]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/udp.c
net: use dst_confirm_neigh for UDP, RAW, ICMP, L2TP
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136
137 static int udp_lib_lport_inuse(struct net *net, __u16 num,
138 const struct udp_hslot *hslot,
139 unsigned long *bitmap,
140 struct sock *sk,
141 int (*saddr_comp)(const struct sock *sk1,
142 const struct sock *sk2,
143 bool match_wildcard),
144 unsigned int log)
145 {
146 struct sock *sk2;
147 kuid_t uid = sock_i_uid(sk);
148
149 sk_for_each(sk2, &hslot->head) {
150 if (net_eq(sock_net(sk2), net) &&
151 sk2 != sk &&
152 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 (!sk2->sk_reuse || !sk->sk_reuse) &&
154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 (!sk2->sk_reuseport || !sk->sk_reuseport ||
157 rcu_access_pointer(sk->sk_reuseport_cb) ||
158 !uid_eq(uid, sock_i_uid(sk2))) &&
159 saddr_comp(sk, sk2, true)) {
160 if (!bitmap)
161 return 1;
162 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
163 }
164 }
165 return 0;
166 }
167
168 /*
169 * Note: we still hold spinlock of primary hash chain, so no other writer
170 * can insert/delete a socket with local_port == num
171 */
172 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
173 struct udp_hslot *hslot2,
174 struct sock *sk,
175 int (*saddr_comp)(const struct sock *sk1,
176 const struct sock *sk2,
177 bool match_wildcard))
178 {
179 struct sock *sk2;
180 kuid_t uid = sock_i_uid(sk);
181 int res = 0;
182
183 spin_lock(&hslot2->lock);
184 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
185 if (net_eq(sock_net(sk2), net) &&
186 sk2 != sk &&
187 (udp_sk(sk2)->udp_port_hash == num) &&
188 (!sk2->sk_reuse || !sk->sk_reuse) &&
189 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
190 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
191 (!sk2->sk_reuseport || !sk->sk_reuseport ||
192 rcu_access_pointer(sk->sk_reuseport_cb) ||
193 !uid_eq(uid, sock_i_uid(sk2))) &&
194 saddr_comp(sk, sk2, true)) {
195 res = 1;
196 break;
197 }
198 }
199 spin_unlock(&hslot2->lock);
200 return res;
201 }
202
203 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
204 int (*saddr_same)(const struct sock *sk1,
205 const struct sock *sk2,
206 bool match_wildcard))
207 {
208 struct net *net = sock_net(sk);
209 kuid_t uid = sock_i_uid(sk);
210 struct sock *sk2;
211
212 sk_for_each(sk2, &hslot->head) {
213 if (net_eq(sock_net(sk2), net) &&
214 sk2 != sk &&
215 sk2->sk_family == sk->sk_family &&
216 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
217 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
218 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
219 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
220 (*saddr_same)(sk, sk2, false)) {
221 return reuseport_add_sock(sk, sk2);
222 }
223 }
224
225 /* Initial allocation may have already happened via setsockopt */
226 if (!rcu_access_pointer(sk->sk_reuseport_cb))
227 return reuseport_alloc(sk);
228 return 0;
229 }
230
231 /**
232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
233 *
234 * @sk: socket struct in question
235 * @snum: port number to look up
236 * @saddr_comp: AF-dependent comparison of bound local IP addresses
237 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238 * with NULL address
239 */
240 int udp_lib_get_port(struct sock *sk, unsigned short snum,
241 int (*saddr_comp)(const struct sock *sk1,
242 const struct sock *sk2,
243 bool match_wildcard),
244 unsigned int hash2_nulladdr)
245 {
246 struct udp_hslot *hslot, *hslot2;
247 struct udp_table *udptable = sk->sk_prot->h.udp_table;
248 int error = 1;
249 struct net *net = sock_net(sk);
250
251 if (!snum) {
252 int low, high, remaining;
253 unsigned int rand;
254 unsigned short first, last;
255 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
256
257 inet_get_local_port_range(net, &low, &high);
258 remaining = (high - low) + 1;
259
260 rand = prandom_u32();
261 first = reciprocal_scale(rand, remaining) + low;
262 /*
263 * force rand to be an odd multiple of UDP_HTABLE_SIZE
264 */
265 rand = (rand | 1) * (udptable->mask + 1);
266 last = first + udptable->mask + 1;
267 do {
268 hslot = udp_hashslot(udptable, net, first);
269 bitmap_zero(bitmap, PORTS_PER_CHAIN);
270 spin_lock_bh(&hslot->lock);
271 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
272 saddr_comp, udptable->log);
273
274 snum = first;
275 /*
276 * Iterate on all possible values of snum for this hash.
277 * Using steps of an odd multiple of UDP_HTABLE_SIZE
278 * give us randomization and full range coverage.
279 */
280 do {
281 if (low <= snum && snum <= high &&
282 !test_bit(snum >> udptable->log, bitmap) &&
283 !inet_is_local_reserved_port(net, snum))
284 goto found;
285 snum += rand;
286 } while (snum != first);
287 spin_unlock_bh(&hslot->lock);
288 } while (++first != last);
289 goto fail;
290 } else {
291 hslot = udp_hashslot(udptable, net, snum);
292 spin_lock_bh(&hslot->lock);
293 if (hslot->count > 10) {
294 int exist;
295 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
296
297 slot2 &= udptable->mask;
298 hash2_nulladdr &= udptable->mask;
299
300 hslot2 = udp_hashslot2(udptable, slot2);
301 if (hslot->count < hslot2->count)
302 goto scan_primary_hash;
303
304 exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 sk, saddr_comp);
306 if (!exist && (hash2_nulladdr != slot2)) {
307 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
308 exist = udp_lib_lport_inuse2(net, snum, hslot2,
309 sk, saddr_comp);
310 }
311 if (exist)
312 goto fail_unlock;
313 else
314 goto found;
315 }
316 scan_primary_hash:
317 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
318 saddr_comp, 0))
319 goto fail_unlock;
320 }
321 found:
322 inet_sk(sk)->inet_num = snum;
323 udp_sk(sk)->udp_port_hash = snum;
324 udp_sk(sk)->udp_portaddr_hash ^= snum;
325 if (sk_unhashed(sk)) {
326 if (sk->sk_reuseport &&
327 udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
328 inet_sk(sk)->inet_num = 0;
329 udp_sk(sk)->udp_port_hash = 0;
330 udp_sk(sk)->udp_portaddr_hash ^= snum;
331 goto fail_unlock;
332 }
333
334 sk_add_node_rcu(sk, &hslot->head);
335 hslot->count++;
336 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
337
338 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
339 spin_lock(&hslot2->lock);
340 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
341 sk->sk_family == AF_INET6)
342 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
343 &hslot2->head);
344 else
345 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
346 &hslot2->head);
347 hslot2->count++;
348 spin_unlock(&hslot2->lock);
349 }
350 sock_set_flag(sk, SOCK_RCU_FREE);
351 error = 0;
352 fail_unlock:
353 spin_unlock_bh(&hslot->lock);
354 fail:
355 return error;
356 }
357 EXPORT_SYMBOL(udp_lib_get_port);
358
359 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
360 * match_wildcard == false: addresses must be exactly the same, i.e.
