]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/packet/af_packet.c
Revert "net-packet: fix race in packet_set_ring on PACKET_RESERVE"
[mirror_ubuntu-zesty-kernel.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <linux/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 #include <linux/bpf.h>
96 #include <net/compat.h>
97
98 #include "internal.h"
99
100 /*
101 Assumptions:
102 - if device has no dev->hard_header routine, it adds and removes ll header
103 inside itself. In this case ll header is invisible outside of device,
104 but higher levels still should reserve dev->hard_header_len.
105 Some devices are enough clever to reallocate skb, when header
106 will not fit to reserved space (tunnel), another ones are silly
107 (PPP).
108 - packet socket receives packets with pulled ll header,
109 so that SOCK_RAW should push it back.
110
111 On receive:
112 -----------
113
114 Incoming, dev->hard_header!=NULL
115 mac_header -> ll header
116 data -> data
117
118 Outgoing, dev->hard_header!=NULL
119 mac_header -> ll header
120 data -> ll header
121
122 Incoming, dev->hard_header==NULL
123 mac_header -> UNKNOWN position. It is very likely, that it points to ll
124 header. PPP makes it, that is wrong, because introduce
125 assymetry between rx and tx paths.
126 data -> data
127
128 Outgoing, dev->hard_header==NULL
129 mac_header -> data. ll header is still not built!
130 data -> data
131
132 Resume
133 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
134
135
136 On transmit:
137 ------------
138
139 dev->hard_header != NULL
140 mac_header -> ll header
141 data -> ll header
142
143 dev->hard_header == NULL (ll header is added by device, we cannot control it)
144 mac_header -> data
145 data -> data
146
147 We should set nh.raw on output to correct posistion,
148 packet classifier depends on it.
149 */
150
151 /* Private packet socket structures. */
152
153 /* identical to struct packet_mreq except it has
154 * a longer address field.
155 */
156 struct packet_mreq_max {
157 int mr_ifindex;
158 unsigned short mr_type;
159 unsigned short mr_alen;
160 unsigned char mr_address[MAX_ADDR_LEN];
161 };
162
163 union tpacket_uhdr {
164 struct tpacket_hdr *h1;
165 struct tpacket2_hdr *h2;
166 struct tpacket3_hdr *h3;
167 void *raw;
168 };
169
170 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
171 int closing, int tx_ring);
172
173 #define V3_ALIGNMENT (8)
174
175 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
176
177 #define BLK_PLUS_PRIV(sz_of_priv) \
178 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
179
180 #define PGV_FROM_VMALLOC 1
181
182 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
183 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
184 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
185 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
186 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
187 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
188 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
189
190 struct packet_sock;
191 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
192 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
193 struct packet_type *pt, struct net_device *orig_dev);
194
195 static void *packet_previous_frame(struct packet_sock *po,
196 struct packet_ring_buffer *rb,
197 int status);
198 static void packet_increment_head(struct packet_ring_buffer *buff);
199 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
200 struct tpacket_block_desc *);
201 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
202 struct packet_sock *);
203 static void prb_retire_current_block(struct tpacket_kbdq_core *,
204 struct packet_sock *, unsigned int status);
205 static int prb_queue_frozen(struct tpacket_kbdq_core *);
206 static void prb_open_block(struct tpacket_kbdq_core *,
207 struct tpacket_block_desc *);
208 static void prb_retire_rx_blk_timer_expired(unsigned long);
209 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
210 static void prb_init_blk_timer(struct packet_sock *,
211 struct tpacket_kbdq_core *,
212 void (*func) (unsigned long));
213 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
214 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
215 struct tpacket3_hdr *);
216 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
217 struct tpacket3_hdr *);
218 static void packet_flush_mclist(struct sock *sk);
219
220 struct packet_skb_cb {
221 union {
222 struct sockaddr_pkt pkt;
223 union {
224 /* Trick: alias skb original length with
225 * ll.sll_family and ll.protocol in order
226 * to save room.
227 */
228 unsigned int origlen;
229 struct sockaddr_ll ll;
230 };
231 } sa;
232 };
233
234 #define vio_le() virtio_legacy_is_little_endian()
235
236 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
237
238 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
239 #define GET_PBLOCK_DESC(x, bid) \
240 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
241 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
242 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
243 #define GET_NEXT_PRB_BLK_NUM(x) \
244 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
245 ((x)->kactive_blk_num+1) : 0)
246
247 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
248 static void __fanout_link(struct sock *sk, struct packet_sock *po);
249
250 static int packet_direct_xmit(struct sk_buff *skb)
251 {
252 struct net_device *dev = skb->dev;
253 struct sk_buff *orig_skb = skb;
254 struct netdev_queue *txq;
255 int ret = NETDEV_TX_BUSY;
256
257 if (unlikely(!netif_running(dev) ||
258 !netif_carrier_ok(dev)))
259 goto drop;
260
261 skb = validate_xmit_skb_list(skb, dev);
262 if (skb != orig_skb)
263 goto drop;
264
265 txq = skb_get_tx_queue(dev, skb);
266
267 local_bh_disable();
268
269 HARD_TX_LOCK(dev, txq, smp_processor_id());
270 if (!netif_xmit_frozen_or_drv_stopped(txq))
271 ret = netdev_start_xmit(skb, dev, txq, false);
272 HARD_TX_UNLOCK(dev, txq);
273
274 local_bh_enable();
275
276 if (!dev_xmit_complete(ret))
277 kfree_skb(skb);
278
279 return ret;
280 drop:
281 atomic_long_inc(&dev->tx_dropped);
282 kfree_skb_list(skb);
283 return NET_XMIT_DROP;
284 }
285
286 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
287 {
288 struct net_device *dev;
289
290 rcu_read_lock();
291 dev = rcu_dereference(po->cached_dev);
292 if (likely(dev))
293 dev_hold(dev);
294 rcu_read_unlock();
295
296 return dev;
297 }
298
299 static void packet_cached_dev_assign(struct packet_sock *po,
300 struct net_device *dev)
301 {
302 rcu_assign_pointer(po->cached_dev, dev);
303 }
304
305 static void packet_cached_dev_reset(struct packet_sock *po)
306 {
307 RCU_INIT_POINTER(po->cached_dev, NULL);
308 }
309
310 static bool packet_use_direct_xmit(const struct packet_sock *po)
311 {
312 return po->xmit == packet_direct_xmit;
313 }
314
315 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
316 {
317 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
318 }
319
320 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
321 {
322 const struct net_device_ops *ops = dev->netdev_ops;
323 u16 queue_index;
324
325 if (ops->ndo_select_queue) {
326 queue_index = ops->ndo_select_queue(dev, skb, NULL,
327 __packet_pick_tx_queue);
328 queue_index = netdev_cap_txqueue(dev, queue_index);
329 } else {
330 queue_index = __packet_pick_tx_queue(dev, skb);
331 }
332
333 skb_set_queue_mapping(skb, queue_index);
334 }
335
336 /* register_prot_hook must be invoked with the po->bind_lock held,
337 * or from a context in which asynchronous accesses to the packet
338 * socket is not possible (packet_create()).
339 */
340 static void register_prot_hook(struct sock *sk)
341 {
342 struct packet_sock *po = pkt_sk(sk);
343
344 if (!po->running) {
345 if (po->fanout)
346 __fanout_link(sk, po);
347 else
348 dev_add_pack(&po->prot_hook);
349
350 sock_hold(sk);
351 po->running = 1;
352 }
353 }
354
355 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
356 * held. If the sync parameter is true, we will temporarily drop
357 * the po->bind_lock and do a synchronize_net to make sure no
358 * asynchronous packet processing paths still refer to the elements
359 * of po->prot_hook. If the sync parameter is false, it is the
360 * callers responsibility to take care of this.
361 */
362 static void __unregister_prot_hook(struct sock *sk, bool sync)
363 {
364 struct packet_sock *po = pkt_sk(sk);
365
366 po->running = 0;
367
368 if (po->fanout)
369 __fanout_unlink(sk, po);
370 else
371 __dev_remove_pack(&po->prot_hook);
372
373 __sock_put(sk);
374
375 if (sync) {
376 spin_unlock(&po->bind_lock);
377 synchronize_net();
378 spin_lock(&po->bind_lock);
379 }
380 }
381
382 static void unregister_prot_hook(struct sock *sk, bool sync)
383 {
384 struct packet_sock *po = pkt_sk(sk);
385
386 if (po->running)
387 __unregister_prot_hook(sk, sync);
388 }
389
390 static inline struct page * __pure pgv_to_page(void *addr)
391 {
392 if (is_vmalloc_addr(addr))
393 return vmalloc_to_page(addr);
394 return virt_to_page(addr);
395 }
396
397 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
398 {
399 union tpacket_uhdr h;
400
401 h.raw = frame;
402 switch (po->tp_version) {
403 case TPACKET_V1:
404 h.h1->tp_status = status;
405 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
406 break;
407 case TPACKET_V2:
408 h.h2->tp_status = status;
409 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
410 break;
411 case TPACKET_V3:
412 default:
413 WARN(1, "TPACKET version not supported.\n");
414 BUG();
415 }
416
417 smp_wmb();
418 }
419
420 static int __packet_get_status(struct packet_sock *po, void *frame)
421 {
422 union tpacket_uhdr h;
423
424 smp_rmb();
425
426 h.raw = frame;
427 switch (po->tp_version) {
428 case TPACKET_V1:
429 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
430 return h.h1->tp_status;
431 case TPACKET_V2:
432 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
433 return h.h2->tp_status;
434 case TPACKET_V3:
435 default:
436 WARN(1, "TPACKET version not supported.\n");
437 BUG();
438 return 0;
439 }
440 }
441
442 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
443 unsigned int flags)
444 {
445 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
446
447 if (shhwtstamps &&
448 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
449 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
450 return TP_STATUS_TS_RAW_HARDWARE;
451
452 if (ktime_to_timespec_cond(skb->tstamp, ts))
453 return TP_STATUS_TS_SOFTWARE;
454
455 return 0;
456 }
457
458 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
459 struct sk_buff *skb)
460 {
461 union tpacket_uhdr h;
462 struct timespec ts;
463 __u32 ts_status;
464
465 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
466 return 0;
467
468 h.raw = frame;
469 switch (po->tp_version) {
470 case TPACKET_V1:
471 h.h1->tp_sec = ts.tv_sec;
472 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
473 break;
474 case TPACKET_V2:
475 h.h2->tp_sec = ts.tv_sec;
476 h.h2->tp_nsec = ts.tv_nsec;
477 break;
478 case TPACKET_V3:
479 default:
480 WARN(1, "TPACKET version not supported.\n");
481 BUG();
482 }
483
484 /* one flush is safe, as both fields always lie on the same cacheline */
485 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
486 smp_wmb();
487
488 return ts_status;
489 }
490
491 static void *packet_lookup_frame(struct packet_sock *po,
492 struct packet_ring_buffer *rb,
493 unsigned int position,
494 int status)
495 {
496 unsigned int pg_vec_pos, frame_offset;
497 union tpacket_uhdr h;
498
499 pg_vec_pos = position / rb->frames_per_block;
500 frame_offset = position % rb->frames_per_block;
501
502 h.raw = rb->pg_vec[pg_vec_pos].buffer +
503 (frame_offset * rb->frame_size);
504
505 if (status != __packet_get_status(po, h.raw))
506 return NULL;
507
508 return h.raw;
509 }
510
511 static void *packet_current_frame(struct packet_sock *po,
512 struct packet_ring_buffer *rb,
513 int status)
514 {
515 return packet_lookup_frame(po, rb, rb->head, status);
516 }
517
518 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
519 {
520 del_timer_sync(&pkc->retire_blk_timer);
521 }
522
523 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
524 struct sk_buff_head *rb_queue)
525 {
526 struct tpacket_kbdq_core *pkc;
527
528 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
529
530 spin_lock_bh(&rb_queue->lock);
531 pkc->delete_blk_timer = 1;
532 spin_unlock_bh(&rb_queue->lock);
533
534 prb_del_retire_blk_timer(pkc);
535 }
536
537 static void prb_init_blk_timer(struct packet_sock *po,
538 struct tpacket_kbdq_core *pkc,
539 void (*func) (unsigned long))
540 {
541 init_timer(&pkc->retire_blk_timer);
542 pkc->retire_blk_timer.data = (long)po;
543 pkc->retire_blk_timer.function = func;
544 pkc->retire_blk_timer.expires = jiffies;
545 }
546
547 static void prb_setup_retire_blk_timer(struct packet_sock *po)
548 {
549 struct tpacket_kbdq_core *pkc;
550
551 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
552 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
553 }
554
555 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
556 int blk_size_in_bytes)
557 {
558 struct net_device *dev;
559 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
560 struct ethtool_link_ksettings ecmd;
561 int err;
562
563 rtnl_lock();
564 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
565 if (unlikely(!dev)) {
566 rtnl_unlock();
567 return DEFAULT_PRB_RETIRE_TOV;
568 }
569 err = __ethtool_get_link_ksettings(dev, &ecmd);
570 rtnl_unlock();
571 if (!err) {
572 /*
573 * If the link speed is so slow you don't really
574 * need to worry about perf anyways
575 */
576 if (ecmd.base.speed < SPEED_1000 ||
577 ecmd.base.speed == SPEED_UNKNOWN) {
578 return DEFAULT_PRB_RETIRE_TOV;
579 } else {
580 msec = 1;
581 div = ecmd.base.speed / 1000;
582 }
583 }
584
585 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
586
587 if (div)
588 mbits /= div;
589
590 tmo = mbits * msec;
591
592 if (div)
593 return tmo+1;
594 return tmo;
595 }
596
597 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
598 union tpacket_req_u *req_u)
599 {
600 p1->feature_req_word = req_u->req3.tp_feature_req_word;
601 }
602
603 static void init_prb_bdqc(struct packet_sock *po,
604 struct packet_ring_buffer *rb,
605 struct pgv *pg_vec,
606 union tpacket_req_u *req_u)
607 {
608 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
609 struct tpacket_block_desc *pbd;
610
611 memset(p1, 0x0, sizeof(*p1));
612
613 p1->knxt_seq_num = 1;
614 p1->pkbdq = pg_vec;
615 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
616 p1->pkblk_start = pg_vec[0].buffer;
617 p1->kblk_size = req_u->req3.tp_block_size;
618 p1->knum_blocks = req_u->req3.tp_block_nr;
619 p1->hdrlen = po->tp_hdrlen;
620 p1->version = po->tp_version;
621 p1->last_kactive_blk_num = 0;
622 po->stats.stats3.tp_freeze_q_cnt = 0;
623 if (req_u->req3.tp_retire_blk_tov)
624 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
625 else
626 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
627 req_u->req3.tp_block_size);
628 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
629 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
630
631 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
632 prb_init_ft_ops(p1, req_u);
633 prb_setup_retire_blk_timer(po);
634 prb_open_block(p1, pbd);
635 }
636
637 /* Do NOT update the last_blk_num first.
638 * Assumes sk_buff_head lock is held.
639 */
640 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
641 {
642 mod_timer(&pkc->retire_blk_timer,
643 jiffies + pkc->tov_in_jiffies);
644 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
645 }
646
647 /*
648 * Timer logic:
649 * 1) We refresh the timer only when we open a block.
650 * By doing this we don't waste cycles refreshing the timer
651 * on packet-by-packet basis.
652 *
653 * With a 1MB block-size, on a 1Gbps line, it will take
654 * i) ~8 ms to fill a block + ii) memcpy etc.
655 * In this cut we are not accounting for the memcpy time.
656 *
657 * So, if the user sets the 'tmo' to 10ms then the timer
658 * will never fire while the block is still getting filled
659 * (which is what we want). However, the user could choose
660 * to close a block early and that's fine.
661 *
662 * But when the timer does fire, we check whether or not to refresh it.
663 * Since the tmo granularity is in msecs, it is not too expensive
664 * to refresh the timer, lets say every '8' msecs.
665 * Either the user can set the 'tmo' or we can derive it based on
666 * a) line-speed and b) block-size.
667 * prb_calc_retire_blk_tmo() calculates the tmo.
668 *
669 */
670 static void prb_retire_rx_blk_timer_expired(unsigned long data)
671 {
672 struct packet_sock *po = (struct packet_sock *)data;
673 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
674 unsigned int frozen;
675 struct tpacket_block_desc *pbd;
676
677 spin_lock(&po->sk.sk_receive_queue.lock);
678
679 frozen = prb_queue_frozen(pkc);
680 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
681
682 if (unlikely(pkc->delete_blk_timer))
683 goto out;
684
685 /* We only need to plug the race when the block is partially filled.
