk_ack.lrcvtime = now;
622
623 TCP_ECN_check_ce(tp, skb);
624
625 if (skb->len >= 128)
626 tcp_grow_window(sk, skb);
627 }
628
629 /* Called to compute a smoothed rtt estimate. The data fed to this
630 * routine either comes from timestamps, or from segments that were
631 * known _not_ to have been retransmitted [see Karn/Partridge
632 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
633 * piece by Van Jacobson.
634 * NOTE: the next three routines used to be one big routine.
635 * To save cycles in the RFC 1323 implementation it was better to break
636 * it up into three procedures. -- erics
637 */
638 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
639 {
640 struct tcp_sock *tp = tcp_sk(sk);
641 long m = mrtt; /* RTT */
642
643 /* The following amusing code comes from Jacobson's
644 * article in SIGCOMM '88. Note that rtt and mdev
645 * are scaled versions of rtt and mean deviation.
646 * This is designed to be as fast as possible
647 * m stands for "measurement".
648 *
649 * On a 1990 paper the rto value is changed to:
650 * RTO = rtt + 4 * mdev
651 *
652 * Funny. This algorithm seems to be very broken.
653 * These formulae increase RTO, when it should be decreased, increase
654 * too slowly, when it should be increased quickly, decrease too quickly
655 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
656 * does not matter how to _calculate_ it. Seems, it was trap
657 * that VJ failed to avoid. 8)
658 */
659 if (m == 0)
660 m = 1;
661 if (tp->srtt != 0) {
662 m -= (tp->srtt >> 3); /* m is now error in rtt est */
663 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
664 if (m < 0) {
665 m = -m; /* m is now abs(error) */
666 m -= (tp->mdev >> 2); /* similar update on mdev */
667 /* This is similar to one of Eifel findings.
668 * Eifel blocks mdev updates when rtt decreases.
669 * This solution is a bit different: we use finer gain
670 * for mdev in this case (alpha*beta).
671 * Like Eifel it also prevents growth of rto,
672 * but also it limits too fast rto decreases,
673 * happening in pure Eifel.
674 */
675 if (m > 0)
676 m >>= 3;
677 } else {
678 m -= (tp->mdev >> 2); /* similar update on mdev */
679 }
680 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
681 if (tp->mdev > tp->mdev_max) {
682 tp->mdev_max = tp->mdev;
683 if (tp->mdev_max > tp->rttvar)
684 tp->rttvar = tp->mdev_max;
685 }
686 if (after(tp->snd_una, tp->rtt_seq)) {
687 if (tp->mdev_max < tp->rttvar)
688 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
689 tp->rtt_seq = tp->snd_nxt;
690 tp->mdev_max = tcp_rto_min(sk);
691 }
692 } else {
693 /* no previous measure. */
694 tp->srtt = m << 3; /* take the measured time to be rtt */
695 tp->mdev = m << 1; /* make sure rto = 3*rtt */
696 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
697 tp->rtt_seq = tp->snd_nxt;
698 }
699 }
700
701 /* Calculate rto without backoff. This is the second half of Van Jacobson's
702 * routine referred to above.
703 */
704 static inline void tcp_set_rto(struct sock *sk)
705 {
706 const struct tcp_sock *tp = tcp_sk(sk);
707 /* Old crap is replaced with new one. 8)
708 *
709 * More seriously:
710 * 1. If rtt variance happened to be less 50msec, it is hallucination.
711 * It cannot be less due to utterly erratic ACK generation made
712 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
713 * to do with delayed acks, because at cwnd>2 true delack timeout
714 * is invisible. Actually, Linux-2.4 also generates erratic
715 * ACKs in some circumstances.
716 */
717 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
718
719 /* 2. Fixups made earlier cannot be right.
720 * If we do not estimate RTO correctly without them,
721 * all the algo is pure shit and should be replaced
722 * with correct one. It is exactly, which we pretend to do.
723 */
724
725 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
726 * guarantees that rto is higher.
727 */
728 tcp_bound_rto(sk);
729 }
730
731 /* Save metrics learned by this TCP session.
732 This function is called only, when TCP finishes successfully
733 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
734 */
735 void tcp_update_metrics(struct sock *sk)
736 {
737 struct tcp_sock *tp = tcp_sk(sk);
738 struct dst_entry *dst = __sk_dst_get(sk);
739
740 if (sysctl_tcp_nometrics_save)
741 return;
742
743 if (dst && (dst->flags & DST_HOST)) {
744 const struct inet_connection_sock *icsk = inet_csk(sk);
745 int m;
746 unsigned long rtt;
747
748 dst_confirm(dst);
749
750 if (icsk->icsk_backoff || !tp->srtt) {
751 /* This session failed to estimate rtt. Why?
752 * Probably, no packets returned in time.
753 * Reset our results.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT)))
756 dst_metric_set(dst, RTAX_RTT, 0);
757 return;
758 }
759
760 rtt = dst_metric_rtt(dst, RTAX_RTT);
761 m = rtt - tp->srtt;
762
763 /* If newly calculated rtt larger than stored one,
764 * store new one. Otherwise, use EWMA. Remember,
765 * rtt overestimation is always better than underestimation.
766 */
767 if (!(dst_metric_locked(dst, RTAX_RTT))) {
768 if (m <= 0)
769 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
770 else
771 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
772 }
773
774 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
775 unsigned long var;
776 if (m < 0)
777 m = -m;
778
779 /* Scale deviation to rttvar fixed point */
780 m >>= 1;
781 if (m < tp->mdev)
782 m = tp->mdev;
783
784 var = dst_metric_rtt(dst, RTAX_RTTVAR);
785 if (m >= var)
786 var = m;
787 else
788 var -= (var - m) >> 2;
789
790 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
791 }
792
793 if (tcp_in_initial_slowstart(tp)) {
794 /* Slow start still did not finish. */
795 if (dst_metric(dst, RTAX_SSTHRESH) &&
796 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
797 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
798 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
799 if (!dst_metric_locked(dst, RTAX_CWND) &&
800 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
801 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
802 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
803 icsk->icsk_ca_state == TCP_CA_Open) {
804 /* Cong. avoidance phase, cwnd is reliable. */
805 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
806 dst_metric_set(dst, RTAX_SSTHRESH,
807 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
808 if (!dst_metric_locked(dst, RTAX_CWND))
809 dst_metric_set(dst, RTAX_CWND,
810 (dst_metric(dst, RTAX_CWND) +
811 tp->snd_cwnd) >> 1);
812 } else {
813 /* Else slow start did not finish, cwnd is non-sense,
814 ssthresh may be also invalid.
815 */
816 if (!dst_metric_locked(dst, RTAX_CWND))
817 dst_metric_set(dst, RTAX_CWND,
818 (dst_metric(dst, RTAX_CWND) +
819 tp->snd_ssthresh) >> 1);
820 if (dst_metric(dst, RTAX_SSTHRESH) &&
821 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
822 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
823 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
824 }
825
826 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
827 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
828 tp->reordering != sysctl_tcp_reordering)
829 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
830 }
831 }
832 }
833
834 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
835 {
836 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
837
838 if (!cwnd)
839 cwnd = TCP_INIT_CWND;
840 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
841 }
842
843 /* Set slow start threshold and cwnd not falling to slow start */
844 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
845 {
846 struct tcp_sock *tp = tcp_sk(sk);
847 const struct inet_connection_sock *icsk = inet_csk(sk);
848
849 tp->prior_ssthresh = 0;
850 tp->bytes_acked = 0;
851 if (icsk->icsk_ca_state < TCP_CA_CWR) {
852 tp->undo_marker = 0;
853 if (set_ssthresh)
854 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
855 tp->snd_cwnd = min(tp->snd_cwnd,
856 tcp_packets_in_flight(tp) + 1U);
857 tp->snd_cwnd_cnt = 0;
858 tp->high_seq = tp->snd_nxt;
859 tp->snd_cwnd_stamp = tcp_time_stamp;
860 TCP_ECN_queue_cwr(tp);
861
862 tcp_set_ca_state(sk, TCP_CA_CWR);
863 }
864 }
865
866 /*
867 * Packet counting of FACK is based on in-order assumptions, therefore TCP
868 * disables it when reordering is detected
869 */
870 static void tcp_disable_fack(struct tcp_sock *tp)
871 {
872 /* RFC3517 uses different metric in lost marker => reset on change */
873 if (tcp_is_fack(tp))
874 tp->lost_skb_hint = NULL;
875 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
876 }
877
878 /* Take a notice that peer is sending D-SACKs */
879 static void tcp_dsack_seen(struct tcp_sock *tp)
880 {
881 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
882 }
883
884 /* Initialize metrics on socket. */
885
886 static void tcp_init_metrics(struct sock *sk)
887 {
888 struct tcp_sock *tp = tcp_sk(sk);
889 struct dst_entry *dst = __sk_dst_get(sk);
890
891 if (dst == NULL)
892 goto reset;
893
894 dst_confirm(dst);
895
896 if (dst_metric_locked(dst, RTAX_CWND))
897 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
898 if (dst_metric(dst, RTAX_SSTHRESH)) {
899 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
900 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
901 tp->snd_ssthresh = tp->snd_cwnd_clamp;
902 } else {
903 /* ssthresh may have been reduced unnecessarily during.
904 * 3WHS. Restore it back to its initial default.
905 */
906 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
907 }
908 if (dst_metric(dst, RTAX_REORDERING) &&
909 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
910 tcp_disable_fack(tp);
911 tcp_disable_early_retrans(tp);
912 tp->reordering = dst_metric(dst, RTAX_REORDERING);
913 }
914
915 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
916 goto reset;
917
918 /* Initial rtt is determined from SYN,SYN-ACK.
919 * The segment is small and rtt may appear much
920 * less than real one. Use per-dst memory
921 * to make it more realistic.
922 *
923 * A bit of theory. RTT is time passed after "normal" sized packet
924 * is sent until it is ACKed. In normal circumstances sending small
925 * packets force peer to delay ACKs and calculation is correct too.
926 * The algorithm is adaptive and, provided we follow specs, it
927 * NEVER underestimate RTT. BUT! If peer tries to make some clever
928 * tricks sort of "quick acks" for time long enough to decrease RTT
929 * to low value, and then abruptly stops to do it and starts to delay
930 * ACKs, wait for troubles.
931 */
932 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
933 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
934 tp->rtt_seq = tp->snd_nxt;
935 }
936 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
937 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
938 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
939 }
940 tcp_set_rto(sk);
941 reset:
942 if (tp->srtt == 0) {
943 /* RFC6298: 5.7 We've failed to get a valid RTT sample from
944 * 3WHS. This is most likely due to retransmission,
945 * including spurious one. Reset the RTO back to 3secs
946 * from the more aggressive 1sec to avoid more spurious
947 * retransmission.
948 */
949 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
950 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
951 }
952 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
953 * retransmitted. In light of RFC6298 more aggressive 1sec
954 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
955 * retransmission has occurred.
956 */
957 if (tp->total_retrans > 1)
958 tp->snd_cwnd = 1;
959 else
960 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
961 tp->snd_cwnd_stamp = tcp_time_stamp;
962 }
963
964 static void tcp_update_reordering(struct sock *sk, const int metric,
965 const int ts)
966 {
967 struct tcp_sock *tp = tcp_sk(sk);
968 if (metric > tp->reordering) {
969 int mib_idx;
970
971 tp->reordering = min(TCP_MAX_REORDERING, metric);
972
973 /* This exciting event is worth to be remembered. 8) */
974 if (ts)
975 mib_idx = LINUX_MIB_TCPTSREORDER;
976 else if (tcp_is_reno(tp))
977 mib_idx = LINUX_MIB_TCPRENOREORDER;
978 else if (tcp_is_fack(tp))
979 mib_idx = LINUX_MIB_TCPFACKREORDER;
980 else
981 mib_idx = LINUX_MIB_TCPSACKREORDER;
982
983 NET_INC_STATS_BH(sock_net(sk), mib_idx);
984 #if FASTRETRANS_DEBUG > 1
985 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
986 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
987 tp->reordering,
988 tp->fackets_out,
989 tp->sacked_out,
990 tp->undo_marker ? tp->undo_retrans : 0);
991 #endif
992 tcp_disable_fack(tp);
993 }
994
995 if (metric > 0)
996 tcp_disable_early_retrans(tp);
997 }
998
999 /* This must be called before lost_out is incremented */
1000 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1001 {
1002 if ((tp->retransmit_skb_hint == NULL) ||
1003 before(TCP_SKB_CB(skb)->seq,
1004 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1005 tp->retransmit_skb_hint = skb;
1006
1007 if (!tp->lost_out ||
1008 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1009 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1010 }
1011
1012 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1013 {
1014 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1015 tcp_verify_retransmit_hint(tp, skb);
1016
1017 tp->lost_out += tcp_skb_pcount(skb);
1018 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1019 }
1020 }
1021
1022 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1023 struct sk_buff *skb)
1024 {
1025 tcp_verify_retransmit_hint(tp, skb);
1026
1027 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1028 tp->lost_out += tcp_skb_pcount(skb);
1029 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1030 }
1031 }
1032
1033 /* This procedure tags the retransmission queue when SACKs arrive.
1034 *
1035 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1036 * Packets in queue with these bits set are counted in variables
1037 * sacked_out, retrans_out and lost_out, correspondingly.
1038 *
1039 * Valid combinations are:
1040 * Tag InFlight Description
1041 * 0 1 - orig segment is in flight.
1042 * S 0 - nothing flies, orig reached receiver.
1043 * L 0 - nothing flies, orig lost by net.
1044 * R 2 - both orig and retransmit are in flight.
1045 * L|R 1 - orig is lost, retransmit is in flight.
1046 * S|R 1 - orig reached receiver, retrans is still in flight.
1047 * (L|S|R is logically valid, it could occur when L|R is sacked,
1048 * but it is equivalent to plain S and code short-curcuits it to S.
1049 * L|S is logically invalid, it would mean -1 packet in flight 8))
1050 *
1051 * These 6 states form finite state machine, controlled by the following events:
1052 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1053 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1054 * 3. Loss detection event of two flavors:
1055 * A. Scoreboard estimator decided the packet is lost.
1056 * A'. Reno "three dupacks" marks head of queue lost.
1057 * A''. Its FACK modification, head until snd.fack is lost.
1058 * B. SACK arrives sacking SND.NXT at the moment, when the
1059 * segment was retransmitted.
1060 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1061 *
1062 * It is pleasant to note, that state diagram turns out to be commutative,
1063 * so that we are allowed not to be bothered by order of our actions,
1064 * when multiple events arrive simultaneously. (see the function below).
1065 *
1066 * Reordering detection.
1067 * --------------------
1068 * Reordering metric is maximal distance, which a packet can be displaced
1069 * in packet stream. With SACKs we can estimate it:
1070 *
1071 * 1. SACK fills old hole and the corresponding segment was not
1072 * ever retransmitted -> reordering. Alas, we cannot use it
1073 * when segment was retransmitted.
1074 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1075 * for retransmitted and already SACKed segment -> reordering..
1076 * Both of these heuristics are not used in Loss state, when we cannot
1077 * account for retransmits accurately.
1078 *
1079 * SACK block validation.
1080 * ----------------------
1081 *
1082 * SACK block range validation checks that the received SACK block fits to
1083 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1084 * Note that SND.UNA is not included to the range though being valid because
1085 * it means that the receiver is rather inconsistent with itself reporting
1086 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1087 * perfectly valid, however, in light of RFC2018 which explicitly states
1088 * that "SACK block MUST reflect the newest segment. Even if the newest
1089 * segment is going to be discarded ...", not that it looks very clever
1090 * in case of head skb. Due to potentional receiver driven attacks, we
1091 * choose to avoid immediate execution of a walk in write queue due to
1092 * reneging and defer head skb's loss recovery to standard loss recovery
1093 * procedure that will eventually trigger (nothing forbids us doing this).
1094 *
1095 * Implements also blockage to start_seq wrap-around. Problem lies in the
1096 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1097 * there's no guarantee that it will be before snd_nxt (n). The problem
1098 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1099 * wrap (s_w):
1100 *
1101 * <- outs wnd -> <- wrapzone ->
1102 * u e n u_w e_w s n_w
1103 * | | | | | | |
1104 * |<------------+------+----- TCP seqno space --------------+---------->|
1105 * ...-- <2^31 ->| |<--------...
1106 * ...---- >2^31 ------>| |<--------...
1107 *
1108 * Current code wouldn't be vulnerable but it's better still to discard such
1109 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1110 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1111 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1112 * equal to the ideal case (infinite seqno space without wrap caused issues).
1113 *
1114 * With D-SACK the lower bound is extended to cover sequence space below
1115 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1116 * again, D-SACK block must not to go across snd_una (for the same reason as
1117 * for the normal SACK blocks, explained above). But there all simplicity
1118 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1119 * fully below undo_marker they do not affect behavior in anyway and can
1120 * therefore be safely ignored. In rare cases (which are more or less
1121 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1122 * fragmentation and packet reordering past skb's retransmission. To consider
1123 * them correctly, the acceptable range must be extended even more though
1124 * the exact amount is rather hard to quantify. However, tp->max_window can
1125 * be used as an exaggerated estimate.
1126 */
1127 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1128 u32 start_seq, u32 end_seq)
1129 {
1130 /* Too far in future, or reversed (interpretation is ambiguous) */
1131 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1132 return false;
1133
1134 /* Nasty start_seq wrap-around check (see comments above) */
1135 if (!before(start_seq, tp->snd_nxt))
1136 return false;
1137
1138 /* In outstanding window? ...This is valid exit for D-SACKs too.
1139 * start_seq == snd_una is non-sensical (see comments above)
1140 */
1141 if (after(start_seq, tp->snd_una))
1142 return true;
1143
1144 if (!is_dsack || !tp->undo_marker)
1145 return false;
1146
1147 /* ...Then it's D-SACK, and must reside below snd_una completely */
1148 if (after(end_seq, tp->snd_una))
1149 return false;
1150
1151 if (!before(start_seq, tp->undo_marker))
1152 return true;
1153
1154 /* Too old */
1155 if (!after(end_seq, tp->undo_marker))
1156 return false;
1157
1158 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1159 * start_seq < undo_marker and end_seq >= undo_marker.
1160 */
1161 return !before(start_seq, end_seq - tp->max_window);
1162 }
1163
1164 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1165 * Event "B". Later note: FACK people cheated me again 8), we have to account
1166 * for reordering! Ugly, but should help.
1167 *
1168 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1169 * less than what is now known to be received by the other end (derived from
1170 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1171 * retransmitted skbs to avoid some costly processing per ACKs.
1172 */
1173 static void tcp_mark_lost_retrans(struct sock *sk)
1174 {
1175 const struct inet_connection_sock *icsk = inet_csk(sk);
1176 struct tcp_sock *tp = tcp_sk(sk);
1177 struct sk_buff *skb;
1178 int cnt = 0;
1179 u32 new_low_seq = tp->snd_nxt;
1180 u32 received_upto = tcp_highest_sack_seq(tp);
1181
1182 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1183 !after(received_upto, tp->lost_retrans_low) ||
1184 icsk->icsk_ca_state != TCP_CA_Recovery)
1185 return;
1186
1187 tcp_for_write_queue(skb, sk) {
1188 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1189
1190 if (skb == tcp_send_head(sk))
1191 break;
1192 if (cnt == tp->retrans_out)
1193 break;
1194 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1195 continue;
1196
1197 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1198 continue;
1199
1200 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1201 * constraint here (see above) but figuring out that at
1202 * least tp->reordering SACK blocks reside between ack_seq
1203 * and received_upto is not easy task to do cheaply with
1204 * the available datastructures.
1205 *
1206 * Whether FACK should check here for tp->reordering segs
1207 * in-between one could argue for either way (it would be
1208 * rather simple to implement as we could count fack_count
1209 * during the walk and do tp->fackets_out - fack_count).
1210 */
1211 if (after(received_upto, ack_seq)) {
1212 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1213 tp->retrans_out -= tcp_skb_pcount(skb);
1214
1215 tcp_skb_mark_lost_uncond_verify(tp, skb);
1216 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1217 } else {
1218 if (before(ack_seq, new_low_seq))
1219 new_low_seq = ack_seq;
1220 cnt += tcp_skb_pcount(skb);
1221 }
1222 }
1223
1224 if (tp->retrans_out)
1225 tp->lost_retrans_low = new_low_seq;
1226 }
1227
1228 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1229 struct tcp_sack_block_wire *sp, int num_sacks,
1230 u32 prior_snd_una)
1231 {
1232 struct tcp_sock *tp = tcp_sk(sk);
1233 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1234 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1235 bool dup_sack = false;
1236
1237 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1238 dup_sack = true;
1239 tcp_dsack_seen(tp);
1240 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1241 } else if (num_sacks > 1) {
1242 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1243 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1244
1245 if (!after(end_seq_0, end_seq_1) &&
1246 !before(start_seq_0, start_seq_1)) {
1247 dup_sack = true;
1248 tcp_dsack_seen(tp);
1249 NET_INC_STATS_BH(sock_net(sk),
1250 LINUX_MIB_TCPDSACKOFORECV);
1251 }
1252 }
1253
1254 /* D-SACK for already forgotten data... Do dumb counting. */
1255 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1256 !after(end_seq_0, prior_snd_una) &&
1257 after(end_seq_0, tp->undo_marker))
1258 tp->undo_retrans--;
1259
1260 return dup_sack;
1261 }
1262
1263 struct tcp_sacktag_state {
1264 int reord;
1265 int fack_count;
1266 int flag;
1267 };
1268
1269 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1270 * the incoming SACK may not exactly match but we can find smaller MSS
1271 * aligned portion of it that matches. Therefore we might need to fragment
1272 * which may fail and creates some hassle (caller must handle error case
1273 * returns).