361 * 0.0.0.0 only equals to 0.0.0.0
362 */
363 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
364 bool match_wildcard)
365 {
366 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
367
368 if (!ipv6_only_sock(sk2)) {
369 if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
370 return 1;
371 if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
372 return match_wildcard;
373 }
374 return 0;
375 }
376
377 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
378 unsigned int port)
379 {
380 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
381 }
382
383 int udp_v4_get_port(struct sock *sk, unsigned short snum)
384 {
385 unsigned int hash2_nulladdr =
386 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
387 unsigned int hash2_partial =
388 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
389
390 /* precompute partial secondary hash */
391 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
392 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
393 }
394
395 static int compute_score(struct sock *sk, struct net *net,
396 __be32 saddr, __be16 sport,
397 __be32 daddr, unsigned short hnum, int dif)
398 {
399 int score;
400 struct inet_sock *inet;
401
402 if (!net_eq(sock_net(sk), net) ||
403 udp_sk(sk)->udp_port_hash != hnum ||
404 ipv6_only_sock(sk))
405 return -1;
406
407 score = (sk->sk_family == PF_INET) ? 2 : 1;
408 inet = inet_sk(sk);
409
410 if (inet->inet_rcv_saddr) {
411 if (inet->inet_rcv_saddr != daddr)
412 return -1;
413 score += 4;
414 }
415
416 if (inet->inet_daddr) {
417 if (inet->inet_daddr != saddr)
418 return -1;
419 score += 4;
420 }
421
422 if (inet->inet_dport) {
423 if (inet->inet_dport != sport)
424 return -1;
425 score += 4;
426 }
427
428 if (sk->sk_bound_dev_if) {
429 if (sk->sk_bound_dev_if != dif)
430 return -1;
431 score += 4;
432 }
433 if (sk->sk_incoming_cpu == raw_smp_processor_id())
434 score++;
435 return score;
436 }
437
438 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
439 const __u16 lport, const __be32 faddr,
440 const __be16 fport)
441 {
442 static u32 udp_ehash_secret __read_mostly;
443
444 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
445
446 return __inet_ehashfn(laddr, lport, faddr, fport,
447 udp_ehash_secret + net_hash_mix(net));
448 }
449
450 /* called with rcu_read_lock() */
451 static struct sock *udp4_lib_lookup2(struct net *net,
452 __be32 saddr, __be16 sport,
453 __be32 daddr, unsigned int hnum, int dif,
454 struct udp_hslot *hslot2,
455 struct sk_buff *skb)
456 {
457 struct sock *sk, *result;
458 int score, badness, matches = 0, reuseport = 0;
459 u32 hash = 0;
460
461 result = NULL;
462 badness = 0;
463 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
464 score = compute_score(sk, net, saddr, sport,
465 daddr, hnum, dif);
466 if (score > badness) {
467 reuseport = sk->sk_reuseport;
468 if (reuseport) {
469 hash = udp_ehashfn(net, daddr, hnum,
470 saddr, sport);
471 result = reuseport_select_sock(sk, hash, skb,
472 sizeof(struct udphdr));
473 if (result)
474 return result;
475 matches = 1;
476 }
477 badness = score;
478 result = sk;
479 } else if (score == badness && reuseport) {
480 matches++;
481 if (reciprocal_scale(hash, matches) == 0)
482 result = sk;
483 hash = next_pseudo_random32(hash);
484 }
485 }
486 return result;
487 }
488
489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490 * harder than this. -DaveM
491 */
492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493 __be16 sport, __be32 daddr, __be16 dport,
494 int dif, struct udp_table *udptable, struct sk_buff *skb)
495 {
496 struct sock *sk, *result;
497 unsigned short hnum = ntohs(dport);
498 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
499 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
500 int score, badness, matches = 0, reuseport = 0;
501 u32 hash = 0;
502
503 if (hslot->count > 10) {
504 hash2 = udp4_portaddr_hash(net, daddr, hnum);
505 slot2 = hash2 & udptable->mask;
506 hslot2 = &udptable->hash2[slot2];
507 if (hslot->count < hslot2->count)
508 goto begin;
509
510 result = udp4_lib_lookup2(net, saddr, sport,
511 daddr, hnum, dif,
512 hslot2, skb);
513 if (!result) {
514 unsigned int old_slot2 = slot2;
515 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
516 slot2 = hash2 & udptable->mask;
517 /* avoid searching the same slot again. */
518 if (unlikely(slot2 == old_slot2))
519 return result;
520
521 hslot2 = &udptable->hash2[slot2];
522 if (hslot->count < hslot2->count)
523 goto begin;
524
525 result = udp4_lib_lookup2(net, saddr, sport,
526 daddr, hnum, dif,
527 hslot2, skb);
528 }
529 return result;
530 }
531 begin:
532 result = NULL;
533 badness = 0;
534 sk_for_each_rcu(sk, &hslot->head) {
535 score = compute_score(sk, net, saddr, sport,
536 daddr, hnum, dif);
537 if (score > badness) {
538 reuseport = sk->sk_reuseport;
539 if (reuseport) {
540 hash = udp_ehashfn(net, daddr, hnum,
541 saddr, sport);
542 result = reuseport_select_sock(sk, hash, skb,
543 sizeof(struct udphdr));
544 if (result)
545 return result;
546 matches = 1;
547 }
548 result = sk;
549 badness = score;
550 } else if (score == badness && reuseport) {
551 matches++;
552 if (reciprocal_scale(hash, matches) == 0)
553 result = sk;
554 hash = next_pseudo_random32(hash);
555 }
556 }
557 return result;
558 }
559 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
560
561 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
562 __be16 sport, __be16 dport,
563 struct udp_table *udptable)
564 {
565 const struct iphdr *iph = ip_hdr(skb);
566
567 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
568 iph->daddr, dport, inet_iif(skb),
569 udptable, skb);
570 }
571
572 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
573 __be16 sport, __be16 dport)
574 {
575 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
576 }
577 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
578
579 /* Must be called under rcu_read_lock().
580 * Does increment socket refcount.
581 */
582 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
583 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
584 IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
585 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
586 __be32 daddr, __be16 dport, int dif)
587 {
588 struct sock *sk;
589
590 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
591 dif, &udp_table, NULL);
592 if (sk && !atomic_inc_not_zero(&sk->sk_refcnt))
593 sk = NULL;
594 return sk;
595 }
596 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
597 #endif
598
599 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
600 __be16 loc_port, __be32 loc_addr,
601 __be16 rmt_port, __be32 rmt_addr,
602 int dif, unsigned short hnum)
603 {
604 struct inet_sock *inet = inet_sk(sk);
605
606 if (!net_eq(sock_net(sk), net) ||
607 udp_sk(sk)->udp_port_hash != hnum ||
608 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
609 (inet->inet_dport != rmt_port && inet->inet_dport) ||
610 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
611 ipv6_only_sock(sk) ||
612 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
613 return false;
614 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
615 return false;
616 return true;
617 }
618
619 /*
620 * This routine is called by the ICMP module when it gets some
621 * sort of error condition. If err < 0 then the socket should
622 * be closed and the error returned to the user. If err > 0
623 * it's just the icmp type << 8 | icmp code.
624 * Header points to the ip header of the error packet. We move
625 * on past this. Then (as it used to claim before adjustment)
626 * header points to the first 8 bytes of the udp header. We need
627 * to find the appropriate port.
628 */
629
630 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
631 {
632 struct inet_sock *inet;
633 const struct iphdr *iph = (const struct iphdr *)skb->data;
634 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
635 const int type = icmp_hdr(skb)->type;
636 const int code = icmp_hdr(skb)->code;
637 struct sock *sk;
638 int harderr;
639 int err;
640 struct net *net = dev_net(skb->dev);
641
642 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
643 iph->saddr, uh->source, skb->dev->ifindex, udptable,
644 NULL);
645 if (!sk) {
646 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
647 return; /* No socket for error */
648 }
649
650 err = 0;
651 harderr = 0;
652 inet = inet_sk(sk);
653
654 switch (type) {
655 default:
656 case ICMP_TIME_EXCEEDED:
657 err = EHOSTUNREACH;
658 break;
659 case ICMP_SOURCE_QUENCH:
660 goto out;
661 case ICMP_PARAMETERPROB:
662 err = EPROTO;
663 harderr = 1;
664 break;
665 case ICMP_DEST_UNREACH:
666 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
667 ipv4_sk_update_pmtu(skb, sk, info);
668 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
669 err = EMSGSIZE;
670 harderr = 1;
671 break;
672 }
673 goto out;
674 }
675 err = EHOSTUNREACH;
676 if (code <= NR_ICMP_UNREACH) {
677 harderr = icmp_err_convert[code].fatal;
678 err = icmp_err_convert[code].errno;
679 }
680 break;
681 case ICMP_REDIRECT:
682 ipv4_sk_redirect(skb, sk);
683 goto out;
684 }
685
686 /*
687 * RFC1122: OK. Passes ICMP errors back to application, as per
688 * 4.1.3.3.
689 */
690 if (!inet->recverr) {
691 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
692 goto out;
693 } else
694 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
695
696 sk->sk_err = err;
697 sk->sk_error_report(sk);
698 out:
699 return;
700 }
701
702 void udp_err(struct sk_buff *skb, u32 info)
703 {
704 __udp4_lib_err(skb, info, &udp_table);
705 }
706
707 /*
708 * Throw away all pending data and cancel the corking. Socket is locked.
709 */
710 void udp_flush_pending_frames(struct sock *sk)
711 {
712 struct udp_sock *up = udp_sk(sk);
713
714 if (up->pending) {
715 up->len = 0;
716 up->pending = 0;
717 ip_flush_pending_frames(sk);
718 }
719 }
720 EXPORT_SYMBOL(udp_flush_pending_frames);
721
722 /**
723 * udp4_hwcsum - handle outgoing HW checksumming
724 * @skb: sk_buff containing the filled-in UDP header
725 * (checksum field must be zeroed out)
726 * @src: source IP address
727 * @dst: destination IP address
728 */
729 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
730 {
731 struct udphdr *uh = udp_hdr(skb);
732 int offset = skb_transport_offset(skb);
733 int len = skb->len - offset;
734 int hlen = len;
735 __wsum csum = 0;
736
737 if (!skb_has_frag_list(skb)) {
738 /*
739 * Only one fragment on the socket.
740 */
741 skb->csum_start = skb_transport_header(skb) - skb->head;
742 skb->csum_offset = offsetof(struct udphdr, check);
743 uh->check = ~csum_tcpudp_magic(src, dst, len,
744 IPPROTO_UDP, 0);
745 } else {
746 struct sk_buff *frags;
747
748 /*
749 * HW-checksum won't work as there are two or more
750 * fragments on the socket so that all csums of sk_buffs
751 * should be together
752 */
753 skb_walk_frags(skb, frags) {
754 csum = csum_add(csum, frags->csum);
755 hlen -= frags->len;
756 }
757
758 csum = skb_checksum(skb, offset, hlen, csum);
759 skb->ip_summed = CHECKSUM_NONE;
760
761 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
762 if (uh->check == 0)
763 uh->check = CSUM_MANGLED_0;
764 }
765 }
766 EXPORT_SYMBOL_GPL(udp4_hwcsum);
767
768 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
769 * for the simple case like when setting the checksum for a UDP tunnel.
