]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/sctp/socket.c
6932cf34fea86344bdee9b8dd0f88a4372e26f9c
[mirror_ubuntu-zesty-kernel.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/ip.h>
61 #include <linux/capability.h>
62 #include <linux/fcntl.h>
63 #include <linux/poll.h>
64 #include <linux/init.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 struct sctp_association *, sctp_socket_type_t);
104
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108
109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 sctp_memory_pressure = 1;
112 }
113
114
115 /* Get the sndbuf space available at the time on the association. */
116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 int amt;
119
120 if (asoc->ep->sndbuf_policy)
121 amt = asoc->sndbuf_used;
122 else
123 amt = sk_wmem_alloc_get(asoc->base.sk);
124
125 if (amt >= asoc->base.sk->sk_sndbuf) {
126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 amt = 0;
128 else {
129 amt = sk_stream_wspace(asoc->base.sk);
130 if (amt < 0)
131 amt = 0;
132 }
133 } else {
134 amt = asoc->base.sk->sk_sndbuf - amt;
135 }
136 return amt;
137 }
138
139 /* Increment the used sndbuf space count of the corresponding association by
140 * the size of the outgoing data chunk.
141 * Also, set the skb destructor for sndbuf accounting later.
142 *
143 * Since it is always 1-1 between chunk and skb, and also a new skb is always
144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145 * destructor in the data chunk skb for the purpose of the sndbuf space
146 * tracking.
147 */
148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 struct sctp_association *asoc = chunk->asoc;
151 struct sock *sk = asoc->base.sk;
152
153 /* The sndbuf space is tracked per association. */
154 sctp_association_hold(asoc);
155
156 skb_set_owner_w(chunk->skb, sk);
157
158 chunk->skb->destructor = sctp_wfree;
159 /* Save the chunk pointer in skb for sctp_wfree to use later. */
160 skb_shinfo(chunk->skb)->destructor_arg = chunk;
161
162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 sizeof(struct sk_buff) +
164 sizeof(struct sctp_chunk);
165
166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 sk->sk_wmem_queued += chunk->skb->truesize;
168 sk_mem_charge(sk, chunk->skb->truesize);
169 }
170
171 /* Verify that this is a valid address. */
172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 int len)
174 {
175 struct sctp_af *af;
176
177 /* Verify basic sockaddr. */
178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 if (!af)
180 return -EINVAL;
181
182 /* Is this a valid SCTP address? */
183 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 return -EINVAL;
185
186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 return -EINVAL;
188
189 return 0;
190 }
191
192 /* Look up the association by its id. If this is not a UDP-style
193 * socket, the ID field is always ignored.
194 */
195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 struct sctp_association *asoc = NULL;
198
199 /* If this is not a UDP-style socket, assoc id should be ignored. */
200 if (!sctp_style(sk, UDP)) {
201 /* Return NULL if the socket state is not ESTABLISHED. It
202 * could be a TCP-style listening socket or a socket which
203 * hasn't yet called connect() to establish an association.
204 */
205 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
206 return NULL;
207
208 /* Get the first and the only association from the list. */
209 if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 struct sctp_association, asocs);
212 return asoc;
213 }
214
215 /* Otherwise this is a UDP-style socket. */
216 if (!id || (id == (sctp_assoc_t)-1))
217 return NULL;
218
219 spin_lock_bh(&sctp_assocs_id_lock);
220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 spin_unlock_bh(&sctp_assocs_id_lock);
222
223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 return NULL;
225
226 return asoc;
227 }
228
229 /* Look up the transport from an address and an assoc id. If both address and
230 * id are specified, the associations matching the address and the id should be
231 * the same.
232 */
233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 struct sockaddr_storage *addr,
235 sctp_assoc_t id)
236 {
237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
239 union sctp_addr *laddr = (union sctp_addr *)addr;
240 struct sctp_transport *transport;
241
242 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
243 return NULL;
244
245 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
246 laddr,
247 &transport);
248
249 if (!addr_asoc)
250 return NULL;
251
252 id_asoc = sctp_id2assoc(sk, id);
253 if (id_asoc && (id_asoc != addr_asoc))
254 return NULL;
255
256 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
257 (union sctp_addr *)addr);
258
259 return transport;
260 }
261
262 /* API 3.1.2 bind() - UDP Style Syntax
263 * The syntax of bind() is,
264 *
265 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
266 *
267 * sd - the socket descriptor returned by socket().
268 * addr - the address structure (struct sockaddr_in or struct
269 * sockaddr_in6 [RFC 2553]),
270 * addr_len - the size of the address structure.
271 */
272 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
273 {
274 int retval = 0;
275
276 lock_sock(sk);
277
278 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
279 addr, addr_len);
280
281 /* Disallow binding twice. */
282 if (!sctp_sk(sk)->ep->base.bind_addr.port)
283 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
284 addr_len);
285 else
286 retval = -EINVAL;
287
288 release_sock(sk);
289
290 return retval;
291 }
292
293 static long sctp_get_port_local(struct sock *, union sctp_addr *);
294
295 /* Verify this is a valid sockaddr. */
296 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
297 union sctp_addr *addr, int len)
298 {
299 struct sctp_af *af;
300
301 /* Check minimum size. */
302 if (len < sizeof (struct sockaddr))
303 return NULL;
304
305 /* V4 mapped address are really of AF_INET family */
306 if (addr->sa.sa_family == AF_INET6 &&
307 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
308 if (!opt->pf->af_supported(AF_INET, opt))
309 return NULL;
310 } else {
311 /* Does this PF support this AF? */
312 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 return NULL;
314 }
315
316 /* If we get this far, af is valid. */
317 af = sctp_get_af_specific(addr->sa.sa_family);
318
319 if (len < af->sockaddr_len)
320 return NULL;
321
322 return af;
323 }
324
325 /* Bind a local address either to an endpoint or to an association. */
326 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
327 {
328 struct net *net = sock_net(sk);
329 struct sctp_sock *sp = sctp_sk(sk);
330 struct sctp_endpoint *ep = sp->ep;
331 struct sctp_bind_addr *bp = &ep->base.bind_addr;
332 struct sctp_af *af;
333 unsigned short snum;
334 int ret = 0;
335
336 /* Common sockaddr verification. */
337 af = sctp_sockaddr_af(sp, addr, len);
338 if (!af) {
339 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
340 __func__, sk, addr, len);
341 return -EINVAL;
342 }
343
344 snum = ntohs(addr->v4.sin_port);
345
346 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
347 __func__, sk, &addr->sa, bp->port, snum, len);
348
349 /* PF specific bind() address verification. */
350 if (!sp->pf->bind_verify(sp, addr))
351 return -EADDRNOTAVAIL;
352
353 /* We must either be unbound, or bind to the same port.
354 * It's OK to allow 0 ports if we are already bound.
355 * We'll just inhert an already bound port in this case
356 */
357 if (bp->port) {
358 if (!snum)
359 snum = bp->port;
360 else if (snum != bp->port) {
361 pr_debug("%s: new port %d doesn't match existing port "
362 "%d\n", __func__, snum, bp->port);
363 return -EINVAL;
364 }
365 }
366
367 if (snum && snum < PROT_SOCK &&
368 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
369 return -EACCES;
370
371 /* See if the address matches any of the addresses we may have
372 * already bound before checking against other endpoints.
373 */
374 if (sctp_bind_addr_match(bp, addr, sp))
375 return -EINVAL;
376
377 /* Make sure we are allowed to bind here.
378 * The function sctp_get_port_local() does duplicate address
379 * detection.
380 */
381 addr->v4.sin_port = htons(snum);
382 if ((ret = sctp_get_port_local(sk, addr))) {
383 return -EADDRINUSE;
384 }
385
386 /* Refresh ephemeral port. */
387 if (!bp->port)
388 bp->port = inet_sk(sk)->inet_num;
389
390 /* Add the address to the bind address list.
391 * Use GFP_ATOMIC since BHs will be disabled.
392 */
393 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
394 SCTP_ADDR_SRC, GFP_ATOMIC);
395
396 /* Copy back into socket for getsockname() use. */
397 if (!ret) {
398 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
399 sp->pf->to_sk_saddr(addr, sk);
400 }
401
402 return ret;
403 }
404
405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
406 *
407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
408 * at any one time. If a sender, after sending an ASCONF chunk, decides
409 * it needs to transfer another ASCONF Chunk, it MUST wait until the
410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
411 * subsequent ASCONF. Note this restriction binds each side, so at any
412 * time two ASCONF may be in-transit on any given association (one sent
413 * from each endpoint).
414 */
415 static int sctp_send_asconf(struct sctp_association *asoc,
416 struct sctp_chunk *chunk)
417 {
418 struct net *net = sock_net(asoc->base.sk);
419 int retval = 0;
420
421 /* If there is an outstanding ASCONF chunk, queue it for later
422 * transmission.
423 */
424 if (asoc->addip_last_asconf) {
425 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
426 goto out;
427 }
428
429 /* Hold the chunk until an ASCONF_ACK is received. */
430 sctp_chunk_hold(chunk);
431 retval = sctp_primitive_ASCONF(net, asoc, chunk);
432 if (retval)
433 sctp_chunk_free(chunk);
434 else
435 asoc->addip_last_asconf = chunk;
436
437 out:
438 return retval;
439 }
440
441 /* Add a list of addresses as bind addresses to local endpoint or
442 * association.
443 *
444 * Basically run through each address specified in the addrs/addrcnt
445 * array/length pair, determine if it is IPv6 or IPv4 and call
446 * sctp_do_bind() on it.
447 *
448 * If any of them fails, then the operation will be reversed and the
449 * ones that were added will be removed.
450 *
451 * Only sctp_setsockopt_bindx() is supposed to call this function.
452 */
453 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
454 {
455 int cnt;
456 int retval = 0;
457 void *addr_buf;
458 struct sockaddr *sa_addr;
459 struct sctp_af *af;
460
461 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
462 addrs, addrcnt);
463
464 addr_buf = addrs;
465 for (cnt = 0; cnt < addrcnt; cnt++) {
466 /* The list may contain either IPv4 or IPv6 address;
467 * determine the address length for walking thru the list.
468 */
469 sa_addr = addr_buf;
470 af = sctp_get_af_specific(sa_addr->sa_family);
471 if (!af) {
472 retval = -EINVAL;
473 goto err_bindx_add;
474 }
475
476 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
477 af->sockaddr_len);
478
479 addr_buf += af->sockaddr_len;
480
481 err_bindx_add:
482 if (retval < 0) {
483 /* Failed. Cleanup the ones that have been added */
484 if (cnt > 0)
485 sctp_bindx_rem(sk, addrs, cnt);
486 return retval;
487 }
488 }
489
490 return retval;
491 }
492
493 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
494 * associations that are part of the endpoint indicating that a list of local
495 * addresses are added to the endpoint.
496 *
497 * If any of the addresses is already in the bind address list of the
498 * association, we do not send the chunk for that association. But it will not
499 * affect other associations.
500 *
501 * Only sctp_setsockopt_bindx() is supposed to call this function.
502 */
503 static int sctp_send_asconf_add_ip(struct sock *sk,
504 struct sockaddr *addrs,
505 int addrcnt)
506 {
507 struct net *net = sock_net(sk);
508 struct sctp_sock *sp;
509 struct sctp_endpoint *ep;
510 struct sctp_association *asoc;
511 struct sctp_bind_addr *bp;
512 struct sctp_chunk *chunk;
513 struct sctp_sockaddr_entry *laddr;
514 union sctp_addr *addr;
515 union sctp_addr saveaddr;
516 void *addr_buf;
517 struct sctp_af *af;
518 struct list_head *p;
519 int i;
520 int retval = 0;
521
522 if (!net->sctp.addip_enable)
523 return retval;
524
525 sp = sctp_sk(sk);
526 ep = sp->ep;
527
528 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
529 __func__, sk, addrs, addrcnt);
530
531 list_for_each_entry(asoc, &ep->asocs, asocs) {
532 if (!asoc->peer.asconf_capable)
533 continue;
534
535 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
536 continue;
537
538 if (!sctp_state(asoc, ESTABLISHED))
539 continue;
540
541 /* Check if any address in the packed array of addresses is
542 * in the bind address list of the association. If so,
543 * do not send the asconf chunk to its peer, but continue with
544 * other associations.
545 */
546 addr_buf = addrs;
547 for (i = 0; i < addrcnt; i++) {
548 addr = addr_buf;
549 af = sctp_get_af_specific(addr->v4.sin_family);
550 if (!af) {
551 retval = -EINVAL;
552 goto out;
553 }
554
555 if (sctp_assoc_lookup_laddr(asoc, addr))
556 break;
557
558 addr_buf += af->sockaddr_len;
559 }
560 if (i < addrcnt)
561 continue;
562
563 /* Use the first valid address in bind addr list of
564 * association as Address Parameter of ASCONF CHUNK.
565 */
566 bp = &asoc->base.bind_addr;
567 p = bp->address_list.next;
568 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
569 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
570 addrcnt, SCTP_PARAM_ADD_IP);
571 if (!chunk) {
572 retval = -ENOMEM;
573 goto out;
574 }
575
576 /* Add the new addresses to the bind address list with
577 * use_as_src set to 0.
578 */
579 addr_buf = addrs;
580 for (i = 0; i < addrcnt; i++) {
581 addr = addr_buf;
582 af = sctp_get_af_specific(addr->v4.sin_family);
583 memcpy(&saveaddr, addr, af->sockaddr_len);
584 retval = sctp_add_bind_addr(bp, &saveaddr,
585 sizeof(saveaddr),
586 SCTP_ADDR_NEW, GFP_ATOMIC);
587 addr_buf += af->sockaddr_len;
588 }
589 if (asoc->src_out_of_asoc_ok) {
590 struct sctp_transport *trans;
591
592 list_for_each_entry(trans,
593 &asoc->peer.transport_addr_list, transports) {
594 /* Clear the source and route cache */
595 dst_release(trans->dst);
596 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
597 2*asoc->pathmtu, 4380));
598 trans->ssthresh = asoc->peer.i.a_rwnd;
599 trans->rto = asoc->rto_initial;
600 sctp_max_rto(asoc, trans);
601 trans->rtt = trans->srtt = trans->rttvar = 0;
602 sctp_transport_route(trans, NULL,
603 sctp_sk(asoc->base.sk));
604 }
605 }
606 retval = sctp_send_asconf(asoc, chunk);
607 }
608
609 out:
610 return retval;
611 }
612
613 /* Remove a list of addresses from bind addresses list. Do not remove the
614 * last address.
615 *
616 * Basically run through each address specified in the addrs/addrcnt
617 * array/length pair, determine if it is IPv6 or IPv4 and call
618 * sctp_del_bind() on it.
619 *
620 * If any of them fails, then the operation will be reversed and the
621 * ones that were removed will be added back.
622 *
623 * At least one address has to be left; if only one address is
624 * available, the operation will return -EBUSY.
625 *
626 * Only sctp_setsockopt_bindx() is supposed to call this function.
627 */
628 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
629 {
630 struct sctp_sock *sp = sctp_sk(sk);
631 struct sctp_endpoint *ep = sp->ep;
632 int cnt;
633 struct sctp_bind_addr *bp = &ep->base.bind_addr;
634 int retval = 0;
635 void *addr_buf;
636 union sctp_addr *sa_addr;
637 struct sctp_af *af;
638
639 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
640 __func__, sk, addrs, addrcnt);
641
642 addr_buf = addrs;
643 for (cnt = 0; cnt < addrcnt; cnt++) {
644 /* If the bind address list is empty or if there is only one
645 * bind address, there is nothing more to be removed (we need
646 * at least one address here).
647 */
648 if (list_empty(&bp->address_list) ||
649 (sctp_list_single_entry(&bp->address_list))) {
650 retval = -EBUSY;
651 goto err_bindx_rem;
652 }
653
654 sa_addr = addr_buf;
655 af = sctp_get_af_specific(sa_addr->sa.sa_family);
656 if (!af) {
657 retval = -EINVAL;
658 goto err_bindx_rem;
659 }
660
661 if (!af->addr_valid(sa_addr, sp, NULL)) {
662 retval = -EADDRNOTAVAIL;
663 goto err_bindx_rem;
664 }
665
666 if (sa_addr->v4.sin_port &&
667 sa_addr->v4.sin_port != htons(bp->port)) {
668 retval = -EINVAL;
669 goto err_bindx_rem;
670 }
671
672 if (!sa_addr->v4.sin_port)
673 sa_addr->v4.sin_port = htons(bp->port);
674
675 /* FIXME - There is probably a need to check if sk->sk_saddr and
676 * sk->sk_rcv_addr are currently set to one of the addresses to
677 * be removed. This is something which needs to be looked into
678 * when we are fixing the outstanding issues with multi-homing
679 * socket routing and failover schemes. Refer to comments in
680 * sctp_do_bind(). -daisy
681 */
682 retval = sctp_del_bind_addr(bp, sa_addr);
683
684 addr_buf += af->sockaddr_len;
685 err_bindx_rem:
686 if (retval < 0) {
687 /* Failed. Add the ones that has been removed back */
688 if (cnt > 0)
689 sctp_bindx_add(sk, addrs, cnt);
690 return retval;
691 }
692 }
693
694 return retval;
695 }
696
697 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
698 * the associations that are part of the endpoint indicating that a list of
699 * local addresses are removed from the endpoint.
700 *
701 * If any of the addresses is already in the bind address list of the
702 * association, we do not send the chunk for that association. But it will not
703 * affect other associations.
704 *
705 * Only sctp_setsockopt_bindx() is supposed to call this function.
706 */
707 static int sctp_send_asconf_del_ip(struct sock *sk,
708 struct sockaddr *addrs,
709 int addrcnt)
710 {
711 struct net *net = sock_net(sk);
712 struct sctp_sock *sp;
713 struct sctp_endpoint *ep;
714 struct sctp_association *asoc;
715 struct sctp_transport *transport;
716 struct sctp_bind_addr *bp;
717 struct sctp_chunk *chunk;
718 union sctp_addr *laddr;
719 void *addr_buf;
720 struct sctp_af *af;
721 struct sctp_sockaddr_entry *saddr;
722 int i;
723 int retval = 0;
724 int stored = 0;
725
726 chunk = NULL;
727 if (!net->sctp.addip_enable)
728 return retval;
729
730 sp = sctp_sk(sk);
731 ep = sp->ep;
732
733 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
734 __func__, sk, addrs, addrcnt);
735
736 list_for_each_entry(asoc, &ep->asocs, asocs) {
737
738 if (!asoc->peer.asconf_capable)
739 continue;
740
741 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
742 continue;
743
744 if (!sctp_state(asoc, ESTABLISHED))
745 continue;
746
747 /* Check if any address in the packed array of addresses is
748 * not present in the bind address list of the association.
749 * If so, do not send the asconf chunk to its peer, but
750 * continue with other associations.
751 */
752 addr_buf = addrs;
753 for (i = 0; i < addrcnt; i++) {
754 laddr = addr_buf;
755 af = sctp_get_af_specific(laddr->v4.sin_family);
756 if (!af) {
757 retval = -EINVAL;
758 goto out;
759 }
760
761 if (!sctp_assoc_lookup_laddr(asoc, laddr))
762 break;
763
764 addr_buf += af->sockaddr_len;
765 }
766 if (i < addrcnt)
767 continue;
768
769 /* Find one address in the association's bind address list
770 * that is not in the packed array of addresses. This is to
771 * make sure that we do not delete all the addresses in the
772 * association.
773 */
774 bp = &asoc->base.bind_addr;
775 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
776 addrcnt, sp);
777 if ((laddr == NULL) && (addrcnt == 1)) {
778 if (asoc->asconf_addr_del_pending)
779 continue;
780 asoc->asconf_addr_del_pending =
781 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
782 if (asoc->asconf_addr_del_pending == NULL) {
783 retval = -ENOMEM;
784 goto out;
785 }
786 asoc->asconf_addr_del_pending->sa.sa_family =
787 addrs->sa_family;
788 asoc->asconf_addr_del_pending->v4.sin_port =
789 htons(bp->port);
790 if (addrs->sa_family == AF_INET) {
791 struct sockaddr_in *sin;
792
793 sin = (struct sockaddr_in *)addrs;
794 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
795 } else if (addrs->sa_family == AF_INET6) {
796 struct sockaddr_in6 *sin6;
797
798 sin6 = (struct sockaddr_in6 *)addrs;
799 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
800 }
801
802 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
803 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
804 asoc->asconf_addr_del_pending);
805
806 asoc->src_out_of_asoc_ok = 1;
807 stored = 1;
808 goto skip_mkasconf;
809 }
810
811 if (laddr == NULL)
812 return -EINVAL;
813
814 /* We do not need RCU protection throughout this loop
815 * because this is done under a socket lock from the
816 * setsockopt call.