1274 *
1275 * FIXME: this could be merged to shift decision code
1276 */
1277 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1278 u32 start_seq, u32 end_seq)
1279 {
1280 int err;
1281 bool in_sack;
1282 unsigned int pkt_len;
1283 unsigned int mss;
1284
1285 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1286 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1287
1288 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1289 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1290 mss = tcp_skb_mss(skb);
1291 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1292
1293 if (!in_sack) {
1294 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1295 if (pkt_len < mss)
1296 pkt_len = mss;
1297 } else {
1298 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1299 if (pkt_len < mss)
1300 return -EINVAL;
1301 }
1302
1303 /* Round if necessary so that SACKs cover only full MSSes
1304 * and/or the remaining small portion (if present)
1305 */
1306 if (pkt_len > mss) {
1307 unsigned int new_len = (pkt_len / mss) * mss;
1308 if (!in_sack && new_len < pkt_len) {
1309 new_len += mss;
1310 if (new_len > skb->len)
1311 return 0;
1312 }
1313 pkt_len = new_len;
1314 }
1315 err = tcp_fragment(sk, skb, pkt_len, mss);
1316 if (err < 0)
1317 return err;
1318 }
1319
1320 return in_sack;
1321 }
1322
1323 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1324 static u8 tcp_sacktag_one(struct sock *sk,
1325 struct tcp_sacktag_state *state, u8 sacked,
1326 u32 start_seq, u32 end_seq,
1327 bool dup_sack, int pcount)
1328 {
1329 struct tcp_sock *tp = tcp_sk(sk);
1330 int fack_count = state->fack_count;
1331
1332 /* Account D-SACK for retransmitted packet. */
1333 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1334 if (tp->undo_marker && tp->undo_retrans &&
1335 after(end_seq, tp->undo_marker))
1336 tp->undo_retrans--;
1337 if (sacked & TCPCB_SACKED_ACKED)
1338 state->reord = min(fack_count, state->reord);
1339 }
1340
1341 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1342 if (!after(end_seq, tp->snd_una))
1343 return sacked;
1344
1345 if (!(sacked & TCPCB_SACKED_ACKED)) {
1346 if (sacked & TCPCB_SACKED_RETRANS) {
1347 /* If the segment is not tagged as lost,
1348 * we do not clear RETRANS, believing
1349 * that retransmission is still in flight.
1350 */
1351 if (sacked & TCPCB_LOST) {
1352 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1353 tp->lost_out -= pcount;
1354 tp->retrans_out -= pcount;
1355 }
1356 } else {
1357 if (!(sacked & TCPCB_RETRANS)) {
1358 /* New sack for not retransmitted frame,
1359 * which was in hole. It is reordering.
1360 */
1361 if (before(start_seq,
1362 tcp_highest_sack_seq(tp)))
1363 state->reord = min(fack_count,
1364 state->reord);
1365
1366 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1367 if (!after(end_seq, tp->frto_highmark))
1368 state->flag |= FLAG_ONLY_ORIG_SACKED;
1369 }
1370
1371 if (sacked & TCPCB_LOST) {
1372 sacked &= ~TCPCB_LOST;
1373 tp->lost_out -= pcount;
1374 }
1375 }
1376
1377 sacked |= TCPCB_SACKED_ACKED;
1378 state->flag |= FLAG_DATA_SACKED;
1379 tp->sacked_out += pcount;
1380
1381 fack_count += pcount;
1382
1383 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1384 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1385 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1386 tp->lost_cnt_hint += pcount;
1387
1388 if (fack_count > tp->fackets_out)
1389 tp->fackets_out = fack_count;
1390 }
1391
1392 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1393 * frames and clear it. undo_retrans is decreased above, L|R frames
1394 * are accounted above as well.
1395 */
1396 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1397 sacked &= ~TCPCB_SACKED_RETRANS;
1398 tp->retrans_out -= pcount;
1399 }
1400
1401 return sacked;
1402 }
1403
1404 /* Shift newly-SACKed bytes from this skb to the immediately previous
1405 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1406 */
1407 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1408 struct tcp_sacktag_state *state,
1409 unsigned int pcount, int shifted, int mss,
1410 bool dup_sack)
1411 {
1412 struct tcp_sock *tp = tcp_sk(sk);
1413 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1414 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1415 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1416
1417 BUG_ON(!pcount);
1418
1419 /* Adjust counters and hints for the newly sacked sequence
1420 * range but discard the return value since prev is already
1421 * marked. We must tag the range first because the seq
1422 * advancement below implicitly advances
1423 * tcp_highest_sack_seq() when skb is highest_sack.
1424 */
1425 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1426 start_seq, end_seq, dup_sack, pcount);
1427
1428 if (skb == tp->lost_skb_hint)
1429 tp->lost_cnt_hint += pcount;
1430
1431 TCP_SKB_CB(prev)->end_seq += shifted;
1432 TCP_SKB_CB(skb)->seq += shifted;
1433
1434 skb_shinfo(prev)->gso_segs += pcount;
1435 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1436 skb_shinfo(skb)->gso_segs -= pcount;
1437
1438 /* When we're adding to gso_segs == 1, gso_size will be zero,
1439 * in theory this shouldn't be necessary but as long as DSACK
1440 * code can come after this skb later on it's better to keep
1441 * setting gso_size to something.
1442 */
1443 if (!skb_shinfo(prev)->gso_size) {
1444 skb_shinfo(prev)->gso_size = mss;
1445 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1446 }
1447
1448 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1449 if (skb_shinfo(skb)->gso_segs <= 1) {
1450 skb_shinfo(skb)->gso_size = 0;
1451 skb_shinfo(skb)->gso_type = 0;
1452 }
1453
1454 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1455 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1456
1457 if (skb->len > 0) {
1458 BUG_ON(!tcp_skb_pcount(skb));
1459 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1460 return false;
1461 }
1462
1463 /* Whole SKB was eaten :-) */
1464
1465 if (skb == tp->retransmit_skb_hint)
1466 tp->retransmit_skb_hint = prev;
1467 if (skb == tp->scoreboard_skb_hint)
1468 tp->scoreboard_skb_hint = prev;
1469 if (skb == tp->lost_skb_hint) {
1470 tp->lost_skb_hint = prev;
1471 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1472 }
1473
1474 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1475 if (skb == tcp_highest_sack(sk))
1476 tcp_advance_highest_sack(sk, skb);
1477
1478 tcp_unlink_write_queue(skb, sk);
1479 sk_wmem_free_skb(sk, skb);
1480
1481 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1482
1483 return true;
1484 }
1485
1486 /* I wish gso_size would have a bit more sane initialization than
1487 * something-or-zero which complicates things
1488 */
1489 static int tcp_skb_seglen(const struct sk_buff *skb)
1490 {
1491 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1492 }
1493
1494 /* Shifting pages past head area doesn't work */
1495 static int skb_can_shift(const struct sk_buff *skb)
1496 {
1497 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1498 }
1499
1500 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1501 * skb.
1502 */
1503 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1504 struct tcp_sacktag_state *state,
1505 u32 start_seq, u32 end_seq,
1506 bool dup_sack)
1507 {
1508 struct tcp_sock *tp = tcp_sk(sk);
1509 struct sk_buff *prev;
1510 int mss;
1511 int pcount = 0;
1512 int len;
1513 int in_sack;
1514
1515 if (!sk_can_gso(sk))
1516 goto fallback;
1517
1518 /* Normally R but no L won't result in plain S */
1519 if (!dup_sack &&
1520 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1521 goto fallback;
1522 if (!skb_can_shift(skb))
1523 goto fallback;
1524 /* This frame is about to be dropped (was ACKed). */
1525 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1526 goto fallback;
1527
1528 /* Can only happen with delayed DSACK + discard craziness */
1529 if (unlikely(skb == tcp_write_queue_head(sk)))
1530 goto fallback;
1531 prev = tcp_write_queue_prev(sk, skb);
1532
1533 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1534 goto fallback;
1535
1536 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1537 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1538
1539 if (in_sack) {
1540 len = skb->len;
1541 pcount = tcp_skb_pcount(skb);
1542 mss = tcp_skb_seglen(skb);
1543
1544 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1545 * drop this restriction as unnecessary
1546 */
1547 if (mss != tcp_skb_seglen(prev))
1548 goto fallback;
1549 } else {
1550 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1551 goto noop;
1552 /* CHECKME: This is non-MSS split case only?, this will
1553 * cause skipped skbs due to advancing loop btw, original
1554 * has that feature too
1555 */
1556 if (tcp_skb_pcount(skb) <= 1)
1557 goto noop;
1558
1559 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1560 if (!in_sack) {
1561 /* TODO: head merge to next could be attempted here
1562 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1563 * though it might not be worth of the additional hassle
1564 *
1565 * ...we can probably just fallback to what was done
1566 * previously. We could try merging non-SACKed ones
1567 * as well but it probably isn't going to buy off
1568 * because later SACKs might again split them, and
1569 * it would make skb timestamp tracking considerably
1570 * harder problem.
1571 */
1572 goto fallback;
1573 }
1574
1575 len = end_seq - TCP_SKB_CB(skb)->seq;
1576 BUG_ON(len < 0);
1577 BUG_ON(len > skb->len);
1578
1579 /* MSS boundaries should be honoured or else pcount will
1580 * severely break even though it makes things bit trickier.
1581 * Optimize common case to avoid most of the divides
1582 */
1583 mss = tcp_skb_mss(skb);
1584
1585 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1586 * drop this restriction as unnecessary
1587 */
1588 if (mss != tcp_skb_seglen(prev))
1589 goto fallback;
1590
1591 if (len == mss) {
1592 pcount = 1;
1593 } else if (len < mss) {
1594 goto noop;
1595 } else {
1596 pcount = len / mss;
1597 len = pcount * mss;
1598 }
1599 }
1600
1601 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1602 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1603 goto fallback;
1604
1605 if (!skb_shift(prev, skb, len))
1606 goto fallback;
1607 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1608 goto out;
1609
1610 /* Hole filled allows collapsing with the next as well, this is very
1611 * useful when hole on every nth skb pattern happens
1612 */
1613 if (prev == tcp_write_queue_tail(sk))
1614 goto out;
1615 skb = tcp_write_queue_next(sk, prev);
1616
1617 if (!skb_can_shift(skb) ||
1618 (skb == tcp_send_head(sk)) ||
1619 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620 (mss != tcp_skb_seglen(skb)))
1621 goto out;
1622
1623 len = skb->len;
1624 if (skb_shift(prev, skb, len)) {
1625 pcount += tcp_skb_pcount(skb);
1626 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1627 }
1628
1629 out:
1630 state->fack_count += pcount;
1631 return prev;
1632
1633 noop:
1634 return skb;
1635
1636 fallback:
1637 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1638 return NULL;
1639 }
1640
1641 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1642 struct tcp_sack_block *next_dup,
1643 struct tcp_sacktag_state *state,
1644 u32 start_seq, u32 end_seq,
1645 bool dup_sack_in)
1646 {
1647 struct tcp_sock *tp = tcp_sk(sk);
1648 struct sk_buff *tmp;
1649
1650 tcp_for_write_queue_from(skb, sk) {
1651 int in_sack = 0;
1652 bool dup_sack = dup_sack_in;
1653
1654 if (skb == tcp_send_head(sk))
1655 break;
1656
1657 /* queue is in-order => we can short-circuit the walk early */
1658 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1659 break;
1660
1661 if ((next_dup != NULL) &&
1662 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1663 in_sack = tcp_match_skb_to_sack(sk, skb,
1664 next_dup->start_seq,
1665 next_dup->end_seq);
1666 if (in_sack > 0)
1667 dup_sack = true;
1668 }
1669
1670 /* skb reference here is a bit tricky to get right, since
1671 * shifting can eat and free both this skb and the next,
1672 * so not even _safe variant of the loop is enough.
1673 */
1674 if (in_sack <= 0) {
1675 tmp = tcp_shift_skb_data(sk, skb, state,
1676 start_seq, end_seq, dup_sack);
1677 if (tmp != NULL) {
1678 if (tmp != skb) {
1679 skb = tmp;
1680 continue;
1681 }
1682
1683 in_sack = 0;
1684 } else {
1685 in_sack = tcp_match_skb_to_sack(sk, skb,
1686 start_seq,
1687 end_seq);
1688 }
1689 }
1690
1691 if (unlikely(in_sack < 0))
1692 break;
1693
1694 if (in_sack) {
1695 TCP_SKB_CB(skb)->sacked =
1696 tcp_sacktag_one(sk,
1697 state,
1698 TCP_SKB_CB(skb)->sacked,
1699 TCP_SKB_CB(skb)->seq,
1700 TCP_SKB_CB(skb)->end_seq,
1701 dup_sack,
1702 tcp_skb_pcount(skb));
1703
1704 if (!before(TCP_SKB_CB(skb)->seq,
1705 tcp_highest_sack_seq(tp)))
1706 tcp_advance_highest_sack(sk, skb);
1707 }
1708
1709 state->fack_count += tcp_skb_pcount(skb);
1710 }
1711 return skb;
1712 }
1713
1714 /* Avoid all extra work that is being done by sacktag while walking in
1715 * a normal way
1716 */
1717 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1718 struct tcp_sacktag_state *state,
1719 u32 skip_to_seq)
1720 {
1721 tcp_for_write_queue_from(skb, sk) {
1722 if (skb == tcp_send_head(sk))
1723 break;
1724
1725 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1726 break;
1727
1728 state->fack_count += tcp_skb_pcount(skb);
1729 }
1730 return skb;
1731 }
1732
1733 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1734 struct sock *sk,
1735 struct tcp_sack_block *next_dup,
1736 struct tcp_sacktag_state *state,
1737 u32 skip_to_seq)
1738 {
1739 if (next_dup == NULL)
1740 return skb;
1741
1742 if (before(next_dup->start_seq, skip_to_seq)) {
1743 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1744 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1745 next_dup->start_seq, next_dup->end_seq,
1746 1);
1747 }
1748
1749 return skb;
1750 }
1751
1752 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1753 {
1754 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1755 }
1756
1757 static int
1758 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1759 u32 prior_snd_una)
1760 {
1761 const struct inet_connection_sock *icsk = inet_csk(sk);
1762 struct tcp_sock *tp = tcp_sk(sk);
1763 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1764 TCP_SKB_CB(ack_skb)->sacked);
1765 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1766 struct tcp_sack_block sp[TCP_NUM_SACKS];
1767 struct tcp_sack_block *cache;
1768 struct tcp_sacktag_state state;
1769 struct sk_buff *skb;
1770 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1771 int used_sacks;
1772 bool found_dup_sack = false;
1773 int i, j;
1774 int first_sack_index;
1775
1776 state.flag = 0;
1777 state.reord = tp->packets_out;
1778
1779 if (!tp->sacked_out) {
1780 if (WARN_ON(tp->fackets_out))
1781 tp->fackets_out = 0;
1782 tcp_highest_sack_reset(sk);
1783 }
1784
1785 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1786 num_sacks, prior_snd_una);
1787 if (found_dup_sack)
1788 state.flag |= FLAG_DSACKING_ACK;
1789
1790 /* Eliminate too old ACKs, but take into
1791 * account more or less fresh ones, they can
1792 * contain valid SACK info.
1793 */
1794 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1795 return 0;
1796
1797 if (!tp->packets_out)
1798 goto out;
1799
1800 used_sacks = 0;
1801 first_sack_index = 0;
1802 for (i = 0; i < num_sacks; i++) {
1803 bool dup_sack = !i && found_dup_sack;
1804
1805 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1806 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1807
1808 if (!tcp_is_sackblock_valid(tp, dup_sack,
1809 sp[used_sacks].start_seq,
1810 sp[used_sacks].end_seq)) {
1811 int mib_idx;
1812
1813 if (dup_sack) {
1814 if (!tp->undo_marker)
1815 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1816 else
1817 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1818 } else {
1819 /* Don't count olds caused by ACK reordering */
1820 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1821 !after(sp[used_sacks].end_seq, tp->snd_una))
1822 continue;
1823 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1824 }
1825
1826 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1827 if (i == 0)
1828 first_sack_index = -1;
1829 continue;
1830 }
1831
1832 /* Ignore very old stuff early */
1833 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1834 continue;
1835
1836 used_sacks++;
1837 }
1838
1839 /* order SACK blocks to allow in order walk of the retrans queue */
1840 for (i = used_sacks - 1; i > 0; i--) {
1841 for (j = 0; j < i; j++) {
1842 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1843 swap(sp[j], sp[j + 1]);
1844
1845 /* Track where the first SACK block goes to */
1846 if (j == first_sack_index)
1847 first_sack_index = j + 1;
1848 }
1849 }
1850 }
1851
1852 skb = tcp_write_queue_head(sk);
1853 state.fack_count = 0;
1854 i = 0;
1855
1856 if (!tp->sacked_out) {
1857 /* It's already past, so skip checking against it */
1858 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1859 } else {
1860 cache = tp->recv_sack_cache;
1861 /* Skip empty blocks in at head of the cache */
1862 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1863 !cache->end_seq)
1864 cache++;
1865 }
1866
1867 while (i < used_sacks) {
1868 u32 start_seq = sp[i].start_seq;
1869 u32 end_seq = sp[i].end_seq;
1870 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1871 struct tcp_sack_block *next_dup = NULL;
1872
1873 if (found_dup_sack && ((i + 1) == first_sack_index))
1874 next_dup = &sp[i + 1];
1875
1876 /* Skip too early cached blocks */
1877 while (tcp_sack_cache_ok(tp, cache) &&
1878 !before(start_seq, cache->end_seq))
1879 cache++;
1880
1881 /* Can skip some work by looking recv_sack_cache? */
1882 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1883 after(end_seq, cache->start_seq)) {
1884
1885 /* Head todo? */
1886 if (before(start_seq, cache->start_seq)) {
1887 skb = tcp_sacktag_skip(skb, sk, &state,
1888 start_seq);
1889 skb = tcp_sacktag_walk(skb, sk, next_dup,
1890 &state,
1891 start_seq,
1892 cache->start_seq,
1893 dup_sack);
1894 }
1895
1896 /* Rest of the block already fully processed? */
1897 if (!after(end_seq, cache->end_seq))
1898 goto advance_sp;
1899
1900 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1901 &state,
1902 cache->end_seq);
1903
1904 /* ...tail remains todo... */
1905 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1906 /* ...but better entrypoint exists! */
1907 skb = tcp_highest_sack(sk);
1908 if (skb == NULL)
1909 break;
1910 state.fack_count = tp->fackets_out;
1911 cache++;
1912 goto walk;
1913 }
1914
1915 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1916 /* Check overlap against next cached too (past this one already) */
1917 cache++;
1918 continue;
1919 }
1920
1921 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1922 skb = tcp_highest_sack(sk);
1923 if (skb == NULL)
1924 break;
1925 state.fack_count = tp->fackets_out;
1926 }
1927 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1928
1929 walk:
1930 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1931 start_seq, end_seq, dup_sack);
1932
1933 advance_sp:
1934 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1935 * due to in-order walk
1936 */
1937 if (after(end_seq, tp->frto_highmark))
1938 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1939
1940 i++;
1941 }
1942
1943 /* Clear the head of the cache sack blocks so we can skip it next time */
1944 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1945 tp->recv_sack_cache[i].start_seq = 0;
1946 tp->recv_sack_cache[i].end_seq = 0;
1947 }
1948 for (j = 0; j < used_sacks; j++)
1949 tp->recv_sack_cache[i++] = sp[j];
1950
1951 tcp_mark_lost_retrans(sk);
1952
1953 tcp_verify_left_out(tp);
1954
1955 if ((state.reord < tp->fackets_out) &&
1956 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1957 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1958 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1959
1960 out:
1961
1962 #if FASTRETRANS_DEBUG > 0
1963 WARN_ON((int)tp->sacked_out < 0);
1964 WARN_ON((int)tp->lost_out < 0);
1965 WARN_ON((int)tp->retrans_out < 0);
1966 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1967 #endif
1968 return state.flag;
1969 }
1970
1971 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1972 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1973 */
1974 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1975 {
1976 u32 holes;
1977
1978 holes = max(tp->lost_out, 1U);
1979 holes = min(holes, tp->packets_out);
1980
1981 if ((tp->sacked_out + holes) > tp->packets_out) {
1982 tp->sacked_out = tp->packets_out - holes;
1983 return true;
1984 }
1985 return false;
1986 }
1987
1988 /* If we receive more dupacks than we expected counting segments
1989 * in assumption of absent reordering, interpret this as reordering.
1990 * The only another reason could be bug in receiver TCP.