686 * tpacket_rcv:
687 * lock(); increment BLOCK_NUM_PKTS; unlock()
688 * copy_bits() is in progress ...
689 * timer fires on other cpu:
690 * we can't retire the current block because copy_bits
691 * is in progress.
692 *
693 */
694 if (BLOCK_NUM_PKTS(pbd)) {
695 while (atomic_read(&pkc->blk_fill_in_prog)) {
696 /* Waiting for skb_copy_bits to finish... */
697 cpu_relax();
698 }
699 }
700
701 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
702 if (!frozen) {
703 if (!BLOCK_NUM_PKTS(pbd)) {
704 /* An empty block. Just refresh the timer. */
705 goto refresh_timer;
706 }
707 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
708 if (!prb_dispatch_next_block(pkc, po))
709 goto refresh_timer;
710 else
711 goto out;
712 } else {
713 /* Case 1. Queue was frozen because user-space was
714 * lagging behind.
715 */
716 if (prb_curr_blk_in_use(pkc, pbd)) {
717 /*
718 * Ok, user-space is still behind.
719 * So just refresh the timer.
720 */
721 goto refresh_timer;
722 } else {
723 /* Case 2. queue was frozen,user-space caught up,
724 * now the link went idle && the timer fired.
725 * We don't have a block to close.So we open this
726 * block and restart the timer.
727 * opening a block thaws the queue,restarts timer
728 * Thawing/timer-refresh is a side effect.
729 */
730 prb_open_block(pkc, pbd);
731 goto out;
732 }
733 }
734 }
735
736 refresh_timer:
737 _prb_refresh_rx_retire_blk_timer(pkc);
738
739 out:
740 spin_unlock(&po->sk.sk_receive_queue.lock);
741 }
742
743 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
744 struct tpacket_block_desc *pbd1, __u32 status)
745 {
746 /* Flush everything minus the block header */
747
748 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
749 u8 *start, *end;
750
751 start = (u8 *)pbd1;
752
753 /* Skip the block header(we know header WILL fit in 4K) */
754 start += PAGE_SIZE;
755
756 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
757 for (; start < end; start += PAGE_SIZE)
758 flush_dcache_page(pgv_to_page(start));
759
760 smp_wmb();
761 #endif
762
763 /* Now update the block status. */
764
765 BLOCK_STATUS(pbd1) = status;
766
767 /* Flush the block header */
768
769 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
770 start = (u8 *)pbd1;
771 flush_dcache_page(pgv_to_page(start));
772
773 smp_wmb();
774 #endif
775 }
776
777 /*
778 * Side effect:
779 *
780 * 1) flush the block
781 * 2) Increment active_blk_num
782 *
783 * Note:We DONT refresh the timer on purpose.
784 * Because almost always the next block will be opened.
785 */
786 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
787 struct tpacket_block_desc *pbd1,
788 struct packet_sock *po, unsigned int stat)
789 {
790 __u32 status = TP_STATUS_USER | stat;
791
792 struct tpacket3_hdr *last_pkt;
793 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
794 struct sock *sk = &po->sk;
795
796 if (po->stats.stats3.tp_drops)
797 status |= TP_STATUS_LOSING;
798
799 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
800 last_pkt->tp_next_offset = 0;
801
802 /* Get the ts of the last pkt */
803 if (BLOCK_NUM_PKTS(pbd1)) {
804 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
805 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
806 } else {
807 /* Ok, we tmo'd - so get the current time.
808 *
809 * It shouldn't really happen as we don't close empty
810 * blocks. See prb_retire_rx_blk_timer_expired().
811 */
812 struct timespec ts;
813 getnstimeofday(&ts);
814 h1->ts_last_pkt.ts_sec = ts.tv_sec;
815 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
816 }
817
818 smp_wmb();
819
820 /* Flush the block */
821 prb_flush_block(pkc1, pbd1, status);
822
823 sk->sk_data_ready(sk);
824
825 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
826 }
827
828 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
829 {
830 pkc->reset_pending_on_curr_blk = 0;
831 }
832
833 /*
834 * Side effect of opening a block:
835 *
836 * 1) prb_queue is thawed.
837 * 2) retire_blk_timer is refreshed.
838 *
839 */
840 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
841 struct tpacket_block_desc *pbd1)
842 {
843 struct timespec ts;
844 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
845
846 smp_rmb();
847
848 /* We could have just memset this but we will lose the
849 * flexibility of making the priv area sticky
850 */
851
852 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
853 BLOCK_NUM_PKTS(pbd1) = 0;
854 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
855
856 getnstimeofday(&ts);
857
858 h1->ts_first_pkt.ts_sec = ts.tv_sec;
859 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
860
861 pkc1->pkblk_start = (char *)pbd1;
862 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
863
864 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
865 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
866
867 pbd1->version = pkc1->version;
868 pkc1->prev = pkc1->nxt_offset;
869 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
870
871 prb_thaw_queue(pkc1);
872 _prb_refresh_rx_retire_blk_timer(pkc1);
873
874 smp_wmb();
875 }
876
877 /*
878 * Queue freeze logic:
879 * 1) Assume tp_block_nr = 8 blocks.
880 * 2) At time 't0', user opens Rx ring.
881 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
882 * 4) user-space is either sleeping or processing block '0'.
883 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
884 * it will close block-7,loop around and try to fill block '0'.
885 * call-flow:
886 * __packet_lookup_frame_in_block
887 * prb_retire_current_block()
888 * prb_dispatch_next_block()
889 * |->(BLOCK_STATUS == USER) evaluates to true
890 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
891 * 6) Now there are two cases:
892 * 6.1) Link goes idle right after the queue is frozen.
893 * But remember, the last open_block() refreshed the timer.
894 * When this timer expires,it will refresh itself so that we can
895 * re-open block-0 in near future.
896 * 6.2) Link is busy and keeps on receiving packets. This is a simple
897 * case and __packet_lookup_frame_in_block will check if block-0
898 * is free and can now be re-used.
899 */
900 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
901 struct packet_sock *po)
902 {
903 pkc->reset_pending_on_curr_blk = 1;
904 po->stats.stats3.tp_freeze_q_cnt++;
905 }
906
907 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
908
909 /*
910 * If the next block is free then we will dispatch it
911 * and return a good offset.
912 * Else, we will freeze the queue.
913 * So, caller must check the return value.
914 */
915 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
916 struct packet_sock *po)
917 {
918 struct tpacket_block_desc *pbd;
919
920 smp_rmb();
921
922 /* 1. Get current block num */
923 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
924
925 /* 2. If this block is currently in_use then freeze the queue */
926 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
927 prb_freeze_queue(pkc, po);
928 return NULL;
929 }
930
931 /*
932 * 3.
933 * open this block and return the offset where the first packet
934 * needs to get stored.
935 */
936 prb_open_block(pkc, pbd);
937 return (void *)pkc->nxt_offset;
938 }
939
940 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
941 struct packet_sock *po, unsigned int status)
942 {
943 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
944
945 /* retire/close the current block */
946 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
947 /*
948 * Plug the case where copy_bits() is in progress on
949 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
950 * have space to copy the pkt in the current block and
951 * called prb_retire_current_block()
952 *
953 * We don't need to worry about the TMO case because
954 * the timer-handler already handled this case.
955 */
956 if (!(status & TP_STATUS_BLK_TMO)) {
957 while (atomic_read(&pkc->blk_fill_in_prog)) {
958 /* Waiting for skb_copy_bits to finish... */
959 cpu_relax();
960 }
961 }
962 prb_close_block(pkc, pbd, po, status);
963 return;
964 }
965 }
966
967 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
968 struct tpacket_block_desc *pbd)
969 {
970 return TP_STATUS_USER & BLOCK_STATUS(pbd);
971 }
972
973 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
974 {
975 return pkc->reset_pending_on_curr_blk;
976 }
977
978 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
979 {
980 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
981 atomic_dec(&pkc->blk_fill_in_prog);
982 }
983
984 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
985 struct tpacket3_hdr *ppd)
986 {
987 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
988 }
989
990 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
991 struct tpacket3_hdr *ppd)
992 {
993 ppd->hv1.tp_rxhash = 0;
994 }
995
996 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
997 struct tpacket3_hdr *ppd)
998 {
999 if (skb_vlan_tag_present(pkc->skb)) {
1000 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
1001 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1002 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1003 } else {
1004 ppd->hv1.tp_vlan_tci = 0;
1005 ppd->hv1.tp_vlan_tpid = 0;
1006 ppd->tp_status = TP_STATUS_AVAILABLE;
1007 }
1008 }
1009
1010 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1011 struct tpacket3_hdr *ppd)
1012 {
1013 ppd->hv1.tp_padding = 0;
1014 prb_fill_vlan_info(pkc, ppd);
1015
1016 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1017 prb_fill_rxhash(pkc, ppd);
1018 else
1019 prb_clear_rxhash(pkc, ppd);
1020 }
1021
1022 static void prb_fill_curr_block(char *curr,
1023 struct tpacket_kbdq_core *pkc,
1024 struct tpacket_block_desc *pbd,
1025 unsigned int len)
1026 {
1027 struct tpacket3_hdr *ppd;
1028
1029 ppd = (struct tpacket3_hdr *)curr;
1030 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1031 pkc->prev = curr;
1032 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1033 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1034 BLOCK_NUM_PKTS(pbd) += 1;
1035 atomic_inc(&pkc->blk_fill_in_prog);
1036 prb_run_all_ft_ops(pkc, ppd);
1037 }
1038
1039 /* Assumes caller has the sk->rx_queue.lock */
1040 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1041 struct sk_buff *skb,
1042 int status,
1043 unsigned int len
1044 )
1045 {
1046 struct tpacket_kbdq_core *pkc;
1047 struct tpacket_block_desc *pbd;
1048 char *curr, *end;
1049
1050 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1051 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1052
1053 /* Queue is frozen when user space is lagging behind */
1054 if (prb_queue_frozen(pkc)) {
1055 /*
1056 * Check if that last block which caused the queue to freeze,
1057 * is still in_use by user-space.
1058 */
1059 if (prb_curr_blk_in_use(pkc, pbd)) {
1060 /* Can't record this packet */
1061 return NULL;
1062 } else {
1063 /*
1064 * Ok, the block was released by user-space.
1065 * Now let's open that block.
1066 * opening a block also thaws the queue.
1067 * Thawing is a side effect.
1068 */
1069 prb_open_block(pkc, pbd);
1070 }
1071 }
1072
1073 smp_mb();
1074 curr = pkc->nxt_offset;
1075 pkc->skb = skb;
1076 end = (char *)pbd + pkc->kblk_size;
1077
1078 /* first try the current block */
1079 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1080 prb_fill_curr_block(curr, pkc, pbd, len);
1081 return (void *)curr;
1082 }
1083
1084 /* Ok, close the current block */
1085 prb_retire_current_block(pkc, po, 0);
1086
1087 /* Now, try to dispatch the next block */
1088 curr = (char *)prb_dispatch_next_block(pkc, po);
1089 if (curr) {
1090 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1091 prb_fill_curr_block(curr, pkc, pbd, len);
1092 return (void *)curr;
1093 }
1094
1095 /*
1096 * No free blocks are available.user_space hasn't caught up yet.
1097 * Queue was just frozen and now this packet will get dropped.
1098 */
1099 return NULL;
1100 }
1101
1102 static void *packet_current_rx_frame(struct packet_sock *po,
1103 struct sk_buff *skb,
1104 int status, unsigned int len)
1105 {
1106 char *curr = NULL;
1107 switch (po->tp_version) {
1108 case TPACKET_V1:
1109 case TPACKET_V2:
1110 curr = packet_lookup_frame(po, &po->rx_ring,
1111 po->rx_ring.head, status);
1112 return curr;
1113 case TPACKET_V3:
1114 return __packet_lookup_frame_in_block(po, skb, status, len);
1115 default:
1116 WARN(1, "TPACKET version not supported\n");
1117 BUG();
1118 return NULL;
1119 }
1120 }
1121
1122 static void *prb_lookup_block(struct packet_sock *po,
1123 struct packet_ring_buffer *rb,
1124 unsigned int idx,
1125 int status)
1126 {
1127 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1128 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1129
1130 if (status != BLOCK_STATUS(pbd))
1131 return NULL;
1132 return pbd;
1133 }
1134
1135 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1136 {
1137 unsigned int prev;
1138 if (rb->prb_bdqc.kactive_blk_num)
1139 prev = rb->prb_bdqc.kactive_blk_num-1;
1140 else
1141 prev = rb->prb_bdqc.knum_blocks-1;
1142 return prev;
1143 }
1144
1145 /* Assumes caller has held the rx_queue.lock */
1146 static void *__prb_previous_block(struct packet_sock *po,
1147 struct packet_ring_buffer *rb,
1148 int status)
1149 {
1150 unsigned int previous = prb_previous_blk_num(rb);
1151 return prb_lookup_block(po, rb, previous, status);
1152 }
1153
1154 static void *packet_previous_rx_frame(struct packet_sock *po,
1155 struct packet_ring_buffer *rb,
1156 int status)
1157 {
1158 if (po->tp_version <= TPACKET_V2)
1159 return packet_previous_frame(po, rb, status);
1160
1161 return __prb_previous_block(po, rb, status);
1162 }
1163
1164 static void packet_increment_rx_head(struct packet_sock *po,
1165 struct packet_ring_buffer *rb)
1166 {
1167 switch (po->tp_version) {
1168 case TPACKET_V1:
1169 case TPACKET_V2:
1170 return packet_increment_head(rb);
1171 case TPACKET_V3:
1172 default:
1173 WARN(1, "TPACKET version not supported.\n");
1174 BUG();
1175 return;
1176 }
1177 }
1178
1179 static void *packet_previous_frame(struct packet_sock *po,
1180 struct packet_ring_buffer *rb,
1181 int status)
1182 {
1183 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1184 return packet_lookup_frame(po, rb, previous, status);
1185 }
1186
1187 static void packet_increment_head(struct packet_ring_buffer *buff)
1188 {
1189 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1190 }
1191
1192 static void packet_inc_pending(struct packet_ring_buffer *rb)
1193 {
1194 this_cpu_inc(*rb->pending_refcnt);
1195 }
1196
1197 static void packet_dec_pending(struct packet_ring_buffer *rb)
1198 {
1199 this_cpu_dec(*rb->pending_refcnt);
1200 }
1201
1202 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1203 {
1204 unsigned int refcnt = 0;
1205 int cpu;
1206
1207 /* We don't use pending refcount in rx_ring. */
1208 if (rb->pending_refcnt == NULL)
1209 return 0;
1210
1211 for_each_possible_cpu(cpu)
1212 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1213
1214 return refcnt;
1215 }
1216
1217 static int packet_alloc_pending(struct packet_sock *po)
1218 {
1219 po->rx_ring.pending_refcnt = NULL;
1220
1221 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1222 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1223 return -ENOBUFS;
1224
1225 return 0;
1226 }
1227
1228 static void packet_free_pending(struct packet_sock *po)
1229 {
1230 free_percpu(po->tx_ring.pending_refcnt);
1231 }
1232
1233 #define ROOM_POW_OFF 2
1234 #define ROOM_NONE 0x0