770 */
771 void udp_set_csum(bool nocheck, struct sk_buff *skb,
772 __be32 saddr, __be32 daddr, int len)
773 {
774 struct udphdr *uh = udp_hdr(skb);
775
776 if (nocheck) {
777 uh->check = 0;
778 } else if (skb_is_gso(skb)) {
779 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
780 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
781 uh->check = 0;
782 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
783 if (uh->check == 0)
784 uh->check = CSUM_MANGLED_0;
785 } else {
786 skb->ip_summed = CHECKSUM_PARTIAL;
787 skb->csum_start = skb_transport_header(skb) - skb->head;
788 skb->csum_offset = offsetof(struct udphdr, check);
789 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
790 }
791 }
792 EXPORT_SYMBOL(udp_set_csum);
793
794 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
795 {
796 struct sock *sk = skb->sk;
797 struct inet_sock *inet = inet_sk(sk);
798 struct udphdr *uh;
799 int err = 0;
800 int is_udplite = IS_UDPLITE(sk);
801 int offset = skb_transport_offset(skb);
802 int len = skb->len - offset;
803 __wsum csum = 0;
804
805 /*
806 * Create a UDP header
807 */
808 uh = udp_hdr(skb);
809 uh->source = inet->inet_sport;
810 uh->dest = fl4->fl4_dport;
811 uh->len = htons(len);
812 uh->check = 0;
813
814 if (is_udplite) /* UDP-Lite */
815 csum = udplite_csum(skb);
816
817 else if (sk->sk_no_check_tx && !skb_is_gso(skb)) { /* UDP csum off */
818
819 skb->ip_summed = CHECKSUM_NONE;
820 goto send;
821
822 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
823
824 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
825 goto send;
826
827 } else
828 csum = udp_csum(skb);
829
830 /* add protocol-dependent pseudo-header */
831 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
832 sk->sk_protocol, csum);
833 if (uh->check == 0)
834 uh->check = CSUM_MANGLED_0;
835
836 send:
837 err = ip_send_skb(sock_net(sk), skb);
838 if (err) {
839 if (err == -ENOBUFS && !inet->recverr) {
840 UDP_INC_STATS(sock_net(sk),
841 UDP_MIB_SNDBUFERRORS, is_udplite);
842 err = 0;
843 }
844 } else
845 UDP_INC_STATS(sock_net(sk),
846 UDP_MIB_OUTDATAGRAMS, is_udplite);
847 return err;
848 }
849
850 /*
851 * Push out all pending data as one UDP datagram. Socket is locked.
852 */
853 int udp_push_pending_frames(struct sock *sk)
854 {
855 struct udp_sock *up = udp_sk(sk);
856 struct inet_sock *inet = inet_sk(sk);
857 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
858 struct sk_buff *skb;
859 int err = 0;
860
861 skb = ip_finish_skb(sk, fl4);
862 if (!skb)
863 goto out;
864
865 err = udp_send_skb(skb, fl4);
866
867 out:
868 up->len = 0;
869 up->pending = 0;
870 return err;
871 }
872 EXPORT_SYMBOL(udp_push_pending_frames);
873
874 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
875 {
876 struct inet_sock *inet = inet_sk(sk);
877 struct udp_sock *up = udp_sk(sk);
878 struct flowi4 fl4_stack;
879 struct flowi4 *fl4;
880 int ulen = len;
881 struct ipcm_cookie ipc;
882 struct rtable *rt = NULL;
883 int free = 0;
884 int connected = 0;
885 __be32 daddr, faddr, saddr;
886 __be16 dport;
887 u8 tos;
888 int err, is_udplite = IS_UDPLITE(sk);
889 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
890 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
891 struct sk_buff *skb;
892 struct ip_options_data opt_copy;
893
894 if (len > 0xFFFF)
895 return -EMSGSIZE;
896
897 /*
898 * Check the flags.
899 */
900
901 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
902 return -EOPNOTSUPP;
903
904 ipc.opt = NULL;
905 ipc.tx_flags = 0;
906 ipc.ttl = 0;
907 ipc.tos = -1;
908
909 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
910
911 fl4 = &inet->cork.fl.u.ip4;
912 if (up->pending) {
913 /*
914 * There are pending frames.
915 * The socket lock must be held while it's corked.
916 */
917 lock_sock(sk);
918 if (likely(up->pending)) {
919 if (unlikely(up->pending != AF_INET)) {
920 release_sock(sk);
921 return -EINVAL;
922 }
923 goto do_append_data;
924 }
925 release_sock(sk);
926 }
927 ulen += sizeof(struct udphdr);
928
929 /*
930 * Get and verify the address.
931 */
932 if (msg->msg_name) {
933 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
934 if (msg->msg_namelen < sizeof(*usin))
935 return -EINVAL;
936 if (usin->sin_family != AF_INET) {
937 if (usin->sin_family != AF_UNSPEC)
938 return -EAFNOSUPPORT;
939 }
940
941 daddr = usin->sin_addr.s_addr;
942 dport = usin->sin_port;
943 if (dport == 0)
944 return -EINVAL;
945 } else {
946 if (sk->sk_state != TCP_ESTABLISHED)
947 return -EDESTADDRREQ;
948 daddr = inet->inet_daddr;
949 dport = inet->inet_dport;
950 /* Open fast path for connected socket.
951 Route will not be used, if at least one option is set.
952 */
953 connected = 1;
954 }
955
956 ipc.sockc.tsflags = sk->sk_tsflags;
957 ipc.addr = inet->inet_saddr;
958 ipc.oif = sk->sk_bound_dev_if;
959
960 if (msg->msg_controllen) {
961 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
962 if (unlikely(err)) {
963 kfree(ipc.opt);
964 return err;
965 }
966 if (ipc.opt)
967 free = 1;
968 connected = 0;
969 }
970 if (!ipc.opt) {
971 struct ip_options_rcu *inet_opt;
972
973 rcu_read_lock();
974 inet_opt = rcu_dereference(inet->inet_opt);
975 if (inet_opt) {
976 memcpy(&opt_copy, inet_opt,
977 sizeof(*inet_opt) + inet_opt->opt.optlen);
978 ipc.opt = &opt_copy.opt;
979 }
980 rcu_read_unlock();
981 }
982
983 saddr = ipc.addr;
984 ipc.addr = faddr = daddr;
985
986 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
987
988 if (ipc.opt && ipc.opt->opt.srr) {
989 if (!daddr)
990 return -EINVAL;
991 faddr = ipc.opt->opt.faddr;
992 connected = 0;
993 }
994 tos = get_rttos(&ipc, inet);
995 if (sock_flag(sk, SOCK_LOCALROUTE) ||
996 (msg->msg_flags & MSG_DONTROUTE) ||
997 (ipc.opt && ipc.opt->opt.is_strictroute)) {
998 tos |= RTO_ONLINK;
999 connected = 0;
1000 }
1001
1002 if (ipv4_is_multicast(daddr)) {
1003 if (!ipc.oif)
1004 ipc.oif = inet->mc_index;
1005 if (!saddr)
1006 saddr = inet->mc_addr;
1007 connected = 0;
1008 } else if (!ipc.oif)
1009 ipc.oif = inet->uc_index;
1010
1011 if (connected)
1012 rt = (struct rtable *)sk_dst_check(sk, 0);
1013
1014 if (!rt) {
1015 struct net *net = sock_net(sk);
1016 __u8 flow_flags = inet_sk_flowi_flags(sk);
1017
1018 fl4 = &fl4_stack;
1019
1020 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1021 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1022 flow_flags,
1023 faddr, saddr, dport, inet->inet_sport,
1024 sk->sk_uid);
1025
1026 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1027 rt = ip_route_output_flow(net, fl4, sk);
1028 if (IS_ERR(rt)) {
1029 err = PTR_ERR(rt);
1030 rt = NULL;
1031 if (err == -ENETUNREACH)
1032 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1033 goto out;
1034 }
1035
1036 err = -EACCES;
1037 if ((rt->rt_flags & RTCF_BROADCAST) &&
1038 !sock_flag(sk, SOCK_BROADCAST))
1039 goto out;
1040 if (connected)
1041 sk_dst_set(sk, dst_clone(&rt->dst));
1042 }
1043
1044 if (msg->msg_flags&MSG_CONFIRM)
1045 goto do_confirm;
1046 back_from_confirm:
1047
1048 saddr = fl4->saddr;
1049 if (!ipc.addr)
1050 daddr = ipc.addr = fl4->daddr;
1051
1052 /* Lockless fast path for the non-corking case. */
1053 if (!corkreq) {
1054 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1055 sizeof(struct udphdr), &ipc, &rt,
1056 msg->msg_flags);
1057 err = PTR_ERR(skb);
1058 if (!IS_ERR_OR_NULL(skb))
1059 err = udp_send_skb(skb, fl4);
1060 goto out;
1061 }
1062
1063 lock_sock(sk);
1064 if (unlikely(up->pending)) {
1065 /* The socket is already corked while preparing it. */
1066 /* ... which is an evident application bug. --ANK */
1067 release_sock(sk);
1068
1069 net_dbg_ratelimited("cork app bug 2\n");
1070 err = -EINVAL;
1071 goto out;
1072 }
1073 /*
1074 * Now cork the socket to pend data.
1075 */
1076 fl4 = &inet->cork.fl.u.ip4;
1077 fl4->daddr = daddr;
1078 fl4->saddr = saddr;
1079 fl4->fl4_dport = dport;
1080 fl4->fl4_sport = inet->inet_sport;
1081 up->pending = AF_INET;
1082
1083 do_append_data:
1084 up->len += ulen;
1085 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1086 sizeof(struct udphdr), &ipc, &rt,
1087 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1088 if (err)
1089 udp_flush_pending_frames(sk);
1090 else if (!corkreq)
1091 err = udp_push_pending_frames(sk);
1092 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1093 up->pending = 0;
1094 release_sock(sk);
1095
1096 out:
1097 ip_rt_put(rt);
1098 if (free)
1099 kfree(ipc.opt);
1100 if (!err)
1101 return len;
1102 /*
1103 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1104 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1105 * we don't have a good statistic (IpOutDiscards but it can be too many
1106 * things). We could add another new stat but at least for now that
1107 * seems like overkill.