817 */
818 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
819 SCTP_PARAM_DEL_IP);
820 if (!chunk) {
821 retval = -ENOMEM;
822 goto out;
823 }
824
825 skip_mkasconf:
826 /* Reset use_as_src flag for the addresses in the bind address
827 * list that are to be deleted.
828 */
829 addr_buf = addrs;
830 for (i = 0; i < addrcnt; i++) {
831 laddr = addr_buf;
832 af = sctp_get_af_specific(laddr->v4.sin_family);
833 list_for_each_entry(saddr, &bp->address_list, list) {
834 if (sctp_cmp_addr_exact(&saddr->a, laddr))
835 saddr->state = SCTP_ADDR_DEL;
836 }
837 addr_buf += af->sockaddr_len;
838 }
839
840 /* Update the route and saddr entries for all the transports
841 * as some of the addresses in the bind address list are
842 * about to be deleted and cannot be used as source addresses.
843 */
844 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
845 transports) {
846 dst_release(transport->dst);
847 sctp_transport_route(transport, NULL,
848 sctp_sk(asoc->base.sk));
849 }
850
851 if (stored)
852 /* We don't need to transmit ASCONF */
853 continue;
854 retval = sctp_send_asconf(asoc, chunk);
855 }
856 out:
857 return retval;
858 }
859
860 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
861 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
862 {
863 struct sock *sk = sctp_opt2sk(sp);
864 union sctp_addr *addr;
865 struct sctp_af *af;
866
867 /* It is safe to write port space in caller. */
868 addr = &addrw->a;
869 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
870 af = sctp_get_af_specific(addr->sa.sa_family);
871 if (!af)
872 return -EINVAL;
873 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
874 return -EINVAL;
875
876 if (addrw->state == SCTP_ADDR_NEW)
877 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
878 else
879 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
880 }
881
882 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
883 *
884 * API 8.1
885 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
886 * int flags);
887 *
888 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
889 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
890 * or IPv6 addresses.
891 *
892 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
893 * Section 3.1.2 for this usage.
894 *
895 * addrs is a pointer to an array of one or more socket addresses. Each
896 * address is contained in its appropriate structure (i.e. struct
897 * sockaddr_in or struct sockaddr_in6) the family of the address type
898 * must be used to distinguish the address length (note that this
899 * representation is termed a "packed array" of addresses). The caller
900 * specifies the number of addresses in the array with addrcnt.
901 *
902 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
903 * -1, and sets errno to the appropriate error code.
904 *
905 * For SCTP, the port given in each socket address must be the same, or
906 * sctp_bindx() will fail, setting errno to EINVAL.
907 *
908 * The flags parameter is formed from the bitwise OR of zero or more of
909 * the following currently defined flags:
910 *
911 * SCTP_BINDX_ADD_ADDR
912 *
913 * SCTP_BINDX_REM_ADDR
914 *
915 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
916 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
917 * addresses from the association. The two flags are mutually exclusive;
918 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
919 * not remove all addresses from an association; sctp_bindx() will
920 * reject such an attempt with EINVAL.
921 *
922 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
923 * additional addresses with an endpoint after calling bind(). Or use
924 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
925 * socket is associated with so that no new association accepted will be
926 * associated with those addresses. If the endpoint supports dynamic
927 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
928 * endpoint to send the appropriate message to the peer to change the
929 * peers address lists.
930 *
931 * Adding and removing addresses from a connected association is
932 * optional functionality. Implementations that do not support this
933 * functionality should return EOPNOTSUPP.
934 *
935 * Basically do nothing but copying the addresses from user to kernel
936 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
937 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
938 * from userspace.
939 *
940 * We don't use copy_from_user() for optimization: we first do the
941 * sanity checks (buffer size -fast- and access check-healthy
942 * pointer); if all of those succeed, then we can alloc the memory
943 * (expensive operation) needed to copy the data to kernel. Then we do
944 * the copying without checking the user space area
945 * (__copy_from_user()).
946 *
947 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
948 * it.
949 *
950 * sk The sk of the socket
951 * addrs The pointer to the addresses in user land
952 * addrssize Size of the addrs buffer
953 * op Operation to perform (add or remove, see the flags of
954 * sctp_bindx)
955 *
956 * Returns 0 if ok, <0 errno code on error.
957 */
958 static int sctp_setsockopt_bindx(struct sock *sk,
959 struct sockaddr __user *addrs,
960 int addrs_size, int op)
961 {
962 struct sockaddr *kaddrs;
963 int err;
964 int addrcnt = 0;
965 int walk_size = 0;
966 struct sockaddr *sa_addr;
967 void *addr_buf;
968 struct sctp_af *af;
969
970 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
971 __func__, sk, addrs, addrs_size, op);
972
973 if (unlikely(addrs_size <= 0))
974 return -EINVAL;
975
976 /* Check the user passed a healthy pointer. */
977 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
978 return -EFAULT;
979
980 /* Alloc space for the address array in kernel memory. */
981 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
982 if (unlikely(!kaddrs))
983 return -ENOMEM;
984
985 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
986 kfree(kaddrs);
987 return -EFAULT;
988 }
989
990 /* Walk through the addrs buffer and count the number of addresses. */
991 addr_buf = kaddrs;
992 while (walk_size < addrs_size) {
993 if (walk_size + sizeof(sa_family_t) > addrs_size) {
994 kfree(kaddrs);
995 return -EINVAL;
996 }
997
998 sa_addr = addr_buf;
999 af = sctp_get_af_specific(sa_addr->sa_family);
1000
1001 /* If the address family is not supported or if this address
1002 * causes the address buffer to overflow return EINVAL.
1003 */
1004 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1005 kfree(kaddrs);
1006 return -EINVAL;
1007 }
1008 addrcnt++;
1009 addr_buf += af->sockaddr_len;
1010 walk_size += af->sockaddr_len;
1011 }
1012
1013 /* Do the work. */
1014 switch (op) {
1015 case SCTP_BINDX_ADD_ADDR:
1016 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1017 if (err)
1018 goto out;
1019 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1020 break;
1021
1022 case SCTP_BINDX_REM_ADDR:
1023 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1024 if (err)
1025 goto out;
1026 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1027 break;
1028
1029 default:
1030 err = -EINVAL;
1031 break;
1032 }
1033
1034 out:
1035 kfree(kaddrs);
1036
1037 return err;
1038 }
1039
1040 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1041 *
1042 * Common routine for handling connect() and sctp_connectx().
1043 * Connect will come in with just a single address.
1044 */
1045 static int __sctp_connect(struct sock *sk,
1046 struct sockaddr *kaddrs,
1047 int addrs_size,
1048 sctp_assoc_t *assoc_id)
1049 {
1050 struct net *net = sock_net(sk);
1051 struct sctp_sock *sp;
1052 struct sctp_endpoint *ep;
1053 struct sctp_association *asoc = NULL;
1054 struct sctp_association *asoc2;
1055 struct sctp_transport *transport;
1056 union sctp_addr to;
1057 sctp_scope_t scope;
1058 long timeo;
1059 int err = 0;
1060 int addrcnt = 0;
1061 int walk_size = 0;
1062 union sctp_addr *sa_addr = NULL;
1063 void *addr_buf;
1064 unsigned short port;
1065 unsigned int f_flags = 0;
1066
1067 sp = sctp_sk(sk);
1068 ep = sp->ep;
1069
1070 /* connect() cannot be done on a socket that is already in ESTABLISHED
1071 * state - UDP-style peeled off socket or a TCP-style socket that
1072 * is already connected.
1073 * It cannot be done even on a TCP-style listening socket.
1074 */
1075 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1076 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1077 err = -EISCONN;
1078 goto out_free;
1079 }
1080
1081 /* Walk through the addrs buffer and count the number of addresses. */
1082 addr_buf = kaddrs;
1083 while (walk_size < addrs_size) {
1084 struct sctp_af *af;
1085
1086 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1087 err = -EINVAL;
1088 goto out_free;
1089 }
1090
1091 sa_addr = addr_buf;
1092 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1093
1094 /* If the address family is not supported or if this address
1095 * causes the address buffer to overflow return EINVAL.
1096 */
1097 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1098 err = -EINVAL;
1099 goto out_free;
1100 }
1101
1102 port = ntohs(sa_addr->v4.sin_port);
1103
1104 /* Save current address so we can work with it */
1105 memcpy(&to, sa_addr, af->sockaddr_len);
1106
1107 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1108 if (err)
1109 goto out_free;
1110
1111 /* Make sure the destination port is correctly set
1112 * in all addresses.
1113 */
1114 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1115 err = -EINVAL;
1116 goto out_free;
1117 }
1118
1119 /* Check if there already is a matching association on the
1120 * endpoint (other than the one created here).
1121 */
1122 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1123 if (asoc2 && asoc2 != asoc) {
1124 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1125 err = -EISCONN;
1126 else
1127 err = -EALREADY;
1128 goto out_free;
1129 }
1130
1131 /* If we could not find a matching association on the endpoint,
1132 * make sure that there is no peeled-off association matching
1133 * the peer address even on another socket.
1134 */
1135 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1136 err = -EADDRNOTAVAIL;
1137 goto out_free;
1138 }
1139
1140 if (!asoc) {
1141 /* If a bind() or sctp_bindx() is not called prior to
1142 * an sctp_connectx() call, the system picks an
1143 * ephemeral port and will choose an address set
1144 * equivalent to binding with a wildcard address.
1145 */
1146 if (!ep->base.bind_addr.port) {
1147 if (sctp_autobind(sk)) {
1148 err = -EAGAIN;
1149 goto out_free;
1150 }
1151 } else {
1152 /*
1153 * If an unprivileged user inherits a 1-many
1154 * style socket with open associations on a
1155 * privileged port, it MAY be permitted to
1156 * accept new associations, but it SHOULD NOT
1157 * be permitted to open new associations.
1158 */
1159 if (ep->base.bind_addr.port < PROT_SOCK &&
1160 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1161 err = -EACCES;
1162 goto out_free;
1163 }
1164 }
1165
1166 scope = sctp_scope(&to);
1167 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1168 if (!asoc) {
1169 err = -ENOMEM;
1170 goto out_free;
1171 }
1172
1173 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1174 GFP_KERNEL);
1175 if (err < 0) {
1176 goto out_free;
1177 }
1178
1179 }
1180
1181 /* Prime the peer's transport structures. */
1182 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1183 SCTP_UNKNOWN);
1184 if (!transport) {
1185 err = -ENOMEM;
1186 goto out_free;
1187 }
1188
1189 addrcnt++;
1190 addr_buf += af->sockaddr_len;
1191 walk_size += af->sockaddr_len;
1192 }
1193
1194 /* In case the user of sctp_connectx() wants an association
1195 * id back, assign one now.
1196 */
1197 if (assoc_id) {
1198 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1199 if (err < 0)
1200 goto out_free;
1201 }
1202
1203 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1204 if (err < 0) {
1205 goto out_free;
1206 }
1207
1208 /* Initialize sk's dport and daddr for getpeername() */
1209 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1210 sp->pf->to_sk_daddr(sa_addr, sk);
1211 sk->sk_err = 0;
1212
1213 /* in-kernel sockets don't generally have a file allocated to them
1214 * if all they do is call sock_create_kern().
1215 */
1216 if (sk->sk_socket->file)
1217 f_flags = sk->sk_socket->file->f_flags;
1218
1219 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1220
1221 if (assoc_id)
1222 *assoc_id = asoc->assoc_id;
1223 err = sctp_wait_for_connect(asoc, &timeo);
1224 /* Note: the asoc may be freed after the return of
1225 * sctp_wait_for_connect.
1226 */
1227
1228 /* Don't free association on exit. */
1229 asoc = NULL;
1230
1231 out_free:
1232 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1233 __func__, asoc, kaddrs, err);
1234
1235 if (asoc) {
1236 /* sctp_primitive_ASSOCIATE may have added this association
1237 * To the hash table, try to unhash it, just in case, its a noop
1238 * if it wasn't hashed so we're safe
1239 */
1240 sctp_association_free(asoc);
1241 }
1242 return err;
1243 }
1244
1245 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1246 *
1247 * API 8.9
1248 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1249 * sctp_assoc_t *asoc);
1250 *
1251 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1252 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1253 * or IPv6 addresses.
1254 *
1255 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1256 * Section 3.1.2 for this usage.
1257 *
1258 * addrs is a pointer to an array of one or more socket addresses. Each
1259 * address is contained in its appropriate structure (i.e. struct
1260 * sockaddr_in or struct sockaddr_in6) the family of the address type
1261 * must be used to distengish the address length (note that this
1262 * representation is termed a "packed array" of addresses). The caller
1263 * specifies the number of addresses in the array with addrcnt.
1264 *
1265 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1266 * the association id of the new association. On failure, sctp_connectx()
1267 * returns -1, and sets errno to the appropriate error code. The assoc_id
1268 * is not touched by the kernel.
1269 *
1270 * For SCTP, the port given in each socket address must be the same, or
1271 * sctp_connectx() will fail, setting errno to EINVAL.
1272 *
1273 * An application can use sctp_connectx to initiate an association with
1274 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1275 * allows a caller to specify multiple addresses at which a peer can be
1276 * reached. The way the SCTP stack uses the list of addresses to set up
1277 * the association is implementation dependent. This function only
1278 * specifies that the stack will try to make use of all the addresses in
1279 * the list when needed.
1280 *
1281 * Note that the list of addresses passed in is only used for setting up
1282 * the association. It does not necessarily equal the set of addresses
1283 * the peer uses for the resulting association. If the caller wants to
1284 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1285 * retrieve them after the association has been set up.
1286 *
1287 * Basically do nothing but copying the addresses from user to kernel
1288 * land and invoking either sctp_connectx(). This is used for tunneling
1289 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1290 *
1291 * We don't use copy_from_user() for optimization: we first do the
1292 * sanity checks (buffer size -fast- and access check-healthy
1293 * pointer); if all of those succeed, then we can alloc the memory
1294 * (expensive operation) needed to copy the data to kernel. Then we do
1295 * the copying without checking the user space area
1296 * (__copy_from_user()).
1297 *
1298 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1299 * it.
1300 *
1301 * sk The sk of the socket
1302 * addrs The pointer to the addresses in user land
1303 * addrssize Size of the addrs buffer
1304 *
1305 * Returns >=0 if ok, <0 errno code on error.
1306 */
1307 static int __sctp_setsockopt_connectx(struct sock *sk,
1308 struct sockaddr __user *addrs,
1309 int addrs_size,
1310 sctp_assoc_t *assoc_id)
1311 {
1312 struct sockaddr *kaddrs;
1313 gfp_t gfp = GFP_KERNEL;
1314 int err = 0;
1315
1316 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1317 __func__, sk, addrs, addrs_size);
1318
1319 if (unlikely(addrs_size <= 0))
1320 return -EINVAL;
1321
1322 /* Check the user passed a healthy pointer. */
1323 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1324 return -EFAULT;
1325
1326 /* Alloc space for the address array in kernel memory. */
1327 if (sk->sk_socket->file)
1328 gfp = GFP_USER | __GFP_NOWARN;
1329 kaddrs = kmalloc(addrs_size, gfp);
1330 if (unlikely(!kaddrs))
1331 return -ENOMEM;
1332
1333 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1334 err = -EFAULT;
1335 } else {
1336 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1337 }
1338
1339 kfree(kaddrs);
1340
1341 return err;
1342 }
1343
1344 /*
1345 * This is an older interface. It's kept for backward compatibility
1346 * to the option that doesn't provide association id.
1347 */
1348 static int sctp_setsockopt_connectx_old(struct sock *sk,
1349 struct sockaddr __user *addrs,
1350 int addrs_size)
1351 {
1352 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1353 }
1354
1355 /*
1356 * New interface for the API. The since the API is done with a socket
1357 * option, to make it simple we feed back the association id is as a return
1358 * indication to the call. Error is always negative and association id is
1359 * always positive.
1360 */
1361 static int sctp_setsockopt_connectx(struct sock *sk,
1362 struct sockaddr __user *addrs,
1363 int addrs_size)
1364 {
1365 sctp_assoc_t assoc_id = 0;
1366 int err = 0;
1367
1368 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1369
1370 if (err)
1371 return err;
1372 else
1373 return assoc_id;
1374 }
1375
1376 /*
1377 * New (hopefully final) interface for the API.
1378 * We use the sctp_getaddrs_old structure so that use-space library
1379 * can avoid any unnecessary allocations. The only different part
1380 * is that we store the actual length of the address buffer into the
1381 * addrs_num structure member. That way we can re-use the existing
1382 * code.
1383 */
1384 #ifdef CONFIG_COMPAT
1385 struct compat_sctp_getaddrs_old {
1386 sctp_assoc_t assoc_id;
1387 s32 addr_num;
1388 compat_uptr_t addrs; /* struct sockaddr * */
1389 };
1390 #endif
1391
1392 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1393 char __user *optval,
1394 int __user *optlen)
1395 {
1396 struct sctp_getaddrs_old param;
1397 sctp_assoc_t assoc_id = 0;
1398 int err = 0;
1399
1400 #ifdef CONFIG_COMPAT
1401 if (in_compat_syscall()) {
1402 struct compat_sctp_getaddrs_old param32;
1403
1404 if (len < sizeof(param32))
1405 return -EINVAL;
1406 if (copy_from_user(&param32, optval, sizeof(param32)))
1407 return -EFAULT;
1408
1409 param.assoc_id = param32.assoc_id;
1410 param.addr_num = param32.addr_num;
1411 param.addrs = compat_ptr(param32.addrs);
1412 } else
1413 #endif
1414 {
1415 if (len < sizeof(param))
1416 return -EINVAL;
1417 if (copy_from_user(&param, optval, sizeof(param)))
1418 return -EFAULT;
1419 }
1420
1421 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1422 param.addrs, param.addr_num,
1423 &assoc_id);
1424 if (err == 0 || err == -EINPROGRESS) {
1425 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1426 return -EFAULT;
1427 if (put_user(sizeof(assoc_id), optlen))
1428 return -EFAULT;
1429 }
1430
1431 return err;
1432 }
1433
1434 /* API 3.1.4 close() - UDP Style Syntax
1435 * Applications use close() to perform graceful shutdown (as described in
1436 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1437 * by a UDP-style socket.
1438 *
1439 * The syntax is
1440 *
1441 * ret = close(int sd);
1442 *
1443 * sd - the socket descriptor of the associations to be closed.
1444 *
1445 * To gracefully shutdown a specific association represented by the
1446 * UDP-style socket, an application should use the sendmsg() call,
1447 * passing no user data, but including the appropriate flag in the
1448 * ancillary data (see Section xxxx).
1449 *
1450 * If sd in the close() call is a branched-off socket representing only
1451 * one association, the shutdown is performed on that association only.
1452 *
1453 * 4.1.6 close() - TCP Style Syntax
1454 *
1455 * Applications use close() to gracefully close down an association.
1456 *
1457 * The syntax is:
1458 *
1459 * int close(int sd);
1460 *
1461 * sd - the socket descriptor of the association to be closed.
1462 *
1463 * After an application calls close() on a socket descriptor, no further
1464 * socket operations will succeed on that descriptor.
1465 *
1466 * API 7.1.4 SO_LINGER
1467 *
1468 * An application using the TCP-style socket can use this option to
1469 * perform the SCTP ABORT primitive. The linger option structure is:
1470 *
1471 * struct linger {
1472 * int l_onoff; // option on/off
1473 * int l_linger; // linger time
1474 * };
1475 *
1476 * To enable the option, set l_onoff to 1. If the l_linger value is set
1477 * to 0, calling close() is the same as the ABORT primitive. If the
1478 * value is set to a negative value, the setsockopt() call will return
1479 * an error. If the value is set to a positive value linger_time, the
1480 * close() can be blocked for at most linger_time ms. If the graceful
1481 * shutdown phase does not finish during this period, close() will
1482 * return but the graceful shutdown phase continues in the system.