1991 */
1992 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1993 {
1994 struct tcp_sock *tp = tcp_sk(sk);
1995 if (tcp_limit_reno_sacked(tp))
1996 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1997 }
1998
1999 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2000
2001 static void tcp_add_reno_sack(struct sock *sk)
2002 {
2003 struct tcp_sock *tp = tcp_sk(sk);
2004 tp->sacked_out++;
2005 tcp_check_reno_reordering(sk, 0);
2006 tcp_verify_left_out(tp);
2007 }
2008
2009 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2010
2011 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2012 {
2013 struct tcp_sock *tp = tcp_sk(sk);
2014
2015 if (acked > 0) {
2016 /* One ACK acked hole. The rest eat duplicate ACKs. */
2017 if (acked - 1 >= tp->sacked_out)
2018 tp->sacked_out = 0;
2019 else
2020 tp->sacked_out -= acked - 1;
2021 }
2022 tcp_check_reno_reordering(sk, acked);
2023 tcp_verify_left_out(tp);
2024 }
2025
2026 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2027 {
2028 tp->sacked_out = 0;
2029 }
2030
2031 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2032 {
2033 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2034 }
2035
2036 /* F-RTO can only be used if TCP has never retransmitted anything other than
2037 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2038 */
2039 bool tcp_use_frto(struct sock *sk)
2040 {
2041 const struct tcp_sock *tp = tcp_sk(sk);
2042 const struct inet_connection_sock *icsk = inet_csk(sk);
2043 struct sk_buff *skb;
2044
2045 if (!sysctl_tcp_frto)
2046 return false;
2047
2048 /* MTU probe and F-RTO won't really play nicely along currently */
2049 if (icsk->icsk_mtup.probe_size)
2050 return false;
2051
2052 if (tcp_is_sackfrto(tp))
2053 return true;
2054
2055 /* Avoid expensive walking of rexmit queue if possible */
2056 if (tp->retrans_out > 1)
2057 return false;
2058
2059 skb = tcp_write_queue_head(sk);
2060 if (tcp_skb_is_last(sk, skb))
2061 return true;
2062 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2063 tcp_for_write_queue_from(skb, sk) {
2064 if (skb == tcp_send_head(sk))
2065 break;
2066 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2067 return false;
2068 /* Short-circuit when first non-SACKed skb has been checked */
2069 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2070 break;
2071 }
2072 return true;
2073 }
2074
2075 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2076 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2077 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2078 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2079 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2080 * bits are handled if the Loss state is really to be entered (in
2081 * tcp_enter_frto_loss).
2082 *
2083 * Do like tcp_enter_loss() would; when RTO expires the second time it
2084 * does:
2085 * "Reduce ssthresh if it has not yet been made inside this window."
2086 */
2087 void tcp_enter_frto(struct sock *sk)
2088 {
2089 const struct inet_connection_sock *icsk = inet_csk(sk);
2090 struct tcp_sock *tp = tcp_sk(sk);
2091 struct sk_buff *skb;
2092
2093 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2094 tp->snd_una == tp->high_seq ||
2095 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2096 !icsk->icsk_retransmits)) {
2097 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2098 /* Our state is too optimistic in ssthresh() call because cwnd
2099 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2100 * recovery has not yet completed. Pattern would be this: RTO,
2101 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2102 * up here twice).
2103 * RFC4138 should be more specific on what to do, even though
2104 * RTO is quite unlikely to occur after the first Cumulative ACK
2105 * due to back-off and complexity of triggering events ...
2106 */
2107 if (tp->frto_counter) {
2108 u32 stored_cwnd;
2109 stored_cwnd = tp->snd_cwnd;
2110 tp->snd_cwnd = 2;
2111 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2112 tp->snd_cwnd = stored_cwnd;
2113 } else {
2114 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2115 }
2116 /* ... in theory, cong.control module could do "any tricks" in
2117 * ssthresh(), which means that ca_state, lost bits and lost_out
2118 * counter would have to be faked before the call occurs. We
2119 * consider that too expensive, unlikely and hacky, so modules
2120 * using these in ssthresh() must deal these incompatibility
2121 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2122 */
2123 tcp_ca_event(sk, CA_EVENT_FRTO);
2124 }
2125
2126 tp->undo_marker = tp->snd_una;
2127 tp->undo_retrans = 0;
2128
2129 skb = tcp_write_queue_head(sk);
2130 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2131 tp->undo_marker = 0;
2132 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2133 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2134 tp->retrans_out -= tcp_skb_pcount(skb);
2135 }
2136 tcp_verify_left_out(tp);
2137
2138 /* Too bad if TCP was application limited */
2139 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2140
2141 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2142 * The last condition is necessary at least in tp->frto_counter case.
2143 */
2144 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2145 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2146 after(tp->high_seq, tp->snd_una)) {
2147 tp->frto_highmark = tp->high_seq;
2148 } else {
2149 tp->frto_highmark = tp->snd_nxt;
2150 }
2151 tcp_set_ca_state(sk, TCP_CA_Disorder);
2152 tp->high_seq = tp->snd_nxt;
2153 tp->frto_counter = 1;
2154 }
2155
2156 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2157 * which indicates that we should follow the traditional RTO recovery,
2158 * i.e. mark everything lost and do go-back-N retransmission.
2159 */
2160 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2161 {
2162 struct tcp_sock *tp = tcp_sk(sk);
2163 struct sk_buff *skb;
2164
2165 tp->lost_out = 0;
2166 tp->retrans_out = 0;
2167 if (tcp_is_reno(tp))
2168 tcp_reset_reno_sack(tp);
2169
2170 tcp_for_write_queue(skb, sk) {
2171 if (skb == tcp_send_head(sk))
2172 break;
2173
2174 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2175 /*
2176 * Count the retransmission made on RTO correctly (only when
2177 * waiting for the first ACK and did not get it)...
2178 */
2179 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2180 /* For some reason this R-bit might get cleared? */
2181 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2182 tp->retrans_out += tcp_skb_pcount(skb);
2183 /* ...enter this if branch just for the first segment */
2184 flag |= FLAG_DATA_ACKED;
2185 } else {
2186 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2187 tp->undo_marker = 0;
2188 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2189 }
2190
2191 /* Marking forward transmissions that were made after RTO lost
2192 * can cause unnecessary retransmissions in some scenarios,
2193 * SACK blocks will mitigate that in some but not in all cases.
2194 * We used to not mark them but it was causing break-ups with
2195 * receivers that do only in-order receival.
2196 *
2197 * TODO: we could detect presence of such receiver and select
2198 * different behavior per flow.
2199 */
2200 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2201 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2202 tp->lost_out += tcp_skb_pcount(skb);
2203 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2204 }
2205 }
2206 tcp_verify_left_out(tp);
2207
2208 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2209 tp->snd_cwnd_cnt = 0;
2210 tp->snd_cwnd_stamp = tcp_time_stamp;
2211 tp->frto_counter = 0;
2212 tp->bytes_acked = 0;
2213
2214 tp->reordering = min_t(unsigned int, tp->reordering,
2215 sysctl_tcp_reordering);
2216 tcp_set_ca_state(sk, TCP_CA_Loss);
2217 tp->high_seq = tp->snd_nxt;
2218 TCP_ECN_queue_cwr(tp);
2219
2220 tcp_clear_all_retrans_hints(tp);
2221 }
2222
2223 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2224 {
2225 tp->retrans_out = 0;
2226 tp->lost_out = 0;
2227
2228 tp->undo_marker = 0;
2229 tp->undo_retrans = 0;
2230 }
2231
2232 void tcp_clear_retrans(struct tcp_sock *tp)
2233 {
2234 tcp_clear_retrans_partial(tp);
2235
2236 tp->fackets_out = 0;
2237 tp->sacked_out = 0;
2238 }
2239
2240 /* Enter Loss state. If "how" is not zero, forget all SACK information
2241 * and reset tags completely, otherwise preserve SACKs. If receiver
2242 * dropped its ofo queue, we will know this due to reneging detection.
2243 */
2244 void tcp_enter_loss(struct sock *sk, int how)
2245 {
2246 const struct inet_connection_sock *icsk = inet_csk(sk);
2247 struct tcp_sock *tp = tcp_sk(sk);
2248 struct sk_buff *skb;
2249
2250 /* Reduce ssthresh if it has not yet been made inside this window. */
2251 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2252 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2253 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2254 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2255 tcp_ca_event(sk, CA_EVENT_LOSS);
2256 }
2257 tp->snd_cwnd = 1;
2258 tp->snd_cwnd_cnt = 0;
2259 tp->snd_cwnd_stamp = tcp_time_stamp;
2260
2261 tp->bytes_acked = 0;
2262 tcp_clear_retrans_partial(tp);
2263
2264 if (tcp_is_reno(tp))
2265 tcp_reset_reno_sack(tp);
2266
2267 if (!how) {
2268 /* Push undo marker, if it was plain RTO and nothing
2269 * was retransmitted. */
2270 tp->undo_marker = tp->snd_una;
2271 } else {
2272 tp->sacked_out = 0;
2273 tp->fackets_out = 0;
2274 }
2275 tcp_clear_all_retrans_hints(tp);
2276
2277 tcp_for_write_queue(skb, sk) {
2278 if (skb == tcp_send_head(sk))
2279 break;
2280
2281 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2282 tp->undo_marker = 0;
2283 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2284 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2285 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2286 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2287 tp->lost_out += tcp_skb_pcount(skb);
2288 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2289 }
2290 }
2291 tcp_verify_left_out(tp);
2292
2293 tp->reordering = min_t(unsigned int, tp->reordering,
2294 sysctl_tcp_reordering);
2295 tcp_set_ca_state(sk, TCP_CA_Loss);
2296 tp->high_seq = tp->snd_nxt;
2297 TCP_ECN_queue_cwr(tp);
2298 /* Abort F-RTO algorithm if one is in progress */
2299 tp->frto_counter = 0;
2300 }
2301
2302 /* If ACK arrived pointing to a remembered SACK, it means that our
2303 * remembered SACKs do not reflect real state of receiver i.e.
2304 * receiver _host_ is heavily congested (or buggy).
2305 *
2306 * Do processing similar to RTO timeout.
2307 */
2308 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2309 {
2310 if (flag & FLAG_SACK_RENEGING) {
2311 struct inet_connection_sock *icsk = inet_csk(sk);
2312 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2313
2314 tcp_enter_loss(sk, 1);
2315 icsk->icsk_retransmits++;
2316 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2317 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2318 icsk->icsk_rto, TCP_RTO_MAX);
2319 return true;
2320 }
2321 return false;
2322 }
2323
2324 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2325 {
2326 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2327 }
2328
2329 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2330 * counter when SACK is enabled (without SACK, sacked_out is used for
2331 * that purpose).
2332 *
2333 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2334 * segments up to the highest received SACK block so far and holes in
2335 * between them.
2336 *
2337 * With reordering, holes may still be in flight, so RFC3517 recovery
2338 * uses pure sacked_out (total number of SACKed segments) even though
2339 * it violates the RFC that uses duplicate ACKs, often these are equal
2340 * but when e.g. out-of-window ACKs or packet duplication occurs,
2341 * they differ. Since neither occurs due to loss, TCP should really
2342 * ignore them.
2343 */
2344 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2345 {
2346 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2347 }
2348
2349 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2350 {
2351 struct tcp_sock *tp = tcp_sk(sk);
2352 unsigned long delay;
2353
2354 /* Delay early retransmit and entering fast recovery for
2355 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2356 * available, or RTO is scheduled to fire first.
2357 */
2358 if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2359 return false;
2360
2361 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2362 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2363 return false;
2364
2365 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2366 tp->early_retrans_delayed = 1;
2367 return true;
2368 }
2369
2370 static inline int tcp_skb_timedout(const struct sock *sk,
2371 const struct sk_buff *skb)
2372 {
2373 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2374 }
2375
2376 static inline int tcp_head_timedout(const struct sock *sk)
2377 {
2378 const struct tcp_sock *tp = tcp_sk(sk);
2379
2380 return tp->packets_out &&
2381 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2382 }
2383
2384 /* Linux NewReno/SACK/FACK/ECN state machine.
2385 * --------------------------------------
2386 *
2387 * "Open" Normal state, no dubious events, fast path.
2388 * "Disorder" In all the respects it is "Open",
2389 * but requires a bit more attention. It is entered when
2390 * we see some SACKs or dupacks. It is split of "Open"
2391 * mainly to move some processing from fast path to slow one.
2392 * "CWR" CWND was reduced due to some Congestion Notification event.
2393 * It can be ECN, ICMP source quench, local device congestion.
2394 * "Recovery" CWND was reduced, we are fast-retransmitting.
2395 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2396 *
2397 * tcp_fastretrans_alert() is entered:
2398 * - each incoming ACK, if state is not "Open"
2399 * - when arrived ACK is unusual, namely:
2400 * * SACK
2401 * * Duplicate ACK.
2402 * * ECN ECE.
2403 *
2404 * Counting packets in flight is pretty simple.
2405 *
2406 * in_flight = packets_out - left_out + retrans_out
2407 *
2408 * packets_out is SND.NXT-SND.UNA counted in packets.
2409 *
2410 * retrans_out is number of retransmitted segments.
2411 *
2412 * left_out is number of segments left network, but not ACKed yet.
2413 *
2414 * left_out = sacked_out + lost_out
2415 *
2416 * sacked_out: Packets, which arrived to receiver out of order
2417 * and hence not ACKed. With SACKs this number is simply
2418 * amount of SACKed data. Even without SACKs
2419 * it is easy to give pretty reliable estimate of this number,
2420 * counting duplicate ACKs.
2421 *
2422 * lost_out: Packets lost by network. TCP has no explicit
2423 * "loss notification" feedback from network (for now).
2424 * It means that this number can be only _guessed_.
2425 * Actually, it is the heuristics to predict lossage that
2426 * distinguishes different algorithms.
2427 *
2428 * F.e. after RTO, when all the queue is considered as lost,
2429 * lost_out = packets_out and in_flight = retrans_out.
2430 *
2431 * Essentially, we have now two algorithms counting
2432 * lost packets.
2433 *
2434 * FACK: It is the simplest heuristics. As soon as we decided
2435 * that something is lost, we decide that _all_ not SACKed
2436 * packets until the most forward SACK are lost. I.e.
2437 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2438 * It is absolutely correct estimate, if network does not reorder
2439 * packets. And it loses any connection to reality when reordering
2440 * takes place. We use FACK by default until reordering
2441 * is suspected on the path to this destination.
2442 *
2443 * NewReno: when Recovery is entered, we assume that one segment
2444 * is lost (classic Reno). While we are in Recovery and
2445 * a partial ACK arrives, we assume that one more packet
2446 * is lost (NewReno). This heuristics are the same in NewReno
2447 * and SACK.
2448 *
2449 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2450 * deflation etc. CWND is real congestion window, never inflated, changes
2451 * only according to classic VJ rules.
2452 *
2453 * Really tricky (and requiring careful tuning) part of algorithm
2454 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2455 * The first determines the moment _when_ we should reduce CWND and,
2456 * hence, slow down forward transmission. In fact, it determines the moment
2457 * when we decide that hole is caused by loss, rather than by a reorder.
2458 *
2459 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2460 * holes, caused by lost packets.
2461 *
2462 * And the most logically complicated part of algorithm is undo
2463 * heuristics. We detect false retransmits due to both too early
2464 * fast retransmit (reordering) and underestimated RTO, analyzing
2465 * timestamps and D-SACKs. When we detect that some segments were
2466 * retransmitted by mistake and CWND reduction was wrong, we undo
2467 * window reduction and abort recovery phase. This logic is hidden
2468 * inside several functions named tcp_try_undo_<something>.
2469 */
2470
2471 /* This function decides, when we should leave Disordered state
2472 * and enter Recovery phase, reducing congestion window.
2473 *
2474 * Main question: may we further continue forward transmission
2475 * with the same cwnd?
2476 */
2477 static bool tcp_time_to_recover(struct sock *sk, int flag)
2478 {
2479 struct tcp_sock *tp = tcp_sk(sk);
2480 __u32 packets_out;
2481
2482 /* Do not perform any recovery during F-RTO algorithm */
2483 if (tp->frto_counter)
2484 return false;
2485
2486 /* Trick#1: The loss is proven. */
2487 if (tp->lost_out)
2488 return true;
2489
2490 /* Not-A-Trick#2 : Classic rule... */
2491 if (tcp_dupack_heuristics(tp) > tp->reordering)
2492 return true;
2493
2494 /* Trick#3 : when we use RFC2988 timer restart, fast
2495 * retransmit can be triggered by timeout of queue head.
2496 */
2497 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2498 return true;
2499
2500 /* Trick#4: It is still not OK... But will it be useful to delay
2501 * recovery more?
2502 */
2503 packets_out = tp->packets_out;
2504 if (packets_out <= tp->reordering &&
2505 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2506 !tcp_may_send_now(sk)) {
2507 /* We have nothing to send. This connection is limited
2508 * either by receiver window or by application.
2509 */
2510 return true;
2511 }
2512
2513 /* If a thin stream is detected, retransmit after first
2514 * received dupack. Employ only if SACK is supported in order
2515 * to avoid possible corner-case series of spurious retransmissions
2516 * Use only if there are no unsent data.
2517 */
2518 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2519 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2520 tcp_is_sack(tp) && !tcp_send_head(sk))
2521 return true;
2522
2523 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2524 * retransmissions due to small network reorderings, we implement
2525 * Mitigation A.3 in the RFC and delay the retransmission for a short
2526 * interval if appropriate.
2527 */
2528 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2529 (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2530 !tcp_may_send_now(sk))
2531 return !tcp_pause_early_retransmit(sk, flag);
2532
2533 return false;
2534 }
2535
2536 /* New heuristics: it is possible only after we switched to restart timer
2537 * each time when something is ACKed. Hence, we can detect timed out packets
2538 * during fast retransmit without falling to slow start.
2539 *
2540 * Usefulness of this as is very questionable, since we should know which of
2541 * the segments is the next to timeout which is relatively expensive to find
2542 * in general case unless we add some data structure just for that. The
2543 * current approach certainly won't find the right one too often and when it
2544 * finally does find _something_ it usually marks large part of the window
2545 * right away (because a retransmission with a larger timestamp blocks the
2546 * loop from advancing). -ij
2547 */
2548 static void tcp_timeout_skbs(struct sock *sk)
2549 {
2550 struct tcp_sock *tp = tcp_sk(sk);
2551 struct sk_buff *skb;
2552
2553 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2554 return;
2555
2556 skb = tp->scoreboard_skb_hint;
2557 if (tp->scoreboard_skb_hint == NULL)
2558 skb = tcp_write_queue_head(sk);
2559
2560 tcp_for_write_queue_from(skb, sk) {
2561 if (skb == tcp_send_head(sk))
2562 break;
2563 if (!tcp_skb_timedout(sk, skb))
2564 break;
2565
2566 tcp_skb_mark_lost(tp, skb);
2567 }
2568
2569 tp->scoreboard_skb_hint = skb;
2570
2571 tcp_verify_left_out(tp);
2572 }
2573
2574 /* Detect loss in event "A" above by marking head of queue up as lost.
2575 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2576 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2577 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2578 * the maximum SACKed segments to pass before reaching this limit.
2579 */
2580 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2581 {
2582 struct tcp_sock *tp = tcp_sk(sk);
2583 struct sk_buff *skb;
2584 int cnt, oldcnt;
2585 int err;
2586 unsigned int mss;
2587 /* Use SACK to deduce losses of new sequences sent during recovery */
2588 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2589
2590 WARN_ON(packets > tp->packets_out);
2591 if (tp->lost_skb_hint) {
2592 skb = tp->lost_skb_hint;
2593 cnt = tp->lost_cnt_hint;
2594 /* Head already handled? */
2595 if (mark_head && skb != tcp_write_queue_head(sk))
2596 return;
2597 } else {
2598 skb = tcp_write_queue_head(sk);
2599 cnt = 0;
2600 }
2601
2602 tcp_for_write_queue_from(skb, sk) {
2603 if (skb == tcp_send_head(sk))
2604 break;
2605 /* TODO: do this better */
2606 /* this is not the most efficient way to do this... */
2607 tp->lost_skb_hint = skb;
2608 tp->lost_cnt_hint = cnt;
2609
2610 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2611 break;
2612
2613 oldcnt = cnt;
2614 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2615 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2616 cnt += tcp_skb_pcount(skb);
2617
2618 if (cnt > packets) {
2619 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2620 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2621 (oldcnt >= packets))
2622 break;
2623
2624 mss = skb_shinfo(skb)->gso_size;
2625 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2626 if (err < 0)
2627 break;
2628 cnt = packets;
2629 }
2630
2631 tcp_skb_mark_lost(tp, skb);
2632
2633 if (mark_head)
2634 break;
2635 }
2636 tcp_verify_left_out(tp);
2637 }
2638
2639 /* Account newly detected lost packet(s) */
2640
2641 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2642 {
2643 struct tcp_sock *tp = tcp_sk(sk);
2644
2645 if (tcp_is_reno(tp)) {
2646 tcp_mark_head_lost(sk, 1, 1);
2647 } else if (tcp_is_fack(tp)) {
2648 int lost = tp->fackets_out - tp->reordering;
2649 if (lost <= 0)
2650 lost = 1;
2651 tcp_mark_head_lost(sk, lost, 0);
2652 } else {
2653 int sacked_upto = tp->sacked_out - tp->reordering;
2654 if (sacked_upto >= 0)
2655 tcp_mark_head_lost(sk, sacked_upto, 0);
2656 else if (fast_rexmit)
2657 tcp_mark_head_lost(sk, 1, 1);
2658 }
2659
2660 tcp_timeout_skbs(sk);
2661 }
2662
2663 /* CWND moderation, preventing bursts due to too big ACKs
2664 * in dubious situations.
2665 */
2666 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2667 {
2668 tp->snd_cwnd = min(tp->snd_cwnd,
2669 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2670 tp->snd_cwnd_stamp = tcp_time_stamp;
2671 }
2672
2673 /* Lower bound on congestion window is slow start threshold
2674 * unless congestion avoidance choice decides to overide it.
2675 */
2676 static inline u32 tcp_cwnd_min(const struct sock *sk)
2677 {
2678 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2679
2680 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2681 }
2682
2683 /* Decrease cwnd each second ack. */
2684 static void tcp_cwnd_down(struct sock *sk, int flag)
2685 {
2686 struct tcp_sock *tp = tcp_sk(sk);
2687 int decr = tp->snd_cwnd_cnt + 1;
2688
2689 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2690 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2691 tp->snd_cwnd_cnt = decr & 1;
2692 decr >>= 1;
2693
2694 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2695 tp->snd_cwnd -= decr;
2696
2697 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2698 tp->snd_cwnd_stamp = tcp_time_stamp;
2699 }
2700 }
2701
2702 /* Nothing was retransmitted or returned timestamp is less
2703 * than timestamp of the first retransmission.