1108 */
1109 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1110 UDP_INC_STATS(sock_net(sk),
1111 UDP_MIB_SNDBUFERRORS, is_udplite);
1112 }
1113 return err;
1114
1115 do_confirm:
1116 if (msg->msg_flags & MSG_PROBE)
1117 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1118 if (!(msg->msg_flags&MSG_PROBE) || len)
1119 goto back_from_confirm;
1120 err = 0;
1121 goto out;
1122 }
1123 EXPORT_SYMBOL(udp_sendmsg);
1124
1125 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1126 size_t size, int flags)
1127 {
1128 struct inet_sock *inet = inet_sk(sk);
1129 struct udp_sock *up = udp_sk(sk);
1130 int ret;
1131
1132 if (flags & MSG_SENDPAGE_NOTLAST)
1133 flags |= MSG_MORE;
1134
1135 if (!up->pending) {
1136 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1137
1138 /* Call udp_sendmsg to specify destination address which
1139 * sendpage interface can't pass.
1140 * This will succeed only when the socket is connected.
1141 */
1142 ret = udp_sendmsg(sk, &msg, 0);
1143 if (ret < 0)
1144 return ret;
1145 }
1146
1147 lock_sock(sk);
1148
1149 if (unlikely(!up->pending)) {
1150 release_sock(sk);
1151
1152 net_dbg_ratelimited("udp cork app bug 3\n");
1153 return -EINVAL;
1154 }
1155
1156 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1157 page, offset, size, flags);
1158 if (ret == -EOPNOTSUPP) {
1159 release_sock(sk);
1160 return sock_no_sendpage(sk->sk_socket, page, offset,
1161 size, flags);
1162 }
1163 if (ret < 0) {
1164 udp_flush_pending_frames(sk);
1165 goto out;
1166 }
1167
1168 up->len += size;
1169 if (!(up->corkflag || (flags&MSG_MORE)))
1170 ret = udp_push_pending_frames(sk);
1171 if (!ret)
1172 ret = size;
1173 out:
1174 release_sock(sk);
1175 return ret;
1176 }
1177
1178 /* fully reclaim rmem/fwd memory allocated for skb */
1179 static void udp_rmem_release(struct sock *sk, int size, int partial)
1180 {
1181 struct udp_sock *up = udp_sk(sk);
1182 int amt;
1183
1184 if (likely(partial)) {
1185 up->forward_deficit += size;
1186 size = up->forward_deficit;
1187 if (size < (sk->sk_rcvbuf >> 2) &&
1188 !skb_queue_empty(&sk->sk_receive_queue))
1189 return;
1190 } else {
1191 size += up->forward_deficit;
1192 }
1193 up->forward_deficit = 0;
1194
1195 sk->sk_forward_alloc += size;
1196 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1197 sk->sk_forward_alloc -= amt;
1198
1199 if (amt)
1200 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1201
1202 atomic_sub(size, &sk->sk_rmem_alloc);
1203 }
1204
1205 /* Note: called with sk_receive_queue.lock held.
1206 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1207 * This avoids a cache line miss while receive_queue lock is held.
1208 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1209 */
1210 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1211 {
1212 udp_rmem_release(sk, skb->dev_scratch, 1);
1213 }
1214 EXPORT_SYMBOL(udp_skb_destructor);
1215
1216 /* Idea of busylocks is to let producers grab an extra spinlock
1217 * to relieve pressure on the receive_queue spinlock shared by consumer.
1218 * Under flood, this means that only one producer can be in line
1219 * trying to acquire the receive_queue spinlock.
1220 * These busylock can be allocated on a per cpu manner, instead of a
1221 * per socket one (that would consume a cache line per socket)
1222 */
1223 static int udp_busylocks_log __read_mostly;
1224 static spinlock_t *udp_busylocks __read_mostly;
1225
1226 static spinlock_t *busylock_acquire(void *ptr)
1227 {
1228 spinlock_t *busy;
1229
1230 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1231 spin_lock(busy);
1232 return busy;
1233 }
1234
1235 static void busylock_release(spinlock_t *busy)
1236 {
1237 if (busy)
1238 spin_unlock(busy);
1239 }
1240
1241 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1242 {
1243 struct sk_buff_head *list = &sk->sk_receive_queue;
1244 int rmem, delta, amt, err = -ENOMEM;
1245 spinlock_t *busy = NULL;
1246 int size;
1247
1248 /* try to avoid the costly atomic add/sub pair when the receive
1249 * queue is full; always allow at least a packet
1250 */
1251 rmem = atomic_read(&sk->sk_rmem_alloc);
1252 if (rmem > sk->sk_rcvbuf)
1253 goto drop;
1254
1255 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1256 * having linear skbs :
1257 * - Reduce memory overhead and thus increase receive queue capacity
1258 * - Less cache line misses at copyout() time
1259 * - Less work at consume_skb() (less alien page frag freeing)
1260 */
1261 if (rmem > (sk->sk_rcvbuf >> 1)) {
1262 skb_condense(skb);
1263
1264 busy = busylock_acquire(sk);
1265 }
1266 size = skb->truesize;
1267 /* Copy skb->truesize into skb->dev_scratch to avoid a cache line miss
1268 * in udp_skb_destructor()
1269 */
1270 skb->dev_scratch = size;
1271
1272 /* we drop only if the receive buf is full and the receive
1273 * queue contains some other skb
1274 */
1275 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1276 if (rmem > (size + sk->sk_rcvbuf))
1277 goto uncharge_drop;
1278
1279 spin_lock(&list->lock);
1280 if (size >= sk->sk_forward_alloc) {
1281 amt = sk_mem_pages(size);
1282 delta = amt << SK_MEM_QUANTUM_SHIFT;
1283 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1284 err = -ENOBUFS;
1285 spin_unlock(&list->lock);
1286 goto uncharge_drop;
1287 }
1288
1289 sk->sk_forward_alloc += delta;
1290 }
1291
1292 sk->sk_forward_alloc -= size;
1293
1294 /* no need to setup a destructor, we will explicitly release the
1295 * forward allocated memory on dequeue
1296 */
1297 sock_skb_set_dropcount(sk, skb);
1298
1299 __skb_queue_tail(list, skb);
1300 spin_unlock(&list->lock);
1301
1302 if (!sock_flag(sk, SOCK_DEAD))
1303 sk->sk_data_ready(sk);
1304
1305 busylock_release(busy);
1306 return 0;
1307
1308 uncharge_drop:
1309 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1310
1311 drop:
1312 atomic_inc(&sk->sk_drops);
1313 busylock_release(busy);
1314 return err;
1315 }
1316 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1317
1318 void udp_destruct_sock(struct sock *sk)
1319 {
1320 /* reclaim completely the forward allocated memory */
1321 unsigned int total = 0;
1322 struct sk_buff *skb;
1323
1324 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1325 total += skb->truesize;
1326 kfree_skb(skb);
1327 }
1328 udp_rmem_release(sk, total, 0);
1329
1330 inet_sock_destruct(sk);
1331 }
1332 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1333
1334 int udp_init_sock(struct sock *sk)
1335 {
1336 sk->sk_destruct = udp_destruct_sock;
1337 return 0;
1338 }
1339 EXPORT_SYMBOL_GPL(udp_init_sock);
1340
1341 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1342 {
1343 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1344 bool slow = lock_sock_fast(sk);
1345
1346 sk_peek_offset_bwd(sk, len);
1347 unlock_sock_fast(sk, slow);
1348 }
1349 consume_skb(skb);
1350 }
1351 EXPORT_SYMBOL_GPL(skb_consume_udp);
1352
1353 /**
1354 * first_packet_length - return length of first packet in receive queue
1355 * @sk: socket
1356 *
1357 * Drops all bad checksum frames, until a valid one is found.
1358 * Returns the length of found skb, or -1 if none is found.
1359 */
1360 static int first_packet_length(struct sock *sk)
1361 {
1362 struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1363 struct sk_buff *skb;
1364 int total = 0;
1365 int res;
1366
1367 spin_lock_bh(&rcvq->lock);
1368 while ((skb = skb_peek(rcvq)) != NULL &&
1369 udp_lib_checksum_complete(skb)) {
1370 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1371 IS_UDPLITE(sk));
1372 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1373 IS_UDPLITE(sk));
1374 atomic_inc(&sk->sk_drops);
1375 __skb_unlink(skb, rcvq);
1376 total += skb->truesize;
1377 kfree_skb(skb);
1378 }
1379 res = skb ? skb->len : -1;
1380 if (total)
1381 udp_rmem_release(sk, total, 1);
1382 spin_unlock_bh(&rcvq->lock);
1383 return res;
1384 }
1385
1386 /*
1387 * IOCTL requests applicable to the UDP protocol
1388 */
1389
1390 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1391 {
1392 switch (cmd) {
1393 case SIOCOUTQ:
1394 {
1395 int amount = sk_wmem_alloc_get(sk);
1396
1397 return put_user(amount, (int __user *)arg);
1398 }
1399
1400 case SIOCINQ:
1401 {
1402 int amount = max_t(int, 0, first_packet_length(sk));
1403
1404 return put_user(amount, (int __user *)arg);
1405 }
1406
1407 default:
1408 return -ENOIOCTLCMD;
1409 }
1410
1411 return 0;
1412 }
1413 EXPORT_SYMBOL(udp_ioctl);
1414
1415 /*
1416 * This should be easy, if there is something there we
1417 * return it, otherwise we block.