1235 #define ROOM_LOW 0x1
1236 #define ROOM_NORMAL 0x2
1237
1238 static bool __tpacket_has_room(struct packet_sock *po, int pow_off)
1239 {
1240 int idx, len;
1241
1242 len = po->rx_ring.frame_max + 1;
1243 idx = po->rx_ring.head;
1244 if (pow_off)
1245 idx += len >> pow_off;
1246 if (idx >= len)
1247 idx -= len;
1248 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1249 }
1250
1251 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off)
1252 {
1253 int idx, len;
1254
1255 len = po->rx_ring.prb_bdqc.knum_blocks;
1256 idx = po->rx_ring.prb_bdqc.kactive_blk_num;
1257 if (pow_off)
1258 idx += len >> pow_off;
1259 if (idx >= len)
1260 idx -= len;
1261 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1262 }
1263
1264 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1265 {
1266 struct sock *sk = &po->sk;
1267 int ret = ROOM_NONE;
1268
1269 if (po->prot_hook.func != tpacket_rcv) {
1270 int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1271 - (skb ? skb->truesize : 0);
1272 if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF))
1273 return ROOM_NORMAL;
1274 else if (avail > 0)
1275 return ROOM_LOW;
1276 else
1277 return ROOM_NONE;
1278 }
1279
1280 if (po->tp_version == TPACKET_V3) {
1281 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1282 ret = ROOM_NORMAL;
1283 else if (__tpacket_v3_has_room(po, 0))
1284 ret = ROOM_LOW;
1285 } else {
1286 if (__tpacket_has_room(po, ROOM_POW_OFF))
1287 ret = ROOM_NORMAL;
1288 else if (__tpacket_has_room(po, 0))
1289 ret = ROOM_LOW;
1290 }
1291
1292 return ret;
1293 }
1294
1295 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1296 {
1297 int ret;
1298 bool has_room;
1299
1300 spin_lock_bh(&po->sk.sk_receive_queue.lock);
1301 ret = __packet_rcv_has_room(po, skb);
1302 has_room = ret == ROOM_NORMAL;
1303 if (po->pressure == has_room)
1304 po->pressure = !has_room;
1305 spin_unlock_bh(&po->sk.sk_receive_queue.lock);
1306
1307 return ret;
1308 }
1309
1310 static void packet_sock_destruct(struct sock *sk)
1311 {
1312 skb_queue_purge(&sk->sk_error_queue);
1313
1314 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1315 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1316
1317 if (!sock_flag(sk, SOCK_DEAD)) {
1318 pr_err("Attempt to release alive packet socket: %p\n", sk);
1319 return;
1320 }
1321
1322 sk_refcnt_debug_dec(sk);
1323 }
1324
1325 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1326 {
1327 u32 rxhash;
1328 int i, count = 0;
1329
1330 rxhash = skb_get_hash(skb);
1331 for (i = 0; i < ROLLOVER_HLEN; i++)
1332 if (po->rollover->history[i] == rxhash)
1333 count++;
1334
1335 po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash;
1336 return count > (ROLLOVER_HLEN >> 1);
1337 }
1338
1339 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1340 struct sk_buff *skb,
1341 unsigned int num)
1342 {
1343 return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1344 }
1345
1346 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1347 struct sk_buff *skb,
1348 unsigned int num)
1349 {
1350 unsigned int val = atomic_inc_return(&f->rr_cur);
1351
1352 return val % num;
1353 }
1354
1355 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1356 struct sk_buff *skb,
1357 unsigned int num)
1358 {
1359 return smp_processor_id() % num;
1360 }
1361
1362 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1363 struct sk_buff *skb,
1364 unsigned int num)
1365 {
1366 return prandom_u32_max(num);
1367 }
1368
1369 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1370 struct sk_buff *skb,
1371 unsigned int idx, bool try_self,
1372 unsigned int num)
1373 {
1374 struct packet_sock *po, *po_next, *po_skip = NULL;
1375 unsigned int i, j, room = ROOM_NONE;
1376
1377 po = pkt_sk(f->arr[idx]);
1378
1379 if (try_self) {
1380 room = packet_rcv_has_room(po, skb);
1381 if (room == ROOM_NORMAL ||
1382 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1383 return idx;
1384 po_skip = po;
1385 }
1386
1387 i = j = min_t(int, po->rollover->sock, num - 1);
1388 do {
1389 po_next = pkt_sk(f->arr[i]);
1390 if (po_next != po_skip && !po_next->pressure &&
1391 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1392 if (i != j)
1393 po->rollover->sock = i;
1394 atomic_long_inc(&po->rollover->num);
1395 if (room == ROOM_LOW)
1396 atomic_long_inc(&po->rollover->num_huge);
1397 return i;
1398 }
1399
1400 if (++i == num)
1401 i = 0;
1402 } while (i != j);
1403
1404 atomic_long_inc(&po->rollover->num_failed);
1405 return idx;
1406 }
1407
1408 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1409 struct sk_buff *skb,
1410 unsigned int num)
1411 {
1412 return skb_get_queue_mapping(skb) % num;
1413 }
1414
1415 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1416 struct sk_buff *skb,
1417 unsigned int num)
1418 {
1419 struct bpf_prog *prog;
1420 unsigned int ret = 0;
1421
1422 rcu_read_lock();
1423 prog = rcu_dereference(f->bpf_prog);
1424 if (prog)
1425 ret = bpf_prog_run_clear_cb(prog, skb) % num;
1426 rcu_read_unlock();
1427
1428 return ret;
1429 }
1430
1431 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1432 {
1433 return f->flags & (flag >> 8);
1434 }
1435
1436 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1437 struct packet_type *pt, struct net_device *orig_dev)
1438 {
1439 struct packet_fanout *f = pt->af_packet_priv;
1440 unsigned int num = READ_ONCE(f->num_members);
1441 struct net *net = read_pnet(&f->net);
1442 struct packet_sock *po;
1443 unsigned int idx;
1444
1445 if (!net_eq(dev_net(dev), net) || !num) {
1446 kfree_skb(skb);
1447 return 0;
1448 }
1449
1450 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1451 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1452 if (!skb)
1453 return 0;
1454 }
1455 switch (f->type) {
1456 case PACKET_FANOUT_HASH:
1457 default:
1458 idx = fanout_demux_hash(f, skb, num);
1459 break;
1460 case PACKET_FANOUT_LB:
1461 idx = fanout_demux_lb(f, skb, num);
1462 break;
1463 case PACKET_FANOUT_CPU:
1464 idx = fanout_demux_cpu(f, skb, num);
1465 break;
1466 case PACKET_FANOUT_RND:
1467 idx = fanout_demux_rnd(f, skb, num);
1468 break;
1469 case PACKET_FANOUT_QM:
1470 idx = fanout_demux_qm(f, skb, num);
1471 break;
1472 case PACKET_FANOUT_ROLLOVER:
1473 idx = fanout_demux_rollover(f, skb, 0, false, num);
1474 break;
1475 case PACKET_FANOUT_CBPF:
1476 case PACKET_FANOUT_EBPF:
1477 idx = fanout_demux_bpf(f, skb, num);
1478 break;
1479 }
1480
1481 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1482 idx = fanout_demux_rollover(f, skb, idx, true, num);
1483
1484 po = pkt_sk(f->arr[idx]);
1485 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1486 }
1487
1488 DEFINE_MUTEX(fanout_mutex);
1489 EXPORT_SYMBOL_GPL(fanout_mutex);
1490 static LIST_HEAD(fanout_list);
1491
1492 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1493 {
1494 struct packet_fanout *f = po->fanout;
1495
1496 spin_lock(&f->lock);
1497 f->arr[f->num_members] = sk;
1498 smp_wmb();
1499 f->num_members++;
1500 if (f->num_members == 1)
1501 dev_add_pack(&f->prot_hook);
1502 spin_unlock(&f->lock);
1503 }
1504
1505 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1506 {
1507 struct packet_fanout *f = po->fanout;
1508 int i;
1509
1510 spin_lock(&f->lock);
1511 for (i = 0; i < f->num_members; i++) {
1512 if (f->arr[i] == sk)
1513 break;
1514 }
1515 BUG_ON(i >= f->num_members);
1516 f->arr[i] = f->arr[f->num_members - 1];
1517 f->num_members--;
1518 if (f->num_members == 0)
1519 __dev_remove_pack(&f->prot_hook);
1520 spin_unlock(&f->lock);
1521 }
1522
1523 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1524 {
1525 if (sk->sk_family != PF_PACKET)
1526 return false;
1527
1528 return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1529 }
1530
1531 static void fanout_init_data(struct packet_fanout *f)
1532 {
1533 switch (f->type) {
1534 case PACKET_FANOUT_LB:
1535 atomic_set(&f->rr_cur, 0);
1536 break;
1537 case PACKET_FANOUT_CBPF:
1538 case PACKET_FANOUT_EBPF:
1539 RCU_INIT_POINTER(f->bpf_prog, NULL);
1540 break;
1541 }
1542 }
1543
1544 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1545 {
1546 struct bpf_prog *old;
1547
1548 spin_lock(&f->lock);
1549 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1550 rcu_assign_pointer(f->bpf_prog, new);
1551 spin_unlock(&f->lock);
1552
1553 if (old) {
1554 synchronize_net();
1555 bpf_prog_destroy(old);
1556 }
1557 }
1558
1559 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data,
1560 unsigned int len)
1561 {
1562 struct bpf_prog *new;
1563 struct sock_fprog fprog;
1564 int ret;
1565
1566 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1567 return -EPERM;
1568 if (len != sizeof(fprog))
1569 return -EINVAL;
1570 if (copy_from_user(&fprog, data, len))
1571 return -EFAULT;
1572
1573 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1574 if (ret)
1575 return ret;
1576
1577 __fanout_set_data_bpf(po->fanout, new);
1578 return 0;
1579 }
1580
1581 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data,
1582 unsigned int len)
1583 {
1584 struct bpf_prog *new;
1585 u32 fd;
1586
1587 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1588 return -EPERM;
1589 if (len != sizeof(fd))
1590 return -EINVAL;
1591 if (copy_from_user(&fd, data, len))
1592 return -EFAULT;
1593
1594 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1595 if (IS_ERR(new))
1596 return PTR_ERR(new);
1597
1598 __fanout_set_data_bpf(po->fanout, new);
1599 return 0;
1600 }
1601
1602 static int fanout_set_data(struct packet_sock *po, char __user *data,
1603 unsigned int len)
1604 {
1605 switch (po->fanout->type) {
1606 case PACKET_FANOUT_CBPF:
1607 return fanout_set_data_cbpf(po, data, len);
1608 case PACKET_FANOUT_EBPF:
1609 return fanout_set_data_ebpf(po, data, len);
1610 default:
1611 return -EINVAL;
1612 };
1613 }
1614
1615 static void fanout_release_data(struct packet_fanout *f)
1616 {
1617 switch (f->type) {
1618 case PACKET_FANOUT_CBPF:
1619 case PACKET_FANOUT_EBPF:
1620 __fanout_set_data_bpf(f, NULL);
1621 };
1622 }
1623
1624 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1625 {
1626 struct packet_rollover *rollover = NULL;
1627 struct packet_sock *po = pkt_sk(sk);
1628 struct packet_fanout *f, *match;
1629 u8 type = type_flags & 0xff;
1630 u8 flags = type_flags >> 8;
1631 int err;
1632
1633 switch (type) {
1634 case PACKET_FANOUT_ROLLOVER:
1635 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1636 return -EINVAL;
1637 case PACKET_FANOUT_HASH:
1638 case PACKET_FANOUT_LB:
1639 case PACKET_FANOUT_CPU:
1640 case PACKET_FANOUT_RND:
1641 case PACKET_FANOUT_QM:
1642 case PACKET_FANOUT_CBPF:
1643 case PACKET_FANOUT_EBPF:
1644 break;
1645 default:
1646 return -EINVAL;
1647 }
1648
1649 mutex_lock(&fanout_mutex);
1650
1651 err = -EINVAL;
1652 if (!po->running)
1653 goto out;
1654
1655 err = -EALREADY;
1656 if (po->fanout)
1657 goto out;
1658
1659 if (type == PACKET_FANOUT_ROLLOVER ||
1660 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1661 err = -ENOMEM;
1662 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1663 if (!rollover)
1664 goto out;
1665 atomic_long_set(&rollover->num, 0);
1666 atomic_long_set(&rollover->num_huge, 0);
1667 atomic_long_set(&rollover->num_failed, 0);
1668 po->rollover = rollover;
1669 }
1670
1671 match = NULL;
1672 list_for_each_entry(f, &fanout_list, list) {
1673 if (f->id == id &&
1674 read_pnet(&f->net) == sock_net(sk)) {
1675 match = f;
1676 break;
1677 }
1678 }
1679 err = -EINVAL;
1680 if (match && match->flags != flags)
1681 goto out;
1682 if (!match) {
1683 err = -ENOMEM;
1684 match = kzalloc(sizeof(*match), GFP_KERNEL);
1685 if (!match)
1686 goto out;
1687 write_pnet(&match->net, sock_net(sk));
1688 match->id = id;
1689 match->type = type;
1690 match->flags = flags;
1691 INIT_LIST_HEAD(&match->list);
1692 spin_lock_init(&match->lock);
1693 atomic_set(&match->sk_ref, 0);
1694 fanout_init_data(match);
1695 match->prot_hook.type = po->prot_hook.type;
1696 match->prot_hook.dev = po->prot_hook.dev;
1697 match->prot_hook.func = packet_rcv_fanout;
1698 match->prot_hook.af_packet_priv = match;
1699 match->prot_hook.id_match = match_fanout_group;
1700 list_add(&match->list, &fanout_list);
1701 }
1702 err = -EINVAL;
1703 if (match->type == type &&
1704 match->prot_hook.type == po->prot_hook.type &&
1705 match->prot_hook.dev == po->prot_hook.dev) {
1706 err = -ENOSPC;
1707 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1708 __dev_remove_pack(&po->prot_hook);
1709 po->fanout = match;
1710 atomic_inc(&match->sk_ref);
1711 __fanout_link(sk, po);
1712 err = 0;
1713 }
1714 }
1715 out:
1716 if (err && rollover) {
1717 kfree(rollover);
1718 po->rollover = NULL;
1719 }
1720 mutex_unlock(&fanout_mutex);
1721 return err;
1722 }
1723
1724 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1725 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1726 * It is the responsibility of the caller to call fanout_release_data() and
1727 * free the returned packet_fanout (after synchronize_net())
1728 */
1729 static struct packet_fanout *fanout_release(struct sock *sk)
1730 {
1731 struct packet_sock *po = pkt_sk(sk);
1732 struct packet_fanout *f;
1733
1734 mutex_lock(&fanout_mutex);
1735 f = po->fanout;
1736 if (f) {
1737 po->fanout = NULL;
1738
1739 if (atomic_dec_and_test(&f->sk_ref))
1740 list_del(&f->list);
1741 else
1742 f = NULL;
1743
1744 if (po->rollover)
1745 kfree_rcu(po->rollover, rcu);
1746 }
1747 mutex_unlock(&fanout_mutex);
1748
1749 return f;
1750 }
1751
1752 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1753 struct sk_buff *skb)
1754 {
1755 /* Earlier code assumed this would be a VLAN pkt, double-check
1756 * this now that we have the actual packet in hand. We can only
1757 * do this check on Ethernet devices.
1758 */
1759 if (unlikely(dev->type != ARPHRD_ETHER))
1760 return false;
1761
1762 skb_reset_mac_header(skb);
1763 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1764 }
1765
1766 static const struct proto_ops packet_ops;
1767
1768 static const struct proto_ops packet_ops_spkt;
1769
1770 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1771 struct packet_type *pt, struct net_device *orig_dev)
1772 {
1773 struct sock *sk;
1774 struct sockaddr_pkt *spkt;
1775
1776 /*
1777 * When we registered the protocol we saved the socket in the data
1778 * field for just this event.
1779 */
1780
1781 sk = pt->af_packet_priv;
1782
1783 /*
1784 * Yank back the headers [hope the device set this
1785 * right or kerboom...]
1786 *
1787 * Incoming packets have ll header pulled,
1788 * push it back.
1789 *
1790 * For outgoing ones skb->data == skb_mac_header(skb)
1791 * so that this procedure is noop.
1792 */
1793
1794 if (skb->pkt_type == PACKET_LOOPBACK)
1795 goto out;
1796
1797 if (!net_eq(dev_net(dev), sock_net(sk)))
1798 goto out;
1799
1800 skb = skb_share_check(skb, GFP_ATOMIC);
1801 if (skb == NULL)
1802 goto oom;
1803
1804 /* drop any routing info */
1805 skb_dst_drop(skb);
1806
1807 /* drop conntrack reference */
1808 nf_reset(skb);
1809
1810 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1811
1812 skb_push(skb, skb->data - skb_mac_header(skb));
1813
1814 /*
1815 * The SOCK_PACKET socket receives _all_ frames.
1816 */
1817
1818 spkt->spkt_family = dev->type;
1819 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1820 spkt->spkt_protocol = skb->protocol;
1821
1822 /*
1823 * Charge the memory to the socket. This is done specifically
1824 * to prevent sockets using all the memory up.