1483 */
1484 static void sctp_close(struct sock *sk, long timeout)
1485 {
1486 struct net *net = sock_net(sk);
1487 struct sctp_endpoint *ep;
1488 struct sctp_association *asoc;
1489 struct list_head *pos, *temp;
1490 unsigned int data_was_unread;
1491
1492 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1493
1494 lock_sock(sk);
1495 sk->sk_shutdown = SHUTDOWN_MASK;
1496 sk->sk_state = SCTP_SS_CLOSING;
1497
1498 ep = sctp_sk(sk)->ep;
1499
1500 /* Clean up any skbs sitting on the receive queue. */
1501 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1502 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1503
1504 /* Walk all associations on an endpoint. */
1505 list_for_each_safe(pos, temp, &ep->asocs) {
1506 asoc = list_entry(pos, struct sctp_association, asocs);
1507
1508 if (sctp_style(sk, TCP)) {
1509 /* A closed association can still be in the list if
1510 * it belongs to a TCP-style listening socket that is
1511 * not yet accepted. If so, free it. If not, send an
1512 * ABORT or SHUTDOWN based on the linger options.
1513 */
1514 if (sctp_state(asoc, CLOSED)) {
1515 sctp_association_free(asoc);
1516 continue;
1517 }
1518 }
1519
1520 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1521 !skb_queue_empty(&asoc->ulpq.reasm) ||
1522 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1523 struct sctp_chunk *chunk;
1524
1525 chunk = sctp_make_abort_user(asoc, NULL, 0);
1526 sctp_primitive_ABORT(net, asoc, chunk);
1527 } else
1528 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1529 }
1530
1531 /* On a TCP-style socket, block for at most linger_time if set. */
1532 if (sctp_style(sk, TCP) && timeout)
1533 sctp_wait_for_close(sk, timeout);
1534
1535 /* This will run the backlog queue. */
1536 release_sock(sk);
1537
1538 /* Supposedly, no process has access to the socket, but
1539 * the net layers still may.
1540 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1541 * held and that should be grabbed before socket lock.
1542 */
1543 spin_lock_bh(&net->sctp.addr_wq_lock);
1544 bh_lock_sock(sk);
1545
1546 /* Hold the sock, since sk_common_release() will put sock_put()
1547 * and we have just a little more cleanup.
1548 */
1549 sock_hold(sk);
1550 sk_common_release(sk);
1551
1552 bh_unlock_sock(sk);
1553 spin_unlock_bh(&net->sctp.addr_wq_lock);
1554
1555 sock_put(sk);
1556
1557 SCTP_DBG_OBJCNT_DEC(sock);
1558 }
1559
1560 /* Handle EPIPE error. */
1561 static int sctp_error(struct sock *sk, int flags, int err)
1562 {
1563 if (err == -EPIPE)
1564 err = sock_error(sk) ? : -EPIPE;
1565 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1566 send_sig(SIGPIPE, current, 0);
1567 return err;
1568 }
1569
1570 /* API 3.1.3 sendmsg() - UDP Style Syntax
1571 *
1572 * An application uses sendmsg() and recvmsg() calls to transmit data to
1573 * and receive data from its peer.
1574 *
1575 * ssize_t sendmsg(int socket, const struct msghdr *message,
1576 * int flags);
1577 *
1578 * socket - the socket descriptor of the endpoint.
1579 * message - pointer to the msghdr structure which contains a single
1580 * user message and possibly some ancillary data.
1581 *
1582 * See Section 5 for complete description of the data
1583 * structures.
1584 *
1585 * flags - flags sent or received with the user message, see Section
1586 * 5 for complete description of the flags.
1587 *
1588 * Note: This function could use a rewrite especially when explicit
1589 * connect support comes in.
1590 */
1591 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1592
1593 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1594
1595 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1596 {
1597 struct net *net = sock_net(sk);
1598 struct sctp_sock *sp;
1599 struct sctp_endpoint *ep;
1600 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1601 struct sctp_transport *transport, *chunk_tp;
1602 struct sctp_chunk *chunk;
1603 union sctp_addr to;
1604 struct sockaddr *msg_name = NULL;
1605 struct sctp_sndrcvinfo default_sinfo;
1606 struct sctp_sndrcvinfo *sinfo;
1607 struct sctp_initmsg *sinit;
1608 sctp_assoc_t associd = 0;
1609 sctp_cmsgs_t cmsgs = { NULL };
1610 sctp_scope_t scope;
1611 bool fill_sinfo_ttl = false, wait_connect = false;
1612 struct sctp_datamsg *datamsg;
1613 int msg_flags = msg->msg_flags;
1614 __u16 sinfo_flags = 0;
1615 long timeo;
1616 int err;
1617
1618 err = 0;
1619 sp = sctp_sk(sk);
1620 ep = sp->ep;
1621
1622 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1623 msg, msg_len, ep);
1624
1625 /* We cannot send a message over a TCP-style listening socket. */
1626 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1627 err = -EPIPE;
1628 goto out_nounlock;
1629 }
1630
1631 /* Parse out the SCTP CMSGs. */
1632 err = sctp_msghdr_parse(msg, &cmsgs);
1633 if (err) {
1634 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1635 goto out_nounlock;
1636 }
1637
1638 /* Fetch the destination address for this packet. This
1639 * address only selects the association--it is not necessarily
1640 * the address we will send to.
1641 * For a peeled-off socket, msg_name is ignored.
1642 */
1643 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1644 int msg_namelen = msg->msg_namelen;
1645
1646 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1647 msg_namelen);
1648 if (err)
1649 return err;
1650
1651 if (msg_namelen > sizeof(to))
1652 msg_namelen = sizeof(to);
1653 memcpy(&to, msg->msg_name, msg_namelen);
1654 msg_name = msg->msg_name;
1655 }
1656
1657 sinit = cmsgs.init;
1658 if (cmsgs.sinfo != NULL) {
1659 memset(&default_sinfo, 0, sizeof(default_sinfo));
1660 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1661 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1662 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1663 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1664 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1665
1666 sinfo = &default_sinfo;
1667 fill_sinfo_ttl = true;
1668 } else {
1669 sinfo = cmsgs.srinfo;
1670 }
1671 /* Did the user specify SNDINFO/SNDRCVINFO? */
1672 if (sinfo) {
1673 sinfo_flags = sinfo->sinfo_flags;
1674 associd = sinfo->sinfo_assoc_id;
1675 }
1676
1677 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1678 msg_len, sinfo_flags);
1679
1680 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1681 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1682 err = -EINVAL;
1683 goto out_nounlock;
1684 }
1685
1686 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1687 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1688 * If SCTP_ABORT is set, the message length could be non zero with
1689 * the msg_iov set to the user abort reason.
1690 */
1691 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1692 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1693 err = -EINVAL;
1694 goto out_nounlock;
1695 }
1696
1697 /* If SCTP_ADDR_OVER is set, there must be an address
1698 * specified in msg_name.
1699 */
1700 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1701 err = -EINVAL;
1702 goto out_nounlock;
1703 }
1704
1705 transport = NULL;
1706
1707 pr_debug("%s: about to look up association\n", __func__);
1708
1709 lock_sock(sk);
1710
1711 /* If a msg_name has been specified, assume this is to be used. */
1712 if (msg_name) {
1713 /* Look for a matching association on the endpoint. */
1714 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1715
1716 /* If we could not find a matching association on the
1717 * endpoint, make sure that it is not a TCP-style
1718 * socket that already has an association or there is
1719 * no peeled-off association on another socket.
1720 */
1721 if (!asoc &&
1722 ((sctp_style(sk, TCP) &&
1723 (sctp_sstate(sk, ESTABLISHED) ||
1724 sctp_sstate(sk, CLOSING))) ||
1725 sctp_endpoint_is_peeled_off(ep, &to))) {
1726 err = -EADDRNOTAVAIL;
1727 goto out_unlock;
1728 }
1729 } else {
1730 asoc = sctp_id2assoc(sk, associd);
1731 if (!asoc) {
1732 err = -EPIPE;
1733 goto out_unlock;
1734 }
1735 }
1736
1737 if (asoc) {
1738 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1739
1740 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1741 * socket that has an association in CLOSED state. This can
1742 * happen when an accepted socket has an association that is
1743 * already CLOSED.
1744 */
1745 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1746 err = -EPIPE;
1747 goto out_unlock;
1748 }
1749
1750 if (sinfo_flags & SCTP_EOF) {
1751 pr_debug("%s: shutting down association:%p\n",
1752 __func__, asoc);
1753
1754 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1755 err = 0;
1756 goto out_unlock;
1757 }
1758 if (sinfo_flags & SCTP_ABORT) {
1759
1760 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1761 if (!chunk) {
1762 err = -ENOMEM;
1763 goto out_unlock;
1764 }
1765
1766 pr_debug("%s: aborting association:%p\n",
1767 __func__, asoc);
1768
1769 sctp_primitive_ABORT(net, asoc, chunk);
1770 err = 0;
1771 goto out_unlock;
1772 }
1773 }
1774
1775 /* Do we need to create the association? */
1776 if (!asoc) {
1777 pr_debug("%s: there is no association yet\n", __func__);
1778
1779 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1780 err = -EINVAL;
1781 goto out_unlock;
1782 }
1783
1784 /* Check for invalid stream against the stream counts,
1785 * either the default or the user specified stream counts.
1786 */
1787 if (sinfo) {
1788 if (!sinit || !sinit->sinit_num_ostreams) {
1789 /* Check against the defaults. */
1790 if (sinfo->sinfo_stream >=
1791 sp->initmsg.sinit_num_ostreams) {
1792 err = -EINVAL;
1793 goto out_unlock;
1794 }
1795 } else {
1796 /* Check against the requested. */
1797 if (sinfo->sinfo_stream >=
1798 sinit->sinit_num_ostreams) {
1799 err = -EINVAL;
1800 goto out_unlock;
1801 }
1802 }
1803 }
1804
1805 /*
1806 * API 3.1.2 bind() - UDP Style Syntax
1807 * If a bind() or sctp_bindx() is not called prior to a
1808 * sendmsg() call that initiates a new association, the
1809 * system picks an ephemeral port and will choose an address
1810 * set equivalent to binding with a wildcard address.
1811 */
1812 if (!ep->base.bind_addr.port) {
1813 if (sctp_autobind(sk)) {
1814 err = -EAGAIN;
1815 goto out_unlock;
1816 }
1817 } else {
1818 /*
1819 * If an unprivileged user inherits a one-to-many
1820 * style socket with open associations on a privileged
1821 * port, it MAY be permitted to accept new associations,
1822 * but it SHOULD NOT be permitted to open new
1823 * associations.
1824 */
1825 if (ep->base.bind_addr.port < PROT_SOCK &&
1826 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1827 err = -EACCES;
1828 goto out_unlock;
1829 }
1830 }
1831
1832 scope = sctp_scope(&to);
1833 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1834 if (!new_asoc) {
1835 err = -ENOMEM;
1836 goto out_unlock;
1837 }
1838 asoc = new_asoc;
1839 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1840 if (err < 0) {
1841 err = -ENOMEM;
1842 goto out_free;
1843 }
1844
1845 /* If the SCTP_INIT ancillary data is specified, set all
1846 * the association init values accordingly.
1847 */
1848 if (sinit) {
1849 if (sinit->sinit_num_ostreams) {
1850 asoc->c.sinit_num_ostreams =
1851 sinit->sinit_num_ostreams;
1852 }
1853 if (sinit->sinit_max_instreams) {
1854 asoc->c.sinit_max_instreams =
1855 sinit->sinit_max_instreams;
1856 }
1857 if (sinit->sinit_max_attempts) {
1858 asoc->max_init_attempts
1859 = sinit->sinit_max_attempts;
1860 }
1861 if (sinit->sinit_max_init_timeo) {
1862 asoc->max_init_timeo =
1863 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1864 }
1865 }
1866
1867 /* Prime the peer's transport structures. */
1868 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1869 if (!transport) {
1870 err = -ENOMEM;
1871 goto out_free;
1872 }
1873 }
1874
1875 /* ASSERT: we have a valid association at this point. */
1876 pr_debug("%s: we have a valid association\n", __func__);
1877
1878 if (!sinfo) {
1879 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1880 * one with some defaults.
1881 */
1882 memset(&default_sinfo, 0, sizeof(default_sinfo));
1883 default_sinfo.sinfo_stream = asoc->default_stream;
1884 default_sinfo.sinfo_flags = asoc->default_flags;
1885 default_sinfo.sinfo_ppid = asoc->default_ppid;
1886 default_sinfo.sinfo_context = asoc->default_context;
1887 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1888 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1889
1890 sinfo = &default_sinfo;
1891 } else if (fill_sinfo_ttl) {
1892 /* In case SNDINFO was specified, we still need to fill
1893 * it with a default ttl from the assoc here.
1894 */
1895 sinfo->sinfo_timetolive = asoc->default_timetolive;
1896 }
1897
1898 /* API 7.1.7, the sndbuf size per association bounds the
1899 * maximum size of data that can be sent in a single send call.
1900 */
1901 if (msg_len > sk->sk_sndbuf) {
1902 err = -EMSGSIZE;
1903 goto out_free;
1904 }
1905
1906 if (asoc->pmtu_pending)
1907 sctp_assoc_pending_pmtu(sk, asoc);
1908
1909 /* If fragmentation is disabled and the message length exceeds the
1910 * association fragmentation point, return EMSGSIZE. The I-D
1911 * does not specify what this error is, but this looks like
1912 * a great fit.
1913 */
1914 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1915 err = -EMSGSIZE;
1916 goto out_free;
1917 }
1918
1919 /* Check for invalid stream. */
1920 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1921 err = -EINVAL;
1922 goto out_free;
1923 }
1924
1925 if (sctp_wspace(asoc) < msg_len)
1926 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1927
1928 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1929 if (!sctp_wspace(asoc)) {
1930 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1931 if (err)
1932 goto out_free;
1933 }
1934
1935 /* If an address is passed with the sendto/sendmsg call, it is used
1936 * to override the primary destination address in the TCP model, or
1937 * when SCTP_ADDR_OVER flag is set in the UDP model.
1938 */
1939 if ((sctp_style(sk, TCP) && msg_name) ||
1940 (sinfo_flags & SCTP_ADDR_OVER)) {
1941 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1942 if (!chunk_tp) {
1943 err = -EINVAL;
1944 goto out_free;
1945 }
1946 } else
1947 chunk_tp = NULL;
1948
1949 /* Auto-connect, if we aren't connected already. */
1950 if (sctp_state(asoc, CLOSED)) {
1951 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1952 if (err < 0)
1953 goto out_free;
1954
1955 wait_connect = true;
1956 pr_debug("%s: we associated primitively\n", __func__);
1957 }
1958
1959 /* Break the message into multiple chunks of maximum size. */
1960 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1961 if (IS_ERR(datamsg)) {
1962 err = PTR_ERR(datamsg);
1963 goto out_free;
1964 }
1965
1966 /* Now send the (possibly) fragmented message. */
1967 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1968 sctp_chunk_hold(chunk);
1969
1970 /* Do accounting for the write space. */
1971 sctp_set_owner_w(chunk);
1972
1973 chunk->transport = chunk_tp;
1974 }
1975
1976 /* Send it to the lower layers. Note: all chunks
1977 * must either fail or succeed. The lower layer
1978 * works that way today. Keep it that way or this
1979 * breaks.
1980 */
1981 err = sctp_primitive_SEND(net, asoc, datamsg);
1982 /* Did the lower layer accept the chunk? */
1983 if (err) {
1984 sctp_datamsg_free(datamsg);
1985 goto out_free;
1986 }
1987
1988 pr_debug("%s: we sent primitively\n", __func__);
1989
1990 sctp_datamsg_put(datamsg);
1991 err = msg_len;
1992
1993 if (unlikely(wait_connect)) {
1994 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1995 sctp_wait_for_connect(asoc, &timeo);
1996 }
1997
1998 /* If we are already past ASSOCIATE, the lower
1999 * layers are responsible for association cleanup.
2000 */
2001 goto out_unlock;
2002
2003 out_free:
2004 if (new_asoc)
2005 sctp_association_free(asoc);
2006 out_unlock:
2007 release_sock(sk);
2008
2009 out_nounlock:
2010 return sctp_error(sk, msg_flags, err);
2011
2012 #if 0
2013 do_sock_err:
2014 if (msg_len)
2015 err = msg_len;
2016 else
2017 err = sock_error(sk);
2018 goto out;
2019
2020 do_interrupted:
2021 if (msg_len)
2022 err = msg_len;
2023 goto out;
2024 #endif /* 0 */
2025 }
2026
2027 /* This is an extended version of skb_pull() that removes the data from the
2028 * start of a skb even when data is spread across the list of skb's in the
2029 * frag_list. len specifies the total amount of data that needs to be removed.
2030 * when 'len' bytes could be removed from the skb, it returns 0.
2031 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2032 * could not be removed.
2033 */
2034 static int sctp_skb_pull(struct sk_buff *skb, int len)
2035 {
2036 struct sk_buff *list;
2037 int skb_len = skb_headlen(skb);
2038 int rlen;
2039
2040 if (len <= skb_len) {
2041 __skb_pull(skb, len);
2042 return 0;
2043 }
2044 len -= skb_len;
2045 __skb_pull(skb, skb_len);
2046
2047 skb_walk_frags(skb, list) {
2048 rlen = sctp_skb_pull(list, len);
2049 skb->len -= (len-rlen);
2050 skb->data_len -= (len-rlen);
2051
2052 if (!rlen)
2053 return 0;
2054
2055 len = rlen;
2056 }
2057
2058 return len;
2059 }
2060
2061 /* API 3.1.3 recvmsg() - UDP Style Syntax
2062 *
2063 * ssize_t recvmsg(int socket, struct msghdr *message,
2064 * int flags);
2065 *
2066 * socket - the socket descriptor of the endpoint.
2067 * message - pointer to the msghdr structure which contains a single
2068 * user message and possibly some ancillary data.
2069 *
2070 * See Section 5 for complete description of the data
2071 * structures.
2072 *
2073 * flags - flags sent or received with the user message, see Section
2074 * 5 for complete description of the flags.
2075 */
2076 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2077 int noblock, int flags, int *addr_len)
2078 {
2079 struct sctp_ulpevent *event = NULL;
2080 struct sctp_sock *sp = sctp_sk(sk);
2081 struct sk_buff *skb, *head_skb;
2082 int copied;
2083 int err = 0;
2084 int skb_len;
2085
2086 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2087 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2088 addr_len);
2089
2090 lock_sock(sk);
2091
2092 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2093 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2094 err = -ENOTCONN;
2095 goto out;
2096 }
2097
2098 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2099 if (!skb)
2100 goto out;
2101
2102 /* Get the total length of the skb including any skb's in the
2103 * frag_list.
2104 */
2105 skb_len = skb->len;
2106
2107 copied = skb_len;
2108 if (copied > len)
2109 copied = len;
2110
2111 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2112
2113 event = sctp_skb2event(skb);
2114
2115 if (err)
2116 goto out_free;
2117
2118 if (event->chunk && event->chunk->head_skb)
2119 head_skb = event->chunk->head_skb;
2120 else
2121 head_skb = skb;
2122 sock_recv_ts_and_drops(msg, sk, head_skb);
2123 if (sctp_ulpevent_is_notification(event)) {
2124 msg->msg_flags |= MSG_NOTIFICATION;
2125 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2126 } else {
2127 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2128 }
2129
2130 /* Check if we allow SCTP_NXTINFO. */
2131 if (sp->recvnxtinfo)
2132 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2133 /* Check if we allow SCTP_RCVINFO. */
2134 if (sp->recvrcvinfo)
2135 sctp_ulpevent_read_rcvinfo(event, msg);
2136 /* Check if we allow SCTP_SNDRCVINFO. */
2137 if (sp->subscribe.sctp_data_io_event)
2138 sctp_ulpevent_read_sndrcvinfo(event, msg);
2139
2140 err = copied;
2141
2142 /* If skb's length exceeds the user's buffer, update the skb and
2143 * push it back to the receive_queue so that the next call to
2144 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2145 */
2146 if (skb_len > copied) {
2147 msg->msg_flags &= ~MSG_EOR;
2148 if (flags & MSG_PEEK)
2149 goto out_free;
2150 sctp_skb_pull(skb, copied);
2151 skb_queue_head(&sk->sk_receive_queue, skb);
2152
2153 /* When only partial message is copied to the user, increase
2154 * rwnd by that amount. If all the data in the skb is read,
2155 * rwnd is updated when the event is freed.