2704 */
2705 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2706 {
2707 return !tp->retrans_stamp ||
2708 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2709 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2710 }
2711
2712 /* Undo procedures. */
2713
2714 #if FASTRETRANS_DEBUG > 1
2715 static void DBGUNDO(struct sock *sk, const char *msg)
2716 {
2717 struct tcp_sock *tp = tcp_sk(sk);
2718 struct inet_sock *inet = inet_sk(sk);
2719
2720 if (sk->sk_family == AF_INET) {
2721 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2722 msg,
2723 &inet->inet_daddr, ntohs(inet->inet_dport),
2724 tp->snd_cwnd, tcp_left_out(tp),
2725 tp->snd_ssthresh, tp->prior_ssthresh,
2726 tp->packets_out);
2727 }
2728 #if IS_ENABLED(CONFIG_IPV6)
2729 else if (sk->sk_family == AF_INET6) {
2730 struct ipv6_pinfo *np = inet6_sk(sk);
2731 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2732 msg,
2733 &np->daddr, ntohs(inet->inet_dport),
2734 tp->snd_cwnd, tcp_left_out(tp),
2735 tp->snd_ssthresh, tp->prior_ssthresh,
2736 tp->packets_out);
2737 }
2738 #endif
2739 }
2740 #else
2741 #define DBGUNDO(x...) do { } while (0)
2742 #endif
2743
2744 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2745 {
2746 struct tcp_sock *tp = tcp_sk(sk);
2747
2748 if (tp->prior_ssthresh) {
2749 const struct inet_connection_sock *icsk = inet_csk(sk);
2750
2751 if (icsk->icsk_ca_ops->undo_cwnd)
2752 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2753 else
2754 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2755
2756 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2757 tp->snd_ssthresh = tp->prior_ssthresh;
2758 TCP_ECN_withdraw_cwr(tp);
2759 }
2760 } else {
2761 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2762 }
2763 tp->snd_cwnd_stamp = tcp_time_stamp;
2764 }
2765
2766 static inline int tcp_may_undo(const struct tcp_sock *tp)
2767 {
2768 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2769 }
2770
2771 /* People celebrate: "We love our President!" */
2772 static bool tcp_try_undo_recovery(struct sock *sk)
2773 {
2774 struct tcp_sock *tp = tcp_sk(sk);
2775
2776 if (tcp_may_undo(tp)) {
2777 int mib_idx;
2778
2779 /* Happy end! We did not retransmit anything
2780 * or our original transmission succeeded.
2781 */
2782 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2783 tcp_undo_cwr(sk, true);
2784 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2785 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2786 else
2787 mib_idx = LINUX_MIB_TCPFULLUNDO;
2788
2789 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2790 tp->undo_marker = 0;
2791 }
2792 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2793 /* Hold old state until something *above* high_seq
2794 * is ACKed. For Reno it is MUST to prevent false
2795 * fast retransmits (RFC2582). SACK TCP is safe. */
2796 tcp_moderate_cwnd(tp);
2797 return true;
2798 }
2799 tcp_set_ca_state(sk, TCP_CA_Open);
2800 return false;
2801 }
2802
2803 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2804 static void tcp_try_undo_dsack(struct sock *sk)
2805 {
2806 struct tcp_sock *tp = tcp_sk(sk);
2807
2808 if (tp->undo_marker && !tp->undo_retrans) {
2809 DBGUNDO(sk, "D-SACK");
2810 tcp_undo_cwr(sk, true);
2811 tp->undo_marker = 0;
2812 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2813 }
2814 }
2815
2816 /* We can clear retrans_stamp when there are no retransmissions in the
2817 * window. It would seem that it is trivially available for us in
2818 * tp->retrans_out, however, that kind of assumptions doesn't consider
2819 * what will happen if errors occur when sending retransmission for the
2820 * second time. ...It could the that such segment has only
2821 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2822 * the head skb is enough except for some reneging corner cases that
2823 * are not worth the effort.
2824 *
2825 * Main reason for all this complexity is the fact that connection dying
2826 * time now depends on the validity of the retrans_stamp, in particular,
2827 * that successive retransmissions of a segment must not advance
2828 * retrans_stamp under any conditions.
2829 */
2830 static bool tcp_any_retrans_done(const struct sock *sk)
2831 {
2832 const struct tcp_sock *tp = tcp_sk(sk);
2833 struct sk_buff *skb;
2834
2835 if (tp->retrans_out)
2836 return true;
2837
2838 skb = tcp_write_queue_head(sk);
2839 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2840 return true;
2841
2842 return false;
2843 }
2844
2845 /* Undo during fast recovery after partial ACK. */
2846
2847 static int tcp_try_undo_partial(struct sock *sk, int acked)
2848 {
2849 struct tcp_sock *tp = tcp_sk(sk);
2850 /* Partial ACK arrived. Force Hoe's retransmit. */
2851 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2852
2853 if (tcp_may_undo(tp)) {
2854 /* Plain luck! Hole if filled with delayed
2855 * packet, rather than with a retransmit.
2856 */
2857 if (!tcp_any_retrans_done(sk))
2858 tp->retrans_stamp = 0;
2859
2860 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2861
2862 DBGUNDO(sk, "Hoe");
2863 tcp_undo_cwr(sk, false);
2864 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2865
2866 /* So... Do not make Hoe's retransmit yet.
2867 * If the first packet was delayed, the rest
2868 * ones are most probably delayed as well.
2869 */
2870 failed = 0;
2871 }
2872 return failed;
2873 }
2874
2875 /* Undo during loss recovery after partial ACK. */
2876 static bool tcp_try_undo_loss(struct sock *sk)
2877 {
2878 struct tcp_sock *tp = tcp_sk(sk);
2879
2880 if (tcp_may_undo(tp)) {
2881 struct sk_buff *skb;
2882 tcp_for_write_queue(skb, sk) {
2883 if (skb == tcp_send_head(sk))
2884 break;
2885 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2886 }
2887
2888 tcp_clear_all_retrans_hints(tp);
2889
2890 DBGUNDO(sk, "partial loss");
2891 tp->lost_out = 0;
2892 tcp_undo_cwr(sk, true);
2893 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2894 inet_csk(sk)->icsk_retransmits = 0;
2895 tp->undo_marker = 0;
2896 if (tcp_is_sack(tp))
2897 tcp_set_ca_state(sk, TCP_CA_Open);
2898 return true;
2899 }
2900 return false;
2901 }
2902
2903 static inline void tcp_complete_cwr(struct sock *sk)
2904 {
2905 struct tcp_sock *tp = tcp_sk(sk);
2906
2907 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2908 if (tp->undo_marker) {
2909 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2910 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2911 tp->snd_cwnd_stamp = tcp_time_stamp;
2912 } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2913 /* PRR algorithm. */
2914 tp->snd_cwnd = tp->snd_ssthresh;
2915 tp->snd_cwnd_stamp = tcp_time_stamp;
2916 }
2917 }
2918 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2919 }
2920
2921 static void tcp_try_keep_open(struct sock *sk)
2922 {
2923 struct tcp_sock *tp = tcp_sk(sk);
2924 int state = TCP_CA_Open;
2925
2926 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2927 state = TCP_CA_Disorder;
2928
2929 if (inet_csk(sk)->icsk_ca_state != state) {
2930 tcp_set_ca_state(sk, state);
2931 tp->high_seq = tp->snd_nxt;
2932 }
2933 }
2934
2935 static void tcp_try_to_open(struct sock *sk, int flag)
2936 {
2937 struct tcp_sock *tp = tcp_sk(sk);
2938
2939 tcp_verify_left_out(tp);
2940
2941 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2942 tp->retrans_stamp = 0;
2943
2944 if (flag & FLAG_ECE)
2945 tcp_enter_cwr(sk, 1);
2946
2947 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2948 tcp_try_keep_open(sk);
2949 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2950 tcp_moderate_cwnd(tp);
2951 } else {
2952 tcp_cwnd_down(sk, flag);
2953 }
2954 }
2955
2956 static void tcp_mtup_probe_failed(struct sock *sk)
2957 {
2958 struct inet_connection_sock *icsk = inet_csk(sk);
2959
2960 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2961 icsk->icsk_mtup.probe_size = 0;
2962 }
2963
2964 static void tcp_mtup_probe_success(struct sock *sk)
2965 {
2966 struct tcp_sock *tp = tcp_sk(sk);
2967 struct inet_connection_sock *icsk = inet_csk(sk);
2968
2969 /* FIXME: breaks with very large cwnd */
2970 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2971 tp->snd_cwnd = tp->snd_cwnd *
2972 tcp_mss_to_mtu(sk, tp->mss_cache) /
2973 icsk->icsk_mtup.probe_size;
2974 tp->snd_cwnd_cnt = 0;
2975 tp->snd_cwnd_stamp = tcp_time_stamp;
2976 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2977
2978 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2979 icsk->icsk_mtup.probe_size = 0;
2980 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2981 }
2982
2983 /* Do a simple retransmit without using the backoff mechanisms in
2984 * tcp_timer. This is used for path mtu discovery.
2985 * The socket is already locked here.
2986 */
2987 void tcp_simple_retransmit(struct sock *sk)
2988 {
2989 const struct inet_connection_sock *icsk = inet_csk(sk);
2990 struct tcp_sock *tp = tcp_sk(sk);
2991 struct sk_buff *skb;
2992 unsigned int mss = tcp_current_mss(sk);
2993 u32 prior_lost = tp->lost_out;
2994
2995 tcp_for_write_queue(skb, sk) {
2996 if (skb == tcp_send_head(sk))
2997 break;
2998 if (tcp_skb_seglen(skb) > mss &&
2999 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
3000 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3001 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
3002 tp->retrans_out -= tcp_skb_pcount(skb);
3003 }
3004 tcp_skb_mark_lost_uncond_verify(tp, skb);
3005 }
3006 }
3007
3008 tcp_clear_retrans_hints_partial(tp);
3009
3010 if (prior_lost == tp->lost_out)
3011 return;
3012
3013 if (tcp_is_reno(tp))
3014 tcp_limit_reno_sacked(tp);
3015
3016 tcp_verify_left_out(tp);
3017
3018 /* Don't muck with the congestion window here.
3019 * Reason is that we do not increase amount of _data_
3020 * in network, but units changed and effective
3021 * cwnd/ssthresh really reduced now.
3022 */
3023 if (icsk->icsk_ca_state != TCP_CA_Loss) {
3024 tp->high_seq = tp->snd_nxt;
3025 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3026 tp->prior_ssthresh = 0;
3027 tp->undo_marker = 0;
3028 tcp_set_ca_state(sk, TCP_CA_Loss);
3029 }
3030 tcp_xmit_retransmit_queue(sk);
3031 }
3032 EXPORT_SYMBOL(tcp_simple_retransmit);
3033
3034 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
3035 * (proportional rate reduction with slow start reduction bound) as described in
3036 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3037 * It computes the number of packets to send (sndcnt) based on packets newly
3038 * delivered:
3039 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
3040 * cwnd reductions across a full RTT.
3041 * 2) If packets in flight is lower than ssthresh (such as due to excess
3042 * losses and/or application stalls), do not perform any further cwnd
3043 * reductions, but instead slow start up to ssthresh.
3044 */
3045 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3046 int fast_rexmit, int flag)
3047 {
3048 struct tcp_sock *tp = tcp_sk(sk);
3049 int sndcnt = 0;
3050 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3051
3052 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3053 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3054 tp->prior_cwnd - 1;
3055 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3056 } else {
3057 sndcnt = min_t(int, delta,
3058 max_t(int, tp->prr_delivered - tp->prr_out,
3059 newly_acked_sacked) + 1);
3060 }
3061
3062 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3063 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3064 }
3065
3066 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
3067 {
3068 struct tcp_sock *tp = tcp_sk(sk);
3069 int mib_idx;
3070
3071 if (tcp_is_reno(tp))
3072 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3073 else
3074 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3075
3076 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3077
3078 tp->high_seq = tp->snd_nxt;
3079 tp->prior_ssthresh = 0;
3080 tp->undo_marker = tp->snd_una;
3081 tp->undo_retrans = tp->retrans_out;
3082
3083 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
3084 if (!ece_ack)
3085 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3086 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
3087 TCP_ECN_queue_cwr(tp);
3088 }
3089
3090 tp->bytes_acked = 0;
3091 tp->snd_cwnd_cnt = 0;
3092 tp->prior_cwnd = tp->snd_cwnd;
3093 tp->prr_delivered = 0;
3094 tp->prr_out = 0;
3095 tcp_set_ca_state(sk, TCP_CA_Recovery);
3096 }
3097
3098 /* Process an event, which can update packets-in-flight not trivially.
3099 * Main goal of this function is to calculate new estimate for left_out,
3100 * taking into account both packets sitting in receiver's buffer and
3101 * packets lost by network.
3102 *
3103 * Besides that it does CWND reduction, when packet loss is detected
3104 * and changes state of machine.
3105 *
3106 * It does _not_ decide what to send, it is made in function
3107 * tcp_xmit_retransmit_queue().
3108 */
3109 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3110 int newly_acked_sacked, bool is_dupack,
3111 int flag)
3112 {
3113 struct inet_connection_sock *icsk = inet_csk(sk);
3114 struct tcp_sock *tp = tcp_sk(sk);
3115 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3116 (tcp_fackets_out(tp) > tp->reordering));
3117 int fast_rexmit = 0;
3118
3119 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3120 tp->sacked_out = 0;
3121 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3122 tp->fackets_out = 0;
3123
3124 /* Now state machine starts.
3125 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3126 if (flag & FLAG_ECE)
3127 tp->prior_ssthresh = 0;
3128
3129 /* B. In all the states check for reneging SACKs. */
3130 if (tcp_check_sack_reneging(sk, flag))
3131 return;
3132
3133 /* C. Check consistency of the current state. */
3134 tcp_verify_left_out(tp);
3135
3136 /* D. Check state exit conditions. State can be terminated
3137 * when high_seq is ACKed. */
3138 if (icsk->icsk_ca_state == TCP_CA_Open) {
3139 WARN_ON(tp->retrans_out != 0);
3140 tp->retrans_stamp = 0;
3141 } else if (!before(tp->snd_una, tp->high_seq)) {
3142 switch (icsk->icsk_ca_state) {
3143 case TCP_CA_Loss:
3144 icsk->icsk_retransmits = 0;
3145 if (tcp_try_undo_recovery(sk))
3146 return;
3147 break;
3148
3149 case TCP_CA_CWR:
3150 /* CWR is to be held something *above* high_seq
3151 * is ACKed for CWR bit to reach receiver. */
3152 if (tp->snd_una != tp->high_seq) {
3153 tcp_complete_cwr(sk);
3154 tcp_set_ca_state(sk, TCP_CA_Open);
3155 }
3156 break;
3157
3158 case TCP_CA_Recovery:
3159 if (tcp_is_reno(tp))
3160 tcp_reset_reno_sack(tp);
3161 if (tcp_try_undo_recovery(sk))
3162 return;
3163 tcp_complete_cwr(sk);
3164 break;
3165 }
3166 }
3167
3168 /* E. Process state. */
3169 switch (icsk->icsk_ca_state) {
3170 case TCP_CA_Recovery:
3171 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3172 if (tcp_is_reno(tp) && is_dupack)
3173 tcp_add_reno_sack(sk);
3174 } else
3175 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3176 break;
3177 case TCP_CA_Loss:
3178 if (flag & FLAG_DATA_ACKED)
3179 icsk->icsk_retransmits = 0;
3180 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3181 tcp_reset_reno_sack(tp);
3182 if (!tcp_try_undo_loss(sk)) {
3183 tcp_moderate_cwnd(tp);
3184 tcp_xmit_retransmit_queue(sk);
3185 return;
3186 }
3187 if (icsk->icsk_ca_state != TCP_CA_Open)
3188 return;
3189 /* Loss is undone; fall through to processing in Open state. */
3190 default:
3191 if (tcp_is_reno(tp)) {
3192 if (flag & FLAG_SND_UNA_ADVANCED)
3193 tcp_reset_reno_sack(tp);
3194 if (is_dupack)
3195 tcp_add_reno_sack(sk);
3196 }
3197
3198 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3199 tcp_try_undo_dsack(sk);
3200
3201 if (!tcp_time_to_recover(sk, flag)) {
3202 tcp_try_to_open(sk, flag);
3203 return;
3204 }
3205
3206 /* MTU probe failure: don't reduce cwnd */
3207 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3208 icsk->icsk_mtup.probe_size &&
3209 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3210 tcp_mtup_probe_failed(sk);
3211 /* Restores the reduction we did in tcp_mtup_probe() */
3212 tp->snd_cwnd++;
3213 tcp_simple_retransmit(sk);
3214 return;
3215 }
3216
3217 /* Otherwise enter Recovery state */
3218 tcp_enter_recovery(sk, (flag & FLAG_ECE));
3219 fast_rexmit = 1;
3220 }
3221
3222 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3223 tcp_update_scoreboard(sk, fast_rexmit);
3224 tp->prr_delivered += newly_acked_sacked;
3225 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3226 tcp_xmit_retransmit_queue(sk);
3227 }
3228
3229 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3230 {
3231 tcp_rtt_estimator(sk, seq_rtt);
3232 tcp_set_rto(sk);
3233 inet_csk(sk)->icsk_backoff = 0;
3234 }
3235 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3236
3237 /* Read draft-ietf-tcplw-high-performance before mucking
3238 * with this code. (Supersedes RFC1323)
3239 */
3240 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3241 {
3242 /* RTTM Rule: A TSecr value received in a segment is used to
3243 * update the averaged RTT measurement only if the segment
3244 * acknowledges some new data, i.e., only if it advances the
3245 * left edge of the send window.
3246 *
3247 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3248 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3249 *
3250 * Changed: reset backoff as soon as we see the first valid sample.
3251 * If we do not, we get strongly overestimated rto. With timestamps
3252 * samples are accepted even from very old segments: f.e., when rtt=1
3253 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3254 * answer arrives rto becomes 120 seconds! If at least one of segments
3255 * in window is lost... Voila. --ANK (010210)
3256 */
3257 struct tcp_sock *tp = tcp_sk(sk);
3258
3259 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3260 }
3261
3262 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3263 {
3264 /* We don't have a timestamp. Can only use
3265 * packets that are not retransmitted to determine
3266 * rtt estimates. Also, we must not reset the
3267 * backoff for rto until we get a non-retransmitted
3268 * packet. This allows us to deal with a situation
3269 * where the network delay has increased suddenly.
3270 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3271 */
3272
3273 if (flag & FLAG_RETRANS_DATA_ACKED)
3274 return;
3275
3276 tcp_valid_rtt_meas(sk, seq_rtt);
3277 }
3278
3279 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3280 const s32 seq_rtt)
3281 {
3282 const struct tcp_sock *tp = tcp_sk(sk);
3283 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3284 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3285 tcp_ack_saw_tstamp(sk, flag);
3286 else if (seq_rtt >= 0)
3287 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3288 }
3289
3290 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3291 {
3292 const struct inet_connection_sock *icsk = inet_csk(sk);
3293 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3294 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3295 }
3296
3297 /* Restart timer after forward progress on connection.
3298 * RFC2988 recommends to restart timer to now+rto.
3299 */
3300 void tcp_rearm_rto(struct sock *sk)
3301 {
3302 struct tcp_sock *tp = tcp_sk(sk);
3303
3304 if (!tp->packets_out) {
3305 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3306 } else {
3307 u32 rto = inet_csk(sk)->icsk_rto;
3308 /* Offset the time elapsed after installing regular RTO */
3309 if (tp->early_retrans_delayed) {
3310 struct sk_buff *skb = tcp_write_queue_head(sk);
3311 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3312 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3313 /* delta may not be positive if the socket is locked
3314 * when the delayed ER timer fires and is rescheduled.
3315 */
3316 if (delta > 0)
3317 rto = delta;
3318 }
3319 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3320 TCP_RTO_MAX);
3321 }
3322 tp->early_retrans_delayed = 0;
3323 }
3324
3325 /* This function is called when the delayed ER timer fires. TCP enters
3326 * fast recovery and performs fast-retransmit.
3327 */
3328 void tcp_resume_early_retransmit(struct sock *sk)
3329 {
3330 struct tcp_sock *tp = tcp_sk(sk);
3331
3332 tcp_rearm_rto(sk);
3333
3334 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3335 if (!tp->do_early_retrans)
3336 return;
3337
3338 tcp_enter_recovery(sk, false);
3339 tcp_update_scoreboard(sk, 1);
3340 tcp_xmit_retransmit_queue(sk);
3341 }
3342
3343 /* If we get here, the whole TSO packet has not been acked. */
3344 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3345 {
3346 struct tcp_sock *tp = tcp_sk(sk);
3347 u32 packets_acked;
3348
3349 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3350
3351 packets_acked = tcp_skb_pcount(skb);
3352 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3353 return 0;
3354 packets_acked -= tcp_skb_pcount(skb);
3355
3356 if (packets_acked) {
3357 BUG_ON(tcp_skb_pcount(skb) == 0);
3358 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3359 }
3360
3361 return packets_acked;
3362 }
3363
3364 /* Remove acknowledged frames from the retransmission queue. If our packet
3365 * is before the ack sequence we can discard it as it's confirmed to have
3366 * arrived at the other end.