1825 */
1826
1827 if (sock_queue_rcv_skb(sk, skb) == 0)
1828 return 0;
1829
1830 out:
1831 kfree_skb(skb);
1832 oom:
1833 return 0;
1834 }
1835
1836
1837 /*
1838 * Output a raw packet to a device layer. This bypasses all the other
1839 * protocol layers and you must therefore supply it with a complete frame
1840 */
1841
1842 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1843 size_t len)
1844 {
1845 struct sock *sk = sock->sk;
1846 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1847 struct sk_buff *skb = NULL;
1848 struct net_device *dev;
1849 struct sockcm_cookie sockc;
1850 __be16 proto = 0;
1851 int err;
1852 int extra_len = 0;
1853
1854 /*
1855 * Get and verify the address.
1856 */
1857
1858 if (saddr) {
1859 if (msg->msg_namelen < sizeof(struct sockaddr))
1860 return -EINVAL;
1861 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1862 proto = saddr->spkt_protocol;
1863 } else
1864 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1865
1866 /*
1867 * Find the device first to size check it
1868 */
1869
1870 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1871 retry:
1872 rcu_read_lock();
1873 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1874 err = -ENODEV;
1875 if (dev == NULL)
1876 goto out_unlock;
1877
1878 err = -ENETDOWN;
1879 if (!(dev->flags & IFF_UP))
1880 goto out_unlock;
1881
1882 /*
1883 * You may not queue a frame bigger than the mtu. This is the lowest level
1884 * raw protocol and you must do your own fragmentation at this level.
1885 */
1886
1887 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1888 if (!netif_supports_nofcs(dev)) {
1889 err = -EPROTONOSUPPORT;
1890 goto out_unlock;
1891 }
1892 extra_len = 4; /* We're doing our own CRC */
1893 }
1894
1895 err = -EMSGSIZE;
1896 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1897 goto out_unlock;
1898
1899 if (!skb) {
1900 size_t reserved = LL_RESERVED_SPACE(dev);
1901 int tlen = dev->needed_tailroom;
1902 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1903
1904 rcu_read_unlock();
1905 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1906 if (skb == NULL)
1907 return -ENOBUFS;
1908 /* FIXME: Save some space for broken drivers that write a hard
1909 * header at transmission time by themselves. PPP is the notable
1910 * one here. This should really be fixed at the driver level.
1911 */
1912 skb_reserve(skb, reserved);
1913 skb_reset_network_header(skb);
1914
1915 /* Try to align data part correctly */
1916 if (hhlen) {
1917 skb->data -= hhlen;
1918 skb->tail -= hhlen;
1919 if (len < hhlen)
1920 skb_reset_network_header(skb);
1921 }
1922 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1923 if (err)
1924 goto out_free;
1925 goto retry;
1926 }
1927
1928 if (!dev_validate_header(dev, skb->data, len)) {
1929 err = -EINVAL;
1930 goto out_unlock;
1931 }
1932 if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1933 !packet_extra_vlan_len_allowed(dev, skb)) {
1934 err = -EMSGSIZE;
1935 goto out_unlock;
1936 }
1937
1938 sockc.tsflags = sk->sk_tsflags;
1939 if (msg->msg_controllen) {
1940 err = sock_cmsg_send(sk, msg, &sockc);
1941 if (unlikely(err))
1942 goto out_unlock;
1943 }
1944
1945 skb->protocol = proto;
1946 skb->dev = dev;
1947 skb->priority = sk->sk_priority;
1948 skb->mark = sk->sk_mark;
1949
1950 sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
1951
1952 if (unlikely(extra_len == 4))
1953 skb->no_fcs = 1;
1954
1955 skb_probe_transport_header(skb, 0);
1956
1957 dev_queue_xmit(skb);
1958 rcu_read_unlock();
1959 return len;
1960
1961 out_unlock:
1962 rcu_read_unlock();
1963 out_free:
1964 kfree_skb(skb);
1965 return err;
1966 }
1967
1968 static unsigned int run_filter(struct sk_buff *skb,
1969 const struct sock *sk,
1970 unsigned int res)
1971 {
1972 struct sk_filter *filter;
1973
1974 rcu_read_lock();
1975 filter = rcu_dereference(sk->sk_filter);
1976 if (filter != NULL)
1977 res = bpf_prog_run_clear_cb(filter->prog, skb);
1978 rcu_read_unlock();
1979
1980 return res;
1981 }
1982
1983 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
1984 size_t *len)
1985 {
1986 struct virtio_net_hdr vnet_hdr;
1987
1988 if (*len < sizeof(vnet_hdr))
1989 return -EINVAL;
1990 *len -= sizeof(vnet_hdr);
1991
1992 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true))
1993 return -EINVAL;
1994
1995 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
1996 }
1997
1998 /*
1999 * This function makes lazy skb cloning in hope that most of packets
2000 * are discarded by BPF.
2001 *
2002 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2003 * and skb->cb are mangled. It works because (and until) packets
2004 * falling here are owned by current CPU. Output packets are cloned
2005 * by dev_queue_xmit_nit(), input packets are processed by net_bh
2006 * sequencially, so that if we return skb to original state on exit,
2007 * we will not harm anyone.
2008 */
2009
2010 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2011 struct packet_type *pt, struct net_device *orig_dev)
2012 {
2013 struct sock *sk;
2014 struct sockaddr_ll *sll;
2015 struct packet_sock *po;
2016 u8 *skb_head = skb->data;
2017 int skb_len = skb->len;
2018 unsigned int snaplen, res;
2019 bool is_drop_n_account = false;
2020
2021 if (skb->pkt_type == PACKET_LOOPBACK)
2022 goto drop;
2023
2024 sk = pt->af_packet_priv;
2025 po = pkt_sk(sk);
2026
2027 if (!net_eq(dev_net(dev), sock_net(sk)))
2028 goto drop;
2029
2030 skb->dev = dev;
2031
2032 if (dev->header_ops) {
2033 /* The device has an explicit notion of ll header,
2034 * exported to higher levels.
2035 *
2036 * Otherwise, the device hides details of its frame
2037 * structure, so that corresponding packet head is
2038 * never delivered to user.
2039 */
2040 if (sk->sk_type != SOCK_DGRAM)
2041 skb_push(skb, skb->data - skb_mac_header(skb));
2042 else if (skb->pkt_type == PACKET_OUTGOING) {
2043 /* Special case: outgoing packets have ll header at head */
2044 skb_pull(skb, skb_network_offset(skb));
2045 }
2046 }
2047
2048 snaplen = skb->len;
2049
2050 res = run_filter(skb, sk, snaplen);
2051 if (!res)
2052 goto drop_n_restore;
2053 if (snaplen > res)
2054 snaplen = res;
2055
2056 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2057 goto drop_n_acct;
2058
2059 if (skb_shared(skb)) {
2060 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2061 if (nskb == NULL)
2062 goto drop_n_acct;
2063
2064 if (skb_head != skb->data) {
2065 skb->data = skb_head;
2066 skb->len = skb_len;
2067 }
2068 consume_skb(skb);
2069 skb = nskb;
2070 }
2071
2072 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2073
2074 sll = &PACKET_SKB_CB(skb)->sa.ll;
2075 sll->sll_hatype = dev->type;
2076 sll->sll_pkttype = skb->pkt_type;
2077 if (unlikely(po->origdev))
2078 sll->sll_ifindex = orig_dev->ifindex;
2079 else
2080 sll->sll_ifindex = dev->ifindex;
2081
2082 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2083
2084 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2085 * Use their space for storing the original skb length.
2086 */
2087 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2088
2089 if (pskb_trim(skb, snaplen))
2090 goto drop_n_acct;
2091
2092 skb_set_owner_r(skb, sk);
2093 skb->dev = NULL;
2094 skb_dst_drop(skb);
2095
2096 /* drop conntrack reference */
2097 nf_reset(skb);
2098
2099 spin_lock(&sk->sk_receive_queue.lock);
2100 po->stats.stats1.tp_packets++;
2101 sock_skb_set_dropcount(sk, skb);
2102 __skb_queue_tail(&sk->sk_receive_queue, skb);
2103 spin_unlock(&sk->sk_receive_queue.lock);
2104 sk->sk_data_ready(sk);
2105 return 0;
2106
2107 drop_n_acct:
2108 is_drop_n_account = true;
2109 spin_lock(&sk->sk_receive_queue.lock);
2110 po->stats.stats1.tp_drops++;
2111 atomic_inc(&sk->sk_drops);
2112 spin_unlock(&sk->sk_receive_queue.lock);
2113
2114 drop_n_restore:
2115 if (skb_head != skb->data && skb_shared(skb)) {
2116 skb->data = skb_head;
2117 skb->len = skb_len;
2118 }
2119 drop:
2120 if (!is_drop_n_account)
2121 consume_skb(skb);
2122 else
2123 kfree_skb(skb);
2124 return 0;
2125 }
2126
2127 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2128 struct packet_type *pt, struct net_device *orig_dev)
2129 {
2130 struct sock *sk;
2131 struct packet_sock *po;
2132 struct sockaddr_ll *sll;
2133 union tpacket_uhdr h;
2134 u8 *skb_head = skb->data;
2135 int skb_len = skb->len;
2136 unsigned int snaplen, res;
2137 unsigned long status = TP_STATUS_USER;
2138 unsigned short macoff, netoff, hdrlen;
2139 struct sk_buff *copy_skb = NULL;
2140 struct timespec ts;
2141 __u32 ts_status;
2142 bool is_drop_n_account = false;
2143
2144 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2145 * We may add members to them until current aligned size without forcing
2146 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2147 */
2148 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2149 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2150
2151 if (skb->pkt_type == PACKET_LOOPBACK)
2152 goto drop;
2153
2154 sk = pt->af_packet_priv;
2155 po = pkt_sk(sk);
2156
2157 if (!net_eq(dev_net(dev), sock_net(sk)))
2158 goto drop;
2159
2160 if (dev->header_ops) {
2161 if (sk->sk_type != SOCK_DGRAM)
2162 skb_push(skb, skb->data - skb_mac_header(skb));
2163 else if (skb->pkt_type == PACKET_OUTGOING) {
2164 /* Special case: outgoing packets have ll header at head */
2165 skb_pull(skb, skb_network_offset(skb));
2166 }
2167 }
2168
2169 snaplen = skb->len;
2170
2171 res = run_filter(skb, sk, snaplen);
2172 if (!res)
2173 goto drop_n_restore;
2174
2175 if (skb->ip_summed == CHECKSUM_PARTIAL)
2176 status |= TP_STATUS_CSUMNOTREADY;
2177 else if (skb->pkt_type != PACKET_OUTGOING &&
2178 (skb->ip_summed == CHECKSUM_COMPLETE ||
2179 skb_csum_unnecessary(skb)))
2180 status |= TP_STATUS_CSUM_VALID;
2181
2182 if (snaplen > res)
2183 snaplen = res;
2184
2185 if (sk->sk_type == SOCK_DGRAM) {
2186 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2187 po->tp_reserve;
2188 } else {
2189 unsigned int maclen = skb_network_offset(skb);
2190 netoff = TPACKET_ALIGN(po->tp_hdrlen +
2191 (maclen < 16 ? 16 : maclen)) +
2192 po->tp_reserve;
2193 if (po->has_vnet_hdr)
2194 netoff += sizeof(struct virtio_net_hdr);
2195 macoff = netoff - maclen;
2196 }
2197 if (po->tp_version <= TPACKET_V2) {
2198 if (macoff + snaplen > po->rx_ring.frame_size) {
2199 if (po->copy_thresh &&
2200 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2201 if (skb_shared(skb)) {
2202 copy_skb = skb_clone(skb, GFP_ATOMIC);
2203 } else {
2204 copy_skb = skb_get(skb);
2205 skb_head = skb->data;
2206 }
2207 if (copy_skb)
2208 skb_set_owner_r(copy_skb, sk);
2209 }
2210 snaplen = po->rx_ring.frame_size - macoff;
2211 if ((int)snaplen < 0)
2212 snaplen = 0;
2213 }
2214 } else if (unlikely(macoff + snaplen >
2215 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2216 u32 nval;
2217
2218 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2219 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2220 snaplen, nval, macoff);
2221 snaplen = nval;
2222 if (unlikely((int)snaplen < 0)) {
2223 snaplen = 0;
2224 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2225 }
2226 }
2227 spin_lock(&sk->sk_receive_queue.lock);
2228 h.raw = packet_current_rx_frame(po, skb,
2229 TP_STATUS_KERNEL, (macoff+snaplen));
2230 if (!h.raw)
2231 goto drop_n_account;
2232 if (po->tp_version <= TPACKET_V2) {
2233 packet_increment_rx_head(po, &po->rx_ring);
2234 /*
2235 * LOSING will be reported till you read the stats,
2236 * because it's COR - Clear On Read.
2237 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2238 * at packet level.
2239 */
2240 if (po->stats.stats1.tp_drops)
2241 status |= TP_STATUS_LOSING;
2242 }
2243 po->stats.stats1.tp_packets++;
2244 if (copy_skb) {
2245 status |= TP_STATUS_COPY;
2246 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2247 }
2248 spin_unlock(&sk->sk_receive_queue.lock);
2249
2250 if (po->has_vnet_hdr) {
2251 if (virtio_net_hdr_from_skb(skb, h.raw + macoff -
2252 sizeof(struct virtio_net_hdr),
2253 vio_le(), true)) {
2254 spin_lock(&sk->sk_receive_queue.lock);
2255 goto drop_n_account;
2256 }
2257 }
2258
2259 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2260
2261 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2262 getnstimeofday(&ts);
2263
2264 status |= ts_status;
2265
2266 switch (po->tp_version) {
2267 case TPACKET_V1:
2268 h.h1->tp_len = skb->len;
2269 h.h1->tp_snaplen = snaplen;
2270 h.h1->tp_mac = macoff;
2271 h.h1->tp_net = netoff;
2272 h.h1->tp_sec = ts.tv_sec;
2273 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2274 hdrlen = sizeof(*h.h1);
2275 break;
2276 case TPACKET_V2:
2277 h.h2->tp_len = skb->len;
2278 h.h2->tp_snaplen = snaplen;
2279 h.h2->tp_mac = macoff;
2280 h.h2->tp_net = netoff;
2281 h.h2->tp_sec = ts.tv_sec;
2282 h.h2->tp_nsec = ts.tv_nsec;
2283 if (skb_vlan_tag_present(skb)) {
2284 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2285 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2286 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2287 } else {
2288 h.h2->tp_vlan_tci = 0;
2289 h.h2->tp_vlan_tpid = 0;
2290 }
2291 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2292 hdrlen = sizeof(*h.h2);
2293 break;
2294 case TPACKET_V3:
2295 /* tp_nxt_offset,vlan are already populated above.