1418 */
1419
1420 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1421 int flags, int *addr_len)
1422 {
1423 struct inet_sock *inet = inet_sk(sk);
1424 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1425 struct sk_buff *skb;
1426 unsigned int ulen, copied;
1427 int peeked, peeking, off;
1428 int err;
1429 int is_udplite = IS_UDPLITE(sk);
1430 bool checksum_valid = false;
1431
1432 if (flags & MSG_ERRQUEUE)
1433 return ip_recv_error(sk, msg, len, addr_len);
1434
1435 try_again:
1436 peeking = off = sk_peek_offset(sk, flags);
1437 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1438 if (!skb)
1439 return err;
1440
1441 ulen = skb->len;
1442 copied = len;
1443 if (copied > ulen - off)
1444 copied = ulen - off;
1445 else if (copied < ulen)
1446 msg->msg_flags |= MSG_TRUNC;
1447
1448 /*
1449 * If checksum is needed at all, try to do it while copying the
1450 * data. If the data is truncated, or if we only want a partial
1451 * coverage checksum (UDP-Lite), do it before the copy.
1452 */
1453
1454 if (copied < ulen || peeking ||
1455 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1456 checksum_valid = !udp_lib_checksum_complete(skb);
1457 if (!checksum_valid)
1458 goto csum_copy_err;
1459 }
1460
1461 if (checksum_valid || skb_csum_unnecessary(skb))
1462 err = skb_copy_datagram_msg(skb, off, msg, copied);
1463 else {
1464 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1465
1466 if (err == -EINVAL)
1467 goto csum_copy_err;
1468 }
1469
1470 if (unlikely(err)) {
1471 if (!peeked) {
1472 atomic_inc(&sk->sk_drops);
1473 UDP_INC_STATS(sock_net(sk),
1474 UDP_MIB_INERRORS, is_udplite);
1475 }
1476 kfree_skb(skb);
1477 return err;
1478 }
1479
1480 if (!peeked)
1481 UDP_INC_STATS(sock_net(sk),
1482 UDP_MIB_INDATAGRAMS, is_udplite);
1483
1484 sock_recv_ts_and_drops(msg, sk, skb);
1485
1486 /* Copy the address. */
1487 if (sin) {
1488 sin->sin_family = AF_INET;
1489 sin->sin_port = udp_hdr(skb)->source;
1490 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1491 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1492 *addr_len = sizeof(*sin);
1493 }
1494 if (inet->cmsg_flags)
1495 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1496
1497 err = copied;
1498 if (flags & MSG_TRUNC)
1499 err = ulen;
1500
1501 skb_consume_udp(sk, skb, peeking ? -err : err);
1502 return err;
1503
1504 csum_copy_err:
1505 if (!__sk_queue_drop_skb(sk, skb, flags, udp_skb_destructor)) {
1506 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1507 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1508 }
1509 kfree_skb(skb);
1510
1511 /* starting over for a new packet, but check if we need to yield */
1512 cond_resched();
1513 msg->msg_flags &= ~MSG_TRUNC;
1514 goto try_again;
1515 }
1516
1517 int __udp_disconnect(struct sock *sk, int flags)
1518 {
1519 struct inet_sock *inet = inet_sk(sk);
1520 /*
1521 * 1003.1g - break association.
1522 */
1523
1524 sk->sk_state = TCP_CLOSE;
1525 inet->inet_daddr = 0;
1526 inet->inet_dport = 0;
1527 sock_rps_reset_rxhash(sk);
1528 sk->sk_bound_dev_if = 0;
1529 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1530 inet_reset_saddr(sk);
1531
1532 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1533 sk->sk_prot->unhash(sk);
1534 inet->inet_sport = 0;
1535 }
1536 sk_dst_reset(sk);
1537 return 0;
1538 }
1539 EXPORT_SYMBOL(__udp_disconnect);
1540
1541 int udp_disconnect(struct sock *sk, int flags)
1542 {
1543 lock_sock(sk);
1544 __udp_disconnect(sk, flags);
1545 release_sock(sk);
1546 return 0;
1547 }
1548 EXPORT_SYMBOL(udp_disconnect);
1549
1550 void udp_lib_unhash(struct sock *sk)
1551 {
1552 if (sk_hashed(sk)) {
1553 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1554 struct udp_hslot *hslot, *hslot2;
1555
1556 hslot = udp_hashslot(udptable, sock_net(sk),
1557 udp_sk(sk)->udp_port_hash);
1558 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1559
1560 spin_lock_bh(&hslot->lock);
1561 if (rcu_access_pointer(sk->sk_reuseport_cb))
1562 reuseport_detach_sock(sk);
1563 if (sk_del_node_init_rcu(sk)) {
1564 hslot->count--;
1565 inet_sk(sk)->inet_num = 0;
1566 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1567
1568 spin_lock(&hslot2->lock);
1569 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1570 hslot2->count--;
1571 spin_unlock(&hslot2->lock);
1572 }
1573 spin_unlock_bh(&hslot->lock);
1574 }
1575 }
1576 EXPORT_SYMBOL(udp_lib_unhash);
1577
1578 /*
1579 * inet_rcv_saddr was changed, we must rehash secondary hash
1580 */
1581 void udp_lib_rehash(struct sock *sk, u16 newhash)
1582 {
1583 if (sk_hashed(sk)) {
1584 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1585 struct udp_hslot *hslot, *hslot2, *nhslot2;
1586
1587 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1588 nhslot2 = udp_hashslot2(udptable, newhash);
1589 udp_sk(sk)->udp_portaddr_hash = newhash;
1590
1591 if (hslot2 != nhslot2 ||
1592 rcu_access_pointer(sk->sk_reuseport_cb)) {
1593 hslot = udp_hashslot(udptable, sock_net(sk),
1594 udp_sk(sk)->udp_port_hash);
1595 /* we must lock primary chain too */
1596 spin_lock_bh(&hslot->lock);
1597 if (rcu_access_pointer(sk->sk_reuseport_cb))
1598 reuseport_detach_sock(sk);
1599
1600 if (hslot2 != nhslot2) {
1601 spin_lock(&hslot2->lock);
1602 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1603 hslot2->count--;
1604 spin_unlock(&hslot2->lock);
1605
1606 spin_lock(&nhslot2->lock);
1607 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1608 &nhslot2->head);
1609 nhslot2->count++;
1610 spin_unlock(&nhslot2->lock);
1611 }
1612
1613 spin_unlock_bh(&hslot->lock);
1614 }
1615 }
1616 }
1617 EXPORT_SYMBOL(udp_lib_rehash);
1618
1619 static void udp_v4_rehash(struct sock *sk)
1620 {
1621 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1622 inet_sk(sk)->inet_rcv_saddr,
1623 inet_sk(sk)->inet_num);
1624 udp_lib_rehash(sk, new_hash);
1625 }
1626
1627 int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1628 {
1629 int rc;
1630
1631 if (inet_sk(sk)->inet_daddr) {
1632 sock_rps_save_rxhash(sk, skb);
1633 sk_mark_napi_id(sk, skb);
1634 sk_incoming_cpu_update(sk);
1635 } else {
1636 sk_mark_napi_id_once(sk, skb);
1637 }
1638
1639 rc = __udp_enqueue_schedule_skb(sk, skb);
1640 if (rc < 0) {
1641 int is_udplite = IS_UDPLITE(sk);
1642
1643 /* Note that an ENOMEM error is charged twice */
1644 if (rc == -ENOMEM)
1645 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1646 is_udplite);
1647 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1648 kfree_skb(skb);
1649 trace_udp_fail_queue_rcv_skb(rc, sk);
1650 return -1;
1651 }
1652
1653 return 0;
1654 }
1655
1656 static struct static_key udp_encap_needed __read_mostly;
1657 void udp_encap_enable(void)
1658 {
1659 if (!static_key_enabled(&udp_encap_needed))
1660 static_key_slow_inc(&udp_encap_needed);
1661 }
1662 EXPORT_SYMBOL(udp_encap_enable);
1663
1664 /* returns:
1665 * -1: error
1666 * 0: success
1667 * >0: "udp encap" protocol resubmission
1668 *
1669 * Note that in the success and error cases, the skb is assumed to
1670 * have either been requeued or freed.
1671 */
1672 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1673 {
1674 struct udp_sock *up = udp_sk(sk);
1675 int is_udplite = IS_UDPLITE(sk);
1676
1677 /*
1678 * Charge it to the socket, dropping if the queue is full.
1679 */
1680 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1681 goto drop;
1682 nf_reset(skb);
1683
1684 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1685 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1686
1687 /*
1688 * This is an encapsulation socket so pass the skb to
1689 * the socket's udp_encap_rcv() hook. Otherwise, just
1690 * fall through and pass this up the UDP socket.
1691 * up->encap_rcv() returns the following value:
1692 * =0 if skb was successfully passed to the encap
1693 * handler or was discarded by it.
1694 * >0 if skb should be passed on to UDP.
1695 * <0 if skb should be resubmitted as proto -N
1696 */
1697
1698 /* if we're overly short, let UDP handle it */
1699 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1700 if (encap_rcv) {
1701 int ret;
1702
1703 /* Verify checksum before giving to encap */
1704 if (udp_lib_checksum_complete(skb))
1705 goto csum_error;
1706
1707 ret = encap_rcv(sk, skb);
1708 if (ret <= 0) {
1709 __UDP_INC_STATS(sock_net(sk),
1710 UDP_MIB_INDATAGRAMS,
1711 is_udplite);
1712 return -ret;
1713 }
1714 }
1715
1716 /* FALLTHROUGH -- it's a UDP Packet */
1717 }
1718
1719 /*
1720 * UDP-Lite specific tests, ignored on UDP sockets
1721 */
1722 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1723
1724 /*
1725 * MIB statistics other than incrementing the error count are
1726 * disabled for the following two types of errors: these depend
1727 * on the application settings, not on the functioning of the
1728 * protocol stack as such.
1729 *
1730 * RFC 3828 here recommends (sec 3.3): "There should also be a
1731 * way ... to ... at least let the receiving application block
1732 * delivery of packets with coverage values less than a value
1733 * provided by the application."