3367 */
3368 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3369 u32 prior_snd_una)
3370 {
3371 struct tcp_sock *tp = tcp_sk(sk);
3372 const struct inet_connection_sock *icsk = inet_csk(sk);
3373 struct sk_buff *skb;
3374 u32 now = tcp_time_stamp;
3375 int fully_acked = true;
3376 int flag = 0;
3377 u32 pkts_acked = 0;
3378 u32 reord = tp->packets_out;
3379 u32 prior_sacked = tp->sacked_out;
3380 s32 seq_rtt = -1;
3381 s32 ca_seq_rtt = -1;
3382 ktime_t last_ackt = net_invalid_timestamp();
3383
3384 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3385 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3386 u32 acked_pcount;
3387 u8 sacked = scb->sacked;
3388
3389 /* Determine how many packets and what bytes were acked, tso and else */
3390 if (after(scb->end_seq, tp->snd_una)) {
3391 if (tcp_skb_pcount(skb) == 1 ||
3392 !after(tp->snd_una, scb->seq))
3393 break;
3394
3395 acked_pcount = tcp_tso_acked(sk, skb);
3396 if (!acked_pcount)
3397 break;
3398
3399 fully_acked = false;
3400 } else {
3401 acked_pcount = tcp_skb_pcount(skb);
3402 }
3403
3404 if (sacked & TCPCB_RETRANS) {
3405 if (sacked & TCPCB_SACKED_RETRANS)
3406 tp->retrans_out -= acked_pcount;
3407 flag |= FLAG_RETRANS_DATA_ACKED;
3408 ca_seq_rtt = -1;
3409 seq_rtt = -1;
3410 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3411 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3412 } else {
3413 ca_seq_rtt = now - scb->when;
3414 last_ackt = skb->tstamp;
3415 if (seq_rtt < 0) {
3416 seq_rtt = ca_seq_rtt;
3417 }
3418 if (!(sacked & TCPCB_SACKED_ACKED))
3419 reord = min(pkts_acked, reord);
3420 }
3421
3422 if (sacked & TCPCB_SACKED_ACKED)
3423 tp->sacked_out -= acked_pcount;
3424 if (sacked & TCPCB_LOST)
3425 tp->lost_out -= acked_pcount;
3426
3427 tp->packets_out -= acked_pcount;
3428 pkts_acked += acked_pcount;
3429
3430 /* Initial outgoing SYN's get put onto the write_queue
3431 * just like anything else we transmit. It is not
3432 * true data, and if we misinform our callers that
3433 * this ACK acks real data, we will erroneously exit
3434 * connection startup slow start one packet too
3435 * quickly. This is severely frowned upon behavior.
3436 */
3437 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3438 flag |= FLAG_DATA_ACKED;
3439 } else {
3440 flag |= FLAG_SYN_ACKED;
3441 tp->retrans_stamp = 0;
3442 }
3443
3444 if (!fully_acked)
3445 break;
3446
3447 tcp_unlink_write_queue(skb, sk);
3448 sk_wmem_free_skb(sk, skb);
3449 tp->scoreboard_skb_hint = NULL;
3450 if (skb == tp->retransmit_skb_hint)
3451 tp->retransmit_skb_hint = NULL;
3452 if (skb == tp->lost_skb_hint)
3453 tp->lost_skb_hint = NULL;
3454 }
3455
3456 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3457 tp->snd_up = tp->snd_una;
3458
3459 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3460 flag |= FLAG_SACK_RENEGING;
3461
3462 if (flag & FLAG_ACKED) {
3463 const struct tcp_congestion_ops *ca_ops
3464 = inet_csk(sk)->icsk_ca_ops;
3465
3466 if (unlikely(icsk->icsk_mtup.probe_size &&
3467 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3468 tcp_mtup_probe_success(sk);
3469 }
3470
3471 tcp_ack_update_rtt(sk, flag, seq_rtt);
3472 tcp_rearm_rto(sk);
3473
3474 if (tcp_is_reno(tp)) {
3475 tcp_remove_reno_sacks(sk, pkts_acked);
3476 } else {
3477 int delta;
3478
3479 /* Non-retransmitted hole got filled? That's reordering */
3480 if (reord < prior_fackets)
3481 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3482
3483 delta = tcp_is_fack(tp) ? pkts_acked :
3484 prior_sacked - tp->sacked_out;
3485 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3486 }
3487
3488 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3489
3490 if (ca_ops->pkts_acked) {
3491 s32 rtt_us = -1;
3492
3493 /* Is the ACK triggering packet unambiguous? */
3494 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3495 /* High resolution needed and available? */
3496 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3497 !ktime_equal(last_ackt,
3498 net_invalid_timestamp()))
3499 rtt_us = ktime_us_delta(ktime_get_real(),
3500 last_ackt);
3501 else if (ca_seq_rtt >= 0)
3502 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3503 }
3504
3505 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3506 }
3507 }
3508
3509 #if FASTRETRANS_DEBUG > 0
3510 WARN_ON((int)tp->sacked_out < 0);
3511 WARN_ON((int)tp->lost_out < 0);
3512 WARN_ON((int)tp->retrans_out < 0);
3513 if (!tp->packets_out && tcp_is_sack(tp)) {
3514 icsk = inet_csk(sk);
3515 if (tp->lost_out) {
3516 pr_debug("Leak l=%u %d\n",
3517 tp->lost_out, icsk->icsk_ca_state);
3518 tp->lost_out = 0;
3519 }
3520 if (tp->sacked_out) {
3521 pr_debug("Leak s=%u %d\n",
3522 tp->sacked_out, icsk->icsk_ca_state);
3523 tp->sacked_out = 0;
3524 }
3525 if (tp->retrans_out) {
3526 pr_debug("Leak r=%u %d\n",
3527 tp->retrans_out, icsk->icsk_ca_state);
3528 tp->retrans_out = 0;
3529 }
3530 }
3531 #endif
3532 return flag;
3533 }
3534
3535 static void tcp_ack_probe(struct sock *sk)
3536 {
3537 const struct tcp_sock *tp = tcp_sk(sk);
3538 struct inet_connection_sock *icsk = inet_csk(sk);
3539
3540 /* Was it a usable window open? */
3541
3542 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3543 icsk->icsk_backoff = 0;
3544 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3545 /* Socket must be waked up by subsequent tcp_data_snd_check().
3546 * This function is not for random using!
3547 */
3548 } else {
3549 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3550 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3551 TCP_RTO_MAX);
3552 }
3553 }
3554
3555 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3556 {
3557 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3558 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3559 }
3560
3561 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3562 {
3563 const struct tcp_sock *tp = tcp_sk(sk);
3564 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3565 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3566 }
3567
3568 /* Check that window update is acceptable.
3569 * The function assumes that snd_una<=ack<=snd_next.
3570 */
3571 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3572 const u32 ack, const u32 ack_seq,
3573 const u32 nwin)
3574 {
3575 return after(ack, tp->snd_una) ||
3576 after(ack_seq, tp->snd_wl1) ||
3577 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3578 }
3579
3580 /* Update our send window.
3581 *
3582 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3583 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3584 */
3585 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3586 u32 ack_seq)
3587 {
3588 struct tcp_sock *tp = tcp_sk(sk);
3589 int flag = 0;
3590 u32 nwin = ntohs(tcp_hdr(skb)->window);
3591
3592 if (likely(!tcp_hdr(skb)->syn))
3593 nwin <<= tp->rx_opt.snd_wscale;
3594
3595 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3596 flag |= FLAG_WIN_UPDATE;
3597 tcp_update_wl(tp, ack_seq);
3598
3599 if (tp->snd_wnd != nwin) {
3600 tp->snd_wnd = nwin;
3601
3602 /* Note, it is the only place, where
3603 * fast path is recovered for sending TCP.
3604 */
3605 tp->pred_flags = 0;
3606 tcp_fast_path_check(sk);
3607
3608 if (nwin > tp->max_window) {
3609 tp->max_window = nwin;
3610 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3611 }
3612 }
3613 }
3614
3615 tp->snd_una = ack;
3616
3617 return flag;
3618 }
3619
3620 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3621 * continue in congestion avoidance.
3622 */
3623 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3624 {
3625 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3626 tp->snd_cwnd_cnt = 0;
3627 tp->bytes_acked = 0;
3628 TCP_ECN_queue_cwr(tp);
3629 tcp_moderate_cwnd(tp);
3630 }
3631
3632 /* A conservative spurious RTO response algorithm: reduce cwnd using
3633 * rate halving and continue in congestion avoidance.
3634 */
3635 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3636 {
3637 tcp_enter_cwr(sk, 0);
3638 }
3639
3640 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3641 {
3642 if (flag & FLAG_ECE)
3643 tcp_ratehalving_spur_to_response(sk);
3644 else
3645 tcp_undo_cwr(sk, true);
3646 }
3647
3648 /* F-RTO spurious RTO detection algorithm (RFC4138)
3649 *
3650 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3651 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3652 * window (but not to or beyond highest sequence sent before RTO):
3653 * On First ACK, send two new segments out.
3654 * On Second ACK, RTO was likely spurious. Do spurious response (response
3655 * algorithm is not part of the F-RTO detection algorithm
3656 * given in RFC4138 but can be selected separately).
3657 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3658 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3659 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3660 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3661 *
3662 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3663 * original window even after we transmit two new data segments.
3664 *
3665 * SACK version:
3666 * on first step, wait until first cumulative ACK arrives, then move to
3667 * the second step. In second step, the next ACK decides.
3668 *
3669 * F-RTO is implemented (mainly) in four functions:
3670 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3671 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3672 * called when tcp_use_frto() showed green light
3673 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3674 * - tcp_enter_frto_loss() is called if there is not enough evidence
3675 * to prove that the RTO is indeed spurious. It transfers the control
3676 * from F-RTO to the conventional RTO recovery
3677 */
3678 static bool tcp_process_frto(struct sock *sk, int flag)
3679 {
3680 struct tcp_sock *tp = tcp_sk(sk);
3681
3682 tcp_verify_left_out(tp);
3683
3684 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3685 if (flag & FLAG_DATA_ACKED)
3686 inet_csk(sk)->icsk_retransmits = 0;
3687
3688 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3689 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3690 tp->undo_marker = 0;
3691
3692 if (!before(tp->snd_una, tp->frto_highmark)) {
3693 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3694 return true;
3695 }
3696
3697 if (!tcp_is_sackfrto(tp)) {
3698 /* RFC4138 shortcoming in step 2; should also have case c):
3699 * ACK isn't duplicate nor advances window, e.g., opposite dir
3700 * data, winupdate
3701 */
3702 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3703 return true;
3704
3705 if (!(flag & FLAG_DATA_ACKED)) {
3706 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3707 flag);
3708 return true;
3709 }
3710 } else {
3711 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3712 /* Prevent sending of new data. */
3713 tp->snd_cwnd = min(tp->snd_cwnd,
3714 tcp_packets_in_flight(tp));
3715 return true;
3716 }
3717
3718 if ((tp->frto_counter >= 2) &&
3719 (!(flag & FLAG_FORWARD_PROGRESS) ||
3720 ((flag & FLAG_DATA_SACKED) &&
3721 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3722 /* RFC4138 shortcoming (see comment above) */
3723 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3724 (flag & FLAG_NOT_DUP))
3725 return true;
3726
3727 tcp_enter_frto_loss(sk, 3, flag);
3728 return true;
3729 }
3730 }
3731
3732 if (tp->frto_counter == 1) {
3733 /* tcp_may_send_now needs to see updated state */
3734 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3735 tp->frto_counter = 2;
3736
3737 if (!tcp_may_send_now(sk))
3738 tcp_enter_frto_loss(sk, 2, flag);
3739
3740 return true;
3741 } else {
3742 switch (sysctl_tcp_frto_response) {
3743 case 2:
3744 tcp_undo_spur_to_response(sk, flag);
3745 break;
3746 case 1:
3747 tcp_conservative_spur_to_response(tp);
3748 break;
3749 default:
3750 tcp_ratehalving_spur_to_response(sk);
3751 break;
3752 }
3753 tp->frto_counter = 0;
3754 tp->undo_marker = 0;
3755 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3756 }
3757 return false;
3758 }
3759
3760 /* This routine deals with incoming acks, but not outgoing ones. */
3761 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3762 {
3763 struct inet_connection_sock *icsk = inet_csk(sk);
3764 struct tcp_sock *tp = tcp_sk(sk);
3765 u32 prior_snd_una = tp->snd_una;
3766 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3767 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3768 bool is_dupack = false;
3769 u32 prior_in_flight;
3770 u32 prior_fackets;
3771 int prior_packets;
3772 int prior_sacked = tp->sacked_out;
3773 int pkts_acked = 0;
3774 int newly_acked_sacked = 0;
3775 bool frto_cwnd = false;
3776
3777 /* If the ack is older than previous acks
3778 * then we can probably ignore it.
3779 */
3780 if (before(ack, prior_snd_una))
3781 goto old_ack;
3782
3783 /* If the ack includes data we haven't sent yet, discard
3784 * this segment (RFC793 Section 3.9).
3785 */
3786 if (after(ack, tp->snd_nxt))
3787 goto invalid_ack;
3788
3789 if (tp->early_retrans_delayed)
3790 tcp_rearm_rto(sk);
3791
3792 if (after(ack, prior_snd_una))
3793 flag |= FLAG_SND_UNA_ADVANCED;
3794
3795 if (sysctl_tcp_abc) {
3796 if (icsk->icsk_ca_state < TCP_CA_CWR)
3797 tp->bytes_acked += ack - prior_snd_una;
3798 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3799 /* we assume just one segment left network */
3800 tp->bytes_acked += min(ack - prior_snd_una,
3801 tp->mss_cache);
3802 }
3803
3804 prior_fackets = tp->fackets_out;
3805 prior_in_flight = tcp_packets_in_flight(tp);
3806
3807 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3808 /* Window is constant, pure forward advance.
3809 * No more checks are required.
3810 * Note, we use the fact that SND.UNA>=SND.WL2.
3811 */
3812 tcp_update_wl(tp, ack_seq);
3813 tp->snd_una = ack;
3814 flag |= FLAG_WIN_UPDATE;
3815
3816 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3817
3818 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3819 } else {
3820 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3821 flag |= FLAG_DATA;
3822 else
3823 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3824
3825 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3826
3827 if (TCP_SKB_CB(skb)->sacked)
3828 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3829
3830 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3831 flag |= FLAG_ECE;
3832
3833 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3834 }
3835
3836 /* We passed data and got it acked, remove any soft error
3837 * log. Something worked...
3838 */
3839 sk->sk_err_soft = 0;
3840 icsk->icsk_probes_out = 0;
3841 tp->rcv_tstamp = tcp_time_stamp;
3842 prior_packets = tp->packets_out;
3843 if (!prior_packets)
3844 goto no_queue;
3845
3846 /* See if we can take anything off of the retransmit queue. */
3847 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3848
3849 pkts_acked = prior_packets - tp->packets_out;
3850 newly_acked_sacked = (prior_packets - prior_sacked) -
3851 (tp->packets_out - tp->sacked_out);
3852
3853 if (tp->frto_counter)
3854 frto_cwnd = tcp_process_frto(sk, flag);
3855 /* Guarantee sacktag reordering detection against wrap-arounds */
3856 if (before(tp->frto_highmark, tp->snd_una))
3857 tp->frto_highmark = 0;
3858
3859 if (tcp_ack_is_dubious(sk, flag)) {
3860 /* Advance CWND, if state allows this. */
3861 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3862 tcp_may_raise_cwnd(sk, flag))
3863 tcp_cong_avoid(sk, ack, prior_in_flight);
3864 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3865 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3866 is_dupack, flag);
3867 } else {
3868 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3869 tcp_cong_avoid(sk, ack, prior_in_flight);
3870 }
3871
3872 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3873 struct dst_entry *dst = __sk_dst_get(sk);
3874 if (dst)
3875 dst_confirm(dst);
3876 }
3877 return 1;
3878
3879 no_queue:
3880 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3881 if (flag & FLAG_DSACKING_ACK)
3882 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3883 is_dupack, flag);
3884 /* If this ack opens up a zero window, clear backoff. It was
3885 * being used to time the probes, and is probably far higher than
3886 * it needs to be for normal retransmission.
3887 */
3888 if (tcp_send_head(sk))
3889 tcp_ack_probe(sk);
3890 return 1;
3891
3892 invalid_ack:
3893 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3894 return -1;
3895
3896 old_ack:
3897 /* If data was SACKed, tag it and see if we should send more data.
3898 * If data was DSACKed, see if we can undo a cwnd reduction.
3899 */
3900 if (TCP_SKB_CB(skb)->sacked) {
3901 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3902 newly_acked_sacked = tp->sacked_out - prior_sacked;
3903 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3904 is_dupack, flag);
3905 }
3906
3907 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3908 return 0;
3909 }
3910
3911 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3912 * But, this can also be called on packets in the established flow when
3913 * the fast version below fails.
3914 */
3915 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3916 const u8 **hvpp, int estab)
3917 {
3918 const unsigned char *ptr;
3919 const struct tcphdr *th = tcp_hdr(skb);
3920 int length = (th->doff * 4) - sizeof(struct tcphdr);
3921
3922 ptr = (const unsigned char *)(th + 1);
3923 opt_rx->saw_tstamp = 0;
3924
3925 while (length > 0) {
3926 int opcode = *ptr++;
3927 int opsize;
3928
3929 switch (opcode) {
3930 case TCPOPT_EOL:
3931 return;
3932 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3933 length--;
3934 continue;
3935 default:
3936 opsize = *ptr++;
3937 if (opsize < 2) /* "silly options" */
3938 return;
3939 if (opsize > length)
3940 return; /* don't parse partial options */
3941 switch (opcode) {
3942 case TCPOPT_MSS:
3943 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3944 u16 in_mss = get_unaligned_be16(ptr);
3945 if (in_mss) {
3946 if (opt_rx->user_mss &&
3947 opt_rx->user_mss < in_mss)
3948 in_mss = opt_rx->user_mss;
3949 opt_rx->mss_clamp = in_mss;
3950 }
3951 }
3952 break;
3953 case TCPOPT_WINDOW:
3954 if (opsize == TCPOLEN_WINDOW && th->syn &&
3955 !estab && sysctl_tcp_window_scaling) {
3956 __u8 snd_wscale = *(__u8 *)ptr;
3957 opt_rx->wscale_ok = 1;
3958 if (snd_wscale > 14) {
3959 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3960 __func__,
3961 snd_wscale);
3962 snd_wscale = 14;
3963 }
3964 opt_rx->snd_wscale = snd_wscale;
3965 }
3966 break;
3967 case TCPOPT_TIMESTAMP:
3968 if ((opsize == TCPOLEN_TIMESTAMP) &&
3969 ((estab && opt_rx->tstamp_ok) ||
3970 (!estab && sysctl_tcp_timestamps))) {
3971 opt_rx->saw_tstamp = 1;
3972 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3973 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3974 }
3975 break;
3976 case TCPOPT_SACK_PERM:
3977 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3978 !estab && sysctl_tcp_sack) {
3979 opt_rx->sack_ok = TCP_SACK_SEEN;
3980 tcp_sack_reset(opt_rx);
3981 }
3982 break;
3983
3984 case TCPOPT_SACK:
3985 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3986 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3987 opt_rx->sack_ok) {
3988 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3989 }
3990 break;
3991 #ifdef CONFIG_TCP_MD5SIG
3992 case TCPOPT_MD5SIG:
3993 /*
3994 * The MD5 Hash has already been
3995 * checked (see tcp_v{4,6}_do_rcv()).
3996 */
3997 break;
3998 #endif
3999 case TCPOPT_COOKIE:
4000 /* This option is variable length.
4001 */
4002 switch (opsize) {
4003 case TCPOLEN_COOKIE_BASE:
4004 /* not yet implemented */
4005 break;
4006 case TCPOLEN_COOKIE_PAIR:
4007 /* not yet implemented */
4008 break;
4009 case TCPOLEN_COOKIE_MIN+0:
4010 case TCPOLEN_COOKIE_MIN+2:
4011 case TCPOLEN_COOKIE_MIN+4:
4012 case TCPOLEN_COOKIE_MIN+6:
4013 case TCPOLEN_COOKIE_MAX:
4014 /* 16-bit multiple */
4015 opt_rx->cookie_plus = opsize;
4016 *hvpp = ptr;
4017 break;
4018 default:
4019 /* ignore option */
4020 break;
4021 }
4022 break;
4023 }
4024
4025 ptr += opsize-2;
4026 length -= opsize;
4027 }
4028 }
4029 }
4030 EXPORT_SYMBOL(tcp_parse_options);
4031
4032 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4033 {
4034 const __be32 *ptr = (const __be32 *)(th + 1);
4035
4036 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4037 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4038 tp->rx_opt.saw_tstamp = 1;
4039 ++ptr;
4040 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4041 ++ptr;
4042 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4043 return true;
4044 }
4045 return false;
4046 }
4047
4048 /* Fast parse options. This hopes to only see timestamps.
4049 * If it is wrong it falls back on tcp_parse_options().
4050 */
4051 static bool tcp_fast_parse_options(const struct sk_buff *skb,
4052 const struct tcphdr *th,
4053 struct tcp_sock *tp, const u8 **hvpp)
4054 {
4055 /* In the spirit of fast parsing, compare doff directly to constant
4056 * values. Because equality is used, short doff can be ignored here.