2156 */
2157 if (!sctp_ulpevent_is_notification(event))
2158 sctp_assoc_rwnd_increase(event->asoc, copied);
2159 goto out;
2160 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2161 (event->msg_flags & MSG_EOR))
2162 msg->msg_flags |= MSG_EOR;
2163 else
2164 msg->msg_flags &= ~MSG_EOR;
2165
2166 out_free:
2167 if (flags & MSG_PEEK) {
2168 /* Release the skb reference acquired after peeking the skb in
2169 * sctp_skb_recv_datagram().
2170 */
2171 kfree_skb(skb);
2172 } else {
2173 /* Free the event which includes releasing the reference to
2174 * the owner of the skb, freeing the skb and updating the
2175 * rwnd.
2176 */
2177 sctp_ulpevent_free(event);
2178 }
2179 out:
2180 release_sock(sk);
2181 return err;
2182 }
2183
2184 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2185 *
2186 * This option is a on/off flag. If enabled no SCTP message
2187 * fragmentation will be performed. Instead if a message being sent
2188 * exceeds the current PMTU size, the message will NOT be sent and
2189 * instead a error will be indicated to the user.
2190 */
2191 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2192 char __user *optval,
2193 unsigned int optlen)
2194 {
2195 int val;
2196
2197 if (optlen < sizeof(int))
2198 return -EINVAL;
2199
2200 if (get_user(val, (int __user *)optval))
2201 return -EFAULT;
2202
2203 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2204
2205 return 0;
2206 }
2207
2208 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2209 unsigned int optlen)
2210 {
2211 struct sctp_association *asoc;
2212 struct sctp_ulpevent *event;
2213
2214 if (optlen > sizeof(struct sctp_event_subscribe))
2215 return -EINVAL;
2216 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2217 return -EFAULT;
2218
2219 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2220 * if there is no data to be sent or retransmit, the stack will
2221 * immediately send up this notification.
2222 */
2223 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2224 &sctp_sk(sk)->subscribe)) {
2225 asoc = sctp_id2assoc(sk, 0);
2226
2227 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2228 event = sctp_ulpevent_make_sender_dry_event(asoc,
2229 GFP_ATOMIC);
2230 if (!event)
2231 return -ENOMEM;
2232
2233 sctp_ulpq_tail_event(&asoc->ulpq, event);
2234 }
2235 }
2236
2237 return 0;
2238 }
2239
2240 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2241 *
2242 * This socket option is applicable to the UDP-style socket only. When
2243 * set it will cause associations that are idle for more than the
2244 * specified number of seconds to automatically close. An association
2245 * being idle is defined an association that has NOT sent or received
2246 * user data. The special value of '0' indicates that no automatic
2247 * close of any associations should be performed. The option expects an
2248 * integer defining the number of seconds of idle time before an
2249 * association is closed.
2250 */
2251 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2252 unsigned int optlen)
2253 {
2254 struct sctp_sock *sp = sctp_sk(sk);
2255 struct net *net = sock_net(sk);
2256
2257 /* Applicable to UDP-style socket only */
2258 if (sctp_style(sk, TCP))
2259 return -EOPNOTSUPP;
2260 if (optlen != sizeof(int))
2261 return -EINVAL;
2262 if (copy_from_user(&sp->autoclose, optval, optlen))
2263 return -EFAULT;
2264
2265 if (sp->autoclose > net->sctp.max_autoclose)
2266 sp->autoclose = net->sctp.max_autoclose;
2267
2268 return 0;
2269 }
2270
2271 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2272 *
2273 * Applications can enable or disable heartbeats for any peer address of
2274 * an association, modify an address's heartbeat interval, force a
2275 * heartbeat to be sent immediately, and adjust the address's maximum
2276 * number of retransmissions sent before an address is considered
2277 * unreachable. The following structure is used to access and modify an
2278 * address's parameters:
2279 *
2280 * struct sctp_paddrparams {
2281 * sctp_assoc_t spp_assoc_id;
2282 * struct sockaddr_storage spp_address;
2283 * uint32_t spp_hbinterval;
2284 * uint16_t spp_pathmaxrxt;
2285 * uint32_t spp_pathmtu;
2286 * uint32_t spp_sackdelay;
2287 * uint32_t spp_flags;
2288 * };
2289 *
2290 * spp_assoc_id - (one-to-many style socket) This is filled in the
2291 * application, and identifies the association for
2292 * this query.
2293 * spp_address - This specifies which address is of interest.
2294 * spp_hbinterval - This contains the value of the heartbeat interval,
2295 * in milliseconds. If a value of zero
2296 * is present in this field then no changes are to
2297 * be made to this parameter.
2298 * spp_pathmaxrxt - This contains the maximum number of
2299 * retransmissions before this address shall be
2300 * considered unreachable. If a value of zero
2301 * is present in this field then no changes are to
2302 * be made to this parameter.
2303 * spp_pathmtu - When Path MTU discovery is disabled the value
2304 * specified here will be the "fixed" path mtu.
2305 * Note that if the spp_address field is empty
2306 * then all associations on this address will
2307 * have this fixed path mtu set upon them.
2308 *
2309 * spp_sackdelay - When delayed sack is enabled, this value specifies
2310 * the number of milliseconds that sacks will be delayed
2311 * for. This value will apply to all addresses of an
2312 * association if the spp_address field is empty. Note
2313 * also, that if delayed sack is enabled and this
2314 * value is set to 0, no change is made to the last
2315 * recorded delayed sack timer value.
2316 *
2317 * spp_flags - These flags are used to control various features
2318 * on an association. The flag field may contain
2319 * zero or more of the following options.
2320 *
2321 * SPP_HB_ENABLE - Enable heartbeats on the
2322 * specified address. Note that if the address
2323 * field is empty all addresses for the association
2324 * have heartbeats enabled upon them.
2325 *
2326 * SPP_HB_DISABLE - Disable heartbeats on the
2327 * speicifed address. Note that if the address
2328 * field is empty all addresses for the association
2329 * will have their heartbeats disabled. Note also
2330 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2331 * mutually exclusive, only one of these two should
2332 * be specified. Enabling both fields will have
2333 * undetermined results.
2334 *
2335 * SPP_HB_DEMAND - Request a user initiated heartbeat
2336 * to be made immediately.
2337 *
2338 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2339 * heartbeat delayis to be set to the value of 0
2340 * milliseconds.
2341 *
2342 * SPP_PMTUD_ENABLE - This field will enable PMTU
2343 * discovery upon the specified address. Note that
2344 * if the address feild is empty then all addresses
2345 * on the association are effected.
2346 *
2347 * SPP_PMTUD_DISABLE - This field will disable PMTU
2348 * discovery upon the specified address. Note that
2349 * if the address feild is empty then all addresses
2350 * on the association are effected. Not also that
2351 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2352 * exclusive. Enabling both will have undetermined
2353 * results.
2354 *
2355 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2356 * on delayed sack. The time specified in spp_sackdelay
2357 * is used to specify the sack delay for this address. Note
2358 * that if spp_address is empty then all addresses will
2359 * enable delayed sack and take on the sack delay
2360 * value specified in spp_sackdelay.
2361 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2362 * off delayed sack. If the spp_address field is blank then
2363 * delayed sack is disabled for the entire association. Note
2364 * also that this field is mutually exclusive to
2365 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2366 * results.
2367 */
2368 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2369 struct sctp_transport *trans,
2370 struct sctp_association *asoc,
2371 struct sctp_sock *sp,
2372 int hb_change,
2373 int pmtud_change,
2374 int sackdelay_change)
2375 {
2376 int error;
2377
2378 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2379 struct net *net = sock_net(trans->asoc->base.sk);
2380
2381 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2382 if (error)
2383 return error;
2384 }
2385
2386 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2387 * this field is ignored. Note also that a value of zero indicates
2388 * the current setting should be left unchanged.
2389 */
2390 if (params->spp_flags & SPP_HB_ENABLE) {
2391
2392 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2393 * set. This lets us use 0 value when this flag
2394 * is set.
2395 */
2396 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2397 params->spp_hbinterval = 0;
2398
2399 if (params->spp_hbinterval ||
2400 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2401 if (trans) {
2402 trans->hbinterval =
2403 msecs_to_jiffies(params->spp_hbinterval);
2404 } else if (asoc) {
2405 asoc->hbinterval =
2406 msecs_to_jiffies(params->spp_hbinterval);
2407 } else {
2408 sp->hbinterval = params->spp_hbinterval;
2409 }
2410 }
2411 }
2412
2413 if (hb_change) {
2414 if (trans) {
2415 trans->param_flags =
2416 (trans->param_flags & ~SPP_HB) | hb_change;
2417 } else if (asoc) {
2418 asoc->param_flags =
2419 (asoc->param_flags & ~SPP_HB) | hb_change;
2420 } else {
2421 sp->param_flags =
2422 (sp->param_flags & ~SPP_HB) | hb_change;
2423 }
2424 }
2425
2426 /* When Path MTU discovery is disabled the value specified here will
2427 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2428 * include the flag SPP_PMTUD_DISABLE for this field to have any
2429 * effect).
2430 */
2431 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2432 if (trans) {
2433 trans->pathmtu = params->spp_pathmtu;
2434 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2435 } else if (asoc) {
2436 asoc->pathmtu = params->spp_pathmtu;
2437 sctp_frag_point(asoc, params->spp_pathmtu);
2438 } else {
2439 sp->pathmtu = params->spp_pathmtu;
2440 }
2441 }
2442
2443 if (pmtud_change) {
2444 if (trans) {
2445 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2446 (params->spp_flags & SPP_PMTUD_ENABLE);
2447 trans->param_flags =
2448 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2449 if (update) {
2450 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2451 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2452 }
2453 } else if (asoc) {
2454 asoc->param_flags =
2455 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2456 } else {
2457 sp->param_flags =
2458 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2459 }
2460 }
2461
2462 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2463 * value of this field is ignored. Note also that a value of zero
2464 * indicates the current setting should be left unchanged.
2465 */
2466 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2467 if (trans) {
2468 trans->sackdelay =
2469 msecs_to_jiffies(params->spp_sackdelay);
2470 } else if (asoc) {
2471 asoc->sackdelay =
2472 msecs_to_jiffies(params->spp_sackdelay);
2473 } else {
2474 sp->sackdelay = params->spp_sackdelay;
2475 }
2476 }
2477
2478 if (sackdelay_change) {
2479 if (trans) {
2480 trans->param_flags =
2481 (trans->param_flags & ~SPP_SACKDELAY) |
2482 sackdelay_change;
2483 } else if (asoc) {
2484 asoc->param_flags =
2485 (asoc->param_flags & ~SPP_SACKDELAY) |
2486 sackdelay_change;
2487 } else {
2488 sp->param_flags =
2489 (sp->param_flags & ~SPP_SACKDELAY) |
2490 sackdelay_change;
2491 }
2492 }
2493
2494 /* Note that a value of zero indicates the current setting should be
2495 left unchanged.
2496 */
2497 if (params->spp_pathmaxrxt) {
2498 if (trans) {
2499 trans->pathmaxrxt = params->spp_pathmaxrxt;
2500 } else if (asoc) {
2501 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2502 } else {
2503 sp->pathmaxrxt = params->spp_pathmaxrxt;
2504 }
2505 }
2506
2507 return 0;
2508 }
2509
2510 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2511 char __user *optval,
2512 unsigned int optlen)
2513 {
2514 struct sctp_paddrparams params;
2515 struct sctp_transport *trans = NULL;
2516 struct sctp_association *asoc = NULL;
2517 struct sctp_sock *sp = sctp_sk(sk);
2518 int error;
2519 int hb_change, pmtud_change, sackdelay_change;
2520
2521 if (optlen != sizeof(struct sctp_paddrparams))
2522 return -EINVAL;
2523
2524 if (copy_from_user(&params, optval, optlen))
2525 return -EFAULT;
2526
2527 /* Validate flags and value parameters. */
2528 hb_change = params.spp_flags & SPP_HB;
2529 pmtud_change = params.spp_flags & SPP_PMTUD;
2530 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2531
2532 if (hb_change == SPP_HB ||
2533 pmtud_change == SPP_PMTUD ||
2534 sackdelay_change == SPP_SACKDELAY ||
2535 params.spp_sackdelay > 500 ||
2536 (params.spp_pathmtu &&
2537 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2538 return -EINVAL;
2539
2540 /* If an address other than INADDR_ANY is specified, and
2541 * no transport is found, then the request is invalid.
2542 */
2543 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2544 trans = sctp_addr_id2transport(sk, &params.spp_address,
2545 params.spp_assoc_id);
2546 if (!trans)
2547 return -EINVAL;
2548 }
2549
2550 /* Get association, if assoc_id != 0 and the socket is a one
2551 * to many style socket, and an association was not found, then
2552 * the id was invalid.
2553 */
2554 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2555 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2556 return -EINVAL;
2557
2558 /* Heartbeat demand can only be sent on a transport or
2559 * association, but not a socket.
2560 */
2561 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2562 return -EINVAL;
2563
2564 /* Process parameters. */
2565 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2566 hb_change, pmtud_change,
2567 sackdelay_change);
2568
2569 if (error)
2570 return error;
2571
2572 /* If changes are for association, also apply parameters to each
2573 * transport.
2574 */
2575 if (!trans && asoc) {
2576 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2577 transports) {
2578 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2579 hb_change, pmtud_change,
2580 sackdelay_change);
2581 }
2582 }
2583
2584 return 0;
2585 }
2586
2587 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2588 {
2589 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2590 }
2591
2592 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2593 {
2594 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2595 }
2596
2597 /*
2598 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2599 *
2600 * This option will effect the way delayed acks are performed. This
2601 * option allows you to get or set the delayed ack time, in
2602 * milliseconds. It also allows changing the delayed ack frequency.
2603 * Changing the frequency to 1 disables the delayed sack algorithm. If
2604 * the assoc_id is 0, then this sets or gets the endpoints default
2605 * values. If the assoc_id field is non-zero, then the set or get
2606 * effects the specified association for the one to many model (the
2607 * assoc_id field is ignored by the one to one model). Note that if
2608 * sack_delay or sack_freq are 0 when setting this option, then the
2609 * current values will remain unchanged.
2610 *
2611 * struct sctp_sack_info {
2612 * sctp_assoc_t sack_assoc_id;
2613 * uint32_t sack_delay;
2614 * uint32_t sack_freq;
2615 * };
2616 *
2617 * sack_assoc_id - This parameter, indicates which association the user
2618 * is performing an action upon. Note that if this field's value is
2619 * zero then the endpoints default value is changed (effecting future
2620 * associations only).
2621 *
2622 * sack_delay - This parameter contains the number of milliseconds that
2623 * the user is requesting the delayed ACK timer be set to. Note that
2624 * this value is defined in the standard to be between 200 and 500
2625 * milliseconds.
2626 *
2627 * sack_freq - This parameter contains the number of packets that must
2628 * be received before a sack is sent without waiting for the delay
2629 * timer to expire. The default value for this is 2, setting this
2630 * value to 1 will disable the delayed sack algorithm.
2631 */
2632
2633 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2634 char __user *optval, unsigned int optlen)
2635 {
2636 struct sctp_sack_info params;
2637 struct sctp_transport *trans = NULL;
2638 struct sctp_association *asoc = NULL;
2639 struct sctp_sock *sp = sctp_sk(sk);
2640
2641 if (optlen == sizeof(struct sctp_sack_info)) {
2642 if (copy_from_user(&params, optval, optlen))
2643 return -EFAULT;
2644
2645 if (params.sack_delay == 0 && params.sack_freq == 0)
2646 return 0;
2647 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2648 pr_warn_ratelimited(DEPRECATED
2649 "%s (pid %d) "
2650 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2651 "Use struct sctp_sack_info instead\n",
2652 current->comm, task_pid_nr(current));
2653 if (copy_from_user(&params, optval, optlen))
2654 return -EFAULT;
2655
2656 if (params.sack_delay == 0)
2657 params.sack_freq = 1;
2658 else
2659 params.sack_freq = 0;
2660 } else
2661 return -EINVAL;
2662
2663 /* Validate value parameter. */
2664 if (params.sack_delay > 500)
2665 return -EINVAL;
2666
2667 /* Get association, if sack_assoc_id != 0 and the socket is a one
2668 * to many style socket, and an association was not found, then
2669 * the id was invalid.
2670 */
2671 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2672 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2673 return -EINVAL;
2674
2675 if (params.sack_delay) {
2676 if (asoc) {
2677 asoc->sackdelay =
2678 msecs_to_jiffies(params.sack_delay);
2679 asoc->param_flags =
2680 sctp_spp_sackdelay_enable(asoc->param_flags);
2681 } else {
2682 sp->sackdelay = params.sack_delay;
2683 sp->param_flags =
2684 sctp_spp_sackdelay_enable(sp->param_flags);
2685 }
2686 }
2687
2688 if (params.sack_freq == 1) {
2689 if (asoc) {
2690 asoc->param_flags =
2691 sctp_spp_sackdelay_disable(asoc->param_flags);
2692 } else {
2693 sp->param_flags =
2694 sctp_spp_sackdelay_disable(sp->param_flags);
2695 }
2696 } else if (params.sack_freq > 1) {
2697 if (asoc) {
2698 asoc->sackfreq = params.sack_freq;
2699 asoc->param_flags =
2700 sctp_spp_sackdelay_enable(asoc->param_flags);
2701 } else {
2702 sp->sackfreq = params.sack_freq;
2703 sp->param_flags =
2704 sctp_spp_sackdelay_enable(sp->param_flags);
2705 }
2706 }
2707
2708 /* If change is for association, also apply to each transport. */
2709 if (asoc) {
2710 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2711 transports) {
2712 if (params.sack_delay) {
2713 trans->sackdelay =
2714 msecs_to_jiffies(params.sack_delay);
2715 trans->param_flags =
2716 sctp_spp_sackdelay_enable(trans->param_flags);
2717 }
2718 if (params.sack_freq == 1) {
2719 trans->param_flags =
2720 sctp_spp_sackdelay_disable(trans->param_flags);
2721 } else if (params.sack_freq > 1) {
2722 trans->sackfreq = params.sack_freq;
2723 trans->param_flags =
2724 sctp_spp_sackdelay_enable(trans->param_flags);
2725 }
2726 }
2727 }
2728
2729 return 0;
2730 }
2731
2732 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2733 *
2734 * Applications can specify protocol parameters for the default association
2735 * initialization. The option name argument to setsockopt() and getsockopt()
2736 * is SCTP_INITMSG.
2737 *
2738 * Setting initialization parameters is effective only on an unconnected
2739 * socket (for UDP-style sockets only future associations are effected
2740 * by the change). With TCP-style sockets, this option is inherited by
2741 * sockets derived from a listener socket.
2742 */
2743 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2744 {
2745 struct sctp_initmsg sinit;
2746 struct sctp_sock *sp = sctp_sk(sk);
2747
2748 if (optlen != sizeof(struct sctp_initmsg))
2749 return -EINVAL;
2750 if (copy_from_user(&sinit, optval, optlen))
2751 return -EFAULT;
2752
2753 if (sinit.sinit_num_ostreams)
2754 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2755 if (sinit.sinit_max_instreams)
2756 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2757 if (sinit.sinit_max_attempts)
2758 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2759 if (sinit.sinit_max_init_timeo)
2760 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2761
2762 return 0;
2763 }
2764
2765 /*
2766 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2767 *
2768 * Applications that wish to use the sendto() system call may wish to
2769 * specify a default set of parameters that would normally be supplied
2770 * through the inclusion of ancillary data. This socket option allows
2771 * such an application to set the default sctp_sndrcvinfo structure.
2772 * The application that wishes to use this socket option simply passes
2773 * in to this call the sctp_sndrcvinfo structure defined in Section
2774 * 5.2.2) The input parameters accepted by this call include
2775 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2776 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2777 * to this call if the caller is using the UDP model.