1734 */
1735 if (up->pcrlen == 0) { /* full coverage was set */
1736 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1737 UDP_SKB_CB(skb)->cscov, skb->len);
1738 goto drop;
1739 }
1740 /* The next case involves violating the min. coverage requested
1741 * by the receiver. This is subtle: if receiver wants x and x is
1742 * greater than the buffersize/MTU then receiver will complain
1743 * that it wants x while sender emits packets of smaller size y.
1744 * Therefore the above ...()->partial_cov statement is essential.
1745 */
1746 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1747 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1748 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1749 goto drop;
1750 }
1751 }
1752
1753 if (rcu_access_pointer(sk->sk_filter) &&
1754 udp_lib_checksum_complete(skb))
1755 goto csum_error;
1756
1757 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1758 goto drop;
1759
1760 udp_csum_pull_header(skb);
1761
1762 ipv4_pktinfo_prepare(sk, skb);
1763 return __udp_queue_rcv_skb(sk, skb);
1764
1765 csum_error:
1766 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1767 drop:
1768 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1769 atomic_inc(&sk->sk_drops);
1770 kfree_skb(skb);
1771 return -1;
1772 }
1773
1774 /* For TCP sockets, sk_rx_dst is protected by socket lock
1775 * For UDP, we use xchg() to guard against concurrent changes.
1776 */
1777 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1778 {
1779 struct dst_entry *old;
1780
1781 dst_hold(dst);
1782 old = xchg(&sk->sk_rx_dst, dst);
1783 dst_release(old);
1784 }
1785
1786 /*
1787 * Multicasts and broadcasts go to each listener.
1788 *
1789 * Note: called only from the BH handler context.
1790 */
1791 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1792 struct udphdr *uh,
1793 __be32 saddr, __be32 daddr,
1794 struct udp_table *udptable,
1795 int proto)
1796 {
1797 struct sock *sk, *first = NULL;
1798 unsigned short hnum = ntohs(uh->dest);
1799 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1800 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1801 unsigned int offset = offsetof(typeof(*sk), sk_node);
1802 int dif = skb->dev->ifindex;
1803 struct hlist_node *node;
1804 struct sk_buff *nskb;
1805
1806 if (use_hash2) {
1807 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1808 udptable->mask;
1809 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1810 start_lookup:
1811 hslot = &udptable->hash2[hash2];
1812 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1813 }
1814
1815 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1816 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1817 uh->source, saddr, dif, hnum))
1818 continue;
1819
1820 if (!first) {
1821 first = sk;
1822 continue;
1823 }
1824 nskb = skb_clone(skb, GFP_ATOMIC);
1825
1826 if (unlikely(!nskb)) {
1827 atomic_inc(&sk->sk_drops);
1828 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1829 IS_UDPLITE(sk));
1830 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
1831 IS_UDPLITE(sk));
1832 continue;
1833 }
1834 if (udp_queue_rcv_skb(sk, nskb) > 0)
1835 consume_skb(nskb);
1836 }
1837
1838 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1839 if (use_hash2 && hash2 != hash2_any) {
1840 hash2 = hash2_any;
1841 goto start_lookup;
1842 }
1843
1844 if (first) {
1845 if (udp_queue_rcv_skb(first, skb) > 0)
1846 consume_skb(skb);
1847 } else {
1848 kfree_skb(skb);
1849 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
1850 proto == IPPROTO_UDPLITE);
1851 }
1852 return 0;
1853 }
1854
1855 /* Initialize UDP checksum. If exited with zero value (success),
1856 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1857 * Otherwise, csum completion requires chacksumming packet body,
1858 * including udp header and folding it to skb->csum.
1859 */
1860 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1861 int proto)
1862 {
1863 int err;
1864
1865 UDP_SKB_CB(skb)->partial_cov = 0;
1866 UDP_SKB_CB(skb)->cscov = skb->len;
1867
1868 if (proto == IPPROTO_UDPLITE) {
1869 err = udplite_checksum_init(skb, uh);
1870 if (err)
1871 return err;
1872 }
1873
1874 /* Note, we are only interested in != 0 or == 0, thus the
1875 * force to int.
1876 */
1877 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
1878 inet_compute_pseudo);
1879 }
1880
1881 /*
1882 * All we need to do is get the socket, and then do a checksum.
1883 */
1884
1885 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1886 int proto)
1887 {
1888 struct sock *sk;
1889 struct udphdr *uh;
1890 unsigned short ulen;
1891 struct rtable *rt = skb_rtable(skb);
1892 __be32 saddr, daddr;
1893 struct net *net = dev_net(skb->dev);
1894
1895 /*
1896 * Validate the packet.
1897 */
1898 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1899 goto drop; /* No space for header. */
1900
1901 uh = udp_hdr(skb);
1902 ulen = ntohs(uh->len);
1903 saddr = ip_hdr(skb)->saddr;
1904 daddr = ip_hdr(skb)->daddr;
1905
1906 if (ulen > skb->len)
1907 goto short_packet;
1908
1909 if (proto == IPPROTO_UDP) {
1910 /* UDP validates ulen. */
1911 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1912 goto short_packet;
1913 uh = udp_hdr(skb);
1914 }
1915
1916 if (udp4_csum_init(skb, uh, proto))
1917 goto csum_error;
1918
1919 sk = skb_steal_sock(skb);
1920 if (sk) {
1921 struct dst_entry *dst = skb_dst(skb);
1922 int ret;
1923
1924 if (unlikely(sk->sk_rx_dst != dst))
1925 udp_sk_rx_dst_set(sk, dst);
1926
1927 ret = udp_queue_rcv_skb(sk, skb);
1928 sock_put(sk);
1929 /* a return value > 0 means to resubmit the input, but
1930 * it wants the return to be -protocol, or 0
1931 */
1932 if (ret > 0)
1933 return -ret;
1934 return 0;
1935 }
1936
1937 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1938 return __udp4_lib_mcast_deliver(net, skb, uh,
1939 saddr, daddr, udptable, proto);
1940
1941 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1942 if (sk) {
1943 int ret;
1944
1945 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1946 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1947 inet_compute_pseudo);
1948
1949 ret = udp_queue_rcv_skb(sk, skb);
1950
1951 /* a return value > 0 means to resubmit the input, but
1952 * it wants the return to be -protocol, or 0
1953 */
1954 if (ret > 0)
1955 return -ret;
1956 return 0;
1957 }
1958
1959 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1960 goto drop;
1961 nf_reset(skb);
1962
1963 /* No socket. Drop packet silently, if checksum is wrong */
1964 if (udp_lib_checksum_complete(skb))
1965 goto csum_error;
1966
1967 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1968 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1969
1970 /*
1971 * Hmm. We got an UDP packet to a port to which we
1972 * don't wanna listen. Ignore it.
1973 */
1974 kfree_skb(skb);
1975 return 0;
1976
1977 short_packet:
1978 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1979 proto == IPPROTO_UDPLITE ? "Lite" : "",
1980 &saddr, ntohs(uh->source),
1981 ulen, skb->len,
1982 &daddr, ntohs(uh->dest));
1983 goto drop;
1984
1985 csum_error:
1986 /*
1987 * RFC1122: OK. Discards the bad packet silently (as far as
1988 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1989 */
1990 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1991 proto == IPPROTO_UDPLITE ? "Lite" : "",
1992 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1993 ulen);
1994 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1995 drop:
1996 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1997 kfree_skb(skb);
1998 return 0;
1999 }
2000
2001 /* We can only early demux multicast if there is a single matching socket.
2002 * If more than one socket found returns NULL
2003 */
2004 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2005 __be16 loc_port, __be32 loc_addr,
2006 __be16 rmt_port, __be32 rmt_addr,
2007 int dif)
2008 {
2009 struct sock *sk, *result;
2010 unsigned short hnum = ntohs(loc_port);
2011 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2012 struct udp_hslot *hslot = &udp_table.hash[slot];
2013
2014 /* Do not bother scanning a too big list */
2015 if (hslot->count > 10)
2016 return NULL;
2017
2018 result = NULL;
2019 sk_for_each_rcu(sk, &hslot->head) {
2020 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2021 rmt_port, rmt_addr, dif, hnum)) {
2022 if (result)
2023 return NULL;
2024 result = sk;
2025 }
2026 }
2027
2028 return result;
2029 }
2030
2031 /* For unicast we should only early demux connected sockets or we can
2032 * break forwarding setups. The chains here can be long so only check
2033 * if the first socket is an exact match and if not move on.