4057 */
4058 if (th->doff == (sizeof(*th) / 4)) {
4059 tp->rx_opt.saw_tstamp = 0;
4060 return false;
4061 } else if (tp->rx_opt.tstamp_ok &&
4062 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4063 if (tcp_parse_aligned_timestamp(tp, th))
4064 return true;
4065 }
4066 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
4067 return true;
4068 }
4069
4070 #ifdef CONFIG_TCP_MD5SIG
4071 /*
4072 * Parse MD5 Signature option
4073 */
4074 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4075 {
4076 int length = (th->doff << 2) - sizeof(*th);
4077 const u8 *ptr = (const u8 *)(th + 1);
4078
4079 /* If the TCP option is too short, we can short cut */
4080 if (length < TCPOLEN_MD5SIG)
4081 return NULL;
4082
4083 while (length > 0) {
4084 int opcode = *ptr++;
4085 int opsize;
4086
4087 switch(opcode) {
4088 case TCPOPT_EOL:
4089 return NULL;
4090 case TCPOPT_NOP:
4091 length--;
4092 continue;
4093 default:
4094 opsize = *ptr++;
4095 if (opsize < 2 || opsize > length)
4096 return NULL;
4097 if (opcode == TCPOPT_MD5SIG)
4098 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4099 }
4100 ptr += opsize - 2;
4101 length -= opsize;
4102 }
4103 return NULL;
4104 }
4105 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4106 #endif
4107
4108 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4109 {
4110 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4111 tp->rx_opt.ts_recent_stamp = get_seconds();
4112 }
4113
4114 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4115 {
4116 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4117 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4118 * extra check below makes sure this can only happen
4119 * for pure ACK frames. -DaveM
4120 *
4121 * Not only, also it occurs for expired timestamps.
4122 */
4123
4124 if (tcp_paws_check(&tp->rx_opt, 0))
4125 tcp_store_ts_recent(tp);
4126 }
4127 }
4128
4129 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4130 *
4131 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4132 * it can pass through stack. So, the following predicate verifies that
4133 * this segment is not used for anything but congestion avoidance or
4134 * fast retransmit. Moreover, we even are able to eliminate most of such
4135 * second order effects, if we apply some small "replay" window (~RTO)
4136 * to timestamp space.
4137 *
4138 * All these measures still do not guarantee that we reject wrapped ACKs
4139 * on networks with high bandwidth, when sequence space is recycled fastly,
4140 * but it guarantees that such events will be very rare and do not affect
4141 * connection seriously. This doesn't look nice, but alas, PAWS is really
4142 * buggy extension.
4143 *
4144 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4145 * states that events when retransmit arrives after original data are rare.
4146 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4147 * the biggest problem on large power networks even with minor reordering.
4148 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4149 * up to bandwidth of 18Gigabit/sec. 8) ]
4150 */
4151
4152 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4153 {
4154 const struct tcp_sock *tp = tcp_sk(sk);
4155 const struct tcphdr *th = tcp_hdr(skb);
4156 u32 seq = TCP_SKB_CB(skb)->seq;
4157 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4158
4159 return (/* 1. Pure ACK with correct sequence number. */
4160 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4161
4162 /* 2. ... and duplicate ACK. */
4163 ack == tp->snd_una &&
4164
4165 /* 3. ... and does not update window. */
4166 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4167
4168 /* 4. ... and sits in replay window. */
4169 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4170 }
4171
4172 static inline int tcp_paws_discard(const struct sock *sk,
4173 const struct sk_buff *skb)
4174 {
4175 const struct tcp_sock *tp = tcp_sk(sk);
4176
4177 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4178 !tcp_disordered_ack(sk, skb);
4179 }
4180
4181 /* Check segment sequence number for validity.
4182 *
4183 * Segment controls are considered valid, if the segment
4184 * fits to the window after truncation to the window. Acceptability
4185 * of data (and SYN, FIN, of course) is checked separately.
4186 * See tcp_data_queue(), for example.
4187 *
4188 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4189 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4190 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4191 * (borrowed from freebsd)
4192 */
4193
4194 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4195 {
4196 return !before(end_seq, tp->rcv_wup) &&
4197 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4198 }
4199
4200 /* When we get a reset we do this. */
4201 static void tcp_reset(struct sock *sk)
4202 {
4203 /* We want the right error as BSD sees it (and indeed as we do). */
4204 switch (sk->sk_state) {
4205 case TCP_SYN_SENT:
4206 sk->sk_err = ECONNREFUSED;
4207 break;
4208 case TCP_CLOSE_WAIT:
4209 sk->sk_err = EPIPE;
4210 break;
4211 case TCP_CLOSE:
4212 return;
4213 default:
4214 sk->sk_err = ECONNRESET;
4215 }
4216 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4217 smp_wmb();
4218
4219 if (!sock_flag(sk, SOCK_DEAD))
4220 sk->sk_error_report(sk);
4221
4222 tcp_done(sk);
4223 }
4224
4225 /*
4226 * Process the FIN bit. This now behaves as it is supposed to work
4227 * and the FIN takes effect when it is validly part of sequence
4228 * space. Not before when we get holes.
4229 *
4230 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4231 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4232 * TIME-WAIT)
4233 *
4234 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4235 * close and we go into CLOSING (and later onto TIME-WAIT)
4236 *
4237 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4238 */
4239 static void tcp_fin(struct sock *sk)
4240 {
4241 struct tcp_sock *tp = tcp_sk(sk);
4242
4243 inet_csk_schedule_ack(sk);
4244
4245 sk->sk_shutdown |= RCV_SHUTDOWN;
4246 sock_set_flag(sk, SOCK_DONE);
4247
4248 switch (sk->sk_state) {
4249 case TCP_SYN_RECV:
4250 case TCP_ESTABLISHED:
4251 /* Move to CLOSE_WAIT */
4252 tcp_set_state(sk, TCP_CLOSE_WAIT);
4253 inet_csk(sk)->icsk_ack.pingpong = 1;
4254 break;
4255
4256 case TCP_CLOSE_WAIT:
4257 case TCP_CLOSING:
4258 /* Received a retransmission of the FIN, do
4259 * nothing.
4260 */
4261 break;
4262 case TCP_LAST_ACK:
4263 /* RFC793: Remain in the LAST-ACK state. */
4264 break;
4265
4266 case TCP_FIN_WAIT1:
4267 /* This case occurs when a simultaneous close
4268 * happens, we must ack the received FIN and
4269 * enter the CLOSING state.
4270 */
4271 tcp_send_ack(sk);
4272 tcp_set_state(sk, TCP_CLOSING);
4273 break;
4274 case TCP_FIN_WAIT2:
4275 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4276 tcp_send_ack(sk);
4277 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4278 break;
4279 default:
4280 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4281 * cases we should never reach this piece of code.
4282 */
4283 pr_err("%s: Impossible, sk->sk_state=%d\n",
4284 __func__, sk->sk_state);
4285 break;
4286 }
4287
4288 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4289 * Probably, we should reset in this case. For now drop them.
4290 */
4291 __skb_queue_purge(&tp->out_of_order_queue);
4292 if (tcp_is_sack(tp))
4293 tcp_sack_reset(&tp->rx_opt);
4294 sk_mem_reclaim(sk);
4295
4296 if (!sock_flag(sk, SOCK_DEAD)) {
4297 sk->sk_state_change(sk);
4298
4299 /* Do not send POLL_HUP for half duplex close. */
4300 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4301 sk->sk_state == TCP_CLOSE)
4302 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4303 else
4304 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4305 }
4306 }
4307
4308 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4309 u32 end_seq)
4310 {
4311 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4312 if (before(seq, sp->start_seq))
4313 sp->start_seq = seq;
4314 if (after(end_seq, sp->end_seq))
4315 sp->end_seq = end_seq;
4316 return true;
4317 }
4318 return false;
4319 }
4320
4321 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4322 {
4323 struct tcp_sock *tp = tcp_sk(sk);
4324
4325 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4326 int mib_idx;
4327
4328 if (before(seq, tp->rcv_nxt))
4329 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4330 else
4331 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4332
4333 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4334
4335 tp->rx_opt.dsack = 1;
4336 tp->duplicate_sack[0].start_seq = seq;
4337 tp->duplicate_sack[0].end_seq = end_seq;
4338 }
4339 }
4340
4341 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4342 {
4343 struct tcp_sock *tp = tcp_sk(sk);
4344
4345 if (!tp->rx_opt.dsack)
4346 tcp_dsack_set(sk, seq, end_seq);
4347 else
4348 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4349 }
4350
4351 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4352 {
4353 struct tcp_sock *tp = tcp_sk(sk);
4354
4355 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4356 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4357 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4358 tcp_enter_quickack_mode(sk);
4359
4360 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4361 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4362
4363 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4364 end_seq = tp->rcv_nxt;
4365 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4366 }
4367 }
4368
4369 tcp_send_ack(sk);
4370 }
4371
4372 /* These routines update the SACK block as out-of-order packets arrive or
4373 * in-order packets close up the sequence space.
4374 */
4375 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4376 {
4377 int this_sack;
4378 struct tcp_sack_block *sp = &tp->selective_acks[0];
4379 struct tcp_sack_block *swalk = sp + 1;
4380
4381 /* See if the recent change to the first SACK eats into
4382 * or hits the sequence space of other SACK blocks, if so coalesce.
4383 */
4384 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4385 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4386 int i;
4387
4388 /* Zap SWALK, by moving every further SACK up by one slot.
4389 * Decrease num_sacks.
4390 */
4391 tp->rx_opt.num_sacks--;
4392 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4393 sp[i] = sp[i + 1];
4394 continue;
4395 }
4396 this_sack++, swalk++;
4397 }
4398 }
4399
4400 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4401 {
4402 struct tcp_sock *tp = tcp_sk(sk);
4403 struct tcp_sack_block *sp = &tp->selective_acks[0];
4404 int cur_sacks = tp->rx_opt.num_sacks;
4405 int this_sack;
4406
4407 if (!cur_sacks)
4408 goto new_sack;
4409
4410 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4411 if (tcp_sack_extend(sp, seq, end_seq)) {
4412 /* Rotate this_sack to the first one. */
4413 for (; this_sack > 0; this_sack--, sp--)
4414 swap(*sp, *(sp - 1));
4415 if (cur_sacks > 1)
4416 tcp_sack_maybe_coalesce(tp);
4417 return;
4418 }
4419 }
4420
4421 /* Could not find an adjacent existing SACK, build a new one,
4422 * put it at the front, and shift everyone else down. We
4423 * always know there is at least one SACK present already here.
4424 *
4425 * If the sack array is full, forget about the last one.
4426 */
4427 if (this_sack >= TCP_NUM_SACKS) {
4428 this_sack--;
4429 tp->rx_opt.num_sacks--;
4430 sp--;
4431 }
4432 for (; this_sack > 0; this_sack--, sp--)
4433 *sp = *(sp - 1);
4434
4435 new_sack:
4436 /* Build the new head SACK, and we're done. */
4437 sp->start_seq = seq;
4438 sp->end_seq = end_seq;
4439 tp->rx_opt.num_sacks++;
4440 }
4441
4442 /* RCV.NXT advances, some SACKs should be eaten. */
4443
4444 static void tcp_sack_remove(struct tcp_sock *tp)
4445 {
4446 struct tcp_sack_block *sp = &tp->selective_acks[0];
4447 int num_sacks = tp->rx_opt.num_sacks;
4448 int this_sack;
4449
4450 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4451 if (skb_queue_empty(&tp->out_of_order_queue)) {
4452 tp->rx_opt.num_sacks = 0;
4453 return;
4454 }
4455
4456 for (this_sack = 0; this_sack < num_sacks;) {
4457 /* Check if the start of the sack is covered by RCV.NXT. */
4458 if (!before(tp->rcv_nxt, sp->start_seq)) {
4459 int i;
4460
4461 /* RCV.NXT must cover all the block! */
4462 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4463
4464 /* Zap this SACK, by moving forward any other SACKS. */
4465 for (i=this_sack+1; i < num_sacks; i++)
4466 tp->selective_acks[i-1] = tp->selective_acks[i];
4467 num_sacks--;
4468 continue;
4469 }
4470 this_sack++;
4471 sp++;
4472 }
4473 tp->rx_opt.num_sacks = num_sacks;
4474 }
4475
4476 /* This one checks to see if we can put data from the
4477 * out_of_order queue into the receive_queue.
4478 */
4479 static void tcp_ofo_queue(struct sock *sk)
4480 {
4481 struct tcp_sock *tp = tcp_sk(sk);
4482 __u32 dsack_high = tp->rcv_nxt;
4483 struct sk_buff *skb;
4484
4485 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4486 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4487 break;
4488
4489 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4490 __u32 dsack = dsack_high;
4491 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4492 dsack_high = TCP_SKB_CB(skb)->end_seq;
4493 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4494 }
4495
4496 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4497 SOCK_DEBUG(sk, "ofo packet was already received\n");
4498 __skb_unlink(skb, &tp->out_of_order_queue);
4499 __kfree_skb(skb);
4500 continue;
4501 }
4502 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4503 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4504 TCP_SKB_CB(skb)->end_seq);
4505
4506 __skb_unlink(skb, &tp->out_of_order_queue);
4507 __skb_queue_tail(&sk->sk_receive_queue, skb);
4508 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4509 if (tcp_hdr(skb)->fin)
4510 tcp_fin(sk);
4511 }
4512 }
4513
4514 static bool tcp_prune_ofo_queue(struct sock *sk);
4515 static int tcp_prune_queue(struct sock *sk);
4516
4517 static int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4518 {
4519 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4520 !sk_rmem_schedule(sk, size)) {
4521
4522 if (tcp_prune_queue(sk) < 0)
4523 return -1;
4524
4525 if (!sk_rmem_schedule(sk, size)) {
4526 if (!tcp_prune_ofo_queue(sk))
4527 return -1;
4528
4529 if (!sk_rmem_schedule(sk, size))
4530 return -1;
4531 }
4532 }
4533 return 0;
4534 }
4535
4536 /**
4537 * tcp_try_coalesce - try to merge skb to prior one
4538 * @sk: socket
4539 * @to: prior buffer
4540 * @from: buffer to add in queue
4541 * @fragstolen: pointer to boolean
4542 *
4543 * Before queueing skb @from after @to, try to merge them
4544 * to reduce overall memory use and queue lengths, if cost is small.
4545 * Packets in ofo or receive queues can stay a long time.
4546 * Better try to coalesce them right now to avoid future collapses.
4547 * Returns true if caller should free @from instead of queueing it
4548 */
4549 static bool tcp_try_coalesce(struct sock *sk,
4550 struct sk_buff *to,
4551 struct sk_buff *from,
4552 bool *fragstolen)
4553 {
4554 int delta;
4555
4556 *fragstolen = false;
4557
4558 if (tcp_hdr(from)->fin)
4559 return false;
4560
4561 /* Its possible this segment overlaps with prior segment in queue */
4562 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4563 return false;
4564
4565 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4566 return false;
4567
4568 atomic_add(delta, &sk->sk_rmem_alloc);
4569 sk_mem_charge(sk, delta);
4570 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4571 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4572 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4573 return true;
4574 }
4575
4576 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4577 {
4578 struct tcp_sock *tp = tcp_sk(sk);
4579 struct sk_buff *skb1;
4580 u32 seq, end_seq;
4581
4582 TCP_ECN_check_ce(tp, skb);
4583
4584 if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4585 /* TODO: should increment a counter */
4586 __kfree_skb(skb);
4587 return;
4588 }
4589
4590 /* Disable header prediction. */
4591 tp->pred_flags = 0;
4592 inet_csk_schedule_ack(sk);
4593
4594 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4595 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4596
4597 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4598 if (!skb1) {
4599 /* Initial out of order segment, build 1 SACK. */
4600 if (tcp_is_sack(tp)) {
4601 tp->rx_opt.num_sacks = 1;
4602 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4603 tp->selective_acks[0].end_seq =
4604 TCP_SKB_CB(skb)->end_seq;
4605 }
4606 __skb_queue_head(&tp->out_of_order_queue, skb);
4607 goto end;
4608 }
4609
4610 seq = TCP_SKB_CB(skb)->seq;
4611 end_seq = TCP_SKB_CB(skb)->end_seq;
4612
4613 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4614 bool fragstolen;
4615
4616 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4617 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4618 } else {
4619 kfree_skb_partial(skb, fragstolen);
4620 skb = NULL;
4621 }
4622
4623 if (!tp->rx_opt.num_sacks ||
4624 tp->selective_acks[0].end_seq != seq)
4625 goto add_sack;
4626
4627 /* Common case: data arrive in order after hole. */
4628 tp->selective_acks[0].end_seq = end_seq;
4629 goto end;
4630 }
4631
4632 /* Find place to insert this segment. */
4633 while (1) {
4634 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4635 break;
4636 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4637 skb1 = NULL;
4638 break;
4639 }
4640 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4641 }
4642
4643 /* Do skb overlap to previous one? */
4644 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4645 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4646 /* All the bits are present. Drop. */
4647 __kfree_skb(skb);
4648 skb = NULL;
4649 tcp_dsack_set(sk, seq, end_seq);
4650 goto add_sack;
4651 }
4652 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4653 /* Partial overlap. */
4654 tcp_dsack_set(sk, seq,
4655 TCP_SKB_CB(skb1)->end_seq);
4656 } else {
4657 if (skb_queue_is_first(&tp->out_of_order_queue,
4658 skb1))
4659 skb1 = NULL;
4660 else
4661 skb1 = skb_queue_prev(
4662 &tp->out_of_order_queue,
4663 skb1);
4664 }
4665 }
4666 if (!skb1)
4667 __skb_queue_head(&tp->out_of_order_queue, skb);
4668 else
4669 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4670
4671 /* And clean segments covered by new one as whole. */
4672 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4673 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4674
4675 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4676 break;
4677 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4678 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4679 end_seq);
4680 break;
4681 }
4682 __skb_unlink(skb1, &tp->out_of_order_queue);
4683 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4684 TCP_SKB_CB(skb1)->end_seq);
4685 __kfree_skb(skb1);
4686 }
4687
4688 add_sack:
4689 if (tcp_is_sack(tp))
4690 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4691 end:
4692 if (skb)
4693 skb_set_owner_r(skb, sk);
4694 }
4695
4696 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4697 bool *fragstolen)
4698 {
4699 int eaten;
4700 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4701
4702 __skb_pull(skb, hdrlen);
4703 eaten = (tail &&
4704 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4705 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4706 if (!eaten) {
4707 __skb_queue_tail(&sk->sk_receive_queue, skb);
4708 skb_set_owner_r(skb, sk);
4709 }
4710 return eaten;
4711 }
4712
4713 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4714 {
4715 struct sk_buff *skb;
4716 struct tcphdr *th;
4717 bool fragstolen;
4718
4719 if (tcp_try_rmem_schedule(sk, size + sizeof(*th)))
4720 goto err;
4721
4722 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4723 if (!skb)
4724 goto err;
4725
4726 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4727 skb_reset_transport_header(skb);
4728 memset(th, 0, sizeof(*th));
4729
4730 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4731 goto err_free;
4732
4733 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4734 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4735 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4736
4737 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4738 WARN_ON_ONCE(fragstolen); /* should not happen */
4739 __kfree_skb(skb);
4740 }
4741 return size;
4742
4743 err_free:
4744 kfree_skb(skb);
4745 err:
4746 return -ENOMEM;
4747 }
4748
4749 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4750 {
4751 const struct tcphdr *th = tcp_hdr(skb);
4752 struct tcp_sock *tp = tcp_sk(sk);
4753 int eaten = -1;
4754 bool fragstolen = false;
4755
4756 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4757 goto drop;
4758
4759 skb_dst_drop(skb);
4760 __skb_pull(skb, th->doff * 4);
4761
4762 TCP_ECN_accept_cwr(tp, skb);
4763
4764 tp->rx_opt.dsack = 0;
4765
4766 /* Queue data for delivery to the user.
4767 * Packets in sequence go to the receive queue.
4768 * Out of sequence packets to the out_of_order_queue.
4769 */
4770 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4771 if (tcp_receive_window(tp) == 0)
4772 goto out_of_window;
4773
4774 /* Ok. In sequence. In window. */
4775 if (tp->ucopy.task == current &&
4776 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4777 sock_owned_by_user(sk) && !tp->urg_data) {
4778 int chunk = min_t(unsigned int, skb->len,
4779 tp->ucopy.len);
4780
4781 __set_current_state(TASK_RUNNING);
4782
4783 local_bh_enable();
4784 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4785 tp->ucopy.len -= chunk;
4786 tp->copied_seq += chunk;
4787 eaten = (chunk == skb->len);
4788 tcp_rcv_space_adjust(sk);
4789 }
4790 local_bh_disable();
4791 }
4792
4793 if (eaten <= 0) {
4794 queue_and_out:
4795 if (eaten < 0 &&
4796 tcp_try_rmem_schedule(sk, skb->truesize))
4797 goto drop;
4798
4799 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4800 }
4801 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4802 if (skb->len)
4803 tcp_event_data_recv(sk, skb);
4804 if (th->fin)
4805 tcp_fin(sk);
4806
4807 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4808 tcp_ofo_queue(sk);
4809
4810 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4811 * gap in queue is filled.
4812 */
4813 if (skb_queue_empty(&tp->out_of_order_queue))
4814 inet_csk(sk)->icsk_ack.pingpong = 0;
4815 }
4816
4817 if (tp->rx_opt.num_sacks)
4818 tcp_sack_remove(tp);
4819
4820 tcp_fast_path_check(sk);
4821
4822 if (eaten > 0)
4823 kfree_skb_partial(skb, fragstolen);
4824 else if (!sock_flag(sk, SOCK_DEAD))
4825 sk->sk_data_ready(sk, 0);
4826 return;
4827 }
4828
4829 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4830 /* A retransmit, 2nd most common case. Force an immediate ack. */
4831 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4832 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4833
4834 out_of_window:
4835 tcp_enter_quickack_mode(sk);
4836 inet_csk_schedule_ack(sk);
4837 drop:
4838 __kfree_skb(skb);
4839 return;
4840 }
4841
4842 /* Out of window. F.e. zero window probe. */
4843 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4844 goto out_of_window;
4845
4846 tcp_enter_quickack_mode(sk);
4847
4848 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4849 /* Partial packet, seq < rcv_next < end_seq */
4850 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4851 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4852 TCP_SKB_CB(skb)->end_seq);
4853
4854 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4855
4856 /* If window is closed, drop tail of packet. But after
4857 * remembering D-SACK for its head made in previous line.