2778 */
2779 static int sctp_setsockopt_default_send_param(struct sock *sk,
2780 char __user *optval,
2781 unsigned int optlen)
2782 {
2783 struct sctp_sock *sp = sctp_sk(sk);
2784 struct sctp_association *asoc;
2785 struct sctp_sndrcvinfo info;
2786
2787 if (optlen != sizeof(info))
2788 return -EINVAL;
2789 if (copy_from_user(&info, optval, optlen))
2790 return -EFAULT;
2791 if (info.sinfo_flags &
2792 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2793 SCTP_ABORT | SCTP_EOF))
2794 return -EINVAL;
2795
2796 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2797 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2798 return -EINVAL;
2799 if (asoc) {
2800 asoc->default_stream = info.sinfo_stream;
2801 asoc->default_flags = info.sinfo_flags;
2802 asoc->default_ppid = info.sinfo_ppid;
2803 asoc->default_context = info.sinfo_context;
2804 asoc->default_timetolive = info.sinfo_timetolive;
2805 } else {
2806 sp->default_stream = info.sinfo_stream;
2807 sp->default_flags = info.sinfo_flags;
2808 sp->default_ppid = info.sinfo_ppid;
2809 sp->default_context = info.sinfo_context;
2810 sp->default_timetolive = info.sinfo_timetolive;
2811 }
2812
2813 return 0;
2814 }
2815
2816 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2817 * (SCTP_DEFAULT_SNDINFO)
2818 */
2819 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2820 char __user *optval,
2821 unsigned int optlen)
2822 {
2823 struct sctp_sock *sp = sctp_sk(sk);
2824 struct sctp_association *asoc;
2825 struct sctp_sndinfo info;
2826
2827 if (optlen != sizeof(info))
2828 return -EINVAL;
2829 if (copy_from_user(&info, optval, optlen))
2830 return -EFAULT;
2831 if (info.snd_flags &
2832 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2833 SCTP_ABORT | SCTP_EOF))
2834 return -EINVAL;
2835
2836 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2837 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2838 return -EINVAL;
2839 if (asoc) {
2840 asoc->default_stream = info.snd_sid;
2841 asoc->default_flags = info.snd_flags;
2842 asoc->default_ppid = info.snd_ppid;
2843 asoc->default_context = info.snd_context;
2844 } else {
2845 sp->default_stream = info.snd_sid;
2846 sp->default_flags = info.snd_flags;
2847 sp->default_ppid = info.snd_ppid;
2848 sp->default_context = info.snd_context;
2849 }
2850
2851 return 0;
2852 }
2853
2854 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2855 *
2856 * Requests that the local SCTP stack use the enclosed peer address as
2857 * the association primary. The enclosed address must be one of the
2858 * association peer's addresses.
2859 */
2860 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2861 unsigned int optlen)
2862 {
2863 struct sctp_prim prim;
2864 struct sctp_transport *trans;
2865
2866 if (optlen != sizeof(struct sctp_prim))
2867 return -EINVAL;
2868
2869 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2870 return -EFAULT;
2871
2872 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2873 if (!trans)
2874 return -EINVAL;
2875
2876 sctp_assoc_set_primary(trans->asoc, trans);
2877
2878 return 0;
2879 }
2880
2881 /*
2882 * 7.1.5 SCTP_NODELAY
2883 *
2884 * Turn on/off any Nagle-like algorithm. This means that packets are
2885 * generally sent as soon as possible and no unnecessary delays are
2886 * introduced, at the cost of more packets in the network. Expects an
2887 * integer boolean flag.
2888 */
2889 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2890 unsigned int optlen)
2891 {
2892 int val;
2893
2894 if (optlen < sizeof(int))
2895 return -EINVAL;
2896 if (get_user(val, (int __user *)optval))
2897 return -EFAULT;
2898
2899 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2900 return 0;
2901 }
2902
2903 /*
2904 *
2905 * 7.1.1 SCTP_RTOINFO
2906 *
2907 * The protocol parameters used to initialize and bound retransmission
2908 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2909 * and modify these parameters.
2910 * All parameters are time values, in milliseconds. A value of 0, when
2911 * modifying the parameters, indicates that the current value should not
2912 * be changed.
2913 *
2914 */
2915 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2916 {
2917 struct sctp_rtoinfo rtoinfo;
2918 struct sctp_association *asoc;
2919 unsigned long rto_min, rto_max;
2920 struct sctp_sock *sp = sctp_sk(sk);
2921
2922 if (optlen != sizeof (struct sctp_rtoinfo))
2923 return -EINVAL;
2924
2925 if (copy_from_user(&rtoinfo, optval, optlen))
2926 return -EFAULT;
2927
2928 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2929
2930 /* Set the values to the specific association */
2931 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2932 return -EINVAL;
2933
2934 rto_max = rtoinfo.srto_max;
2935 rto_min = rtoinfo.srto_min;
2936
2937 if (rto_max)
2938 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2939 else
2940 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2941
2942 if (rto_min)
2943 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2944 else
2945 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2946
2947 if (rto_min > rto_max)
2948 return -EINVAL;
2949
2950 if (asoc) {
2951 if (rtoinfo.srto_initial != 0)
2952 asoc->rto_initial =
2953 msecs_to_jiffies(rtoinfo.srto_initial);
2954 asoc->rto_max = rto_max;
2955 asoc->rto_min = rto_min;
2956 } else {
2957 /* If there is no association or the association-id = 0
2958 * set the values to the endpoint.
2959 */
2960 if (rtoinfo.srto_initial != 0)
2961 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2962 sp->rtoinfo.srto_max = rto_max;
2963 sp->rtoinfo.srto_min = rto_min;
2964 }
2965
2966 return 0;
2967 }
2968
2969 /*
2970 *
2971 * 7.1.2 SCTP_ASSOCINFO
2972 *
2973 * This option is used to tune the maximum retransmission attempts
2974 * of the association.
2975 * Returns an error if the new association retransmission value is
2976 * greater than the sum of the retransmission value of the peer.
2977 * See [SCTP] for more information.
2978 *
2979 */
2980 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2981 {
2982
2983 struct sctp_assocparams assocparams;
2984 struct sctp_association *asoc;
2985
2986 if (optlen != sizeof(struct sctp_assocparams))
2987 return -EINVAL;
2988 if (copy_from_user(&assocparams, optval, optlen))
2989 return -EFAULT;
2990
2991 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2992
2993 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2994 return -EINVAL;
2995
2996 /* Set the values to the specific association */
2997 if (asoc) {
2998 if (assocparams.sasoc_asocmaxrxt != 0) {
2999 __u32 path_sum = 0;
3000 int paths = 0;
3001 struct sctp_transport *peer_addr;
3002
3003 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3004 transports) {
3005 path_sum += peer_addr->pathmaxrxt;
3006 paths++;
3007 }
3008
3009 /* Only validate asocmaxrxt if we have more than
3010 * one path/transport. We do this because path
3011 * retransmissions are only counted when we have more
3012 * then one path.
3013 */
3014 if (paths > 1 &&
3015 assocparams.sasoc_asocmaxrxt > path_sum)
3016 return -EINVAL;
3017
3018 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3019 }
3020
3021 if (assocparams.sasoc_cookie_life != 0)
3022 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3023 } else {
3024 /* Set the values to the endpoint */
3025 struct sctp_sock *sp = sctp_sk(sk);
3026
3027 if (assocparams.sasoc_asocmaxrxt != 0)
3028 sp->assocparams.sasoc_asocmaxrxt =
3029 assocparams.sasoc_asocmaxrxt;
3030 if (assocparams.sasoc_cookie_life != 0)
3031 sp->assocparams.sasoc_cookie_life =
3032 assocparams.sasoc_cookie_life;
3033 }
3034 return 0;
3035 }
3036
3037 /*
3038 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3039 *
3040 * This socket option is a boolean flag which turns on or off mapped V4
3041 * addresses. If this option is turned on and the socket is type
3042 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3043 * If this option is turned off, then no mapping will be done of V4
3044 * addresses and a user will receive both PF_INET6 and PF_INET type
3045 * addresses on the socket.
3046 */
3047 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3048 {
3049 int val;
3050 struct sctp_sock *sp = sctp_sk(sk);
3051
3052 if (optlen < sizeof(int))
3053 return -EINVAL;
3054 if (get_user(val, (int __user *)optval))
3055 return -EFAULT;
3056 if (val)
3057 sp->v4mapped = 1;
3058 else
3059 sp->v4mapped = 0;
3060
3061 return 0;
3062 }
3063
3064 /*
3065 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3066 * This option will get or set the maximum size to put in any outgoing
3067 * SCTP DATA chunk. If a message is larger than this size it will be
3068 * fragmented by SCTP into the specified size. Note that the underlying
3069 * SCTP implementation may fragment into smaller sized chunks when the
3070 * PMTU of the underlying association is smaller than the value set by
3071 * the user. The default value for this option is '0' which indicates
3072 * the user is NOT limiting fragmentation and only the PMTU will effect
3073 * SCTP's choice of DATA chunk size. Note also that values set larger
3074 * than the maximum size of an IP datagram will effectively let SCTP
3075 * control fragmentation (i.e. the same as setting this option to 0).
3076 *
3077 * The following structure is used to access and modify this parameter:
3078 *
3079 * struct sctp_assoc_value {
3080 * sctp_assoc_t assoc_id;
3081 * uint32_t assoc_value;
3082 * };
3083 *
3084 * assoc_id: This parameter is ignored for one-to-one style sockets.
3085 * For one-to-many style sockets this parameter indicates which
3086 * association the user is performing an action upon. Note that if
3087 * this field's value is zero then the endpoints default value is
3088 * changed (effecting future associations only).
3089 * assoc_value: This parameter specifies the maximum size in bytes.
3090 */
3091 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3092 {
3093 struct sctp_assoc_value params;
3094 struct sctp_association *asoc;
3095 struct sctp_sock *sp = sctp_sk(sk);
3096 int val;
3097
3098 if (optlen == sizeof(int)) {
3099 pr_warn_ratelimited(DEPRECATED
3100 "%s (pid %d) "
3101 "Use of int in maxseg socket option.\n"
3102 "Use struct sctp_assoc_value instead\n",
3103 current->comm, task_pid_nr(current));
3104 if (copy_from_user(&val, optval, optlen))
3105 return -EFAULT;
3106 params.assoc_id = 0;
3107 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3108 if (copy_from_user(&params, optval, optlen))
3109 return -EFAULT;
3110 val = params.assoc_value;
3111 } else
3112 return -EINVAL;
3113
3114 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3115 return -EINVAL;
3116
3117 asoc = sctp_id2assoc(sk, params.assoc_id);
3118 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3119 return -EINVAL;
3120
3121 if (asoc) {
3122 if (val == 0) {
3123 val = asoc->pathmtu;
3124 val -= sp->pf->af->net_header_len;
3125 val -= sizeof(struct sctphdr) +
3126 sizeof(struct sctp_data_chunk);
3127 }
3128 asoc->user_frag = val;
3129 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3130 } else {
3131 sp->user_frag = val;
3132 }
3133
3134 return 0;
3135 }
3136
3137
3138 /*
3139 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3140 *
3141 * Requests that the peer mark the enclosed address as the association
3142 * primary. The enclosed address must be one of the association's
3143 * locally bound addresses. The following structure is used to make a
3144 * set primary request:
3145 */
3146 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3147 unsigned int optlen)
3148 {
3149 struct net *net = sock_net(sk);
3150 struct sctp_sock *sp;
3151 struct sctp_association *asoc = NULL;
3152 struct sctp_setpeerprim prim;
3153 struct sctp_chunk *chunk;
3154 struct sctp_af *af;
3155 int err;
3156
3157 sp = sctp_sk(sk);
3158
3159 if (!net->sctp.addip_enable)
3160 return -EPERM;
3161
3162 if (optlen != sizeof(struct sctp_setpeerprim))
3163 return -EINVAL;
3164
3165 if (copy_from_user(&prim, optval, optlen))
3166 return -EFAULT;
3167
3168 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3169 if (!asoc)
3170 return -EINVAL;
3171
3172 if (!asoc->peer.asconf_capable)
3173 return -EPERM;
3174
3175 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3176 return -EPERM;
3177
3178 if (!sctp_state(asoc, ESTABLISHED))
3179 return -ENOTCONN;
3180
3181 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3182 if (!af)
3183 return -EINVAL;
3184
3185 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3186 return -EADDRNOTAVAIL;
3187
3188 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3189 return -EADDRNOTAVAIL;
3190
3191 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3192 chunk = sctp_make_asconf_set_prim(asoc,
3193 (union sctp_addr *)&prim.sspp_addr);
3194 if (!chunk)
3195 return -ENOMEM;
3196
3197 err = sctp_send_asconf(asoc, chunk);
3198
3199 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3200
3201 return err;
3202 }
3203
3204 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3205 unsigned int optlen)
3206 {
3207 struct sctp_setadaptation adaptation;
3208
3209 if (optlen != sizeof(struct sctp_setadaptation))
3210 return -EINVAL;
3211 if (copy_from_user(&adaptation, optval, optlen))
3212 return -EFAULT;
3213
3214 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3215
3216 return 0;
3217 }
3218
3219 /*
3220 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3221 *
3222 * The context field in the sctp_sndrcvinfo structure is normally only
3223 * used when a failed message is retrieved holding the value that was
3224 * sent down on the actual send call. This option allows the setting of
3225 * a default context on an association basis that will be received on
3226 * reading messages from the peer. This is especially helpful in the
3227 * one-2-many model for an application to keep some reference to an
3228 * internal state machine that is processing messages on the
3229 * association. Note that the setting of this value only effects
3230 * received messages from the peer and does not effect the value that is
3231 * saved with outbound messages.
3232 */
3233 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3234 unsigned int optlen)
3235 {
3236 struct sctp_assoc_value params;
3237 struct sctp_sock *sp;
3238 struct sctp_association *asoc;
3239
3240 if (optlen != sizeof(struct sctp_assoc_value))
3241 return -EINVAL;
3242 if (copy_from_user(&params, optval, optlen))
3243 return -EFAULT;
3244
3245 sp = sctp_sk(sk);
3246
3247 if (params.assoc_id != 0) {
3248 asoc = sctp_id2assoc(sk, params.assoc_id);
3249 if (!asoc)
3250 return -EINVAL;
3251 asoc->default_rcv_context = params.assoc_value;
3252 } else {
3253 sp->default_rcv_context = params.assoc_value;
3254 }
3255
3256 return 0;
3257 }
3258
3259 /*
3260 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3261 *
3262 * This options will at a minimum specify if the implementation is doing
3263 * fragmented interleave. Fragmented interleave, for a one to many
3264 * socket, is when subsequent calls to receive a message may return
3265 * parts of messages from different associations. Some implementations
3266 * may allow you to turn this value on or off. If so, when turned off,
3267 * no fragment interleave will occur (which will cause a head of line
3268 * blocking amongst multiple associations sharing the same one to many
3269 * socket). When this option is turned on, then each receive call may
3270 * come from a different association (thus the user must receive data
3271 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3272 * association each receive belongs to.
3273 *
3274 * This option takes a boolean value. A non-zero value indicates that
3275 * fragmented interleave is on. A value of zero indicates that
3276 * fragmented interleave is off.
3277 *
3278 * Note that it is important that an implementation that allows this
3279 * option to be turned on, have it off by default. Otherwise an unaware
3280 * application using the one to many model may become confused and act
3281 * incorrectly.
3282 */
3283 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3284 char __user *optval,
3285 unsigned int optlen)
3286 {
3287 int val;
3288
3289 if (optlen != sizeof(int))
3290 return -EINVAL;
3291 if (get_user(val, (int __user *)optval))
3292 return -EFAULT;
3293
3294 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3295
3296 return 0;
3297 }
3298
3299 /*
3300 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3301 * (SCTP_PARTIAL_DELIVERY_POINT)
3302 *
3303 * This option will set or get the SCTP partial delivery point. This
3304 * point is the size of a message where the partial delivery API will be
3305 * invoked to help free up rwnd space for the peer. Setting this to a
3306 * lower value will cause partial deliveries to happen more often. The
3307 * calls argument is an integer that sets or gets the partial delivery
3308 * point. Note also that the call will fail if the user attempts to set
3309 * this value larger than the socket receive buffer size.
3310 *
3311 * Note that any single message having a length smaller than or equal to
3312 * the SCTP partial delivery point will be delivered in one single read
3313 * call as long as the user provided buffer is large enough to hold the
3314 * message.
3315 */
3316 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3317 char __user *optval,
3318 unsigned int optlen)
3319 {
3320 u32 val;
3321
3322 if (optlen != sizeof(u32))
3323 return -EINVAL;
3324 if (get_user(val, (int __user *)optval))
3325 return -EFAULT;
3326
3327 /* Note: We double the receive buffer from what the user sets
3328 * it to be, also initial rwnd is based on rcvbuf/2.
3329 */
3330 if (val > (sk->sk_rcvbuf >> 1))
3331 return -EINVAL;
3332
3333 sctp_sk(sk)->pd_point = val;
3334
3335 return 0; /* is this the right error code? */
3336 }
3337
3338 /*
3339 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3340 *
3341 * This option will allow a user to change the maximum burst of packets
3342 * that can be emitted by this association. Note that the default value
3343 * is 4, and some implementations may restrict this setting so that it
3344 * can only be lowered.
3345 *
3346 * NOTE: This text doesn't seem right. Do this on a socket basis with
3347 * future associations inheriting the socket value.
3348 */
3349 static int sctp_setsockopt_maxburst(struct sock *sk,
3350 char __user *optval,
3351 unsigned int optlen)
3352 {
3353 struct sctp_assoc_value params;
3354 struct sctp_sock *sp;
3355 struct sctp_association *asoc;
3356 int val;
3357 int assoc_id = 0;
3358
3359 if (optlen == sizeof(int)) {
3360 pr_warn_ratelimited(DEPRECATED
3361 "%s (pid %d) "
3362 "Use of int in max_burst socket option deprecated.\n"
3363 "Use struct sctp_assoc_value instead\n",
3364 current->comm, task_pid_nr(current));
3365 if (copy_from_user(&val, optval, optlen))
3366 return -EFAULT;
3367 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3368 if (copy_from_user(&params, optval, optlen))
3369 return -EFAULT;
3370 val = params.assoc_value;
3371 assoc_id = params.assoc_id;
3372 } else
3373 return -EINVAL;
3374
3375 sp = sctp_sk(sk);
3376
3377 if (assoc_id != 0) {
3378 asoc = sctp_id2assoc(sk, assoc_id);
3379 if (!asoc)
3380 return -EINVAL;
3381 asoc->max_burst = val;
3382 } else
3383 sp->max_burst = val;
3384
3385 return 0;
3386 }
3387
3388 /*
3389 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3390 *
3391 * This set option adds a chunk type that the user is requesting to be
3392 * received only in an authenticated way. Changes to the list of chunks
3393 * will only effect future associations on the socket.
3394 */
3395 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3396 char __user *optval,
3397 unsigned int optlen)
3398 {
3399 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3400 struct sctp_authchunk val;
3401
3402 if (!ep->auth_enable)
3403 return -EACCES;
3404
3405 if (optlen != sizeof(struct sctp_authchunk))
3406 return -EINVAL;
3407 if (copy_from_user(&val, optval, optlen))
3408 return -EFAULT;
3409
3410 switch (val.sauth_chunk) {
3411 case SCTP_CID_INIT:
3412 case SCTP_CID_INIT_ACK:
3413 case SCTP_CID_SHUTDOWN_COMPLETE:
3414 case SCTP_CID_AUTH:
3415 return -EINVAL;
3416 }
3417
3418 /* add this chunk id to the endpoint */
3419 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3420 }
3421
3422 /*
3423 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3424 *
3425 * This option gets or sets the list of HMAC algorithms that the local
3426 * endpoint requires the peer to use.
3427 */
3428 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3429 char __user *optval,
3430 unsigned int optlen)
3431 {
3432 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3433 struct sctp_hmacalgo *hmacs;
3434 u32 idents;
3435 int err;
3436
3437 if (!ep->auth_enable)
3438 return -EACCES;
3439
3440 if (optlen < sizeof(struct sctp_hmacalgo))
3441 return -EINVAL;
3442
3443 hmacs = memdup_user(optval, optlen);
3444 if (IS_ERR(hmacs))
3445 return PTR_ERR(hmacs);
3446
3447 idents = hmacs->shmac_num_idents;
3448 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3449 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3450 err = -EINVAL;
3451 goto out;
3452 }
3453
3454 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3455 out:
3456 kfree(hmacs);
3457 return err;
3458 }
3459
3460 /*
3461 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3462 *
3463 * This option will set a shared secret key which is used to build an
3464 * association shared key.
3465 */
3466 static int sctp_setsockopt_auth_key(struct sock *sk,
3467 char __user *optval,
3468 unsigned int optlen)
3469 {
3470 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3471 struct sctp_authkey *authkey;
3472 struct sctp_association *asoc;
3473 int ret;
3474
3475 if (!ep->auth_enable)
3476 return -EACCES;
3477
3478 if (optlen <= sizeof(struct sctp_authkey))
3479 return -EINVAL;
3480
3481 authkey = memdup_user(optval, optlen);
3482 if (IS_ERR(authkey))
3483 return PTR_ERR(authkey);
3484
3485 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3486 ret = -EINVAL;
3487 goto out;
3488 }
3489
3490 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3491 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3492 ret = -EINVAL;
3493 goto out;
3494 }
3495
3496 ret = sctp_auth_set_key(ep, asoc, authkey);
3497 out:
3498 kzfree(authkey);
3499 return ret;
3500 }
3501
3502 /*
3503 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3504 *
3505 * This option will get or set the active shared key to be used to build
3506 * the association shared key.