2296 * So DONT clear those fields here
2297 */
2298 h.h3->tp_status |= status;
2299 h.h3->tp_len = skb->len;
2300 h.h3->tp_snaplen = snaplen;
2301 h.h3->tp_mac = macoff;
2302 h.h3->tp_net = netoff;
2303 h.h3->tp_sec = ts.tv_sec;
2304 h.h3->tp_nsec = ts.tv_nsec;
2305 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2306 hdrlen = sizeof(*h.h3);
2307 break;
2308 default:
2309 BUG();
2310 }
2311
2312 sll = h.raw + TPACKET_ALIGN(hdrlen);
2313 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2314 sll->sll_family = AF_PACKET;
2315 sll->sll_hatype = dev->type;
2316 sll->sll_protocol = skb->protocol;
2317 sll->sll_pkttype = skb->pkt_type;
2318 if (unlikely(po->origdev))
2319 sll->sll_ifindex = orig_dev->ifindex;
2320 else
2321 sll->sll_ifindex = dev->ifindex;
2322
2323 smp_mb();
2324
2325 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2326 if (po->tp_version <= TPACKET_V2) {
2327 u8 *start, *end;
2328
2329 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2330 macoff + snaplen);
2331
2332 for (start = h.raw; start < end; start += PAGE_SIZE)
2333 flush_dcache_page(pgv_to_page(start));
2334 }
2335 smp_wmb();
2336 #endif
2337
2338 if (po->tp_version <= TPACKET_V2) {
2339 __packet_set_status(po, h.raw, status);
2340 sk->sk_data_ready(sk);
2341 } else {
2342 prb_clear_blk_fill_status(&po->rx_ring);
2343 }
2344
2345 drop_n_restore:
2346 if (skb_head != skb->data && skb_shared(skb)) {
2347 skb->data = skb_head;
2348 skb->len = skb_len;
2349 }
2350 drop:
2351 if (!is_drop_n_account)
2352 consume_skb(skb);
2353 else
2354 kfree_skb(skb);
2355 return 0;
2356
2357 drop_n_account:
2358 is_drop_n_account = true;
2359 po->stats.stats1.tp_drops++;
2360 spin_unlock(&sk->sk_receive_queue.lock);
2361
2362 sk->sk_data_ready(sk);
2363 kfree_skb(copy_skb);
2364 goto drop_n_restore;
2365 }
2366
2367 static void tpacket_destruct_skb(struct sk_buff *skb)
2368 {
2369 struct packet_sock *po = pkt_sk(skb->sk);
2370
2371 if (likely(po->tx_ring.pg_vec)) {
2372 void *ph;
2373 __u32 ts;
2374
2375 ph = skb_shinfo(skb)->destructor_arg;
2376 packet_dec_pending(&po->tx_ring);
2377
2378 ts = __packet_set_timestamp(po, ph, skb);
2379 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2380 }
2381
2382 sock_wfree(skb);
2383 }
2384
2385 static void tpacket_set_protocol(const struct net_device *dev,
2386 struct sk_buff *skb)
2387 {
2388 if (dev->type == ARPHRD_ETHER) {
2389 skb_reset_mac_header(skb);
2390 skb->protocol = eth_hdr(skb)->h_proto;
2391 }
2392 }
2393
2394 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2395 {
2396 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2397 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2398 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2399 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2400 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2401 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2402 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2403
2404 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2405 return -EINVAL;
2406
2407 return 0;
2408 }
2409
2410 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2411 struct virtio_net_hdr *vnet_hdr)
2412 {
2413 if (*len < sizeof(*vnet_hdr))
2414 return -EINVAL;
2415 *len -= sizeof(*vnet_hdr);
2416
2417 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2418 return -EFAULT;
2419
2420 return __packet_snd_vnet_parse(vnet_hdr, *len);
2421 }
2422
2423 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2424 void *frame, struct net_device *dev, void *data, int tp_len,
2425 __be16 proto, unsigned char *addr, int hlen, int copylen,
2426 const struct sockcm_cookie *sockc)
2427 {
2428 union tpacket_uhdr ph;
2429 int to_write, offset, len, nr_frags, len_max;
2430 struct socket *sock = po->sk.sk_socket;
2431 struct page *page;
2432 int err;
2433
2434 ph.raw = frame;
2435
2436 skb->protocol = proto;
2437 skb->dev = dev;
2438 skb->priority = po->sk.sk_priority;
2439 skb->mark = po->sk.sk_mark;
2440 sock_tx_timestamp(&po->sk, sockc->tsflags, &skb_shinfo(skb)->tx_flags);
2441 skb_shinfo(skb)->destructor_arg = ph.raw;
2442
2443 skb_reserve(skb, hlen);
2444 skb_reset_network_header(skb);
2445
2446 to_write = tp_len;
2447
2448 if (sock->type == SOCK_DGRAM) {
2449 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2450 NULL, tp_len);
2451 if (unlikely(err < 0))
2452 return -EINVAL;
2453 } else if (copylen) {
2454 int hdrlen = min_t(int, copylen, tp_len);
2455
2456 skb_push(skb, dev->hard_header_len);
2457 skb_put(skb, copylen - dev->hard_header_len);
2458 err = skb_store_bits(skb, 0, data, hdrlen);
2459 if (unlikely(err))
2460 return err;
2461 if (!dev_validate_header(dev, skb->data, hdrlen))
2462 return -EINVAL;
2463 if (!skb->protocol)
2464 tpacket_set_protocol(dev, skb);
2465
2466 data += hdrlen;
2467 to_write -= hdrlen;
2468 }
2469
2470 offset = offset_in_page(data);
2471 len_max = PAGE_SIZE - offset;
2472 len = ((to_write > len_max) ? len_max : to_write);
2473
2474 skb->data_len = to_write;
2475 skb->len += to_write;
2476 skb->truesize += to_write;
2477 atomic_add(to_write, &po->sk.sk_wmem_alloc);
2478
2479 while (likely(to_write)) {
2480 nr_frags = skb_shinfo(skb)->nr_frags;
2481
2482 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2483 pr_err("Packet exceed the number of skb frags(%lu)\n",
2484 MAX_SKB_FRAGS);
2485 return -EFAULT;
2486 }
2487
2488 page = pgv_to_page(data);
2489 data += len;
2490 flush_dcache_page(page);
2491 get_page(page);
2492 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2493 to_write -= len;
2494 offset = 0;
2495 len_max = PAGE_SIZE;
2496 len = ((to_write > len_max) ? len_max : to_write);
2497 }
2498
2499 skb_probe_transport_header(skb, 0);
2500
2501 return tp_len;
2502 }
2503
2504 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2505 int size_max, void **data)
2506 {
2507 union tpacket_uhdr ph;
2508 int tp_len, off;
2509
2510 ph.raw = frame;
2511
2512 switch (po->tp_version) {
2513 case TPACKET_V2:
2514 tp_len = ph.h2->tp_len;
2515 break;
2516 default:
2517 tp_len = ph.h1->tp_len;
2518 break;
2519 }
2520 if (unlikely(tp_len > size_max)) {
2521 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2522 return -EMSGSIZE;
2523 }
2524
2525 if (unlikely(po->tp_tx_has_off)) {
2526 int off_min, off_max;
2527
2528 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2529 off_max = po->tx_ring.frame_size - tp_len;
2530 if (po->sk.sk_type == SOCK_DGRAM) {
2531 switch (po->tp_version) {
2532 case TPACKET_V2:
2533 off = ph.h2->tp_net;
2534 break;
2535 default:
2536 off = ph.h1->tp_net;
2537 break;
2538 }
2539 } else {
2540 switch (po->tp_version) {
2541 case TPACKET_V2:
2542 off = ph.h2->tp_mac;
2543 break;
2544 default:
2545 off = ph.h1->tp_mac;
2546 break;
2547 }
2548 }
2549 if (unlikely((off < off_min) || (off_max < off)))
2550 return -EINVAL;
2551 } else {
2552 off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2553 }
2554
2555 *data = frame + off;
2556 return tp_len;
2557 }
2558
2559 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2560 {
2561 struct sk_buff *skb;
2562 struct net_device *dev;
2563 struct virtio_net_hdr *vnet_hdr = NULL;
2564 struct sockcm_cookie sockc;
2565 __be16 proto;
2566 int err, reserve = 0;
2567 void *ph;
2568 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2569 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2570 int tp_len, size_max;
2571 unsigned char *addr;
2572 void *data;
2573 int len_sum = 0;
2574 int status = TP_STATUS_AVAILABLE;
2575 int hlen, tlen, copylen = 0;
2576
2577 mutex_lock(&po->pg_vec_lock);
2578
2579 if (likely(saddr == NULL)) {
2580 dev = packet_cached_dev_get(po);
2581 proto = po->num;
2582 addr = NULL;
2583 } else {
2584 err = -EINVAL;
2585 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2586 goto out;
2587 if (msg->msg_namelen < (saddr->sll_halen
2588 + offsetof(struct sockaddr_ll,
2589 sll_addr)))
2590 goto out;
2591 proto = saddr->sll_protocol;
2592 addr = saddr->sll_addr;
2593 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2594 }
2595
2596 sockc.tsflags = po->sk.sk_tsflags;
2597 if (msg->msg_controllen) {
2598 err = sock_cmsg_send(&po->sk, msg, &sockc);
2599 if (unlikely(err))
2600 goto out;
2601 }
2602
2603 err = -ENXIO;
2604 if (unlikely(dev == NULL))
2605 goto out;
2606 err = -ENETDOWN;
2607 if (unlikely(!(dev->flags & IFF_UP)))
2608 goto out_put;
2609
2610 if (po->sk.sk_socket->type == SOCK_RAW)
2611 reserve = dev->hard_header_len;
2612 size_max = po->tx_ring.frame_size
2613 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2614
2615 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2616 size_max = dev->mtu + reserve + VLAN_HLEN;
2617
2618 do {
2619 ph = packet_current_frame(po, &po->tx_ring,
2620 TP_STATUS_SEND_REQUEST);
2621 if (unlikely(ph == NULL)) {
2622 if (need_wait && need_resched())
2623 schedule();
2624 continue;
2625 }
2626
2627 skb = NULL;
2628 tp_len = tpacket_parse_header(po, ph, size_max, &data);
2629 if (tp_len < 0)
2630 goto tpacket_error;
2631
2632 status = TP_STATUS_SEND_REQUEST;
2633 hlen = LL_RESERVED_SPACE(dev);
2634 tlen = dev->needed_tailroom;
2635 if (po->has_vnet_hdr) {
2636 vnet_hdr = data;
2637 data += sizeof(*vnet_hdr);
2638 tp_len -= sizeof(*vnet_hdr);
2639 if (tp_len < 0 ||
2640 __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2641 tp_len = -EINVAL;
2642 goto tpacket_error;
2643 }
2644 copylen = __virtio16_to_cpu(vio_le(),
2645 vnet_hdr->hdr_len);
2646 }
2647 copylen = max_t(int, copylen, dev->hard_header_len);
2648 skb = sock_alloc_send_skb(&po->sk,
2649 hlen + tlen + sizeof(struct sockaddr_ll) +
2650 (copylen - dev->hard_header_len),
2651 !need_wait, &err);
2652
2653 if (unlikely(skb == NULL)) {
2654 /* we assume the socket was initially writeable ... */
2655 if (likely(len_sum > 0))
2656 err = len_sum;
2657 goto out_status;
2658 }
2659 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2660 addr, hlen, copylen, &sockc);
2661 if (likely(tp_len >= 0) &&
2662 tp_len > dev->mtu + reserve &&
2663 !po->has_vnet_hdr &&
2664 !packet_extra_vlan_len_allowed(dev, skb))
2665 tp_len = -EMSGSIZE;
2666
2667 if (unlikely(tp_len < 0)) {
2668 tpacket_error:
2669 if (po->tp_loss) {
2670 __packet_set_status(po, ph,
2671 TP_STATUS_AVAILABLE);
2672 packet_increment_head(&po->tx_ring);
2673 kfree_skb(skb);
2674 continue;
2675 } else {
2676 status = TP_STATUS_WRONG_FORMAT;
2677 err = tp_len;
2678 goto out_status;
2679 }
2680 }
2681
2682 if (po->has_vnet_hdr && virtio_net_hdr_to_skb(skb, vnet_hdr,
2683 vio_le())) {
2684 tp_len = -EINVAL;
2685 goto tpacket_error;
2686 }
2687
2688 packet_pick_tx_queue(dev, skb);
2689
2690 skb->destructor = tpacket_destruct_skb;
2691 __packet_set_status(po, ph, TP_STATUS_SENDING);
2692 packet_inc_pending(&po->tx_ring);
2693
2694 status = TP_STATUS_SEND_REQUEST;
2695 err = po->xmit(skb);
2696 if (unlikely(err > 0)) {
2697 err = net_xmit_errno(err);
2698 if (err && __packet_get_status(po, ph) ==
2699 TP_STATUS_AVAILABLE) {
2700 /* skb was destructed already */
2701 skb = NULL;
2702 goto out_status;
2703 }
2704 /*
2705 * skb was dropped but not destructed yet;
2706 * let's treat it like congestion or err < 0
2707 */
2708 err = 0;
2709 }
2710 packet_increment_head(&po->tx_ring);
2711 len_sum += tp_len;
2712 } while (likely((ph != NULL) ||
2713 /* Note: packet_read_pending() might be slow if we have
2714 * to call it as it's per_cpu variable, but in fast-path
2715 * we already short-circuit the loop with the first
2716 * condition, and luckily don't have to go that path
2717 * anyway.
2718 */
2719 (need_wait && packet_read_pending(&po->tx_ring))));
2720
2721 err = len_sum;
2722 goto out_put;
2723
2724 out_status:
2725 __packet_set_status(po, ph, status);
2726 kfree_skb(skb);
2727 out_put:
2728 dev_put(dev);
2729 out:
2730 mutex_unlock(&po->pg_vec_lock);
2731 return err;
2732 }
2733
2734 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2735 size_t reserve, size_t len,
2736 size_t linear, int noblock,
2737 int *err)
2738 {
2739 struct sk_buff *skb;
2740
2741 /* Under a page? Don't bother with paged skb. */
2742 if (prepad + len < PAGE_SIZE || !linear)
2743 linear = len;
2744
2745 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2746 err, 0);
2747 if (!skb)
2748 return NULL;
2749
2750 skb_reserve(skb, reserve);
2751 skb_put(skb, linear);
2752 skb->data_len = len - linear;
2753 skb->len += len - linear;
2754
2755 return skb;
2756 }
2757
2758 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2759 {
2760 struct sock *sk = sock->sk;
2761 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2762 struct sk_buff *skb;
2763 struct net_device *dev;
2764 __be16 proto;
2765 unsigned char *addr;
2766 int err, reserve = 0;
2767 struct sockcm_cookie sockc;
2768 struct virtio_net_hdr vnet_hdr = { 0 };
2769 int offset = 0;
2770 struct packet_sock *po = pkt_sk(sk);
2771 int hlen, tlen, linear;
2772 int extra_len = 0;
2773
2774 /*
2775 * Get and verify the address.
2776 */
2777
2778 if (likely(saddr == NULL)) {
2779 dev = packet_cached_dev_get(po);
2780 proto = po->num;
2781 addr = NULL;
2782 } else {
2783 err = -EINVAL;
2784 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2785 goto out;
2786 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2787 goto out;
2788 proto = saddr->sll_protocol;
2789 addr = saddr->sll_addr;
2790 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2791 }
2792
2793 err = -ENXIO;
2794 if (unlikely(dev == NULL))
2795 goto out_unlock;
2796 err = -ENETDOWN;
2797 if (unlikely(!(dev->flags & IFF_UP)))
2798 goto out_unlock;
2799
2800 sockc.tsflags = sk->sk_tsflags;
2801 sockc.mark = sk->sk_mark;
2802 if (msg->msg_controllen) {
2803 err = sock_cmsg_send(sk, msg, &sockc);
2804 if (unlikely(err))
2805 goto out_unlock;
2806 }
2807
2808 if (sock->type == SOCK_RAW)
2809 reserve = dev->hard_header_len;
2810 if (po->has_vnet_hdr) {
2811 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2812 if (err)
2813 goto out_unlock;
2814 }
2815
2816 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2817 if (!netif_supports_nofcs(dev)) {
2818 err = -EPROTONOSUPPORT;
2819 goto out_unlock;
2820 }
2821 extra_len = 4; /* We're doing our own CRC */
2822 }
2823
2824 err = -EMSGSIZE;
2825 if (!vnet_hdr.gso_type &&
2826 (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2827 goto out_unlock;
2828
2829 err = -ENOBUFS;
2830 hlen = LL_RESERVED_SPACE(dev);
2831 tlen = dev->needed_tailroom;
2832 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2833 linear = max(linear, min_t(int, len, dev->hard_header_len));
2834 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2835 msg->msg_flags & MSG_DONTWAIT, &err);
2836 if (skb == NULL)
2837 goto out_unlock;
2838
2839 skb_set_network_header(skb, reserve);
2840
2841 err = -EINVAL;
2842 if (sock->type == SOCK_DGRAM) {
2843 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2844 if (unlikely(offset < 0))
2845 goto out_free;
2846 }
2847
2848 /* Returns -EFAULT on error */
2849 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2850 if (err)
2851 goto out_free;
2852
2853 if (sock->type == SOCK_RAW &&
2854 !dev_validate_header(dev, skb->data, len)) {
2855 err = -EINVAL;
2856 goto out_free;
2857 }
2858
2859 sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
2860
2861 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2862 !packet_extra_vlan_len_allowed(dev, skb)) {
2863 err = -EMSGSIZE;
2864 goto out_free;
2865 }
2866
2867 skb->protocol = proto;
2868 skb->dev = dev;
2869 skb->priority = sk->sk_priority;
2870 skb->mark = sockc.mark;
2871
2872 packet_pick_tx_queue(dev, skb);
2873
2874 if (po->has_vnet_hdr) {
2875 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
2876 if (err)
2877 goto out_free;
2878 len += sizeof(vnet_hdr);
2879 }
2880
2881 skb_probe_transport_header(skb, reserve);
2882
2883 if (unlikely(extra_len == 4))
2884 skb->no_fcs = 1;
2885
2886 err = po->xmit(skb);
2887 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2888 goto out_unlock;
2889
2890 dev_put(dev);
2891
2892 return len;
2893
2894 out_free:
2895 kfree_skb(skb);
2896 out_unlock:
2897 if (dev)
2898 dev_put(dev);
2899 out:
2900 return err;
2901 }
2902
2903 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2904 {
2905 struct sock *sk = sock->sk;
2906 struct packet_sock *po = pkt_sk(sk);
2907
2908 if (po->tx_ring.pg_vec)
2909 return tpacket_snd(po, msg);
2910 else
2911 return packet_snd(sock, msg, len);
2912 }
2913
2914 /*
2915 * Close a PACKET socket. This is fairly simple. We immediately go
2916 * to 'closed' state and remove our protocol entry in the device list.