2034 */
2035 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2036 __be16 loc_port, __be32 loc_addr,
2037 __be16 rmt_port, __be32 rmt_addr,
2038 int dif)
2039 {
2040 unsigned short hnum = ntohs(loc_port);
2041 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
2042 unsigned int slot2 = hash2 & udp_table.mask;
2043 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2044 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2045 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2046 struct sock *sk;
2047
2048 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2049 if (INET_MATCH(sk, net, acookie, rmt_addr,
2050 loc_addr, ports, dif))
2051 return sk;
2052 /* Only check first socket in chain */
2053 break;
2054 }
2055 return NULL;
2056 }
2057
2058 void udp_v4_early_demux(struct sk_buff *skb)
2059 {
2060 struct net *net = dev_net(skb->dev);
2061 const struct iphdr *iph;
2062 const struct udphdr *uh;
2063 struct sock *sk = NULL;
2064 struct dst_entry *dst;
2065 int dif = skb->dev->ifindex;
2066 int ours;
2067
2068 /* validate the packet */
2069 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2070 return;
2071
2072 iph = ip_hdr(skb);
2073 uh = udp_hdr(skb);
2074
2075 if (skb->pkt_type == PACKET_BROADCAST ||
2076 skb->pkt_type == PACKET_MULTICAST) {
2077 struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
2078
2079 if (!in_dev)
2080 return;
2081
2082 /* we are supposed to accept bcast packets */
2083 if (skb->pkt_type == PACKET_MULTICAST) {
2084 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2085 iph->protocol);
2086 if (!ours)
2087 return;
2088 }
2089
2090 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2091 uh->source, iph->saddr, dif);
2092 } else if (skb->pkt_type == PACKET_HOST) {
2093 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2094 uh->source, iph->saddr, dif);
2095 }
2096
2097 if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2))
2098 return;
2099
2100 skb->sk = sk;
2101 skb->destructor = sock_efree;
2102 dst = READ_ONCE(sk->sk_rx_dst);
2103
2104 if (dst)
2105 dst = dst_check(dst, 0);
2106 if (dst) {
2107 /* DST_NOCACHE can not be used without taking a reference */
2108 if (dst->flags & DST_NOCACHE) {
2109 if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2110 skb_dst_set(skb, dst);
2111 } else {
2112 skb_dst_set_noref(skb, dst);
2113 }
2114 }
2115 }
2116
2117 int udp_rcv(struct sk_buff *skb)
2118 {
2119 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2120 }
2121
2122 void udp_destroy_sock(struct sock *sk)
2123 {
2124 struct udp_sock *up = udp_sk(sk);
2125 bool slow = lock_sock_fast(sk);
2126 udp_flush_pending_frames(sk);
2127 unlock_sock_fast(sk, slow);
2128 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2129 void (*encap_destroy)(struct sock *sk);
2130 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2131 if (encap_destroy)
2132 encap_destroy(sk);
2133 }
2134 }
2135
2136 /*
2137 * Socket option code for UDP
2138 */
2139 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2140 char __user *optval, unsigned int optlen,
2141 int (*push_pending_frames)(struct sock *))
2142 {
2143 struct udp_sock *up = udp_sk(sk);
2144 int val, valbool;
2145 int err = 0;
2146 int is_udplite = IS_UDPLITE(sk);
2147
2148 if (optlen < sizeof(int))
2149 return -EINVAL;
2150
2151 if (get_user(val, (int __user *)optval))
2152 return -EFAULT;
2153
2154 valbool = val ? 1 : 0;
2155
2156 switch (optname) {
2157 case UDP_CORK:
2158 if (val != 0) {
2159 up->corkflag = 1;
2160 } else {
2161 up->corkflag = 0;
2162 lock_sock(sk);
2163 push_pending_frames(sk);
2164 release_sock(sk);
2165 }
2166 break;
2167
2168 case UDP_ENCAP:
2169 switch (val) {
2170 case 0:
2171 case UDP_ENCAP_ESPINUDP:
2172 case UDP_ENCAP_ESPINUDP_NON_IKE:
2173 up->encap_rcv = xfrm4_udp_encap_rcv;
2174 /* FALLTHROUGH */
2175 case UDP_ENCAP_L2TPINUDP:
2176 up->encap_type = val;
2177 udp_encap_enable();
2178 break;
2179 default:
2180 err = -ENOPROTOOPT;
2181 break;
2182 }
2183 break;
2184
2185 case UDP_NO_CHECK6_TX:
2186 up->no_check6_tx = valbool;
2187 break;
2188
2189 case UDP_NO_CHECK6_RX:
2190 up->no_check6_rx = valbool;
2191 break;
2192
2193 /*
2194 * UDP-Lite's partial checksum coverage (RFC 3828).
2195 */
2196 /* The sender sets actual checksum coverage length via this option.
2197 * The case coverage > packet length is handled by send module. */
2198 case UDPLITE_SEND_CSCOV:
2199 if (!is_udplite) /* Disable the option on UDP sockets */
2200 return -ENOPROTOOPT;
2201 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2202 val = 8;
2203 else if (val > USHRT_MAX)
2204 val = USHRT_MAX;
2205 up->pcslen = val;
2206 up->pcflag |= UDPLITE_SEND_CC;
2207 break;
2208
2209 /* The receiver specifies a minimum checksum coverage value. To make
2210 * sense, this should be set to at least 8 (as done below). If zero is
2211 * used, this again means full checksum coverage. */
2212 case UDPLITE_RECV_CSCOV:
2213 if (!is_udplite) /* Disable the option on UDP sockets */
2214 return -ENOPROTOOPT;
2215 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2216 val = 8;
2217 else if (val > USHRT_MAX)
2218 val = USHRT_MAX;
2219 up->pcrlen = val;
2220 up->pcflag |= UDPLITE_RECV_CC;
2221 break;
2222
2223 default:
2224 err = -ENOPROTOOPT;
2225 break;
2226 }
2227
2228 return err;
2229 }
2230 EXPORT_SYMBOL(udp_lib_setsockopt);
2231
2232 int udp_setsockopt(struct sock *sk, int level, int optname,
2233 char __user *optval, unsigned int optlen)
2234 {
2235 if (level == SOL_UDP || level == SOL_UDPLITE)
2236 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2237 udp_push_pending_frames);
2238 return ip_setsockopt(sk, level, optname, optval, optlen);
2239 }
2240
2241 #ifdef CONFIG_COMPAT
2242 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2243 char __user *optval, unsigned int optlen)
2244 {
2245 if (level == SOL_UDP || level == SOL_UDPLITE)
2246 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2247 udp_push_pending_frames);
2248 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2249 }
2250 #endif
2251
2252 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2253 char __user *optval, int __user *optlen)
2254 {
2255 struct udp_sock *up = udp_sk(sk);
2256 int val, len;
2257
2258 if (get_user(len, optlen))
2259 return -EFAULT;
2260
2261 len = min_t(unsigned int, len, sizeof(int));
2262
2263 if (len < 0)
2264 return -EINVAL;
2265
2266 switch (optname) {
2267 case UDP_CORK:
2268 val = up->corkflag;
2269 break;
2270
2271 case UDP_ENCAP:
2272 val = up->encap_type;
2273 break;
2274
2275 case UDP_NO_CHECK6_TX:
2276 val = up->no_check6_tx;
2277 break;
2278
2279 case UDP_NO_CHECK6_RX:
2280 val = up->no_check6_rx;
2281 break;
2282
2283 /* The following two cannot be changed on UDP sockets, the return is
2284 * always 0 (which corresponds to the full checksum coverage of UDP). */
2285 case UDPLITE_SEND_CSCOV:
2286 val = up->pcslen;
2287 break;
2288
2289 case UDPLITE_RECV_CSCOV:
2290 val = up->pcrlen;
2291 break;
2292
2293 default:
2294 return -ENOPROTOOPT;
2295 }
2296
2297 if (put_user(len, optlen))
2298 return -EFAULT;
2299 if (copy_to_user(optval, &val, len))
2300 return -EFAULT;
2301 return 0;
2302 }
2303 EXPORT_SYMBOL(udp_lib_getsockopt);
2304
2305 int udp_getsockopt(struct sock *sk, int level, int optname,
2306 char __user *optval, int __user *optlen)
2307 {
2308 if (level == SOL_UDP || level == SOL_UDPLITE)
2309 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2310 return ip_getsockopt(sk, level, optname, optval, optlen);
2311 }
2312
2313 #ifdef CONFIG_COMPAT
2314 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2315 char __user *optval, int __user *optlen)
2316 {
2317 if (level == SOL_UDP || level == SOL_UDPLITE)
2318 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2319 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2320 }
2321 #endif
2322 /**
2323 * udp_poll - wait for a UDP event.
2324 * @file - file struct
2325 * @sock - socket
2326 * @wait - poll table
2327 *
2328 * This is same as datagram poll, except for the special case of
2329 * blocking sockets. If application is using a blocking fd
2330 * and a packet with checksum error is in the queue;
2331 * then it could get return from select indicating data available
2332 * but then block when reading it. Add special case code
2333 * to work around these arguably broken applications.