3507 */
3508 static int sctp_setsockopt_active_key(struct sock *sk,
3509 char __user *optval,
3510 unsigned int optlen)
3511 {
3512 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3513 struct sctp_authkeyid val;
3514 struct sctp_association *asoc;
3515
3516 if (!ep->auth_enable)
3517 return -EACCES;
3518
3519 if (optlen != sizeof(struct sctp_authkeyid))
3520 return -EINVAL;
3521 if (copy_from_user(&val, optval, optlen))
3522 return -EFAULT;
3523
3524 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3525 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3526 return -EINVAL;
3527
3528 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3529 }
3530
3531 /*
3532 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3533 *
3534 * This set option will delete a shared secret key from use.
3535 */
3536 static int sctp_setsockopt_del_key(struct sock *sk,
3537 char __user *optval,
3538 unsigned int optlen)
3539 {
3540 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3541 struct sctp_authkeyid val;
3542 struct sctp_association *asoc;
3543
3544 if (!ep->auth_enable)
3545 return -EACCES;
3546
3547 if (optlen != sizeof(struct sctp_authkeyid))
3548 return -EINVAL;
3549 if (copy_from_user(&val, optval, optlen))
3550 return -EFAULT;
3551
3552 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3553 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3554 return -EINVAL;
3555
3556 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3557
3558 }
3559
3560 /*
3561 * 8.1.23 SCTP_AUTO_ASCONF
3562 *
3563 * This option will enable or disable the use of the automatic generation of
3564 * ASCONF chunks to add and delete addresses to an existing association. Note
3565 * that this option has two caveats namely: a) it only affects sockets that
3566 * are bound to all addresses available to the SCTP stack, and b) the system
3567 * administrator may have an overriding control that turns the ASCONF feature
3568 * off no matter what setting the socket option may have.
3569 * This option expects an integer boolean flag, where a non-zero value turns on
3570 * the option, and a zero value turns off the option.
3571 * Note. In this implementation, socket operation overrides default parameter
3572 * being set by sysctl as well as FreeBSD implementation
3573 */
3574 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3575 unsigned int optlen)
3576 {
3577 int val;
3578 struct sctp_sock *sp = sctp_sk(sk);
3579
3580 if (optlen < sizeof(int))
3581 return -EINVAL;
3582 if (get_user(val, (int __user *)optval))
3583 return -EFAULT;
3584 if (!sctp_is_ep_boundall(sk) && val)
3585 return -EINVAL;
3586 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3587 return 0;
3588
3589 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3590 if (val == 0 && sp->do_auto_asconf) {
3591 list_del(&sp->auto_asconf_list);
3592 sp->do_auto_asconf = 0;
3593 } else if (val && !sp->do_auto_asconf) {
3594 list_add_tail(&sp->auto_asconf_list,
3595 &sock_net(sk)->sctp.auto_asconf_splist);
3596 sp->do_auto_asconf = 1;
3597 }
3598 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3599 return 0;
3600 }
3601
3602 /*
3603 * SCTP_PEER_ADDR_THLDS
3604 *
3605 * This option allows us to alter the partially failed threshold for one or all
3606 * transports in an association. See Section 6.1 of:
3607 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3608 */
3609 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3610 char __user *optval,
3611 unsigned int optlen)
3612 {
3613 struct sctp_paddrthlds val;
3614 struct sctp_transport *trans;
3615 struct sctp_association *asoc;
3616
3617 if (optlen < sizeof(struct sctp_paddrthlds))
3618 return -EINVAL;
3619 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3620 sizeof(struct sctp_paddrthlds)))
3621 return -EFAULT;
3622
3623
3624 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3625 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3626 if (!asoc)
3627 return -ENOENT;
3628 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3629 transports) {
3630 if (val.spt_pathmaxrxt)
3631 trans->pathmaxrxt = val.spt_pathmaxrxt;
3632 trans->pf_retrans = val.spt_pathpfthld;
3633 }
3634
3635 if (val.spt_pathmaxrxt)
3636 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3637 asoc->pf_retrans = val.spt_pathpfthld;
3638 } else {
3639 trans = sctp_addr_id2transport(sk, &val.spt_address,
3640 val.spt_assoc_id);
3641 if (!trans)
3642 return -ENOENT;
3643
3644 if (val.spt_pathmaxrxt)
3645 trans->pathmaxrxt = val.spt_pathmaxrxt;
3646 trans->pf_retrans = val.spt_pathpfthld;
3647 }
3648
3649 return 0;
3650 }
3651
3652 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3653 char __user *optval,
3654 unsigned int optlen)
3655 {
3656 int val;
3657
3658 if (optlen < sizeof(int))
3659 return -EINVAL;
3660 if (get_user(val, (int __user *) optval))
3661 return -EFAULT;
3662
3663 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3664
3665 return 0;
3666 }
3667
3668 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3669 char __user *optval,
3670 unsigned int optlen)
3671 {
3672 int val;
3673
3674 if (optlen < sizeof(int))
3675 return -EINVAL;
3676 if (get_user(val, (int __user *) optval))
3677 return -EFAULT;
3678
3679 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3680
3681 return 0;
3682 }
3683
3684 static int sctp_setsockopt_pr_supported(struct sock *sk,
3685 char __user *optval,
3686 unsigned int optlen)
3687 {
3688 struct sctp_assoc_value params;
3689 struct sctp_association *asoc;
3690 int retval = -EINVAL;
3691
3692 if (optlen != sizeof(params))
3693 goto out;
3694
3695 if (copy_from_user(&params, optval, optlen)) {
3696 retval = -EFAULT;
3697 goto out;
3698 }
3699
3700 asoc = sctp_id2assoc(sk, params.assoc_id);
3701 if (asoc) {
3702 asoc->prsctp_enable = !!params.assoc_value;
3703 } else if (!params.assoc_id) {
3704 struct sctp_sock *sp = sctp_sk(sk);
3705
3706 sp->ep->prsctp_enable = !!params.assoc_value;
3707 } else {
3708 goto out;
3709 }
3710
3711 retval = 0;
3712
3713 out:
3714 return retval;
3715 }
3716
3717 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3718 char __user *optval,
3719 unsigned int optlen)
3720 {
3721 struct sctp_default_prinfo info;
3722 struct sctp_association *asoc;
3723 int retval = -EINVAL;
3724
3725 if (optlen != sizeof(info))
3726 goto out;
3727
3728 if (copy_from_user(&info, optval, sizeof(info))) {
3729 retval = -EFAULT;
3730 goto out;
3731 }
3732
3733 if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3734 goto out;
3735
3736 if (info.pr_policy == SCTP_PR_SCTP_NONE)
3737 info.pr_value = 0;
3738
3739 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3740 if (asoc) {
3741 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3742 asoc->default_timetolive = info.pr_value;
3743 } else if (!info.pr_assoc_id) {
3744 struct sctp_sock *sp = sctp_sk(sk);
3745
3746 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3747 sp->default_timetolive = info.pr_value;
3748 } else {
3749 goto out;
3750 }
3751
3752 retval = 0;
3753
3754 out:
3755 return retval;
3756 }
3757
3758 /* API 6.2 setsockopt(), getsockopt()
3759 *
3760 * Applications use setsockopt() and getsockopt() to set or retrieve
3761 * socket options. Socket options are used to change the default
3762 * behavior of sockets calls. They are described in Section 7.
3763 *
3764 * The syntax is:
3765 *
3766 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3767 * int __user *optlen);
3768 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3769 * int optlen);
3770 *
3771 * sd - the socket descript.
3772 * level - set to IPPROTO_SCTP for all SCTP options.
3773 * optname - the option name.
3774 * optval - the buffer to store the value of the option.
3775 * optlen - the size of the buffer.
3776 */
3777 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3778 char __user *optval, unsigned int optlen)
3779 {
3780 int retval = 0;
3781
3782 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3783
3784 /* I can hardly begin to describe how wrong this is. This is
3785 * so broken as to be worse than useless. The API draft
3786 * REALLY is NOT helpful here... I am not convinced that the
3787 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3788 * are at all well-founded.
3789 */
3790 if (level != SOL_SCTP) {
3791 struct sctp_af *af = sctp_sk(sk)->pf->af;
3792 retval = af->setsockopt(sk, level, optname, optval, optlen);
3793 goto out_nounlock;
3794 }
3795
3796 lock_sock(sk);
3797
3798 switch (optname) {
3799 case SCTP_SOCKOPT_BINDX_ADD:
3800 /* 'optlen' is the size of the addresses buffer. */
3801 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3802 optlen, SCTP_BINDX_ADD_ADDR);
3803 break;
3804
3805 case SCTP_SOCKOPT_BINDX_REM:
3806 /* 'optlen' is the size of the addresses buffer. */
3807 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3808 optlen, SCTP_BINDX_REM_ADDR);
3809 break;
3810
3811 case SCTP_SOCKOPT_CONNECTX_OLD:
3812 /* 'optlen' is the size of the addresses buffer. */
3813 retval = sctp_setsockopt_connectx_old(sk,
3814 (struct sockaddr __user *)optval,
3815 optlen);
3816 break;
3817
3818 case SCTP_SOCKOPT_CONNECTX:
3819 /* 'optlen' is the size of the addresses buffer. */
3820 retval = sctp_setsockopt_connectx(sk,
3821 (struct sockaddr __user *)optval,
3822 optlen);
3823 break;
3824
3825 case SCTP_DISABLE_FRAGMENTS:
3826 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3827 break;
3828
3829 case SCTP_EVENTS:
3830 retval = sctp_setsockopt_events(sk, optval, optlen);
3831 break;
3832
3833 case SCTP_AUTOCLOSE:
3834 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3835 break;
3836
3837 case SCTP_PEER_ADDR_PARAMS:
3838 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3839 break;
3840
3841 case SCTP_DELAYED_SACK:
3842 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3843 break;
3844 case SCTP_PARTIAL_DELIVERY_POINT:
3845 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3846 break;
3847
3848 case SCTP_INITMSG:
3849 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3850 break;
3851 case SCTP_DEFAULT_SEND_PARAM:
3852 retval = sctp_setsockopt_default_send_param(sk, optval,
3853 optlen);
3854 break;
3855 case SCTP_DEFAULT_SNDINFO:
3856 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3857 break;
3858 case SCTP_PRIMARY_ADDR:
3859 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3860 break;
3861 case SCTP_SET_PEER_PRIMARY_ADDR:
3862 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3863 break;
3864 case SCTP_NODELAY:
3865 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3866 break;
3867 case SCTP_RTOINFO:
3868 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3869 break;
3870 case SCTP_ASSOCINFO:
3871 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3872 break;
3873 case SCTP_I_WANT_MAPPED_V4_ADDR:
3874 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3875 break;
3876 case SCTP_MAXSEG:
3877 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3878 break;
3879 case SCTP_ADAPTATION_LAYER:
3880 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3881 break;
3882 case SCTP_CONTEXT:
3883 retval = sctp_setsockopt_context(sk, optval, optlen);
3884 break;
3885 case SCTP_FRAGMENT_INTERLEAVE:
3886 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3887 break;
3888 case SCTP_MAX_BURST:
3889 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3890 break;
3891 case SCTP_AUTH_CHUNK:
3892 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3893 break;
3894 case SCTP_HMAC_IDENT:
3895 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3896 break;
3897 case SCTP_AUTH_KEY:
3898 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3899 break;
3900 case SCTP_AUTH_ACTIVE_KEY:
3901 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3902 break;
3903 case SCTP_AUTH_DELETE_KEY:
3904 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3905 break;
3906 case SCTP_AUTO_ASCONF:
3907 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3908 break;
3909 case SCTP_PEER_ADDR_THLDS:
3910 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3911 break;
3912 case SCTP_RECVRCVINFO:
3913 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3914 break;
3915 case SCTP_RECVNXTINFO:
3916 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3917 break;
3918 case SCTP_PR_SUPPORTED:
3919 retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
3920 break;
3921 case SCTP_DEFAULT_PRINFO:
3922 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
3923 break;
3924 default:
3925 retval = -ENOPROTOOPT;
3926 break;
3927 }
3928
3929 release_sock(sk);
3930
3931 out_nounlock:
3932 return retval;
3933 }
3934
3935 /* API 3.1.6 connect() - UDP Style Syntax
3936 *
3937 * An application may use the connect() call in the UDP model to initiate an
3938 * association without sending data.
3939 *
3940 * The syntax is:
3941 *
3942 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3943 *
3944 * sd: the socket descriptor to have a new association added to.
3945 *
3946 * nam: the address structure (either struct sockaddr_in or struct
3947 * sockaddr_in6 defined in RFC2553 [7]).
3948 *
3949 * len: the size of the address.
3950 */
3951 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3952 int addr_len)
3953 {
3954 int err = 0;
3955 struct sctp_af *af;
3956
3957 lock_sock(sk);
3958
3959 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3960 addr, addr_len);
3961
3962 /* Validate addr_len before calling common connect/connectx routine. */
3963 af = sctp_get_af_specific(addr->sa_family);
3964 if (!af || addr_len < af->sockaddr_len) {
3965 err = -EINVAL;
3966 } else {
3967 /* Pass correct addr len to common routine (so it knows there
3968 * is only one address being passed.
3969 */
3970 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3971 }
3972
3973 release_sock(sk);
3974 return err;
3975 }
3976
3977 /* FIXME: Write comments. */
3978 static int sctp_disconnect(struct sock *sk, int flags)
3979 {
3980 return -EOPNOTSUPP; /* STUB */
3981 }
3982
3983 /* 4.1.4 accept() - TCP Style Syntax
3984 *
3985 * Applications use accept() call to remove an established SCTP
3986 * association from the accept queue of the endpoint. A new socket
3987 * descriptor will be returned from accept() to represent the newly
3988 * formed association.
3989 */
3990 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3991 {
3992 struct sctp_sock *sp;
3993 struct sctp_endpoint *ep;
3994 struct sock *newsk = NULL;
3995 struct sctp_association *asoc;
3996 long timeo;
3997 int error = 0;
3998
3999 lock_sock(sk);
4000
4001 sp = sctp_sk(sk);
4002 ep = sp->ep;
4003
4004 if (!sctp_style(sk, TCP)) {
4005 error = -EOPNOTSUPP;
4006 goto out;
4007 }
4008
4009 if (!sctp_sstate(sk, LISTENING)) {
4010 error = -EINVAL;
4011 goto out;
4012 }
4013
4014 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4015
4016 error = sctp_wait_for_accept(sk, timeo);
4017 if (error)
4018 goto out;
4019
4020 /* We treat the list of associations on the endpoint as the accept
4021 * queue and pick the first association on the list.
4022 */
4023 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4024
4025 newsk = sp->pf->create_accept_sk(sk, asoc);
4026 if (!newsk) {
4027 error = -ENOMEM;
4028 goto out;
4029 }
4030
4031 /* Populate the fields of the newsk from the oldsk and migrate the
4032 * asoc to the newsk.
4033 */
4034 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4035
4036 out:
4037 release_sock(sk);
4038 *err = error;
4039 return newsk;
4040 }
4041
4042 /* The SCTP ioctl handler. */
4043 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4044 {
4045 int rc = -ENOTCONN;
4046
4047 lock_sock(sk);
4048
4049 /*
4050 * SEQPACKET-style sockets in LISTENING state are valid, for
4051 * SCTP, so only discard TCP-style sockets in LISTENING state.
4052 */
4053 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4054 goto out;
4055
4056 switch (cmd) {
4057 case SIOCINQ: {
4058 struct sk_buff *skb;
4059 unsigned int amount = 0;
4060
4061 skb = skb_peek(&sk->sk_receive_queue);
4062 if (skb != NULL) {
4063 /*
4064 * We will only return the amount of this packet since
4065 * that is all that will be read.
4066 */
4067 amount = skb->len;
4068 }
4069 rc = put_user(amount, (int __user *)arg);
4070 break;
4071 }
4072 default:
4073 rc = -ENOIOCTLCMD;
4074 break;
4075 }
4076 out:
4077 release_sock(sk);
4078 return rc;
4079 }
4080
4081 /* This is the function which gets called during socket creation to
4082 * initialized the SCTP-specific portion of the sock.
4083 * The sock structure should already be zero-filled memory.
4084 */
4085 static int sctp_init_sock(struct sock *sk)
4086 {
4087 struct net *net = sock_net(sk);
4088 struct sctp_sock *sp;
4089
4090 pr_debug("%s: sk:%p\n", __func__, sk);
4091
4092 sp = sctp_sk(sk);
4093
4094 /* Initialize the SCTP per socket area. */
4095 switch (sk->sk_type) {
4096 case SOCK_SEQPACKET:
4097 sp->type = SCTP_SOCKET_UDP;
4098 break;
4099 case SOCK_STREAM:
4100 sp->type = SCTP_SOCKET_TCP;
4101 break;
4102 default:
4103 return -ESOCKTNOSUPPORT;
4104 }
4105
4106 sk->sk_gso_type = SKB_GSO_SCTP;
4107
4108 /* Initialize default send parameters. These parameters can be
4109 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4110 */
4111 sp->default_stream = 0;
4112 sp->default_ppid = 0;
4113 sp->default_flags = 0;
4114 sp->default_context = 0;
4115 sp->default_timetolive = 0;
4116
4117 sp->default_rcv_context = 0;
4118 sp->max_burst = net->sctp.max_burst;
4119
4120 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4121
4122 /* Initialize default setup parameters. These parameters
4123 * can be modified with the SCTP_INITMSG socket option or
4124 * overridden by the SCTP_INIT CMSG.
4125 */
4126 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4127 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4128 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4129 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4130
4131 /* Initialize default RTO related parameters. These parameters can
4132 * be modified for with the SCTP_RTOINFO socket option.
4133 */
4134 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4135 sp->rtoinfo.srto_max = net->sctp.rto_max;
4136 sp->rtoinfo.srto_min = net->sctp.rto_min;
4137
4138 /* Initialize default association related parameters. These parameters
4139 * can be modified with the SCTP_ASSOCINFO socket option.
4140 */
4141 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4142 sp->assocparams.sasoc_number_peer_destinations = 0;
4143 sp->assocparams.sasoc_peer_rwnd = 0;
4144 sp->assocparams.sasoc_local_rwnd = 0;
4145 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4146
4147 /* Initialize default event subscriptions. By default, all the
4148 * options are off.
4149 */
4150 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4151
4152 /* Default Peer Address Parameters. These defaults can
4153 * be modified via SCTP_PEER_ADDR_PARAMS
4154 */
4155 sp->hbinterval = net->sctp.hb_interval;
4156 sp->pathmaxrxt = net->sctp.max_retrans_path;
4157 sp->pathmtu = 0; /* allow default discovery */
4158 sp->sackdelay = net->sctp.sack_timeout;
4159 sp->sackfreq = 2;
4160 sp->param_flags = SPP_HB_ENABLE |
4161 SPP_PMTUD_ENABLE |
4162 SPP_SACKDELAY_ENABLE;
4163
4164 /* If enabled no SCTP message fragmentation will be performed.
4165 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4166 */
4167 sp->disable_fragments = 0;
4168
4169 /* Enable Nagle algorithm by default. */
4170 sp->nodelay = 0;
4171
4172 sp->recvrcvinfo = 0;
4173 sp->recvnxtinfo = 0;
4174
4175 /* Enable by default. */
4176 sp->v4mapped = 1;
4177
4178 /* Auto-close idle associations after the configured
4179 * number of seconds. A value of 0 disables this
4180 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4181 * for UDP-style sockets only.
4182 */
4183 sp->autoclose = 0;
4184
4185 /* User specified fragmentation limit. */
4186 sp->user_frag = 0;
4187
4188 sp->adaptation_ind = 0;
4189
4190 sp->pf = sctp_get_pf_specific(sk->sk_family);
4191
4192 /* Control variables for partial data delivery. */
4193 atomic_set(&sp->pd_mode, 0);
4194 skb_queue_head_init(&sp->pd_lobby);
4195 sp->frag_interleave = 0;
4196
4197 /* Create a per socket endpoint structure. Even if we
4198 * change the data structure relationships, this may still
4199 * be useful for storing pre-connect address information.