2917 */
2918
2919 static int packet_release(struct socket *sock)
2920 {
2921 struct sock *sk = sock->sk;
2922 struct packet_sock *po;
2923 struct packet_fanout *f;
2924 struct net *net;
2925 union tpacket_req_u req_u;
2926
2927 if (!sk)
2928 return 0;
2929
2930 net = sock_net(sk);
2931 po = pkt_sk(sk);
2932
2933 mutex_lock(&net->packet.sklist_lock);
2934 sk_del_node_init_rcu(sk);
2935 mutex_unlock(&net->packet.sklist_lock);
2936
2937 preempt_disable();
2938 sock_prot_inuse_add(net, sk->sk_prot, -1);
2939 preempt_enable();
2940
2941 spin_lock(&po->bind_lock);
2942 unregister_prot_hook(sk, false);
2943 packet_cached_dev_reset(po);
2944
2945 if (po->prot_hook.dev) {
2946 dev_put(po->prot_hook.dev);
2947 po->prot_hook.dev = NULL;
2948 }
2949 spin_unlock(&po->bind_lock);
2950
2951 packet_flush_mclist(sk);
2952
2953 if (po->rx_ring.pg_vec) {
2954 memset(&req_u, 0, sizeof(req_u));
2955 packet_set_ring(sk, &req_u, 1, 0);
2956 }
2957
2958 if (po->tx_ring.pg_vec) {
2959 memset(&req_u, 0, sizeof(req_u));
2960 packet_set_ring(sk, &req_u, 1, 1);
2961 }
2962
2963 f = fanout_release(sk);
2964
2965 synchronize_net();
2966
2967 if (f) {
2968 fanout_release_data(f);
2969 kfree(f);
2970 }
2971 /*
2972 * Now the socket is dead. No more input will appear.
2973 */
2974 sock_orphan(sk);
2975 sock->sk = NULL;
2976
2977 /* Purge queues */
2978
2979 skb_queue_purge(&sk->sk_receive_queue);
2980 packet_free_pending(po);
2981 sk_refcnt_debug_release(sk);
2982
2983 sock_put(sk);
2984 return 0;
2985 }
2986
2987 /*
2988 * Attach a packet hook.
2989 */
2990
2991 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
2992 __be16 proto)
2993 {
2994 struct packet_sock *po = pkt_sk(sk);
2995 struct net_device *dev_curr;
2996 __be16 proto_curr;
2997 bool need_rehook;
2998 struct net_device *dev = NULL;
2999 int ret = 0;
3000 bool unlisted = false;
3001
3002 if (po->fanout)
3003 return -EINVAL;
3004
3005 lock_sock(sk);
3006 spin_lock(&po->bind_lock);
3007 rcu_read_lock();
3008
3009 if (name) {
3010 dev = dev_get_by_name_rcu(sock_net(sk), name);
3011 if (!dev) {
3012 ret = -ENODEV;
3013 goto out_unlock;
3014 }
3015 } else if (ifindex) {
3016 dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3017 if (!dev) {
3018 ret = -ENODEV;
3019 goto out_unlock;
3020 }
3021 }
3022
3023 if (dev)
3024 dev_hold(dev);
3025
3026 proto_curr = po->prot_hook.type;
3027 dev_curr = po->prot_hook.dev;
3028
3029 need_rehook = proto_curr != proto || dev_curr != dev;
3030
3031 if (need_rehook) {
3032 if (po->running) {
3033 rcu_read_unlock();
3034 __unregister_prot_hook(sk, true);
3035 rcu_read_lock();
3036 dev_curr = po->prot_hook.dev;
3037 if (dev)
3038 unlisted = !dev_get_by_index_rcu(sock_net(sk),
3039 dev->ifindex);
3040 }
3041
3042 po->num = proto;
3043 po->prot_hook.type = proto;
3044
3045 if (unlikely(unlisted)) {
3046 dev_put(dev);
3047 po->prot_hook.dev = NULL;
3048 po->ifindex = -1;
3049 packet_cached_dev_reset(po);
3050 } else {
3051 po->prot_hook.dev = dev;
3052 po->ifindex = dev ? dev->ifindex : 0;
3053 packet_cached_dev_assign(po, dev);
3054 }
3055 }
3056 if (dev_curr)
3057 dev_put(dev_curr);
3058
3059 if (proto == 0 || !need_rehook)
3060 goto out_unlock;
3061
3062 if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3063 register_prot_hook(sk);
3064 } else {
3065 sk->sk_err = ENETDOWN;
3066 if (!sock_flag(sk, SOCK_DEAD))
3067 sk->sk_error_report(sk);
3068 }
3069
3070 out_unlock:
3071 rcu_read_unlock();
3072 spin_unlock(&po->bind_lock);
3073 release_sock(sk);
3074 return ret;
3075 }
3076
3077 /*
3078 * Bind a packet socket to a device
3079 */
3080
3081 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3082 int addr_len)
3083 {
3084 struct sock *sk = sock->sk;
3085 char name[sizeof(uaddr->sa_data) + 1];
3086
3087 /*
3088 * Check legality
3089 */
3090
3091 if (addr_len != sizeof(struct sockaddr))
3092 return -EINVAL;
3093 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3094 * zero-terminated.
3095 */
3096 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3097 name[sizeof(uaddr->sa_data)] = 0;
3098
3099 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3100 }
3101
3102 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3103 {
3104 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3105 struct sock *sk = sock->sk;
3106
3107 /*
3108 * Check legality
3109 */
3110
3111 if (addr_len < sizeof(struct sockaddr_ll))
3112 return -EINVAL;
3113 if (sll->sll_family != AF_PACKET)
3114 return -EINVAL;
3115
3116 return packet_do_bind(sk, NULL, sll->sll_ifindex,
3117 sll->sll_protocol ? : pkt_sk(sk)->num);
3118 }
3119
3120 static struct proto packet_proto = {
3121 .name = "PACKET",
3122 .owner = THIS_MODULE,
3123 .obj_size = sizeof(struct packet_sock),
3124 };
3125
3126 /*
3127 * Create a packet of type SOCK_PACKET.
3128 */
3129
3130 static int packet_create(struct net *net, struct socket *sock, int protocol,
3131 int kern)
3132 {
3133 struct sock *sk;
3134 struct packet_sock *po;
3135 __be16 proto = (__force __be16)protocol; /* weird, but documented */
3136 int err;
3137
3138 if (!ns_capable(net->user_ns, CAP_NET_RAW))
3139 return -EPERM;
3140 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3141 sock->type != SOCK_PACKET)
3142 return -ESOCKTNOSUPPORT;
3143
3144 sock->state = SS_UNCONNECTED;
3145
3146 err = -ENOBUFS;
3147 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3148 if (sk == NULL)
3149 goto out;
3150
3151 sock->ops = &packet_ops;
3152 if (sock->type == SOCK_PACKET)
3153 sock->ops = &packet_ops_spkt;
3154
3155 sock_init_data(sock, sk);
3156
3157 po = pkt_sk(sk);
3158 sk->sk_family = PF_PACKET;
3159 po->num = proto;
3160 po->xmit = dev_queue_xmit;
3161
3162 err = packet_alloc_pending(po);
3163 if (err)
3164 goto out2;
3165
3166 packet_cached_dev_reset(po);
3167
3168 sk->sk_destruct = packet_sock_destruct;
3169 sk_refcnt_debug_inc(sk);
3170
3171 /*
3172 * Attach a protocol block
3173 */
3174
3175 spin_lock_init(&po->bind_lock);
3176 mutex_init(&po->pg_vec_lock);
3177 po->rollover = NULL;
3178 po->prot_hook.func = packet_rcv;
3179
3180 if (sock->type == SOCK_PACKET)
3181 po->prot_hook.func = packet_rcv_spkt;
3182
3183 po->prot_hook.af_packet_priv = sk;
3184
3185 if (proto) {
3186 po->prot_hook.type = proto;
3187 register_prot_hook(sk);
3188 }
3189
3190 mutex_lock(&net->packet.sklist_lock);
3191 sk_add_node_rcu(sk, &net->packet.sklist);
3192 mutex_unlock(&net->packet.sklist_lock);
3193
3194 preempt_disable();
3195 sock_prot_inuse_add(net, &packet_proto, 1);
3196 preempt_enable();
3197
3198 return 0;
3199 out2:
3200 sk_free(sk);
3201 out:
3202 return err;
3203 }
3204
3205 /*
3206 * Pull a packet from our receive queue and hand it to the user.
3207 * If necessary we block.
3208 */
3209
3210 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3211 int flags)
3212 {
3213 struct sock *sk = sock->sk;
3214 struct sk_buff *skb;
3215 int copied, err;
3216 int vnet_hdr_len = 0;
3217 unsigned int origlen = 0;
3218
3219 err = -EINVAL;
3220 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3221 goto out;
3222
3223 #if 0
3224 /* What error should we return now? EUNATTACH? */
3225 if (pkt_sk(sk)->ifindex < 0)
3226 return -ENODEV;
3227 #endif
3228
3229 if (flags & MSG_ERRQUEUE) {
3230 err = sock_recv_errqueue(sk, msg, len,
3231 SOL_PACKET, PACKET_TX_TIMESTAMP);
3232 goto out;
3233 }
3234
3235 /*
3236 * Call the generic datagram receiver. This handles all sorts
3237 * of horrible races and re-entrancy so we can forget about it
3238 * in the protocol layers.
3239 *
3240 * Now it will return ENETDOWN, if device have just gone down,
3241 * but then it will block.
3242 */
3243
3244 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3245
3246 /*
3247 * An error occurred so return it. Because skb_recv_datagram()
3248 * handles the blocking we don't see and worry about blocking
3249 * retries.
3250 */
3251
3252 if (skb == NULL)
3253 goto out;
3254
3255 if (pkt_sk(sk)->pressure)
3256 packet_rcv_has_room(pkt_sk(sk), NULL);
3257
3258 if (pkt_sk(sk)->has_vnet_hdr) {
3259 err = packet_rcv_vnet(msg, skb, &len);
3260 if (err)
3261 goto out_free;
3262 vnet_hdr_len = sizeof(struct virtio_net_hdr);
3263 }
3264
3265 /* You lose any data beyond the buffer you gave. If it worries
3266 * a user program they can ask the device for its MTU
3267 * anyway.
3268 */
3269 copied = skb->len;
3270 if (copied > len) {
3271 copied = len;
3272 msg->msg_flags |= MSG_TRUNC;
3273 }
3274
3275 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3276 if (err)
3277 goto out_free;
3278
3279 if (sock->type != SOCK_PACKET) {
3280 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3281
3282 /* Original length was stored in sockaddr_ll fields */
3283 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3284 sll->sll_family = AF_PACKET;
3285 sll->sll_protocol = skb->protocol;
3286 }
3287
3288 sock_recv_ts_and_drops(msg, sk, skb);
3289
3290 if (msg->msg_name) {
3291 /* If the address length field is there to be filled
3292 * in, we fill it in now.
3293 */
3294 if (sock->type == SOCK_PACKET) {
3295 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3296 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3297 } else {
3298 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3299
3300 msg->msg_namelen = sll->sll_halen +
3301 offsetof(struct sockaddr_ll, sll_addr);
3302 }
3303 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3304 msg->msg_namelen);
3305 }
3306
3307 if (pkt_sk(sk)->auxdata) {
3308 struct tpacket_auxdata aux;
3309
3310 aux.tp_status = TP_STATUS_USER;
3311 if (skb->ip_summed == CHECKSUM_PARTIAL)
3312 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3313 else if (skb->pkt_type != PACKET_OUTGOING &&
3314 (skb->ip_summed == CHECKSUM_COMPLETE ||
3315 skb_csum_unnecessary(skb)))
3316 aux.tp_status |= TP_STATUS_CSUM_VALID;
3317
3318 aux.tp_len = origlen;
3319 aux.tp_snaplen = skb->len;
3320 aux.tp_mac = 0;
3321 aux.tp_net = skb_network_offset(skb);
3322 if (skb_vlan_tag_present(skb)) {
3323 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3324 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3325 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3326 } else {
3327 aux.tp_vlan_tci = 0;
3328 aux.tp_vlan_tpid = 0;
3329 }
3330 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3331 }
3332
3333 /*
3334 * Free or return the buffer as appropriate. Again this
3335 * hides all the races and re-entrancy issues from us.