2334 */
2335 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2336 {
2337 unsigned int mask = datagram_poll(file, sock, wait);
2338 struct sock *sk = sock->sk;
2339
2340 sock_rps_record_flow(sk);
2341
2342 /* Check for false positives due to checksum errors */
2343 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2344 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2345 mask &= ~(POLLIN | POLLRDNORM);
2346
2347 return mask;
2348
2349 }
2350 EXPORT_SYMBOL(udp_poll);
2351
2352 int udp_abort(struct sock *sk, int err)
2353 {
2354 lock_sock(sk);
2355
2356 sk->sk_err = err;
2357 sk->sk_error_report(sk);
2358 __udp_disconnect(sk, 0);
2359
2360 release_sock(sk);
2361
2362 return 0;
2363 }
2364 EXPORT_SYMBOL_GPL(udp_abort);
2365
2366 struct proto udp_prot = {
2367 .name = "UDP",
2368 .owner = THIS_MODULE,
2369 .close = udp_lib_close,
2370 .connect = ip4_datagram_connect,
2371 .disconnect = udp_disconnect,
2372 .ioctl = udp_ioctl,
2373 .init = udp_init_sock,
2374 .destroy = udp_destroy_sock,
2375 .setsockopt = udp_setsockopt,
2376 .getsockopt = udp_getsockopt,
2377 .sendmsg = udp_sendmsg,
2378 .recvmsg = udp_recvmsg,
2379 .sendpage = udp_sendpage,
2380 .release_cb = ip4_datagram_release_cb,
2381 .hash = udp_lib_hash,
2382 .unhash = udp_lib_unhash,
2383 .rehash = udp_v4_rehash,
2384 .get_port = udp_v4_get_port,
2385 .memory_allocated = &udp_memory_allocated,
2386 .sysctl_mem = sysctl_udp_mem,
2387 .sysctl_wmem = &sysctl_udp_wmem_min,
2388 .sysctl_rmem = &sysctl_udp_rmem_min,
2389 .obj_size = sizeof(struct udp_sock),
2390 .h.udp_table = &udp_table,
2391 #ifdef CONFIG_COMPAT
2392 .compat_setsockopt = compat_udp_setsockopt,
2393 .compat_getsockopt = compat_udp_getsockopt,
2394 #endif
2395 .diag_destroy = udp_abort,
2396 };
2397 EXPORT_SYMBOL(udp_prot);
2398
2399 /* ------------------------------------------------------------------------ */
2400 #ifdef CONFIG_PROC_FS
2401
2402 static struct sock *udp_get_first(struct seq_file *seq, int start)
2403 {
2404 struct sock *sk;
2405 struct udp_iter_state *state = seq->private;
2406 struct net *net = seq_file_net(seq);
2407
2408 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2409 ++state->bucket) {
2410 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2411
2412 if (hlist_empty(&hslot->head))
2413 continue;
2414
2415 spin_lock_bh(&hslot->lock);
2416 sk_for_each(sk, &hslot->head) {
2417 if (!net_eq(sock_net(sk), net))
2418 continue;
2419 if (sk->sk_family == state->family)
2420 goto found;
2421 }
2422 spin_unlock_bh(&hslot->lock);
2423 }
2424 sk = NULL;
2425 found:
2426 return sk;
2427 }
2428
2429 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2430 {
2431 struct udp_iter_state *state = seq->private;
2432 struct net *net = seq_file_net(seq);
2433
2434 do {
2435 sk = sk_next(sk);
2436 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2437
2438 if (!sk) {
2439 if (state->bucket <= state->udp_table->mask)
2440 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2441 return udp_get_first(seq, state->bucket + 1);
2442 }
2443 return sk;
2444 }
2445
2446 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2447 {
2448 struct sock *sk = udp_get_first(seq, 0);
2449
2450 if (sk)
2451 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2452 --pos;
2453 return pos ? NULL : sk;
2454 }
2455
2456 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2457 {
2458 struct udp_iter_state *state = seq->private;
2459 state->bucket = MAX_UDP_PORTS;
2460
2461 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2462 }
2463
2464 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2465 {
2466 struct sock *sk;
2467
2468 if (v == SEQ_START_TOKEN)
2469 sk = udp_get_idx(seq, 0);
2470 else
2471 sk = udp_get_next(seq, v);
2472
2473 ++*pos;
2474 return sk;
2475 }
2476
2477 static void udp_seq_stop(struct seq_file *seq, void *v)
2478 {
2479 struct udp_iter_state *state = seq->private;
2480
2481 if (state->bucket <= state->udp_table->mask)
2482 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2483 }
2484
2485 int udp_seq_open(struct inode *inode, struct file *file)
2486 {
2487 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2488 struct udp_iter_state *s;
2489 int err;
2490
2491 err = seq_open_net(inode, file, &afinfo->seq_ops,
2492 sizeof(struct udp_iter_state));
2493 if (err < 0)
2494 return err;
2495
2496 s = ((struct seq_file *)file->private_data)->private;
2497 s->family = afinfo->family;
2498 s->udp_table = afinfo->udp_table;
2499 return err;
2500 }
2501 EXPORT_SYMBOL(udp_seq_open);
2502
2503 /* ------------------------------------------------------------------------ */
2504 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2505 {
2506 struct proc_dir_entry *p;
2507 int rc = 0;
2508
2509 afinfo->seq_ops.start = udp_seq_start;
2510 afinfo->seq_ops.next = udp_seq_next;
2511 afinfo->seq_ops.stop = udp_seq_stop;
2512
2513 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2514 afinfo->seq_fops, afinfo);
2515 if (!p)
2516 rc = -ENOMEM;
2517 return rc;
2518 }
2519 EXPORT_SYMBOL(udp_proc_register);
2520
2521 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2522 {
2523 remove_proc_entry(afinfo->name, net->proc_net);
2524 }
2525 EXPORT_SYMBOL(udp_proc_unregister);
2526
2527 /* ------------------------------------------------------------------------ */
2528 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2529 int bucket)
2530 {
2531 struct inet_sock *inet = inet_sk(sp);
2532 __be32 dest = inet->inet_daddr;
2533 __be32 src = inet->inet_rcv_saddr;
2534 __u16 destp = ntohs(inet->inet_dport);
2535 __u16 srcp = ntohs(inet->inet_sport);
2536
2537 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2538 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2539 bucket, src, srcp, dest, destp, sp->sk_state,
2540 sk_wmem_alloc_get(sp),
2541 sk_rmem_alloc_get(sp),
2542 0, 0L, 0,
2543 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2544 0, sock_i_ino(sp),
2545 atomic_read(&sp->sk_refcnt), sp,
2546 atomic_read(&sp->sk_drops));
2547 }
2548
2549 int udp4_seq_show(struct seq_file *seq, void *v)
2550 {
2551 seq_setwidth(seq, 127);
2552 if (v == SEQ_START_TOKEN)
2553 seq_puts(seq, " sl local_address rem_address st tx_queue "
2554 "rx_queue tr tm->when retrnsmt uid timeout "
2555 "inode ref pointer drops");
2556 else {
2557 struct udp_iter_state *state = seq->private;
2558
2559 udp4_format_sock(v, seq, state->bucket);
2560 }
2561 seq_pad(seq, '\n');
2562 return 0;
2563 }
2564
2565 static const struct file_operations udp_afinfo_seq_fops = {
2566 .owner = THIS_MODULE,
2567 .open = udp_seq_open,
2568 .read = seq_read,
2569 .llseek = seq_lseek,
2570 .release = seq_release_net
2571 };
2572
2573 /* ------------------------------------------------------------------------ */
2574 static struct udp_seq_afinfo udp4_seq_afinfo = {
2575 .name = "udp",
2576 .family = AF_INET,
2577 .udp_table = &udp_table,
2578 .seq_fops = &udp_afinfo_seq_fops,
2579 .seq_ops = {
2580 .show = udp4_seq_show,
2581 },
2582 };
2583
2584 static int __net_init udp4_proc_init_net(struct net *net)
2585 {
2586 return udp_proc_register(net, &udp4_seq_afinfo);
2587 }
2588
2589 static void __net_exit udp4_proc_exit_net(struct net *net)
2590 {
2591 udp_proc_unregister(net, &udp4_seq_afinfo);
2592 }
2593
2594 static struct pernet_operations udp4_net_ops = {
2595 .init = udp4_proc_init_net,
2596 .exit = udp4_proc_exit_net,
2597 };
2598
2599 int __init udp4_proc_init(void)
2600 {
2601 return register_pernet_subsys(&udp4_net_ops);
2602 }
2603
2604 void udp4_proc_exit(void)
2605 {
2606 unregister_pernet_subsys(&udp4_net_ops);
2607 }
2608 #endif /* CONFIG_PROC_FS */
2609
2610 static __initdata unsigned long uhash_entries;
2611 static int __init set_uhash_entries(char *str)
2612 {
2613 ssize_t ret;
2614
2615 if (!str)
2616 return 0;
2617
2618 ret = kstrtoul(str, 0, &uhash_entries);
2619 if (ret)
2620 return 0;
2621
2622 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2623 uhash_entries = UDP_HTABLE_SIZE_MIN;
2624 return 1;
2625 }
2626 __setup("uhash_entries=", set_uhash_entries);
2627
2628 void __init udp_table_init(struct udp_table *table, const char *name)
2629 {
2630 unsigned int i;
2631
2632 table->hash = alloc_large_system_hash(name,
2633 2 * sizeof(struct udp_hslot),
2634 uhash_entries,
2635 21, /* one slot per 2 MB */
2636 0,
2637 &table->log,
2638 &table->mask,
2639 UDP_HTABLE_SIZE_MIN,
2640 64 * 1024);
2641
2642 table->hash2 = table->hash + (table->mask + 1);
2643 for (i = 0; i <= table->mask; i++) {
2644 INIT_HLIST_HEAD(&table->hash[i].head);
2645 table->hash[i].count = 0;
2646 spin_lock_init(&table->hash[i].lock);
2647 }
2648 for (i = 0; i <= table->mask; i++) {
2649 INIT_HLIST_HEAD(&table->hash2[i].head);
2650 table->hash2[i].count = 0;
2651 spin_lock_init(&table->hash2[i].lock);
2652 }
2653 }
2654
2655 u32 udp_flow_hashrnd(void)
2656 {
2657 static u32 hashrnd __read_mostly;
2658
2659 net_get_random_once(&hashrnd, sizeof(hashrnd));
2660
2661 return hashrnd;
2662 }
2663 EXPORT_SYMBOL(udp_flow_hashrnd);
2664
2665 void __init udp_init(void)
2666 {
2667 unsigned long limit;
2668 unsigned int i;
2669
2670 udp_table_init(&udp_table, "UDP");
2671 limit = nr_free_buffer_pages() / 8;
2672 limit = max(limit, 128UL);
2673 sysctl_udp_mem[0] = limit / 4 * 3;
2674 sysctl_udp_mem[1] = limit;
2675 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2676
2677 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2678 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2679
2680 /* 16 spinlocks per cpu */
2681 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2682 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2683 GFP_KERNEL);
2684 if (!udp_busylocks)
2685 panic("UDP: failed to alloc udp_busylocks\n");
2686 for (i = 0; i < (1U << udp_busylocks_log); i++)
2687 spin_lock_init(udp_busylocks + i);
2688 }