4200 */
4201 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4202 if (!sp->ep)
4203 return -ENOMEM;
4204
4205 sp->hmac = NULL;
4206
4207 sk->sk_destruct = sctp_destruct_sock;
4208
4209 SCTP_DBG_OBJCNT_INC(sock);
4210
4211 local_bh_disable();
4212 percpu_counter_inc(&sctp_sockets_allocated);
4213 sock_prot_inuse_add(net, sk->sk_prot, 1);
4214
4215 /* Nothing can fail after this block, otherwise
4216 * sctp_destroy_sock() will be called without addr_wq_lock held
4217 */
4218 if (net->sctp.default_auto_asconf) {
4219 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4220 list_add_tail(&sp->auto_asconf_list,
4221 &net->sctp.auto_asconf_splist);
4222 sp->do_auto_asconf = 1;
4223 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4224 } else {
4225 sp->do_auto_asconf = 0;
4226 }
4227
4228 local_bh_enable();
4229
4230 return 0;
4231 }
4232
4233 /* Cleanup any SCTP per socket resources. Must be called with
4234 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4235 */
4236 static void sctp_destroy_sock(struct sock *sk)
4237 {
4238 struct sctp_sock *sp;
4239
4240 pr_debug("%s: sk:%p\n", __func__, sk);
4241
4242 /* Release our hold on the endpoint. */
4243 sp = sctp_sk(sk);
4244 /* This could happen during socket init, thus we bail out
4245 * early, since the rest of the below is not setup either.
4246 */
4247 if (sp->ep == NULL)
4248 return;
4249
4250 if (sp->do_auto_asconf) {
4251 sp->do_auto_asconf = 0;
4252 list_del(&sp->auto_asconf_list);
4253 }
4254 sctp_endpoint_free(sp->ep);
4255 local_bh_disable();
4256 percpu_counter_dec(&sctp_sockets_allocated);
4257 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4258 local_bh_enable();
4259 }
4260
4261 /* Triggered when there are no references on the socket anymore */
4262 static void sctp_destruct_sock(struct sock *sk)
4263 {
4264 struct sctp_sock *sp = sctp_sk(sk);
4265
4266 /* Free up the HMAC transform. */
4267 crypto_free_shash(sp->hmac);
4268
4269 inet_sock_destruct(sk);
4270 }
4271
4272 /* API 4.1.7 shutdown() - TCP Style Syntax
4273 * int shutdown(int socket, int how);
4274 *
4275 * sd - the socket descriptor of the association to be closed.
4276 * how - Specifies the type of shutdown. The values are
4277 * as follows:
4278 * SHUT_RD
4279 * Disables further receive operations. No SCTP
4280 * protocol action is taken.
4281 * SHUT_WR
4282 * Disables further send operations, and initiates
4283 * the SCTP shutdown sequence.
4284 * SHUT_RDWR
4285 * Disables further send and receive operations
4286 * and initiates the SCTP shutdown sequence.
4287 */
4288 static void sctp_shutdown(struct sock *sk, int how)
4289 {
4290 struct net *net = sock_net(sk);
4291 struct sctp_endpoint *ep;
4292
4293 if (!sctp_style(sk, TCP))
4294 return;
4295
4296 ep = sctp_sk(sk)->ep;
4297 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4298 struct sctp_association *asoc;
4299
4300 sk->sk_state = SCTP_SS_CLOSING;
4301 asoc = list_entry(ep->asocs.next,
4302 struct sctp_association, asocs);
4303 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4304 }
4305 }
4306
4307 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4308 struct sctp_info *info)
4309 {
4310 struct sctp_transport *prim;
4311 struct list_head *pos;
4312 int mask;
4313
4314 memset(info, 0, sizeof(*info));
4315 if (!asoc) {
4316 struct sctp_sock *sp = sctp_sk(sk);
4317
4318 info->sctpi_s_autoclose = sp->autoclose;
4319 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4320 info->sctpi_s_pd_point = sp->pd_point;
4321 info->sctpi_s_nodelay = sp->nodelay;
4322 info->sctpi_s_disable_fragments = sp->disable_fragments;
4323 info->sctpi_s_v4mapped = sp->v4mapped;
4324 info->sctpi_s_frag_interleave = sp->frag_interleave;
4325 info->sctpi_s_type = sp->type;
4326
4327 return 0;
4328 }
4329
4330 info->sctpi_tag = asoc->c.my_vtag;
4331 info->sctpi_state = asoc->state;
4332 info->sctpi_rwnd = asoc->a_rwnd;
4333 info->sctpi_unackdata = asoc->unack_data;
4334 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4335 info->sctpi_instrms = asoc->c.sinit_max_instreams;
4336 info->sctpi_outstrms = asoc->c.sinit_num_ostreams;
4337 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4338 info->sctpi_inqueue++;
4339 list_for_each(pos, &asoc->outqueue.out_chunk_list)
4340 info->sctpi_outqueue++;
4341 info->sctpi_overall_error = asoc->overall_error_count;
4342 info->sctpi_max_burst = asoc->max_burst;
4343 info->sctpi_maxseg = asoc->frag_point;
4344 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4345 info->sctpi_peer_tag = asoc->c.peer_vtag;
4346
4347 mask = asoc->peer.ecn_capable << 1;
4348 mask = (mask | asoc->peer.ipv4_address) << 1;
4349 mask = (mask | asoc->peer.ipv6_address) << 1;
4350 mask = (mask | asoc->peer.hostname_address) << 1;
4351 mask = (mask | asoc->peer.asconf_capable) << 1;
4352 mask = (mask | asoc->peer.prsctp_capable) << 1;
4353 mask = (mask | asoc->peer.auth_capable);
4354 info->sctpi_peer_capable = mask;
4355 mask = asoc->peer.sack_needed << 1;
4356 mask = (mask | asoc->peer.sack_generation) << 1;
4357 mask = (mask | asoc->peer.zero_window_announced);
4358 info->sctpi_peer_sack = mask;
4359
4360 info->sctpi_isacks = asoc->stats.isacks;
4361 info->sctpi_osacks = asoc->stats.osacks;
4362 info->sctpi_opackets = asoc->stats.opackets;
4363 info->sctpi_ipackets = asoc->stats.ipackets;
4364 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4365 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4366 info->sctpi_idupchunks = asoc->stats.idupchunks;
4367 info->sctpi_gapcnt = asoc->stats.gapcnt;
4368 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4369 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4370 info->sctpi_oodchunks = asoc->stats.oodchunks;
4371 info->sctpi_iodchunks = asoc->stats.iodchunks;
4372 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4373 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4374
4375 prim = asoc->peer.primary_path;
4376 memcpy(&info->sctpi_p_address, &prim->ipaddr,
4377 sizeof(struct sockaddr_storage));
4378 info->sctpi_p_state = prim->state;
4379 info->sctpi_p_cwnd = prim->cwnd;
4380 info->sctpi_p_srtt = prim->srtt;
4381 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4382 info->sctpi_p_hbinterval = prim->hbinterval;
4383 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4384 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4385 info->sctpi_p_ssthresh = prim->ssthresh;
4386 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4387 info->sctpi_p_flight_size = prim->flight_size;
4388 info->sctpi_p_error = prim->error_count;
4389
4390 return 0;
4391 }
4392 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4393
4394 /* use callback to avoid exporting the core structure */
4395 int sctp_transport_walk_start(struct rhashtable_iter *iter)
4396 {
4397 int err;
4398
4399 rhltable_walk_enter(&sctp_transport_hashtable, iter);
4400
4401 err = rhashtable_walk_start(iter);
4402 if (err && err != -EAGAIN) {
4403 rhashtable_walk_stop(iter);
4404 rhashtable_walk_exit(iter);
4405 return err;
4406 }
4407
4408 return 0;
4409 }
4410
4411 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4412 {
4413 rhashtable_walk_stop(iter);
4414 rhashtable_walk_exit(iter);
4415 }
4416
4417 struct sctp_transport *sctp_transport_get_next(struct net *net,
4418 struct rhashtable_iter *iter)
4419 {
4420 struct sctp_transport *t;
4421
4422 t = rhashtable_walk_next(iter);
4423 for (; t; t = rhashtable_walk_next(iter)) {
4424 if (IS_ERR(t)) {
4425 if (PTR_ERR(t) == -EAGAIN)
4426 continue;
4427 break;
4428 }
4429
4430 if (net_eq(sock_net(t->asoc->base.sk), net) &&
4431 t->asoc->peer.primary_path == t)
4432 break;
4433 }
4434
4435 return t;
4436 }
4437
4438 struct sctp_transport *sctp_transport_get_idx(struct net *net,
4439 struct rhashtable_iter *iter,
4440 int pos)
4441 {
4442 void *obj = SEQ_START_TOKEN;
4443
4444 while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4445 !IS_ERR(obj))
4446 pos--;
4447
4448 return obj;
4449 }
4450
4451 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4452 void *p) {
4453 int err = 0;
4454 int hash = 0;
4455 struct sctp_ep_common *epb;
4456 struct sctp_hashbucket *head;
4457
4458 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4459 hash++, head++) {
4460 read_lock(&head->lock);
4461 sctp_for_each_hentry(epb, &head->chain) {
4462 err = cb(sctp_ep(epb), p);
4463 if (err)
4464 break;
4465 }
4466 read_unlock(&head->lock);
4467 }
4468
4469 return err;
4470 }
4471 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4472
4473 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4474 struct net *net,
4475 const union sctp_addr *laddr,
4476 const union sctp_addr *paddr, void *p)
4477 {
4478 struct sctp_transport *transport;
4479 int err;
4480
4481 rcu_read_lock();
4482 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4483 rcu_read_unlock();
4484 if (!transport)
4485 return -ENOENT;
4486
4487 err = cb(transport, p);
4488 sctp_transport_put(transport);
4489
4490 return err;
4491 }
4492 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4493
4494 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4495 struct net *net, int pos, void *p) {
4496 struct rhashtable_iter hti;
4497 void *obj;
4498 int err;
4499
4500 err = sctp_transport_walk_start(&hti);
4501 if (err)
4502 return err;
4503
4504 sctp_transport_get_idx(net, &hti, pos);
4505 obj = sctp_transport_get_next(net, &hti);
4506 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) {
4507 struct sctp_transport *transport = obj;
4508
4509 if (!sctp_transport_hold(transport))
4510 continue;
4511 err = cb(transport, p);
4512 sctp_transport_put(transport);
4513 if (err)
4514 break;
4515 }
4516 sctp_transport_walk_stop(&hti);
4517
4518 return err;
4519 }
4520 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4521
4522 /* 7.2.1 Association Status (SCTP_STATUS)
4523
4524 * Applications can retrieve current status information about an
4525 * association, including association state, peer receiver window size,
4526 * number of unacked data chunks, and number of data chunks pending
4527 * receipt. This information is read-only.
4528 */
4529 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4530 char __user *optval,
4531 int __user *optlen)
4532 {
4533 struct sctp_status status;
4534 struct sctp_association *asoc = NULL;
4535 struct sctp_transport *transport;
4536 sctp_assoc_t associd;
4537 int retval = 0;
4538
4539 if (len < sizeof(status)) {
4540 retval = -EINVAL;
4541 goto out;
4542 }
4543
4544 len = sizeof(status);
4545 if (copy_from_user(&status, optval, len)) {
4546 retval = -EFAULT;
4547 goto out;
4548 }
4549
4550 associd = status.sstat_assoc_id;
4551 asoc = sctp_id2assoc(sk, associd);
4552 if (!asoc) {
4553 retval = -EINVAL;
4554 goto out;
4555 }
4556
4557 transport = asoc->peer.primary_path;
4558
4559 status.sstat_assoc_id = sctp_assoc2id(asoc);
4560 status.sstat_state = sctp_assoc_to_state(asoc);
4561 status.sstat_rwnd = asoc->peer.rwnd;
4562 status.sstat_unackdata = asoc->unack_data;
4563
4564 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4565 status.sstat_instrms = asoc->c.sinit_max_instreams;
4566 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4567 status.sstat_fragmentation_point = asoc->frag_point;
4568 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4569 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4570 transport->af_specific->sockaddr_len);
4571 /* Map ipv4 address into v4-mapped-on-v6 address. */
4572 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4573 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4574 status.sstat_primary.spinfo_state = transport->state;
4575 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4576 status.sstat_primary.spinfo_srtt = transport->srtt;
4577 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4578 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4579
4580 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4581 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4582
4583 if (put_user(len, optlen)) {
4584 retval = -EFAULT;
4585 goto out;
4586 }
4587
4588 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4589 __func__, len, status.sstat_state, status.sstat_rwnd,
4590 status.sstat_assoc_id);
4591
4592 if (copy_to_user(optval, &status, len)) {
4593 retval = -EFAULT;
4594 goto out;
4595 }
4596
4597 out:
4598 return retval;
4599 }
4600
4601
4602 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4603 *
4604 * Applications can retrieve information about a specific peer address
4605 * of an association, including its reachability state, congestion
4606 * window, and retransmission timer values. This information is
4607 * read-only.
4608 */
4609 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4610 char __user *optval,
4611 int __user *optlen)
4612 {
4613 struct sctp_paddrinfo pinfo;
4614 struct sctp_transport *transport;
4615 int retval = 0;
4616
4617 if (len < sizeof(pinfo)) {
4618 retval = -EINVAL;
4619 goto out;
4620 }
4621
4622 len = sizeof(pinfo);
4623 if (copy_from_user(&pinfo, optval, len)) {
4624 retval = -EFAULT;
4625 goto out;
4626 }
4627
4628 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4629 pinfo.spinfo_assoc_id);
4630 if (!transport)
4631 return -EINVAL;
4632
4633 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4634 pinfo.spinfo_state = transport->state;
4635 pinfo.spinfo_cwnd = transport->cwnd;
4636 pinfo.spinfo_srtt = transport->srtt;
4637 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4638 pinfo.spinfo_mtu = transport->pathmtu;
4639
4640 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4641 pinfo.spinfo_state = SCTP_ACTIVE;
4642
4643 if (put_user(len, optlen)) {
4644 retval = -EFAULT;
4645 goto out;
4646 }
4647
4648 if (copy_to_user(optval, &pinfo, len)) {
4649 retval = -EFAULT;
4650 goto out;
4651 }
4652
4653 out:
4654 return retval;
4655 }
4656
4657 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4658 *
4659 * This option is a on/off flag. If enabled no SCTP message
4660 * fragmentation will be performed. Instead if a message being sent
4661 * exceeds the current PMTU size, the message will NOT be sent and
4662 * instead a error will be indicated to the user.
4663 */
4664 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4665 char __user *optval, int __user *optlen)
4666 {
4667 int val;
4668
4669 if (len < sizeof(int))
4670 return -EINVAL;
4671
4672 len = sizeof(int);
4673 val = (sctp_sk(sk)->disable_fragments == 1);
4674 if (put_user(len, optlen))
4675 return -EFAULT;
4676 if (copy_to_user(optval, &val, len))
4677 return -EFAULT;
4678 return 0;
4679 }
4680
4681 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4682 *
4683 * This socket option is used to specify various notifications and
4684 * ancillary data the user wishes to receive.
4685 */
4686 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4687 int __user *optlen)
4688 {
4689 if (len == 0)
4690 return -EINVAL;
4691 if (len > sizeof(struct sctp_event_subscribe))
4692 len = sizeof(struct sctp_event_subscribe);
4693 if (put_user(len, optlen))
4694 return -EFAULT;
4695 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4696 return -EFAULT;
4697 return 0;
4698 }
4699
4700 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4701 *
4702 * This socket option is applicable to the UDP-style socket only. When
4703 * set it will cause associations that are idle for more than the
4704 * specified number of seconds to automatically close. An association
4705 * being idle is defined an association that has NOT sent or received
4706 * user data. The special value of '0' indicates that no automatic
4707 * close of any associations should be performed. The option expects an
4708 * integer defining the number of seconds of idle time before an
4709 * association is closed.
4710 */
4711 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4712 {
4713 /* Applicable to UDP-style socket only */
4714 if (sctp_style(sk, TCP))
4715 return -EOPNOTSUPP;
4716 if (len < sizeof(int))
4717 return -EINVAL;
4718 len = sizeof(int);
4719 if (put_user(len, optlen))
4720 return -EFAULT;
4721 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4722 return -EFAULT;
4723 return 0;
4724 }
4725
4726 /* Helper routine to branch off an association to a new socket. */
4727 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4728 {
4729 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4730 struct sctp_sock *sp = sctp_sk(sk);
4731 struct socket *sock;
4732 int err = 0;
4733
4734 if (!asoc)
4735 return -EINVAL;
4736
4737 /* If there is a thread waiting on more sndbuf space for
4738 * sending on this asoc, it cannot be peeled.
4739 */
4740 if (waitqueue_active(&asoc->wait))
4741 return -EBUSY;
4742
4743 /* An association cannot be branched off from an already peeled-off
4744 * socket, nor is this supported for tcp style sockets.
4745 */
4746 if (!sctp_style(sk, UDP))
4747 return -EINVAL;
4748
4749 /* Create a new socket. */
4750 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4751 if (err < 0)
4752 return err;
4753
4754 sctp_copy_sock(sock->sk, sk, asoc);
4755
4756 /* Make peeled-off sockets more like 1-1 accepted sockets.
4757 * Set the daddr and initialize id to something more random
4758 */
4759 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4760
4761 /* Populate the fields of the newsk from the oldsk and migrate the
4762 * asoc to the newsk.
4763 */
4764 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4765
4766 *sockp = sock;
4767
4768 return err;
4769 }
4770 EXPORT_SYMBOL(sctp_do_peeloff);
4771
4772 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4773 {
4774 sctp_peeloff_arg_t peeloff;
4775 struct socket *newsock;
4776 struct file *newfile;
4777 int retval = 0;
4778
4779 if (len < sizeof(sctp_peeloff_arg_t))
4780 return -EINVAL;
4781 len = sizeof(sctp_peeloff_arg_t);
4782 if (copy_from_user(&peeloff, optval, len))
4783 return -EFAULT;
4784
4785 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4786 if (retval < 0)
4787 goto out;
4788
4789 /* Map the socket to an unused fd that can be returned to the user. */
4790 retval = get_unused_fd_flags(0);
4791 if (retval < 0) {
4792 sock_release(newsock);
4793 goto out;
4794 }
4795
4796 newfile = sock_alloc_file(newsock, 0, NULL);
4797 if (IS_ERR(newfile)) {
4798 put_unused_fd(retval);
4799 sock_release(newsock);
4800 return PTR_ERR(newfile);
4801 }
4802
4803 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4804 retval);
4805
4806 /* Return the fd mapped to the new socket. */
4807 if (put_user(len, optlen)) {
4808 fput(newfile);
4809 put_unused_fd(retval);
4810 return -EFAULT;
4811 }
4812 peeloff.sd = retval;
4813 if (copy_to_user(optval, &peeloff, len)) {
4814 fput(newfile);
4815 put_unused_fd(retval);
4816 return -EFAULT;
4817 }
4818 fd_install(retval, newfile);
4819 out:
4820 return retval;
4821 }
4822
4823 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4824 *
4825 * Applications can enable or disable heartbeats for any peer address of
4826 * an association, modify an address's heartbeat interval, force a
4827 * heartbeat to be sent immediately, and adjust the address's maximum
4828 * number of retransmissions sent before an address is considered
4829 * unreachable. The following structure is used to access and modify an
4830 * address's parameters:
4831 *
4832 * struct sctp_paddrparams {
4833 * sctp_assoc_t spp_assoc_id;
4834 * struct sockaddr_storage spp_address;
4835 * uint32_t spp_hbinterval;
4836 * uint16_t spp_pathmaxrxt;
4837 * uint32_t spp_pathmtu;
4838 * uint32_t spp_sackdelay;
4839 * uint32_t spp_flags;
4840 * };
4841 *
4842 * spp_assoc_id - (one-to-many style socket) This is filled in the
4843 * application, and identifies the association for
4844 * this query.
4845 * spp_address - This specifies which address is of interest.
4846 * spp_hbinterval - This contains the value of the heartbeat interval,
4847 * in milliseconds. If a value of zero
4848 * is present in this field then no changes are to
4849 * be made to this parameter.
4850 * spp_pathmaxrxt - This contains the maximum number of
4851 * retransmissions before this address shall be
4852 * considered unreachable. If a value of zero
4853 * is present in this field then no changes are to
4854 * be made to this parameter.