3336 */
3337 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3338
3339 out_free:
3340 skb_free_datagram(sk, skb);
3341 out:
3342 return err;
3343 }
3344
3345 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3346 int *uaddr_len, int peer)
3347 {
3348 struct net_device *dev;
3349 struct sock *sk = sock->sk;
3350
3351 if (peer)
3352 return -EOPNOTSUPP;
3353
3354 uaddr->sa_family = AF_PACKET;
3355 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3356 rcu_read_lock();
3357 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3358 if (dev)
3359 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3360 rcu_read_unlock();
3361 *uaddr_len = sizeof(*uaddr);
3362
3363 return 0;
3364 }
3365
3366 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3367 int *uaddr_len, int peer)
3368 {
3369 struct net_device *dev;
3370 struct sock *sk = sock->sk;
3371 struct packet_sock *po = pkt_sk(sk);
3372 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3373
3374 if (peer)
3375 return -EOPNOTSUPP;
3376
3377 sll->sll_family = AF_PACKET;
3378 sll->sll_ifindex = po->ifindex;
3379 sll->sll_protocol = po->num;
3380 sll->sll_pkttype = 0;
3381 rcu_read_lock();
3382 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3383 if (dev) {
3384 sll->sll_hatype = dev->type;
3385 sll->sll_halen = dev->addr_len;
3386 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3387 } else {
3388 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3389 sll->sll_halen = 0;
3390 }
3391 rcu_read_unlock();
3392 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3393
3394 return 0;
3395 }
3396
3397 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3398 int what)
3399 {
3400 switch (i->type) {
3401 case PACKET_MR_MULTICAST:
3402 if (i->alen != dev->addr_len)
3403 return -EINVAL;
3404 if (what > 0)
3405 return dev_mc_add(dev, i->addr);
3406 else
3407 return dev_mc_del(dev, i->addr);
3408 break;
3409 case PACKET_MR_PROMISC:
3410 return dev_set_promiscuity(dev, what);
3411 case PACKET_MR_ALLMULTI:
3412 return dev_set_allmulti(dev, what);
3413 case PACKET_MR_UNICAST:
3414 if (i->alen != dev->addr_len)
3415 return -EINVAL;
3416 if (what > 0)
3417 return dev_uc_add(dev, i->addr);
3418 else
3419 return dev_uc_del(dev, i->addr);
3420 break;
3421 default:
3422 break;
3423 }
3424 return 0;
3425 }
3426
3427 static void packet_dev_mclist_delete(struct net_device *dev,
3428 struct packet_mclist **mlp)
3429 {
3430 struct packet_mclist *ml;
3431
3432 while ((ml = *mlp) != NULL) {
3433 if (ml->ifindex == dev->ifindex) {
3434 packet_dev_mc(dev, ml, -1);
3435 *mlp = ml->next;
3436 kfree(ml);
3437 } else
3438 mlp = &ml->next;
3439 }
3440 }
3441
3442 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3443 {
3444 struct packet_sock *po = pkt_sk(sk);
3445 struct packet_mclist *ml, *i;
3446 struct net_device *dev;
3447 int err;
3448
3449 rtnl_lock();
3450
3451 err = -ENODEV;
3452 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3453 if (!dev)
3454 goto done;
3455
3456 err = -EINVAL;
3457 if (mreq->mr_alen > dev->addr_len)
3458 goto done;
3459
3460 err = -ENOBUFS;
3461 i = kmalloc(sizeof(*i), GFP_KERNEL);
3462 if (i == NULL)
3463 goto done;
3464
3465 err = 0;
3466 for (ml = po->mclist; ml; ml = ml->next) {
3467 if (ml->ifindex == mreq->mr_ifindex &&
3468 ml->type == mreq->mr_type &&
3469 ml->alen == mreq->mr_alen &&
3470 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3471 ml->count++;
3472 /* Free the new element ... */
3473 kfree(i);
3474 goto done;
3475 }
3476 }
3477
3478 i->type = mreq->mr_type;
3479 i->ifindex = mreq->mr_ifindex;
3480 i->alen = mreq->mr_alen;
3481 memcpy(i->addr, mreq->mr_address, i->alen);
3482 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3483 i->count = 1;
3484 i->next = po->mclist;
3485 po->mclist = i;
3486 err = packet_dev_mc(dev, i, 1);
3487 if (err) {
3488 po->mclist = i->next;
3489 kfree(i);
3490 }
3491
3492 done:
3493 rtnl_unlock();
3494 return err;
3495 }
3496
3497 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3498 {
3499 struct packet_mclist *ml, **mlp;
3500
3501 rtnl_lock();
3502
3503 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3504 if (ml->ifindex == mreq->mr_ifindex &&
3505 ml->type == mreq->mr_type &&
3506 ml->alen == mreq->mr_alen &&
3507 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3508 if (--ml->count == 0) {
3509 struct net_device *dev;
3510 *mlp = ml->next;
3511 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3512 if (dev)
3513 packet_dev_mc(dev, ml, -1);
3514 kfree(ml);
3515 }
3516 break;
3517 }
3518 }
3519 rtnl_unlock();
3520 return 0;
3521 }
3522
3523 static void packet_flush_mclist(struct sock *sk)
3524 {
3525 struct packet_sock *po = pkt_sk(sk);
3526 struct packet_mclist *ml;
3527
3528 if (!po->mclist)
3529 return;
3530
3531 rtnl_lock();
3532 while ((ml = po->mclist) != NULL) {
3533 struct net_device *dev;
3534
3535 po->mclist = ml->next;
3536 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3537 if (dev != NULL)
3538 packet_dev_mc(dev, ml, -1);
3539 kfree(ml);
3540 }
3541 rtnl_unlock();
3542 }
3543
3544 static int
3545 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3546 {
3547 struct sock *sk = sock->sk;
3548 struct packet_sock *po = pkt_sk(sk);
3549 int ret;
3550
3551 if (level != SOL_PACKET)
3552 return -ENOPROTOOPT;
3553
3554 switch (optname) {
3555 case PACKET_ADD_MEMBERSHIP:
3556 case PACKET_DROP_MEMBERSHIP:
3557 {
3558 struct packet_mreq_max mreq;
3559 int len = optlen;
3560 memset(&mreq, 0, sizeof(mreq));
3561 if (len < sizeof(struct packet_mreq))
3562 return -EINVAL;
3563 if (len > sizeof(mreq))
3564 len = sizeof(mreq);
3565 if (copy_from_user(&mreq, optval, len))
3566 return -EFAULT;
3567 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3568 return -EINVAL;
3569 if (optname == PACKET_ADD_MEMBERSHIP)
3570 ret = packet_mc_add(sk, &mreq);
3571 else
3572 ret = packet_mc_drop(sk, &mreq);
3573 return ret;
3574 }
3575
3576 case PACKET_RX_RING:
3577 case PACKET_TX_RING:
3578 {
3579 union tpacket_req_u req_u;
3580 int len;
3581
3582 switch (po->tp_version) {
3583 case TPACKET_V1:
3584 case TPACKET_V2:
3585 len = sizeof(req_u.req);
3586 break;
3587 case TPACKET_V3:
3588 default:
3589 len = sizeof(req_u.req3);
3590 break;
3591 }
3592 if (optlen < len)
3593 return -EINVAL;
3594 if (copy_from_user(&req_u.req, optval, len))
3595 return -EFAULT;
3596 return packet_set_ring(sk, &req_u, 0,
3597 optname == PACKET_TX_RING);
3598 }
3599 case PACKET_COPY_THRESH:
3600 {
3601 int val;
3602
3603 if (optlen != sizeof(val))
3604 return -EINVAL;
3605 if (copy_from_user(&val, optval, sizeof(val)))
3606 return -EFAULT;
3607
3608 pkt_sk(sk)->copy_thresh = val;
3609 return 0;
3610 }
3611 case PACKET_VERSION:
3612 {
3613 int val;
3614
3615 if (optlen != sizeof(val))
3616 return -EINVAL;
3617 if (copy_from_user(&val, optval, sizeof(val)))
3618 return -EFAULT;
3619 switch (val) {
3620 case TPACKET_V1:
3621 case TPACKET_V2:
3622 case TPACKET_V3:
3623 break;
3624 default:
3625 return -EINVAL;
3626 }
3627 lock_sock(sk);
3628 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3629 ret = -EBUSY;
3630 } else {
3631 po->tp_version = val;
3632 ret = 0;
3633 }
3634 release_sock(sk);
3635 return ret;
3636 }
3637 case PACKET_RESERVE:
3638 {
3639 unsigned int val;
3640
3641 if (optlen != sizeof(val))
3642 return -EINVAL;
3643 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3644 return -EBUSY;
3645 if (copy_from_user(&val, optval, sizeof(val)))
3646 return -EFAULT;
3647 if (val > INT_MAX)
3648 return -EINVAL;
3649 po->tp_reserve = val;
3650 return 0;
3651 }
3652 case PACKET_LOSS:
3653 {
3654 unsigned int val;
3655
3656 if (optlen != sizeof(val))
3657 return -EINVAL;
3658 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3659 return -EBUSY;
3660 if (copy_from_user(&val, optval, sizeof(val)))
3661 return -EFAULT;
3662 po->tp_loss = !!val;
3663 return 0;
3664 }
3665 case PACKET_AUXDATA:
3666 {
3667 int val;
3668
3669 if (optlen < sizeof(val))
3670 return -EINVAL;
3671 if (copy_from_user(&val, optval, sizeof(val)))
3672 return -EFAULT;
3673
3674 po->auxdata = !!val;
3675 return 0;
3676 }
3677 case PACKET_ORIGDEV:
3678 {
3679 int val;
3680
3681 if (optlen < sizeof(val))
3682 return -EINVAL;
3683 if (copy_from_user(&val, optval, sizeof(val)))
3684 return -EFAULT;
3685
3686 po->origdev = !!val;
3687 return 0;
3688 }
3689 case PACKET_VNET_HDR:
3690 {
3691 int val;
3692
3693 if (sock->type != SOCK_RAW)
3694 return -EINVAL;
3695 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3696 return -EBUSY;
3697 if (optlen < sizeof(val))
3698 return -EINVAL;
3699 if (copy_from_user(&val, optval, sizeof(val)))
3700 return -EFAULT;
3701
3702 po->has_vnet_hdr = !!val;
3703 return 0;
3704 }
3705 case PACKET_TIMESTAMP:
3706 {
3707 int val;
3708
3709 if (optlen != sizeof(val))
3710 return -EINVAL;
3711 if (copy_from_user(&val, optval, sizeof(val)))
3712 return -EFAULT;
3713
3714 po->tp_tstamp = val;
3715 return 0;
3716 }
3717 case PACKET_FANOUT:
3718 {
3719 int val;
3720
3721 if (optlen != sizeof(val))
3722 return -EINVAL;
3723 if (copy_from_user(&val, optval, sizeof(val)))
3724 return -EFAULT;
3725
3726 return fanout_add(sk, val & 0xffff, val >> 16);
3727 }
3728 case PACKET_FANOUT_DATA:
3729 {
3730 if (!po->fanout)
3731 return -EINVAL;
3732
3733 return fanout_set_data(po, optval, optlen);
3734 }
3735 case PACKET_TX_HAS_OFF:
3736 {
3737 unsigned int val;
3738
3739 if (optlen != sizeof(val))
3740 return -EINVAL;
3741 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3742 return -EBUSY;
3743 if (copy_from_user(&val, optval, sizeof(val)))
3744 return -EFAULT;
3745 po->tp_tx_has_off = !!val;
3746 return 0;
3747 }
3748 case PACKET_QDISC_BYPASS:
3749 {
3750 int val;
3751
3752 if (optlen != sizeof(val))
3753 return -EINVAL;
3754 if (copy_from_user(&val, optval, sizeof(val)))
3755 return -EFAULT;
3756
3757 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3758 return 0;
3759 }
3760 default:
3761 return -ENOPROTOOPT;
3762 }
3763 }
3764
3765 static int packet_getsockopt(struct socket *sock, int level, int optname,
3766 char __user *optval, int __user *optlen)
3767 {
3768 int len;
3769 int val, lv = sizeof(val);
3770 struct sock *sk = sock->sk;
3771 struct packet_sock *po = pkt_sk(sk);
3772 void *data = &val;
3773 union tpacket_stats_u st;
3774 struct tpacket_rollover_stats rstats;
3775
3776 if (level != SOL_PACKET)
3777 return -ENOPROTOOPT;
3778
3779 if (get_user(len, optlen))
3780 return -EFAULT;
3781
3782 if (len < 0)
3783 return -EINVAL;
3784
3785 switch (optname) {
3786 case PACKET_STATISTICS:
3787 spin_lock_bh(&sk->sk_receive_queue.lock);
3788 memcpy(&st, &po->stats, sizeof(st));
3789 memset(&po->stats, 0, sizeof(po->stats));
3790 spin_unlock_bh(&sk->sk_receive_queue.lock);
3791
3792 if (po->tp_version == TPACKET_V3) {
3793 lv = sizeof(struct tpacket_stats_v3);
3794 st.stats3.tp_packets += st.stats3.tp_drops;
3795 data = &st.stats3;
3796 } else {
3797 lv = sizeof(struct tpacket_stats);
3798 st.stats1.tp_packets += st.stats1.tp_drops;
3799 data = &st.stats1;
3800 }
3801
3802 break;
3803 case PACKET_AUXDATA:
3804 val = po->auxdata;
3805 break;
3806 case PACKET_ORIGDEV:
3807 val = po->origdev;
3808 break;
3809 case PACKET_VNET_HDR:
3810 val = po->has_vnet_hdr;
3811 break;
3812 case PACKET_VERSION:
3813 val = po->tp_version;
3814 break;
3815 case PACKET_HDRLEN:
3816 if (len > sizeof(int))
3817 len = sizeof(int);
3818 if (copy_from_user(&val, optval, len))
3819 return -EFAULT;
3820 switch (val) {
3821 case TPACKET_V1:
3822 val = sizeof(struct tpacket_hdr);
3823 break;
3824 case TPACKET_V2:
3825 val = sizeof(struct tpacket2_hdr);
3826 break;
3827 case TPACKET_V3:
3828 val = sizeof(struct tpacket3_hdr);
3829 break;
3830 default:
3831 return -EINVAL;
3832 }
3833 break;
3834 case PACKET_RESERVE:
3835 val = po->tp_reserve;
3836 break;
3837 case PACKET_LOSS:
3838 val = po->tp_loss;
3839 break;
3840 case PACKET_TIMESTAMP:
3841 val = po->tp_tstamp;
3842 break;
3843 case PACKET_FANOUT:
3844 val = (po->fanout ?
3845 ((u32)po->fanout->id |
3846 ((u32)po->fanout->type << 16) |
3847 ((u32)po->fanout->flags << 24)) :
3848 0);
3849 break;
3850 case PACKET_ROLLOVER_STATS:
3851 if (!po->rollover)
3852 return -EINVAL;
3853 rstats.tp_all = atomic_long_read(&po->rollover->num);
3854 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
3855 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
3856 data = &rstats;
3857 lv = sizeof(rstats);
3858 break;
3859 case PACKET_TX_HAS_OFF:
3860 val = po->tp_tx_has_off;
3861 break;
3862 case PACKET_QDISC_BYPASS:
3863 val = packet_use_direct_xmit(po);
3864 break;
3865 default:
3866 return -ENOPROTOOPT;
3867 }
3868
3869 if (len > lv)
3870 len = lv;
3871 if (put_user(len, optlen))
3872 return -EFAULT;
3873 if (copy_to_user(optval, data, len))
3874 return -EFAULT;
3875 return 0;
3876 }
3877
3878
3879 #ifdef CONFIG_COMPAT
3880 static int compat_packet_setsockopt(struct socket *sock, int level, int optname,
3881 char __user *optval, unsigned int optlen)
3882 {
3883 struct packet_sock *po = pkt_sk(sock->sk);
3884
3885 if (level != SOL_PACKET)
3886 return -ENOPROTOOPT;
3887
3888 if (optname == PACKET_FANOUT_DATA &&
3889 po->fanout && po->fanout->type == PACKET_FANOUT_CBPF) {
3890 optval = (char __user *)get_compat_bpf_fprog(optval);
3891 if (!optval)
3892 return -EFAULT;
3893 optlen = sizeof(struct sock_fprog);
3894 }
3895
3896 return packet_setsockopt(sock, level, optname, optval, optlen);
3897 }
3898 #endif
3899
3900 static int packet_notifier(struct notifier_block *this,
3901 unsigned long msg, void *ptr)
3902 {
3903 struct sock *sk;
3904 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3905 struct net *net = dev_net(dev);
3906
3907 rcu_read_lock();
3908 sk_for_each_rcu(sk, &net->packet.sklist) {
3909 struct packet_sock *po = pkt_sk(sk);
3910
3911 switch (msg) {
3912 case NETDEV_UNREGISTER:
3913 if (po->mclist)
3914 packet_dev_mclist_delete(dev, &po->mclist);
3915 /* fallthrough */
3916
3917 case NETDEV_DOWN:
3918 if (dev->ifindex == po->ifindex) {
3919 spin_lock(&po->bind_lock);
3920 if (po->running) {
3921 __unregister_prot_hook(sk, false);
3922 sk->sk_err = ENETDOWN;
3923 if (!sock_flag(sk, SOCK_DEAD))
3924 sk->sk_error_report(sk);
3925 }
3926 if (msg == NETDEV_UNREGISTER) {
3927 packet_cached_dev_reset(po);
3928 po->ifindex = -1;
3929 if (po->prot_hook.dev)
3930 dev_put(po->prot_hook.dev);
3931 po->prot_hook.dev = NULL;
3932 }
3933 spin_unlock(&po->bind_lock);
3934 }
3935 break;
3936 case NETDEV_UP:
3937 if (dev->ifindex == po->ifindex) {
3938 spin_lock(&po->bind_lock);
3939 if (po->num)
3940 register_prot_hook(sk);
3941 spin_unlock(&po->bind_lock);
3942 }
3943 break;
3944 }
3945 }
3946 rcu_read_unlock();
3947 return NOTIFY_DONE;
3948 }
3949
3950
3951 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3952 unsigned long arg)
3953 {
3954 struct sock *sk = sock->sk;
3955
3956 switch (cmd) {
3957 case SIOCOUTQ:
3958 {
3959 int amount = sk_wmem_alloc_get(sk);
3960
3961 return put_user(amount, (int __user *)arg);
3962 }
3963 case SIOCINQ:
3964 {
3965 struct sk_buff *skb;
3966 int amount = 0;
3967
3968 spin_lock_bh(&sk->sk_receive_queue.lock);
3969 skb = skb_peek(&sk->sk_receive_queue);
3970 if (skb)
3971 amount = skb->len;
3972 spin_unlock_bh(&sk->sk_receive_queue.lock);
3973 return put_user(amount, (int __user *)arg);
3974 }
3975 case SIOCGSTAMP:
3976 return sock_get_timestamp(sk, (struct timeval __user *)arg);
3977 case SIOCGSTAMPNS:
3978 return sock_get_timestampns(sk, (struct timespec __user *)arg);
3979
3980 #ifdef CONFIG_INET
3981 case SIOCADDRT:
3982 case SIOCDELRT:
3983 case SIOCDARP:
3984 case SIOCGARP:
3985 case SIOCSARP:
3986 case SIOCGIFADDR:
3987 case SIOCSIFADDR:
3988 case SIOCGIFBRDADDR:
3989 case SIOCSIFBRDADDR:
3990 case SIOCGIFNETMASK:
3991 case SIOCSIFNETMASK:
3992 case SIOCGIFDSTADDR:
3993 case SIOCSIFDSTADDR:
3994 case SIOCSIFFLAGS:
3995 return inet_dgram_ops.ioctl(sock, cmd, arg);
3996 #endif
3997
3998 default:
3999 return -ENOIOCTLCMD;
4000 }
4001 return 0;
4002 }
4003
4004 static unsigned int packet_poll(struct file *file, struct socket *sock,
4005 poll_table *wait)
4006 {
4007 struct sock *sk = sock->sk;
4008 struct packet_sock *po = pkt_sk(sk);
4009 unsigned int mask = datagram_poll(file, sock, wait);
4010
4011 spin_lock_bh(&sk->sk_receive_queue.lock);
4012 if (po->rx_ring.pg_vec) {
4013 if (!packet_previous_rx_frame(po, &po->rx_ring,
4014 TP_STATUS_KERNEL))
4015 mask |= POLLIN | POLLRDNORM;
4016 }
4017 if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
4018 po->pressure = 0;
4019 spin_unlock_bh(&sk->sk_receive_queue.lock);
4020 spin_lock_bh(&sk->sk_write_queue.lock);
4021 if (po->tx_ring.pg_vec) {
4022 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4023 mask |= POLLOUT | POLLWRNORM;
4024 }
4025 spin_unlock_bh(&sk->sk_write_queue.lock);
4026 return mask;
4027 }
4028
4029
4030 /* Dirty? Well, I still did not learn better way to account
4031 * for user mmaps.