4858 */
4859 if (!tcp_receive_window(tp))
4860 goto out_of_window;
4861 goto queue_and_out;
4862 }
4863
4864 tcp_data_queue_ofo(sk, skb);
4865 }
4866
4867 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4868 struct sk_buff_head *list)
4869 {
4870 struct sk_buff *next = NULL;
4871
4872 if (!skb_queue_is_last(list, skb))
4873 next = skb_queue_next(list, skb);
4874
4875 __skb_unlink(skb, list);
4876 __kfree_skb(skb);
4877 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4878
4879 return next;
4880 }
4881
4882 /* Collapse contiguous sequence of skbs head..tail with
4883 * sequence numbers start..end.
4884 *
4885 * If tail is NULL, this means until the end of the list.
4886 *
4887 * Segments with FIN/SYN are not collapsed (only because this
4888 * simplifies code)
4889 */
4890 static void
4891 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4892 struct sk_buff *head, struct sk_buff *tail,
4893 u32 start, u32 end)
4894 {
4895 struct sk_buff *skb, *n;
4896 bool end_of_skbs;
4897
4898 /* First, check that queue is collapsible and find
4899 * the point where collapsing can be useful. */
4900 skb = head;
4901 restart:
4902 end_of_skbs = true;
4903 skb_queue_walk_from_safe(list, skb, n) {
4904 if (skb == tail)
4905 break;
4906 /* No new bits? It is possible on ofo queue. */
4907 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4908 skb = tcp_collapse_one(sk, skb, list);
4909 if (!skb)
4910 break;
4911 goto restart;
4912 }
4913
4914 /* The first skb to collapse is:
4915 * - not SYN/FIN and
4916 * - bloated or contains data before "start" or
4917 * overlaps to the next one.
4918 */
4919 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4920 (tcp_win_from_space(skb->truesize) > skb->len ||
4921 before(TCP_SKB_CB(skb)->seq, start))) {
4922 end_of_skbs = false;
4923 break;
4924 }
4925
4926 if (!skb_queue_is_last(list, skb)) {
4927 struct sk_buff *next = skb_queue_next(list, skb);
4928 if (next != tail &&
4929 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4930 end_of_skbs = false;
4931 break;
4932 }
4933 }
4934
4935 /* Decided to skip this, advance start seq. */
4936 start = TCP_SKB_CB(skb)->end_seq;
4937 }
4938 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4939 return;
4940
4941 while (before(start, end)) {
4942 struct sk_buff *nskb;
4943 unsigned int header = skb_headroom(skb);
4944 int copy = SKB_MAX_ORDER(header, 0);
4945
4946 /* Too big header? This can happen with IPv6. */
4947 if (copy < 0)
4948 return;
4949 if (end - start < copy)
4950 copy = end - start;
4951 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4952 if (!nskb)
4953 return;
4954
4955 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4956 skb_set_network_header(nskb, (skb_network_header(skb) -
4957 skb->head));
4958 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4959 skb->head));
4960 skb_reserve(nskb, header);
4961 memcpy(nskb->head, skb->head, header);
4962 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4963 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4964 __skb_queue_before(list, skb, nskb);
4965 skb_set_owner_r(nskb, sk);
4966
4967 /* Copy data, releasing collapsed skbs. */
4968 while (copy > 0) {
4969 int offset = start - TCP_SKB_CB(skb)->seq;
4970 int size = TCP_SKB_CB(skb)->end_seq - start;
4971
4972 BUG_ON(offset < 0);
4973 if (size > 0) {
4974 size = min(copy, size);
4975 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4976 BUG();
4977 TCP_SKB_CB(nskb)->end_seq += size;
4978 copy -= size;
4979 start += size;
4980 }
4981 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4982 skb = tcp_collapse_one(sk, skb, list);
4983 if (!skb ||
4984 skb == tail ||
4985 tcp_hdr(skb)->syn ||
4986 tcp_hdr(skb)->fin)
4987 return;
4988 }
4989 }
4990 }
4991 }
4992
4993 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4994 * and tcp_collapse() them until all the queue is collapsed.
4995 */
4996 static void tcp_collapse_ofo_queue(struct sock *sk)
4997 {
4998 struct tcp_sock *tp = tcp_sk(sk);
4999 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
5000 struct sk_buff *head;
5001 u32 start, end;
5002
5003 if (skb == NULL)
5004 return;
5005
5006 start = TCP_SKB_CB(skb)->seq;
5007 end = TCP_SKB_CB(skb)->end_seq;
5008 head = skb;
5009
5010 for (;;) {
5011 struct sk_buff *next = NULL;
5012
5013 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
5014 next = skb_queue_next(&tp->out_of_order_queue, skb);
5015 skb = next;
5016
5017 /* Segment is terminated when we see gap or when
5018 * we are at the end of all the queue. */
5019 if (!skb ||
5020 after(TCP_SKB_CB(skb)->seq, end) ||
5021 before(TCP_SKB_CB(skb)->end_seq, start)) {
5022 tcp_collapse(sk, &tp->out_of_order_queue,
5023 head, skb, start, end);
5024 head = skb;
5025 if (!skb)
5026 break;
5027 /* Start new segment */
5028 start = TCP_SKB_CB(skb)->seq;
5029 end = TCP_SKB_CB(skb)->end_seq;
5030 } else {
5031 if (before(TCP_SKB_CB(skb)->seq, start))
5032 start = TCP_SKB_CB(skb)->seq;
5033 if (after(TCP_SKB_CB(skb)->end_seq, end))
5034 end = TCP_SKB_CB(skb)->end_seq;
5035 }
5036 }
5037 }
5038
5039 /*
5040 * Purge the out-of-order queue.
5041 * Return true if queue was pruned.
5042 */
5043 static bool tcp_prune_ofo_queue(struct sock *sk)
5044 {
5045 struct tcp_sock *tp = tcp_sk(sk);
5046 bool res = false;
5047
5048 if (!skb_queue_empty(&tp->out_of_order_queue)) {
5049 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
5050 __skb_queue_purge(&tp->out_of_order_queue);
5051
5052 /* Reset SACK state. A conforming SACK implementation will
5053 * do the same at a timeout based retransmit. When a connection
5054 * is in a sad state like this, we care only about integrity
5055 * of the connection not performance.
5056 */
5057 if (tp->rx_opt.sack_ok)
5058 tcp_sack_reset(&tp->rx_opt);
5059 sk_mem_reclaim(sk);
5060 res = true;
5061 }
5062 return res;
5063 }
5064
5065 /* Reduce allocated memory if we can, trying to get
5066 * the socket within its memory limits again.
5067 *
5068 * Return less than zero if we should start dropping frames
5069 * until the socket owning process reads some of the data
5070 * to stabilize the situation.
5071 */
5072 static int tcp_prune_queue(struct sock *sk)
5073 {
5074 struct tcp_sock *tp = tcp_sk(sk);
5075
5076 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5077
5078 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
5079
5080 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5081 tcp_clamp_window(sk);
5082 else if (sk_under_memory_pressure(sk))
5083 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5084
5085 tcp_collapse_ofo_queue(sk);
5086 if (!skb_queue_empty(&sk->sk_receive_queue))
5087 tcp_collapse(sk, &sk->sk_receive_queue,
5088 skb_peek(&sk->sk_receive_queue),
5089 NULL,
5090 tp->copied_seq, tp->rcv_nxt);
5091 sk_mem_reclaim(sk);
5092
5093 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5094 return 0;
5095
5096 /* Collapsing did not help, destructive actions follow.
5097 * This must not ever occur. */
5098
5099 tcp_prune_ofo_queue(sk);
5100
5101 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5102 return 0;
5103
5104 /* If we are really being abused, tell the caller to silently
5105 * drop receive data on the floor. It will get retransmitted
5106 * and hopefully then we'll have sufficient space.
5107 */
5108 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
5109
5110 /* Massive buffer overcommit. */
5111 tp->pred_flags = 0;
5112 return -1;
5113 }
5114
5115 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
5116 * As additional protections, we do not touch cwnd in retransmission phases,
5117 * and if application hit its sndbuf limit recently.
5118 */
5119 void tcp_cwnd_application_limited(struct sock *sk)
5120 {
5121 struct tcp_sock *tp = tcp_sk(sk);
5122
5123 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
5124 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5125 /* Limited by application or receiver window. */
5126 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
5127 u32 win_used = max(tp->snd_cwnd_used, init_win);
5128 if (win_used < tp->snd_cwnd) {
5129 tp->snd_ssthresh = tcp_current_ssthresh(sk);
5130 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
5131 }
5132 tp->snd_cwnd_used = 0;
5133 }
5134 tp->snd_cwnd_stamp = tcp_time_stamp;
5135 }
5136
5137 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5138 {
5139 const struct tcp_sock *tp = tcp_sk(sk);
5140
5141 /* If the user specified a specific send buffer setting, do
5142 * not modify it.
5143 */
5144 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5145 return false;
5146
5147 /* If we are under global TCP memory pressure, do not expand. */
5148 if (sk_under_memory_pressure(sk))
5149 return false;
5150
5151 /* If we are under soft global TCP memory pressure, do not expand. */
5152 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5153 return false;
5154
5155 /* If we filled the congestion window, do not expand. */
5156 if (tp->packets_out >= tp->snd_cwnd)
5157 return false;
5158
5159 return true;
5160 }
5161
5162 /* When incoming ACK allowed to free some skb from write_queue,
5163 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5164 * on the exit from tcp input handler.
5165 *
5166 * PROBLEM: sndbuf expansion does not work well with largesend.
5167 */
5168 static void tcp_new_space(struct sock *sk)
5169 {
5170 struct tcp_sock *tp = tcp_sk(sk);
5171
5172 if (tcp_should_expand_sndbuf(sk)) {
5173 int sndmem = SKB_TRUESIZE(max_t(u32,
5174 tp->rx_opt.mss_clamp,
5175 tp->mss_cache) +
5176 MAX_TCP_HEADER);
5177 int demanded = max_t(unsigned int, tp->snd_cwnd,
5178 tp->reordering + 1);
5179 sndmem *= 2 * demanded;
5180 if (sndmem > sk->sk_sndbuf)
5181 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5182 tp->snd_cwnd_stamp = tcp_time_stamp;
5183 }
5184
5185 sk->sk_write_space(sk);
5186 }
5187
5188 static void tcp_check_space(struct sock *sk)
5189 {
5190 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5191 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5192 if (sk->sk_socket &&
5193 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5194 tcp_new_space(sk);
5195 }
5196 }
5197
5198 static inline void tcp_data_snd_check(struct sock *sk)
5199 {
5200 tcp_push_pending_frames(sk);
5201 tcp_check_space(sk);
5202 }
5203
5204 /*
5205 * Check if sending an ack is needed.
5206 */
5207 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5208 {
5209 struct tcp_sock *tp = tcp_sk(sk);
5210
5211 /* More than one full frame received... */
5212 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5213 /* ... and right edge of window advances far enough.
5214 * (tcp_recvmsg() will send ACK otherwise). Or...
5215 */
5216 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5217 /* We ACK each frame or... */
5218 tcp_in_quickack_mode(sk) ||
5219 /* We have out of order data. */
5220 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5221 /* Then ack it now */
5222 tcp_send_ack(sk);
5223 } else {
5224 /* Else, send delayed ack. */
5225 tcp_send_delayed_ack(sk);
5226 }
5227 }
5228
5229 static inline void tcp_ack_snd_check(struct sock *sk)
5230 {
5231 if (!inet_csk_ack_scheduled(sk)) {
5232 /* We sent a data segment already. */
5233 return;
5234 }
5235 __tcp_ack_snd_check(sk, 1);
5236 }
5237
5238 /*
5239 * This routine is only called when we have urgent data
5240 * signaled. Its the 'slow' part of tcp_urg. It could be
5241 * moved inline now as tcp_urg is only called from one
5242 * place. We handle URGent data wrong. We have to - as
5243 * BSD still doesn't use the correction from RFC961.
5244 * For 1003.1g we should support a new option TCP_STDURG to permit
5245 * either form (or just set the sysctl tcp_stdurg).
5246 */
5247
5248 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5249 {
5250 struct tcp_sock *tp = tcp_sk(sk);
5251 u32 ptr = ntohs(th->urg_ptr);
5252
5253 if (ptr && !sysctl_tcp_stdurg)
5254 ptr--;
5255 ptr += ntohl(th->seq);
5256
5257 /* Ignore urgent data that we've already seen and read. */
5258 if (after(tp->copied_seq, ptr))
5259 return;
5260
5261 /* Do not replay urg ptr.
5262 *
5263 * NOTE: interesting situation not covered by specs.
5264 * Misbehaving sender may send urg ptr, pointing to segment,
5265 * which we already have in ofo queue. We are not able to fetch
5266 * such data and will stay in TCP_URG_NOTYET until will be eaten
5267 * by recvmsg(). Seems, we are not obliged to handle such wicked
5268 * situations. But it is worth to think about possibility of some
5269 * DoSes using some hypothetical application level deadlock.
5270 */
5271 if (before(ptr, tp->rcv_nxt))
5272 return;
5273
5274 /* Do we already have a newer (or duplicate) urgent pointer? */
5275 if (tp->urg_data && !after(ptr, tp->urg_seq))
5276 return;
5277
5278 /* Tell the world about our new urgent pointer. */
5279 sk_send_sigurg(sk);
5280
5281 /* We may be adding urgent data when the last byte read was
5282 * urgent. To do this requires some care. We cannot just ignore
5283 * tp->copied_seq since we would read the last urgent byte again
5284 * as data, nor can we alter copied_seq until this data arrives
5285 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5286 *
5287 * NOTE. Double Dutch. Rendering to plain English: author of comment
5288 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5289 * and expect that both A and B disappear from stream. This is _wrong_.
5290 * Though this happens in BSD with high probability, this is occasional.
5291 * Any application relying on this is buggy. Note also, that fix "works"
5292 * only in this artificial test. Insert some normal data between A and B and we will
5293 * decline of BSD again. Verdict: it is better to remove to trap
5294 * buggy users.
5295 */
5296 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5297 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5298 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5299 tp->copied_seq++;
5300 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5301 __skb_unlink(skb, &sk->sk_receive_queue);
5302 __kfree_skb(skb);
5303 }
5304 }
5305
5306 tp->urg_data = TCP_URG_NOTYET;
5307 tp->urg_seq = ptr;
5308
5309 /* Disable header prediction. */
5310 tp->pred_flags = 0;
5311 }
5312
5313 /* This is the 'fast' part of urgent handling. */
5314 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5315 {
5316 struct tcp_sock *tp = tcp_sk(sk);
5317
5318 /* Check if we get a new urgent pointer - normally not. */
5319 if (th->urg)
5320 tcp_check_urg(sk, th);
5321
5322 /* Do we wait for any urgent data? - normally not... */
5323 if (tp->urg_data == TCP_URG_NOTYET) {
5324 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5325 th->syn;
5326
5327 /* Is the urgent pointer pointing into this packet? */
5328 if (ptr < skb->len) {
5329 u8 tmp;
5330 if (skb_copy_bits(skb, ptr, &tmp, 1))
5331 BUG();
5332 tp->urg_data = TCP_URG_VALID | tmp;
5333 if (!sock_flag(sk, SOCK_DEAD))
5334 sk->sk_data_ready(sk, 0);
5335 }
5336 }
5337 }
5338
5339 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5340 {
5341 struct tcp_sock *tp = tcp_sk(sk);
5342 int chunk = skb->len - hlen;
5343 int err;
5344
5345 local_bh_enable();
5346 if (skb_csum_unnecessary(skb))
5347 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5348 else
5349 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5350 tp->ucopy.iov);
5351
5352 if (!err) {
5353 tp->ucopy.len -= chunk;
5354 tp->copied_seq += chunk;
5355 tcp_rcv_space_adjust(sk);
5356 }
5357
5358 local_bh_disable();
5359 return err;
5360 }
5361
5362 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5363 struct sk_buff *skb)
5364 {
5365 __sum16 result;
5366
5367 if (sock_owned_by_user(sk)) {
5368 local_bh_enable();
5369 result = __tcp_checksum_complete(skb);
5370 local_bh_disable();
5371 } else {
5372 result = __tcp_checksum_complete(skb);
5373 }
5374 return result;
5375 }
5376
5377 static inline int tcp_checksum_complete_user(struct sock *sk,
5378 struct sk_buff *skb)
5379 {
5380 return !skb_csum_unnecessary(skb) &&
5381 __tcp_checksum_complete_user(sk, skb);
5382 }
5383
5384 #ifdef CONFIG_NET_DMA
5385 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5386 int hlen)
5387 {
5388 struct tcp_sock *tp = tcp_sk(sk);
5389 int chunk = skb->len - hlen;
5390 int dma_cookie;
5391 bool copied_early = false;
5392
5393 if (tp->ucopy.wakeup)
5394 return false;
5395
5396 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5397 tp->ucopy.dma_chan = net_dma_find_channel();
5398
5399 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5400
5401 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5402 skb, hlen,
5403 tp->ucopy.iov, chunk,
5404 tp->ucopy.pinned_list);
5405
5406 if (dma_cookie < 0)
5407 goto out;
5408
5409 tp->ucopy.dma_cookie = dma_cookie;
5410 copied_early = true;
5411
5412 tp->ucopy.len -= chunk;
5413 tp->copied_seq += chunk;
5414 tcp_rcv_space_adjust(sk);
5415
5416 if ((tp->ucopy.len == 0) ||
5417 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5418 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5419 tp->ucopy.wakeup = 1;
5420 sk->sk_data_ready(sk, 0);
5421 }
5422 } else if (chunk > 0) {
5423 tp->ucopy.wakeup = 1;
5424 sk->sk_data_ready(sk, 0);
5425 }
5426 out:
5427 return copied_early;
5428 }
5429 #endif /* CONFIG_NET_DMA */
5430
5431 /* Does PAWS and seqno based validation of an incoming segment, flags will
5432 * play significant role here.
5433 */
5434 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5435 const struct tcphdr *th, int syn_inerr)
5436 {
5437 const u8 *hash_location;
5438 struct tcp_sock *tp = tcp_sk(sk);
5439
5440 /* RFC1323: H1. Apply PAWS check first. */
5441 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5442 tp->rx_opt.saw_tstamp &&
5443 tcp_paws_discard(sk, skb)) {
5444 if (!th->rst) {
5445 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5446 tcp_send_dupack(sk, skb);
5447 goto discard;
5448 }
5449 /* Reset is accepted even if it did not pass PAWS. */
5450 }
5451
5452 /* Step 1: check sequence number */
5453 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5454 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5455 * (RST) segments are validated by checking their SEQ-fields."
5456 * And page 69: "If an incoming segment is not acceptable,
5457 * an acknowledgment should be sent in reply (unless the RST
5458 * bit is set, if so drop the segment and return)".
5459 */
5460 if (!th->rst)
5461 tcp_send_dupack(sk, skb);
5462 goto discard;
5463 }
5464
5465 /* Step 2: check RST bit */
5466 if (th->rst) {
5467 tcp_reset(sk);
5468 goto discard;
5469 }
5470
5471 /* ts_recent update must be made after we are sure that the packet
5472 * is in window.
5473 */
5474 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5475
5476 /* step 3: check security and precedence [ignored] */
5477
5478 /* step 4: Check for a SYN in window. */
5479 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5480 if (syn_inerr)
5481 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5482 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5483 tcp_reset(sk);
5484 return -1;
5485 }
5486
5487 return 1;
5488
5489 discard:
5490 __kfree_skb(skb);
5491 return 0;
5492 }
5493
5494 /*
5495 * TCP receive function for the ESTABLISHED state.
5496 *
5497 * It is split into a fast path and a slow path. The fast path is
5498 * disabled when:
5499 * - A zero window was announced from us - zero window probing
5500 * is only handled properly in the slow path.
5501 * - Out of order segments arrived.
5502 * - Urgent data is expected.
5503 * - There is no buffer space left
5504 * - Unexpected TCP flags/window values/header lengths are received
5505 * (detected by checking the TCP header against pred_flags)
5506 * - Data is sent in both directions. Fast path only supports pure senders
5507 * or pure receivers (this means either the sequence number or the ack
5508 * value must stay constant)
5509 * - Unexpected TCP option.
5510 *
5511 * When these conditions are not satisfied it drops into a standard
5512 * receive procedure patterned after RFC793 to handle all cases.
5513 * The first three cases are guaranteed by proper pred_flags setting,
5514 * the rest is checked inline. Fast processing is turned on in
5515 * tcp_data_queue when everything is OK.
5516 */
5517 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5518 const struct tcphdr *th, unsigned int len)
5519 {
5520 struct tcp_sock *tp = tcp_sk(sk);
5521 int res;
5522
5523 if (sk->sk_rx_dst) {
5524 struct dst_entry *dst = sk->sk_rx_dst;
5525 if (unlikely(dst->obsolete)) {
5526 if (dst->ops->check(dst, 0) == NULL) {
5527 dst_release(dst);
5528 sk->sk_rx_dst = NULL;
5529 }
5530 }
5531 }
5532 if (unlikely(sk->sk_rx_dst == NULL))
5533 sk->sk_rx_dst = dst_clone(skb_dst(skb));
5534
5535 /*
5536 * Header prediction.