4032 */
4033
4034 static void packet_mm_open(struct vm_area_struct *vma)
4035 {
4036 struct file *file = vma->vm_file;
4037 struct socket *sock = file->private_data;
4038 struct sock *sk = sock->sk;
4039
4040 if (sk)
4041 atomic_inc(&pkt_sk(sk)->mapped);
4042 }
4043
4044 static void packet_mm_close(struct vm_area_struct *vma)
4045 {
4046 struct file *file = vma->vm_file;
4047 struct socket *sock = file->private_data;
4048 struct sock *sk = sock->sk;
4049
4050 if (sk)
4051 atomic_dec(&pkt_sk(sk)->mapped);
4052 }
4053
4054 static const struct vm_operations_struct packet_mmap_ops = {
4055 .open = packet_mm_open,
4056 .close = packet_mm_close,
4057 };
4058
4059 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4060 unsigned int len)
4061 {
4062 int i;
4063
4064 for (i = 0; i < len; i++) {
4065 if (likely(pg_vec[i].buffer)) {
4066 if (is_vmalloc_addr(pg_vec[i].buffer))
4067 vfree(pg_vec[i].buffer);
4068 else
4069 free_pages((unsigned long)pg_vec[i].buffer,
4070 order);
4071 pg_vec[i].buffer = NULL;
4072 }
4073 }
4074 kfree(pg_vec);
4075 }
4076
4077 static char *alloc_one_pg_vec_page(unsigned long order)
4078 {
4079 char *buffer;
4080 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4081 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4082
4083 buffer = (char *) __get_free_pages(gfp_flags, order);
4084 if (buffer)
4085 return buffer;
4086
4087 /* __get_free_pages failed, fall back to vmalloc */
4088 buffer = vzalloc((1 << order) * PAGE_SIZE);
4089 if (buffer)
4090 return buffer;
4091
4092 /* vmalloc failed, lets dig into swap here */
4093 gfp_flags &= ~__GFP_NORETRY;
4094 buffer = (char *) __get_free_pages(gfp_flags, order);
4095 if (buffer)
4096 return buffer;
4097
4098 /* complete and utter failure */
4099 return NULL;
4100 }
4101
4102 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4103 {
4104 unsigned int block_nr = req->tp_block_nr;
4105 struct pgv *pg_vec;
4106 int i;
4107
4108 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
4109 if (unlikely(!pg_vec))
4110 goto out;
4111
4112 for (i = 0; i < block_nr; i++) {
4113 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4114 if (unlikely(!pg_vec[i].buffer))
4115 goto out_free_pgvec;
4116 }
4117
4118 out:
4119 return pg_vec;
4120
4121 out_free_pgvec:
4122 free_pg_vec(pg_vec, order, block_nr);
4123 pg_vec = NULL;
4124 goto out;
4125 }
4126
4127 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4128 int closing, int tx_ring)
4129 {
4130 struct pgv *pg_vec = NULL;
4131 struct packet_sock *po = pkt_sk(sk);
4132 int was_running, order = 0;
4133 struct packet_ring_buffer *rb;
4134 struct sk_buff_head *rb_queue;
4135 __be16 num;
4136 int err = -EINVAL;
4137 /* Added to avoid minimal code churn */
4138 struct tpacket_req *req = &req_u->req;
4139
4140 lock_sock(sk);
4141 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */
4142 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
4143 net_warn_ratelimited("Tx-ring is not supported.\n");
4144 goto out;
4145 }
4146
4147 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4148 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4149
4150 err = -EBUSY;
4151 if (!closing) {
4152 if (atomic_read(&po->mapped))
4153 goto out;
4154 if (packet_read_pending(rb))
4155 goto out;
4156 }
4157
4158 if (req->tp_block_nr) {
4159 /* Sanity tests and some calculations */
4160 err = -EBUSY;
4161 if (unlikely(rb->pg_vec))
4162 goto out;
4163
4164 switch (po->tp_version) {
4165 case TPACKET_V1:
4166 po->tp_hdrlen = TPACKET_HDRLEN;
4167 break;
4168 case TPACKET_V2:
4169 po->tp_hdrlen = TPACKET2_HDRLEN;
4170 break;
4171 case TPACKET_V3:
4172 po->tp_hdrlen = TPACKET3_HDRLEN;
4173 break;
4174 }
4175
4176 err = -EINVAL;
4177 if (unlikely((int)req->tp_block_size <= 0))
4178 goto out;
4179 if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4180 goto out;
4181 if (po->tp_version >= TPACKET_V3 &&
4182 req->tp_block_size <=
4183 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv))
4184 goto out;
4185 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
4186 po->tp_reserve))
4187 goto out;
4188 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4189 goto out;
4190
4191 rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4192 if (unlikely(rb->frames_per_block == 0))
4193 goto out;
4194 if (unlikely(req->tp_block_size > UINT_MAX / req->tp_block_nr))
4195 goto out;
4196 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4197 req->tp_frame_nr))
4198 goto out;
4199
4200 err = -ENOMEM;
4201 order = get_order(req->tp_block_size);
4202 pg_vec = alloc_pg_vec(req, order);
4203 if (unlikely(!pg_vec))
4204 goto out;
4205 switch (po->tp_version) {
4206 case TPACKET_V3:
4207 /* Transmit path is not supported. We checked
4208 * it above but just being paranoid
4209 */
4210 if (!tx_ring)
4211 init_prb_bdqc(po, rb, pg_vec, req_u);
4212 break;
4213 default:
4214 break;
4215 }
4216 }
4217 /* Done */
4218 else {
4219 err = -EINVAL;
4220 if (unlikely(req->tp_frame_nr))
4221 goto out;
4222 }
4223
4224
4225 /* Detach socket from network */
4226 spin_lock(&po->bind_lock);
4227 was_running = po->running;
4228 num = po->num;
4229 if (was_running) {
4230 po->num = 0;
4231 __unregister_prot_hook(sk, false);
4232 }
4233 spin_unlock(&po->bind_lock);
4234
4235 synchronize_net();
4236
4237 err = -EBUSY;
4238 mutex_lock(&po->pg_vec_lock);
4239 if (closing || atomic_read(&po->mapped) == 0) {
4240 err = 0;
4241 spin_lock_bh(&rb_queue->lock);
4242 swap(rb->pg_vec, pg_vec);
4243 rb->frame_max = (req->tp_frame_nr - 1);
4244 rb->head = 0;
4245 rb->frame_size = req->tp_frame_size;
4246 spin_unlock_bh(&rb_queue->lock);
4247
4248 swap(rb->pg_vec_order, order);
4249 swap(rb->pg_vec_len, req->tp_block_nr);
4250
4251 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4252 po->prot_hook.func = (po->rx_ring.pg_vec) ?
4253 tpacket_rcv : packet_rcv;
4254 skb_queue_purge(rb_queue);
4255 if (atomic_read(&po->mapped))
4256 pr_err("packet_mmap: vma is busy: %d\n",
4257 atomic_read(&po->mapped));
4258 }
4259 mutex_unlock(&po->pg_vec_lock);
4260
4261 spin_lock(&po->bind_lock);
4262 if (was_running) {
4263 po->num = num;
4264 register_prot_hook(sk);
4265 }
4266 spin_unlock(&po->bind_lock);
4267 if (closing && (po->tp_version > TPACKET_V2)) {
4268 /* Because we don't support block-based V3 on tx-ring */
4269 if (!tx_ring)
4270 prb_shutdown_retire_blk_timer(po, rb_queue);
4271 }
4272
4273 if (pg_vec)
4274 free_pg_vec(pg_vec, order, req->tp_block_nr);
4275 out:
4276 release_sock(sk);
4277 return err;
4278 }
4279
4280 static int packet_mmap(struct file *file, struct socket *sock,
4281 struct vm_area_struct *vma)
4282 {
4283 struct sock *sk = sock->sk;
4284 struct packet_sock *po = pkt_sk(sk);
4285 unsigned long size, expected_size;
4286 struct packet_ring_buffer *rb;
4287 unsigned long start;
4288 int err = -EINVAL;
4289 int i;
4290
4291 if (vma->vm_pgoff)
4292 return -EINVAL;
4293
4294 mutex_lock(&po->pg_vec_lock);
4295
4296 expected_size = 0;
4297 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4298 if (rb->pg_vec) {
4299 expected_size += rb->pg_vec_len
4300 * rb->pg_vec_pages
4301 * PAGE_SIZE;
4302 }
4303 }
4304
4305 if (expected_size == 0)
4306 goto out;
4307
4308 size = vma->vm_end - vma->vm_start;
4309 if (size != expected_size)
4310 goto out;
4311
4312 start = vma->vm_start;
4313 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4314 if (rb->pg_vec == NULL)
4315 continue;
4316
4317 for (i = 0; i < rb->pg_vec_len; i++) {
4318 struct page *page;
4319 void *kaddr = rb->pg_vec[i].buffer;
4320 int pg_num;
4321
4322 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4323 page = pgv_to_page(kaddr);
4324 err = vm_insert_page(vma, start, page);
4325 if (unlikely(err))
4326 goto out;
4327 start += PAGE_SIZE;
4328 kaddr += PAGE_SIZE;
4329 }
4330 }
4331 }
4332
4333 atomic_inc(&po->mapped);
4334 vma->vm_ops = &packet_mmap_ops;
4335 err = 0;
4336
4337 out:
4338 mutex_unlock(&po->pg_vec_lock);
4339 return err;
4340 }
4341
4342 static const struct proto_ops packet_ops_spkt = {
4343 .family = PF_PACKET,
4344 .owner = THIS_MODULE,
4345 .release = packet_release,
4346 .bind = packet_bind_spkt,
4347 .connect = sock_no_connect,
4348 .socketpair = sock_no_socketpair,
4349 .accept = sock_no_accept,
4350 .getname = packet_getname_spkt,
4351 .poll = datagram_poll,
4352 .ioctl = packet_ioctl,
4353 .listen = sock_no_listen,
4354 .shutdown = sock_no_shutdown,
4355 .setsockopt = sock_no_setsockopt,
4356 .getsockopt = sock_no_getsockopt,
4357 .sendmsg = packet_sendmsg_spkt,
4358 .recvmsg = packet_recvmsg,
4359 .mmap = sock_no_mmap,
4360 .sendpage = sock_no_sendpage,
4361 };
4362
4363 static const struct proto_ops packet_ops = {
4364 .family = PF_PACKET,
4365 .owner = THIS_MODULE,
4366 .release = packet_release,
4367 .bind = packet_bind,
4368 .connect = sock_no_connect,
4369 .socketpair = sock_no_socketpair,
4370 .accept = sock_no_accept,
4371 .getname = packet_getname,
4372 .poll = packet_poll,
4373 .ioctl = packet_ioctl,
4374 .listen = sock_no_listen,
4375 .shutdown = sock_no_shutdown,
4376 .setsockopt = packet_setsockopt,
4377 .getsockopt = packet_getsockopt,
4378 #ifdef CONFIG_COMPAT
4379 .compat_setsockopt = compat_packet_setsockopt,
4380 #endif
4381 .sendmsg = packet_sendmsg,
4382 .recvmsg = packet_recvmsg,
4383 .mmap = packet_mmap,
4384 .sendpage = sock_no_sendpage,
4385 };
4386
4387 static const struct net_proto_family packet_family_ops = {
4388 .family = PF_PACKET,
4389 .create = packet_create,
4390 .owner = THIS_MODULE,
4391 };
4392
4393 static struct notifier_block packet_netdev_notifier = {
4394 .notifier_call = packet_notifier,
4395 };
4396
4397 #ifdef CONFIG_PROC_FS
4398
4399 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4400 __acquires(RCU)
4401 {
4402 struct net *net = seq_file_net(seq);
4403
4404 rcu_read_lock();
4405 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4406 }
4407
4408 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4409 {
4410 struct net *net = seq_file_net(seq);
4411 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4412 }
4413
4414 static void packet_seq_stop(struct seq_file *seq, void *v)
4415 __releases(RCU)
4416 {
4417 rcu_read_unlock();
4418 }
4419
4420 static int packet_seq_show(struct seq_file *seq, void *v)
4421 {
4422 if (v == SEQ_START_TOKEN)
4423 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4424 else {
4425 struct sock *s = sk_entry(v);
4426 const struct packet_sock *po = pkt_sk(s);
4427
4428 seq_printf(seq,
4429 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4430 s,
4431 atomic_read(&s->sk_refcnt),
4432 s->sk_type,
4433 ntohs(po->num),
4434 po->ifindex,
4435 po->running,
4436 atomic_read(&s->sk_rmem_alloc),
4437 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4438 sock_i_ino(s));
4439 }
4440
4441 return 0;
4442 }
4443
4444 static const struct seq_operations packet_seq_ops = {
4445 .start = packet_seq_start,
4446 .next = packet_seq_next,
4447 .stop = packet_seq_stop,
4448 .show = packet_seq_show,
4449 };
4450
4451 static int packet_seq_open(struct inode *inode, struct file *file)
4452 {
4453 return seq_open_net(inode, file, &packet_seq_ops,
4454 sizeof(struct seq_net_private));
4455 }
4456
4457 static const struct file_operations packet_seq_fops = {
4458 .owner = THIS_MODULE,
4459 .open = packet_seq_open,
4460 .read = seq_read,
4461 .llseek = seq_lseek,
4462 .release = seq_release_net,
4463 };
4464
4465 #endif
4466
4467 static int __net_init packet_net_init(struct net *net)
4468 {
4469 mutex_init(&net->packet.sklist_lock);
4470 INIT_HLIST_HEAD(&net->packet.sklist);
4471
4472 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4473 return -ENOMEM;
4474
4475 return 0;
4476 }
4477
4478 static void __net_exit packet_net_exit(struct net *net)
4479 {
4480 remove_proc_entry("packet", net->proc_net);
4481 }
4482
4483 static struct pernet_operations packet_net_ops = {
4484 .init = packet_net_init,
4485 .exit = packet_net_exit,
4486 };
4487
4488
4489 static void __exit packet_exit(void)
4490 {
4491 unregister_netdevice_notifier(&packet_netdev_notifier);
4492 unregister_pernet_subsys(&packet_net_ops);
4493 sock_unregister(PF_PACKET);
4494 proto_unregister(&packet_proto);
4495 }
4496
4497 static int __init packet_init(void)
4498 {
4499 int rc = proto_register(&packet_proto, 0);
4500
4501 if (rc != 0)
4502 goto out;
4503
4504 sock_register(&packet_family_ops);
4505 register_pernet_subsys(&packet_net_ops);
4506 register_netdevice_notifier(&packet_netdev_notifier);
4507 out:
4508 return rc;
4509 }
4510
4511 module_init(packet_init);
4512 module_exit(packet_exit);
4513 MODULE_LICENSE("GPL");
4514 MODULE_ALIAS_NETPROTO(PF_PACKET);