5537 * The code loosely follows the one in the famous
5538 * "30 instruction TCP receive" Van Jacobson mail.
5539 *
5540 * Van's trick is to deposit buffers into socket queue
5541 * on a device interrupt, to call tcp_recv function
5542 * on the receive process context and checksum and copy
5543 * the buffer to user space. smart...
5544 *
5545 * Our current scheme is not silly either but we take the
5546 * extra cost of the net_bh soft interrupt processing...
5547 * We do checksum and copy also but from device to kernel.
5548 */
5549
5550 tp->rx_opt.saw_tstamp = 0;
5551
5552 /* pred_flags is 0xS?10 << 16 + snd_wnd
5553 * if header_prediction is to be made
5554 * 'S' will always be tp->tcp_header_len >> 2
5555 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5556 * turn it off (when there are holes in the receive
5557 * space for instance)
5558 * PSH flag is ignored.
5559 */
5560
5561 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5562 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5563 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5564 int tcp_header_len = tp->tcp_header_len;
5565
5566 /* Timestamp header prediction: tcp_header_len
5567 * is automatically equal to th->doff*4 due to pred_flags
5568 * match.
5569 */
5570
5571 /* Check timestamp */
5572 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5573 /* No? Slow path! */
5574 if (!tcp_parse_aligned_timestamp(tp, th))
5575 goto slow_path;
5576
5577 /* If PAWS failed, check it more carefully in slow path */
5578 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5579 goto slow_path;
5580
5581 /* DO NOT update ts_recent here, if checksum fails
5582 * and timestamp was corrupted part, it will result
5583 * in a hung connection since we will drop all
5584 * future packets due to the PAWS test.
5585 */
5586 }
5587
5588 if (len <= tcp_header_len) {
5589 /* Bulk data transfer: sender */
5590 if (len == tcp_header_len) {
5591 /* Predicted packet is in window by definition.
5592 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5593 * Hence, check seq<=rcv_wup reduces to:
5594 */
5595 if (tcp_header_len ==
5596 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5597 tp->rcv_nxt == tp->rcv_wup)
5598 tcp_store_ts_recent(tp);
5599
5600 /* We know that such packets are checksummed
5601 * on entry.
5602 */
5603 tcp_ack(sk, skb, 0);
5604 __kfree_skb(skb);
5605 tcp_data_snd_check(sk);
5606 return 0;
5607 } else { /* Header too small */
5608 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5609 goto discard;
5610 }
5611 } else {
5612 int eaten = 0;
5613 int copied_early = 0;
5614 bool fragstolen = false;
5615
5616 if (tp->copied_seq == tp->rcv_nxt &&
5617 len - tcp_header_len <= tp->ucopy.len) {
5618 #ifdef CONFIG_NET_DMA
5619 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5620 copied_early = 1;
5621 eaten = 1;
5622 }
5623 #endif
5624 if (tp->ucopy.task == current &&
5625 sock_owned_by_user(sk) && !copied_early) {
5626 __set_current_state(TASK_RUNNING);
5627
5628 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5629 eaten = 1;
5630 }
5631 if (eaten) {
5632 /* Predicted packet is in window by definition.
5633 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5634 * Hence, check seq<=rcv_wup reduces to:
5635 */
5636 if (tcp_header_len ==
5637 (sizeof(struct tcphdr) +
5638 TCPOLEN_TSTAMP_ALIGNED) &&
5639 tp->rcv_nxt == tp->rcv_wup)
5640 tcp_store_ts_recent(tp);
5641
5642 tcp_rcv_rtt_measure_ts(sk, skb);
5643
5644 __skb_pull(skb, tcp_header_len);
5645 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5646 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5647 }
5648 if (copied_early)
5649 tcp_cleanup_rbuf(sk, skb->len);
5650 }
5651 if (!eaten) {
5652 if (tcp_checksum_complete_user(sk, skb))
5653 goto csum_error;
5654
5655 /* Predicted packet is in window by definition.
5656 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5657 * Hence, check seq<=rcv_wup reduces to:
5658 */
5659 if (tcp_header_len ==
5660 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5661 tp->rcv_nxt == tp->rcv_wup)
5662 tcp_store_ts_recent(tp);
5663
5664 tcp_rcv_rtt_measure_ts(sk, skb);
5665
5666 if ((int)skb->truesize > sk->sk_forward_alloc)
5667 goto step5;
5668
5669 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5670
5671 /* Bulk data transfer: receiver */
5672 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5673 &fragstolen);
5674 }
5675
5676 tcp_event_data_recv(sk, skb);
5677
5678 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5679 /* Well, only one small jumplet in fast path... */
5680 tcp_ack(sk, skb, FLAG_DATA);
5681 tcp_data_snd_check(sk);
5682 if (!inet_csk_ack_scheduled(sk))
5683 goto no_ack;
5684 }
5685
5686 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5687 __tcp_ack_snd_check(sk, 0);
5688 no_ack:
5689 #ifdef CONFIG_NET_DMA
5690 if (copied_early)
5691 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5692 else
5693 #endif
5694 if (eaten)
5695 kfree_skb_partial(skb, fragstolen);
5696 else
5697 sk->sk_data_ready(sk, 0);
5698 return 0;
5699 }
5700 }
5701
5702 slow_path:
5703 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5704 goto csum_error;
5705
5706 /*
5707 * Standard slow path.
5708 */
5709
5710 res = tcp_validate_incoming(sk, skb, th, 1);
5711 if (res <= 0)
5712 return -res;
5713
5714 step5:
5715 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5716 goto discard;
5717
5718 tcp_rcv_rtt_measure_ts(sk, skb);
5719
5720 /* Process urgent data. */
5721 tcp_urg(sk, skb, th);
5722
5723 /* step 7: process the segment text */
5724 tcp_data_queue(sk, skb);
5725
5726 tcp_data_snd_check(sk);
5727 tcp_ack_snd_check(sk);
5728 return 0;
5729
5730 csum_error:
5731 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5732
5733 discard:
5734 __kfree_skb(skb);
5735 return 0;
5736 }
5737 EXPORT_SYMBOL(tcp_rcv_established);
5738
5739 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5740 {
5741 struct tcp_sock *tp = tcp_sk(sk);
5742 struct inet_connection_sock *icsk = inet_csk(sk);
5743
5744 tcp_set_state(sk, TCP_ESTABLISHED);
5745
5746 if (skb != NULL) {
5747 sk->sk_rx_dst = dst_clone(skb_dst(skb));
5748 security_inet_conn_established(sk, skb);
5749 }
5750
5751 /* Make sure socket is routed, for correct metrics. */
5752 icsk->icsk_af_ops->rebuild_header(sk);
5753
5754 tcp_init_metrics(sk);
5755
5756 tcp_init_congestion_control(sk);
5757
5758 /* Prevent spurious tcp_cwnd_restart() on first data
5759 * packet.
5760 */
5761 tp->lsndtime = tcp_time_stamp;
5762
5763 tcp_init_buffer_space(sk);
5764
5765 if (sock_flag(sk, SOCK_KEEPOPEN))
5766 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5767
5768 if (!tp->rx_opt.snd_wscale)
5769 __tcp_fast_path_on(tp, tp->snd_wnd);
5770 else
5771 tp->pred_flags = 0;
5772
5773 if (!sock_flag(sk, SOCK_DEAD)) {
5774 sk->sk_state_change(sk);
5775 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5776 }
5777 }
5778
5779 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5780 const struct tcphdr *th, unsigned int len)
5781 {
5782 const u8 *hash_location;
5783 struct inet_connection_sock *icsk = inet_csk(sk);
5784 struct tcp_sock *tp = tcp_sk(sk);
5785 struct tcp_cookie_values *cvp = tp->cookie_values;
5786 int saved_clamp = tp->rx_opt.mss_clamp;
5787
5788 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5789
5790 if (th->ack) {
5791 /* rfc793:
5792 * "If the state is SYN-SENT then
5793 * first check the ACK bit
5794 * If the ACK bit is set
5795 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5796 * a reset (unless the RST bit is set, if so drop
5797 * the segment and return)"
5798 *
5799 * We do not send data with SYN, so that RFC-correct
5800 * test reduces to:
5801 */
5802 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5803 goto reset_and_undo;
5804
5805 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5806 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5807 tcp_time_stamp)) {
5808 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5809 goto reset_and_undo;
5810 }
5811
5812 /* Now ACK is acceptable.
5813 *
5814 * "If the RST bit is set
5815 * If the ACK was acceptable then signal the user "error:
5816 * connection reset", drop the segment, enter CLOSED state,
5817 * delete TCB, and return."
5818 */
5819
5820 if (th->rst) {
5821 tcp_reset(sk);
5822 goto discard;
5823 }
5824
5825 /* rfc793:
5826 * "fifth, if neither of the SYN or RST bits is set then
5827 * drop the segment and return."
5828 *
5829 * See note below!
5830 * --ANK(990513)
5831 */
5832 if (!th->syn)
5833 goto discard_and_undo;
5834
5835 /* rfc793:
5836 * "If the SYN bit is on ...
5837 * are acceptable then ...
5838 * (our SYN has been ACKed), change the connection
5839 * state to ESTABLISHED..."
5840 */
5841
5842 TCP_ECN_rcv_synack(tp, th);
5843
5844 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5845 tcp_ack(sk, skb, FLAG_SLOWPATH);
5846
5847 /* Ok.. it's good. Set up sequence numbers and
5848 * move to established.
5849 */
5850 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5851 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5852
5853 /* RFC1323: The window in SYN & SYN/ACK segments is
5854 * never scaled.
5855 */
5856 tp->snd_wnd = ntohs(th->window);
5857 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5858
5859 if (!tp->rx_opt.wscale_ok) {
5860 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5861 tp->window_clamp = min(tp->window_clamp, 65535U);
5862 }
5863
5864 if (tp->rx_opt.saw_tstamp) {
5865 tp->rx_opt.tstamp_ok = 1;
5866 tp->tcp_header_len =
5867 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5868 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5869 tcp_store_ts_recent(tp);
5870 } else {
5871 tp->tcp_header_len = sizeof(struct tcphdr);
5872 }
5873
5874 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5875 tcp_enable_fack(tp);
5876
5877 tcp_mtup_init(sk);
5878 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5879 tcp_initialize_rcv_mss(sk);
5880
5881 /* Remember, tcp_poll() does not lock socket!
5882 * Change state from SYN-SENT only after copied_seq
5883 * is initialized. */
5884 tp->copied_seq = tp->rcv_nxt;
5885
5886 if (cvp != NULL &&
5887 cvp->cookie_pair_size > 0 &&
5888 tp->rx_opt.cookie_plus > 0) {
5889 int cookie_size = tp->rx_opt.cookie_plus
5890 - TCPOLEN_COOKIE_BASE;
5891 int cookie_pair_size = cookie_size
5892 + cvp->cookie_desired;
5893
5894 /* A cookie extension option was sent and returned.
5895 * Note that each incoming SYNACK replaces the
5896 * Responder cookie. The initial exchange is most
5897 * fragile, as protection against spoofing relies
5898 * entirely upon the sequence and timestamp (above).
5899 * This replacement strategy allows the correct pair to
5900 * pass through, while any others will be filtered via
5901 * Responder verification later.
5902 */
5903 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5904 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5905 hash_location, cookie_size);
5906 cvp->cookie_pair_size = cookie_pair_size;
5907 }
5908 }
5909
5910 smp_mb();
5911
5912 tcp_finish_connect(sk, skb);
5913
5914 if (sk->sk_write_pending ||
5915 icsk->icsk_accept_queue.rskq_defer_accept ||
5916 icsk->icsk_ack.pingpong) {
5917 /* Save one ACK. Data will be ready after
5918 * several ticks, if write_pending is set.
5919 *
5920 * It may be deleted, but with this feature tcpdumps
5921 * look so _wonderfully_ clever, that I was not able
5922 * to stand against the temptation 8) --ANK
5923 */
5924 inet_csk_schedule_ack(sk);
5925 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5926 tcp_enter_quickack_mode(sk);
5927 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5928 TCP_DELACK_MAX, TCP_RTO_MAX);
5929
5930 discard:
5931 __kfree_skb(skb);
5932 return 0;
5933 } else {
5934 tcp_send_ack(sk);
5935 }
5936 return -1;
5937 }
5938
5939 /* No ACK in the segment */
5940
5941 if (th->rst) {
5942 /* rfc793:
5943 * "If the RST bit is set
5944 *
5945 * Otherwise (no ACK) drop the segment and return."
5946 */
5947
5948 goto discard_and_undo;
5949 }
5950
5951 /* PAWS check. */
5952 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5953 tcp_paws_reject(&tp->rx_opt, 0))
5954 goto discard_and_undo;
5955
5956 if (th->syn) {
5957 /* We see SYN without ACK. It is attempt of
5958 * simultaneous connect with crossed SYNs.
5959 * Particularly, it can be connect to self.
5960 */
5961 tcp_set_state(sk, TCP_SYN_RECV);
5962
5963 if (tp->rx_opt.saw_tstamp) {
5964 tp->rx_opt.tstamp_ok = 1;
5965 tcp_store_ts_recent(tp);
5966 tp->tcp_header_len =
5967 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5968 } else {
5969 tp->tcp_header_len = sizeof(struct tcphdr);
5970 }
5971
5972 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5973 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5974
5975 /* RFC1323: The window in SYN & SYN/ACK segments is
5976 * never scaled.
5977 */
5978 tp->snd_wnd = ntohs(th->window);
5979 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5980 tp->max_window = tp->snd_wnd;
5981
5982 TCP_ECN_rcv_syn(tp, th);
5983
5984 tcp_mtup_init(sk);
5985 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5986 tcp_initialize_rcv_mss(sk);
5987
5988 tcp_send_synack(sk);
5989 #if 0
5990 /* Note, we could accept data and URG from this segment.
5991 * There are no obstacles to make this.
5992 *
5993 * However, if we ignore data in ACKless segments sometimes,
5994 * we have no reasons to accept it sometimes.
5995 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5996 * is not flawless. So, discard packet for sanity.
5997 * Uncomment this return to process the data.
5998 */
5999 return -1;
6000 #else
6001 goto discard;
6002 #endif
6003 }
6004 /* "fifth, if neither of the SYN or RST bits is set then
6005 * drop the segment and return."
6006 */
6007
6008 discard_and_undo:
6009 tcp_clear_options(&tp->rx_opt);
6010 tp->rx_opt.mss_clamp = saved_clamp;
6011 goto discard;
6012
6013 reset_and_undo:
6014 tcp_clear_options(&tp->rx_opt);
6015 tp->rx_opt.mss_clamp = saved_clamp;
6016 return 1;
6017 }
6018
6019 /*
6020 * This function implements the receiving procedure of RFC 793 for
6021 * all states except ESTABLISHED and TIME_WAIT.
6022 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6023 * address independent.
6024 */
6025
6026 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
6027 const struct tcphdr *th, unsigned int len)
6028 {
6029 struct tcp_sock *tp = tcp_sk(sk);
6030 struct inet_connection_sock *icsk = inet_csk(sk);
6031 int queued = 0;
6032 int res;
6033
6034 tp->rx_opt.saw_tstamp = 0;
6035
6036 switch (sk->sk_state) {
6037 case TCP_CLOSE:
6038 goto discard;
6039
6040 case TCP_LISTEN:
6041 if (th->ack)
6042 return 1;
6043
6044 if (th->rst)
6045 goto discard;
6046
6047 if (th->syn) {
6048 if (th->fin)
6049 goto discard;
6050 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
6051 return 1;
6052
6053 /* Now we have several options: In theory there is
6054 * nothing else in the frame. KA9Q has an option to
6055 * send data with the syn, BSD accepts data with the
6056 * syn up to the [to be] advertised window and
6057 * Solaris 2.1 gives you a protocol error. For now
6058 * we just ignore it, that fits the spec precisely
6059 * and avoids incompatibilities. It would be nice in
6060 * future to drop through and process the data.
6061 *
6062 * Now that TTCP is starting to be used we ought to
6063 * queue this data.
6064 * But, this leaves one open to an easy denial of
6065 * service attack, and SYN cookies can't defend
6066 * against this problem. So, we drop the data
6067 * in the interest of security over speed unless
6068 * it's still in use.
6069 */
6070 kfree_skb(skb);
6071 return 0;
6072 }
6073 goto discard;
6074
6075 case TCP_SYN_SENT:
6076 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
6077 if (queued >= 0)
6078 return queued;
6079
6080 /* Do step6 onward by hand. */
6081 tcp_urg(sk, skb, th);
6082 __kfree_skb(skb);
6083 tcp_data_snd_check(sk);
6084 return 0;
6085 }
6086
6087 res = tcp_validate_incoming(sk, skb, th, 0);
6088 if (res <= 0)
6089 return -res;
6090
6091 /* step 5: check the ACK field */
6092 if (th->ack) {
6093 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
6094
6095 switch (sk->sk_state) {
6096 case TCP_SYN_RECV:
6097 if (acceptable) {
6098 tp->copied_seq = tp->rcv_nxt;
6099 smp_mb();
6100 tcp_set_state(sk, TCP_ESTABLISHED);
6101 sk->sk_state_change(sk);
6102
6103 /* Note, that this wakeup is only for marginal
6104 * crossed SYN case. Passively open sockets
6105 * are not waked up, because sk->sk_sleep ==
6106 * NULL and sk->sk_socket == NULL.
6107 */
6108 if (sk->sk_socket)
6109 sk_wake_async(sk,
6110 SOCK_WAKE_IO, POLL_OUT);
6111
6112 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6113 tp->snd_wnd = ntohs(th->window) <<
6114 tp->rx_opt.snd_wscale;
6115 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6116
6117 if (tp->rx_opt.tstamp_ok)
6118 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6119
6120 /* Make sure socket is routed, for
6121 * correct metrics.
6122 */
6123 icsk->icsk_af_ops->rebuild_header(sk);
6124
6125 tcp_init_metrics(sk);
6126
6127 tcp_init_congestion_control(sk);
6128
6129 /* Prevent spurious tcp_cwnd_restart() on
6130 * first data packet.
6131 */
6132 tp->lsndtime = tcp_time_stamp;
6133
6134 tcp_mtup_init(sk);
6135 tcp_initialize_rcv_mss(sk);
6136 tcp_init_buffer_space(sk);
6137 tcp_fast_path_on(tp);
6138 } else {
6139 return 1;
6140 }
6141 break;
6142
6143 case TCP_FIN_WAIT1:
6144 if (tp->snd_una == tp->write_seq) {
6145 struct dst_entry *dst;
6146
6147 tcp_set_state(sk, TCP_FIN_WAIT2);
6148 sk->sk_shutdown |= SEND_SHUTDOWN;
6149
6150 dst = __sk_dst_get(sk);
6151 if (dst)
6152 dst_confirm(dst);
6153
6154 if (!sock_flag(sk, SOCK_DEAD))
6155 /* Wake up lingering close() */
6156 sk->sk_state_change(sk);
6157 else {
6158 int tmo;
6159
6160 if (tp->linger2 < 0 ||
6161 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6162 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6163 tcp_done(sk);
6164 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6165 return 1;
6166 }
6167
6168 tmo = tcp_fin_time(sk);
6169 if (tmo > TCP_TIMEWAIT_LEN) {
6170 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6171 } else if (th->fin || sock_owned_by_user(sk)) {
6172 /* Bad case. We could lose such FIN otherwise.
6173 * It is not a big problem, but it looks confusing
6174 * and not so rare event. We still can lose it now,
6175 * if it spins in bh_lock_sock(), but it is really
6176 * marginal case.
6177 */
6178 inet_csk_reset_keepalive_timer(sk, tmo);
6179 } else {
6180 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6181 goto discard;
6182 }
6183 }
6184 }
6185 break;
6186
6187 case TCP_CLOSING:
6188 if (tp->snd_una == tp->write_seq) {
6189 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6190 goto discard;
6191 }
6192 break;
6193
6194 case TCP_LAST_ACK:
6195 if (tp->snd_una == tp->write_seq) {
6196 tcp_update_metrics(sk);
6197 tcp_done(sk);
6198 goto discard;
6199 }
6200 break;
6201 }
6202 } else
6203 goto discard;
6204
6205 /* step 6: check the URG bit */
6206 tcp_urg(sk, skb, th);
6207
6208 /* step 7: process the segment text */
6209 switch (sk->sk_state) {
6210 case TCP_CLOSE_WAIT:
6211 case TCP_CLOSING:
6212 case TCP_LAST_ACK:
6213 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6214 break;
6215 case TCP_FIN_WAIT1:
6216 case TCP_FIN_WAIT2:
6217 /* RFC 793 says to queue data in these states,
6218 * RFC 1122 says we MUST send a reset.
6219 * BSD 4.4 also does reset.
6220 */
6221 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6222 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6223 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6224 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6225 tcp_reset(sk);
6226 return 1;
6227 }
6228 }
6229 /* Fall through */
6230 case TCP_ESTABLISHED:
6231 tcp_data_queue(sk, skb);
6232 queued = 1;
6233 break;
6234 }
6235
6236 /* tcp_data could move socket to TIME-WAIT */
6237 if (sk->sk_state != TCP_CLOSE) {
6238 tcp_data_snd_check(sk);
6239 tcp_ack_snd_check(sk);
6240 }
6241
6242 if (!queued) {
6243 discard:
6244 __kfree_skb(skb);
6245 }
6246 return 0;
6247 }
6248 EXPORT_SYMBOL(tcp_rcv_state_process);