4855 * spp_pathmtu - When Path MTU discovery is disabled the value
4856 * specified here will be the "fixed" path mtu.
4857 * Note that if the spp_address field is empty
4858 * then all associations on this address will
4859 * have this fixed path mtu set upon them.
4860 *
4861 * spp_sackdelay - When delayed sack is enabled, this value specifies
4862 * the number of milliseconds that sacks will be delayed
4863 * for. This value will apply to all addresses of an
4864 * association if the spp_address field is empty. Note
4865 * also, that if delayed sack is enabled and this
4866 * value is set to 0, no change is made to the last
4867 * recorded delayed sack timer value.
4868 *
4869 * spp_flags - These flags are used to control various features
4870 * on an association. The flag field may contain
4871 * zero or more of the following options.
4872 *
4873 * SPP_HB_ENABLE - Enable heartbeats on the
4874 * specified address. Note that if the address
4875 * field is empty all addresses for the association
4876 * have heartbeats enabled upon them.
4877 *
4878 * SPP_HB_DISABLE - Disable heartbeats on the
4879 * speicifed address. Note that if the address
4880 * field is empty all addresses for the association
4881 * will have their heartbeats disabled. Note also
4882 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4883 * mutually exclusive, only one of these two should
4884 * be specified. Enabling both fields will have
4885 * undetermined results.
4886 *
4887 * SPP_HB_DEMAND - Request a user initiated heartbeat
4888 * to be made immediately.
4889 *
4890 * SPP_PMTUD_ENABLE - This field will enable PMTU
4891 * discovery upon the specified address. Note that
4892 * if the address feild is empty then all addresses
4893 * on the association are effected.
4894 *
4895 * SPP_PMTUD_DISABLE - This field will disable PMTU
4896 * discovery upon the specified address. Note that
4897 * if the address feild is empty then all addresses
4898 * on the association are effected. Not also that
4899 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4900 * exclusive. Enabling both will have undetermined
4901 * results.
4902 *
4903 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4904 * on delayed sack. The time specified in spp_sackdelay
4905 * is used to specify the sack delay for this address. Note
4906 * that if spp_address is empty then all addresses will
4907 * enable delayed sack and take on the sack delay
4908 * value specified in spp_sackdelay.
4909 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4910 * off delayed sack. If the spp_address field is blank then
4911 * delayed sack is disabled for the entire association. Note
4912 * also that this field is mutually exclusive to
4913 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4914 * results.
4915 */
4916 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4917 char __user *optval, int __user *optlen)
4918 {
4919 struct sctp_paddrparams params;
4920 struct sctp_transport *trans = NULL;
4921 struct sctp_association *asoc = NULL;
4922 struct sctp_sock *sp = sctp_sk(sk);
4923
4924 if (len < sizeof(struct sctp_paddrparams))
4925 return -EINVAL;
4926 len = sizeof(struct sctp_paddrparams);
4927 if (copy_from_user(&params, optval, len))
4928 return -EFAULT;
4929
4930 /* If an address other than INADDR_ANY is specified, and
4931 * no transport is found, then the request is invalid.
4932 */
4933 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4934 trans = sctp_addr_id2transport(sk, &params.spp_address,
4935 params.spp_assoc_id);
4936 if (!trans) {
4937 pr_debug("%s: failed no transport\n", __func__);
4938 return -EINVAL;
4939 }
4940 }
4941
4942 /* Get association, if assoc_id != 0 and the socket is a one
4943 * to many style socket, and an association was not found, then
4944 * the id was invalid.
4945 */
4946 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4947 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4948 pr_debug("%s: failed no association\n", __func__);
4949 return -EINVAL;
4950 }
4951
4952 if (trans) {
4953 /* Fetch transport values. */
4954 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4955 params.spp_pathmtu = trans->pathmtu;
4956 params.spp_pathmaxrxt = trans->pathmaxrxt;
4957 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4958
4959 /*draft-11 doesn't say what to return in spp_flags*/
4960 params.spp_flags = trans->param_flags;
4961 } else if (asoc) {
4962 /* Fetch association values. */
4963 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4964 params.spp_pathmtu = asoc->pathmtu;
4965 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4966 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4967
4968 /*draft-11 doesn't say what to return in spp_flags*/
4969 params.spp_flags = asoc->param_flags;
4970 } else {
4971 /* Fetch socket values. */
4972 params.spp_hbinterval = sp->hbinterval;
4973 params.spp_pathmtu = sp->pathmtu;
4974 params.spp_sackdelay = sp->sackdelay;
4975 params.spp_pathmaxrxt = sp->pathmaxrxt;
4976
4977 /*draft-11 doesn't say what to return in spp_flags*/
4978 params.spp_flags = sp->param_flags;
4979 }
4980
4981 if (copy_to_user(optval, &params, len))
4982 return -EFAULT;
4983
4984 if (put_user(len, optlen))
4985 return -EFAULT;
4986
4987 return 0;
4988 }
4989
4990 /*
4991 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4992 *
4993 * This option will effect the way delayed acks are performed. This
4994 * option allows you to get or set the delayed ack time, in
4995 * milliseconds. It also allows changing the delayed ack frequency.
4996 * Changing the frequency to 1 disables the delayed sack algorithm. If
4997 * the assoc_id is 0, then this sets or gets the endpoints default
4998 * values. If the assoc_id field is non-zero, then the set or get
4999 * effects the specified association for the one to many model (the
5000 * assoc_id field is ignored by the one to one model). Note that if
5001 * sack_delay or sack_freq are 0 when setting this option, then the
5002 * current values will remain unchanged.
5003 *
5004 * struct sctp_sack_info {
5005 * sctp_assoc_t sack_assoc_id;
5006 * uint32_t sack_delay;
5007 * uint32_t sack_freq;
5008 * };
5009 *
5010 * sack_assoc_id - This parameter, indicates which association the user
5011 * is performing an action upon. Note that if this field's value is
5012 * zero then the endpoints default value is changed (effecting future
5013 * associations only).
5014 *
5015 * sack_delay - This parameter contains the number of milliseconds that
5016 * the user is requesting the delayed ACK timer be set to. Note that
5017 * this value is defined in the standard to be between 200 and 500
5018 * milliseconds.
5019 *
5020 * sack_freq - This parameter contains the number of packets that must
5021 * be received before a sack is sent without waiting for the delay
5022 * timer to expire. The default value for this is 2, setting this
5023 * value to 1 will disable the delayed sack algorithm.
5024 */
5025 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5026 char __user *optval,
5027 int __user *optlen)
5028 {
5029 struct sctp_sack_info params;
5030 struct sctp_association *asoc = NULL;
5031 struct sctp_sock *sp = sctp_sk(sk);
5032
5033 if (len >= sizeof(struct sctp_sack_info)) {
5034 len = sizeof(struct sctp_sack_info);
5035
5036 if (copy_from_user(&params, optval, len))
5037 return -EFAULT;
5038 } else if (len == sizeof(struct sctp_assoc_value)) {
5039 pr_warn_ratelimited(DEPRECATED
5040 "%s (pid %d) "
5041 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5042 "Use struct sctp_sack_info instead\n",
5043 current->comm, task_pid_nr(current));
5044 if (copy_from_user(&params, optval, len))
5045 return -EFAULT;
5046 } else
5047 return -EINVAL;
5048
5049 /* Get association, if sack_assoc_id != 0 and the socket is a one
5050 * to many style socket, and an association was not found, then
5051 * the id was invalid.
5052 */
5053 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5054 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5055 return -EINVAL;
5056
5057 if (asoc) {
5058 /* Fetch association values. */
5059 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5060 params.sack_delay = jiffies_to_msecs(
5061 asoc->sackdelay);
5062 params.sack_freq = asoc->sackfreq;
5063
5064 } else {
5065 params.sack_delay = 0;
5066 params.sack_freq = 1;
5067 }
5068 } else {
5069 /* Fetch socket values. */
5070 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5071 params.sack_delay = sp->sackdelay;
5072 params.sack_freq = sp->sackfreq;
5073 } else {
5074 params.sack_delay = 0;
5075 params.sack_freq = 1;
5076 }
5077 }
5078
5079 if (copy_to_user(optval, &params, len))
5080 return -EFAULT;
5081
5082 if (put_user(len, optlen))
5083 return -EFAULT;
5084
5085 return 0;
5086 }
5087
5088 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5089 *
5090 * Applications can specify protocol parameters for the default association
5091 * initialization. The option name argument to setsockopt() and getsockopt()
5092 * is SCTP_INITMSG.
5093 *
5094 * Setting initialization parameters is effective only on an unconnected
5095 * socket (for UDP-style sockets only future associations are effected
5096 * by the change). With TCP-style sockets, this option is inherited by
5097 * sockets derived from a listener socket.
5098 */
5099 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5100 {
5101 if (len < sizeof(struct sctp_initmsg))
5102 return -EINVAL;
5103 len = sizeof(struct sctp_initmsg);
5104 if (put_user(len, optlen))
5105 return -EFAULT;
5106 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5107 return -EFAULT;
5108 return 0;
5109 }
5110
5111
5112 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5113 char __user *optval, int __user *optlen)
5114 {
5115 struct sctp_association *asoc;
5116 int cnt = 0;
5117 struct sctp_getaddrs getaddrs;
5118 struct sctp_transport *from;
5119 void __user *to;
5120 union sctp_addr temp;
5121 struct sctp_sock *sp = sctp_sk(sk);
5122 int addrlen;
5123 size_t space_left;
5124 int bytes_copied;
5125
5126 if (len < sizeof(struct sctp_getaddrs))
5127 return -EINVAL;
5128
5129 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5130 return -EFAULT;
5131
5132 /* For UDP-style sockets, id specifies the association to query. */
5133 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5134 if (!asoc)
5135 return -EINVAL;
5136
5137 to = optval + offsetof(struct sctp_getaddrs, addrs);
5138 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5139
5140 list_for_each_entry(from, &asoc->peer.transport_addr_list,
5141 transports) {
5142 memcpy(&temp, &from->ipaddr, sizeof(temp));
5143 addrlen = sctp_get_pf_specific(sk->sk_family)
5144 ->addr_to_user(sp, &temp);
5145 if (space_left < addrlen)
5146 return -ENOMEM;
5147 if (copy_to_user(to, &temp, addrlen))
5148 return -EFAULT;
5149 to += addrlen;
5150 cnt++;
5151 space_left -= addrlen;
5152 }
5153
5154 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5155 return -EFAULT;
5156 bytes_copied = ((char __user *)to) - optval;
5157 if (put_user(bytes_copied, optlen))
5158 return -EFAULT;
5159
5160 return 0;
5161 }
5162
5163 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5164 size_t space_left, int *bytes_copied)
5165 {
5166 struct sctp_sockaddr_entry *addr;
5167 union sctp_addr temp;
5168 int cnt = 0;
5169 int addrlen;
5170 struct net *net = sock_net(sk);
5171
5172 rcu_read_lock();
5173 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5174 if (!addr->valid)
5175 continue;
5176
5177 if ((PF_INET == sk->sk_family) &&
5178 (AF_INET6 == addr->a.sa.sa_family))
5179 continue;
5180 if ((PF_INET6 == sk->sk_family) &&
5181 inet_v6_ipv6only(sk) &&
5182 (AF_INET == addr->a.sa.sa_family))
5183 continue;
5184 memcpy(&temp, &addr->a, sizeof(temp));
5185 if (!temp.v4.sin_port)
5186 temp.v4.sin_port = htons(port);
5187
5188 addrlen = sctp_get_pf_specific(sk->sk_family)
5189 ->addr_to_user(sctp_sk(sk), &temp);
5190
5191 if (space_left < addrlen) {
5192 cnt = -ENOMEM;
5193 break;
5194 }
5195 memcpy(to, &temp, addrlen);
5196
5197 to += addrlen;
5198 cnt++;
5199 space_left -= addrlen;
5200 *bytes_copied += addrlen;
5201 }
5202 rcu_read_unlock();
5203
5204 return cnt;
5205 }
5206
5207
5208 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5209 char __user *optval, int __user *optlen)
5210 {
5211 struct sctp_bind_addr *bp;
5212 struct sctp_association *asoc;
5213 int cnt = 0;
5214 struct sctp_getaddrs getaddrs;
5215 struct sctp_sockaddr_entry *addr;
5216 void __user *to;
5217 union sctp_addr temp;
5218 struct sctp_sock *sp = sctp_sk(sk);
5219 int addrlen;
5220 int err = 0;
5221 size_t space_left;
5222 int bytes_copied = 0;
5223 void *addrs;
5224 void *buf;
5225
5226 if (len < sizeof(struct sctp_getaddrs))
5227 return -EINVAL;
5228
5229 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5230 return -EFAULT;
5231
5232 /*
5233 * For UDP-style sockets, id specifies the association to query.
5234 * If the id field is set to the value '0' then the locally bound
5235 * addresses are returned without regard to any particular
5236 * association.
5237 */
5238 if (0 == getaddrs.assoc_id) {
5239 bp = &sctp_sk(sk)->ep->base.bind_addr;
5240 } else {
5241 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5242 if (!asoc)
5243 return -EINVAL;
5244 bp = &asoc->base.bind_addr;
5245 }
5246
5247 to = optval + offsetof(struct sctp_getaddrs, addrs);
5248 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5249
5250 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5251 if (!addrs)
5252 return -ENOMEM;
5253
5254 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5255 * addresses from the global local address list.
5256 */
5257 if (sctp_list_single_entry(&bp->address_list)) {
5258 addr = list_entry(bp->address_list.next,
5259 struct sctp_sockaddr_entry, list);
5260 if (sctp_is_any(sk, &addr->a)) {
5261 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5262 space_left, &bytes_copied);
5263 if (cnt < 0) {
5264 err = cnt;
5265 goto out;
5266 }
5267 goto copy_getaddrs;
5268 }
5269 }
5270
5271 buf = addrs;
5272 /* Protection on the bound address list is not needed since
5273 * in the socket option context we hold a socket lock and
5274 * thus the bound address list can't change.
5275 */
5276 list_for_each_entry(addr, &bp->address_list, list) {
5277 memcpy(&temp, &addr->a, sizeof(temp));
5278 addrlen = sctp_get_pf_specific(sk->sk_family)
5279 ->addr_to_user(sp, &temp);
5280 if (space_left < addrlen) {
5281 err = -ENOMEM; /*fixme: right error?*/
5282 goto out;
5283 }
5284 memcpy(buf, &temp, addrlen);
5285 buf += addrlen;
5286 bytes_copied += addrlen;
5287 cnt++;
5288 space_left -= addrlen;
5289 }
5290
5291 copy_getaddrs:
5292 if (copy_to_user(to, addrs, bytes_copied)) {
5293 err = -EFAULT;
5294 goto out;
5295 }
5296 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5297 err = -EFAULT;
5298 goto out;
5299 }
5300 if (put_user(bytes_copied, optlen))
5301 err = -EFAULT;
5302 out:
5303 kfree(addrs);
5304 return err;
5305 }
5306
5307 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5308 *
5309 * Requests that the local SCTP stack use the enclosed peer address as
5310 * the association primary. The enclosed address must be one of the
5311 * association peer's addresses.
5312 */
5313 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5314 char __user *optval, int __user *optlen)
5315 {
5316 struct sctp_prim prim;
5317 struct sctp_association *asoc;
5318 struct sctp_sock *sp = sctp_sk(sk);
5319
5320 if (len < sizeof(struct sctp_prim))
5321 return -EINVAL;
5322
5323 len = sizeof(struct sctp_prim);
5324
5325 if (copy_from_user(&prim, optval, len))
5326 return -EFAULT;
5327
5328 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5329 if (!asoc)
5330 return -EINVAL;
5331
5332 if (!asoc->peer.primary_path)
5333 return -ENOTCONN;
5334
5335 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5336 asoc->peer.primary_path->af_specific->sockaddr_len);
5337
5338 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5339 (union sctp_addr *)&prim.ssp_addr);
5340
5341 if (put_user(len, optlen))
5342 return -EFAULT;
5343 if (copy_to_user(optval, &prim, len))
5344 return -EFAULT;
5345
5346 return 0;
5347 }
5348
5349 /*
5350 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5351 *
5352 * Requests that the local endpoint set the specified Adaptation Layer
5353 * Indication parameter for all future INIT and INIT-ACK exchanges.
5354 */
5355 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5356 char __user *optval, int __user *optlen)
5357 {
5358 struct sctp_setadaptation adaptation;
5359
5360 if (len < sizeof(struct sctp_setadaptation))
5361 return -EINVAL;
5362
5363 len = sizeof(struct sctp_setadaptation);
5364
5365 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5366
5367 if (put_user(len, optlen))
5368 return -EFAULT;
5369 if (copy_to_user(optval, &adaptation, len))
5370 return -EFAULT;
5371
5372 return 0;
5373 }
5374
5375 /*
5376 *
5377 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5378 *
5379 * Applications that wish to use the sendto() system call may wish to
5380 * specify a default set of parameters that would normally be supplied
5381 * through the inclusion of ancillary data. This socket option allows
5382 * such an application to set the default sctp_sndrcvinfo structure.
5383
5384
5385 * The application that wishes to use this socket option simply passes
5386 * in to this call the sctp_sndrcvinfo structure defined in Section
5387 * 5.2.2) The input parameters accepted by this call include
5388 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5389 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5390 * to this call if the caller is using the UDP model.
5391 *
5392 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5393 */
5394 static int sctp_getsockopt_default_send_param(struct sock *sk,
5395 int len, char __user *optval,
5396 int __user *optlen)
5397 {
5398 struct sctp_sock *sp = sctp_sk(sk);
5399 struct sctp_association *asoc;
5400 struct sctp_sndrcvinfo info;
5401
5402 if (len < sizeof(info))
5403 return -EINVAL;
5404
5405 len = sizeof(info);
5406
5407 if (copy_from_user(&info, optval, len))
5408 return -EFAULT;
5409
5410 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5411 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5412 return -EINVAL;
5413 if (asoc) {
5414 info.sinfo_stream = asoc->default_stream;
5415 info.sinfo_flags = asoc->default_flags;
5416 info.sinfo_ppid = asoc->default_ppid;
5417 info.sinfo_context = asoc->default_context;
5418 info.sinfo_timetolive = asoc->default_timetolive;
5419 } else {
5420 info.sinfo_stream = sp->default_stream;
5421 info.sinfo_flags = sp->default_flags;
5422 info.sinfo_ppid = sp->default_ppid;
5423 info.sinfo_context = sp->default_context;
5424 info.sinfo_timetolive = sp->default_timetolive;
5425 }
5426
5427 if (put_user(len, optlen))
5428 return -EFAULT;
5429 if (copy_to_user(optval, &info, len))
5430 return -EFAULT;
5431
5432 return 0;
5433 }
5434
5435 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5436 * (SCTP_DEFAULT_SNDINFO)
5437 */
5438 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5439 char __user *optval,
5440 int __user *optlen)
5441 {
5442 struct sctp_sock *sp = sctp_sk(sk);
5443 struct sctp_association *asoc;
5444 struct sctp_sndinfo info;
5445
5446 if (len < sizeof(info))
5447 return -EINVAL;
5448
5449 len = sizeof(info);
5450
5451 if (copy_from_user(&info, optval, len))
5452 return -EFAULT;
5453
5454 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5455 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5456 return -EINVAL;
5457 if (asoc) {
5458 info.snd_sid = asoc->default_stream;
5459 info.snd_flags = asoc->default_flags;
5460 info.snd_ppid = asoc->default_ppid;
5461 info.snd_context = asoc->default_context;
5462 } else {
5463 info.snd_sid = sp->default_stream;
5464 info.snd_flags = sp->default_flags;
5465 info.snd_ppid = sp->default_ppid;
5466 info.snd_context = sp->default_context;
5467 }
5468
5469 if (put_user(len, optlen))
5470 return -EFAULT;
5471 if (copy_to_user(optval, &info, len))
5472 return -EFAULT;
5473
5474 return 0;
5475 }
5476
5477 /*
5478 *
5479 * 7.1.5 SCTP_NODELAY
5480 *
5481 * Turn on/off any Nagle-like algorithm. This means that packets are
5482 * generally sent as soon as possible and no unnecessary delays are
5483 * introduced, at the cost of more packets in the network. Expects an
5484 * integer boolean flag.
5485 */
5486
5487 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5488 char __user *optval, int __user *optlen)
5489 {
5490 int val;
5491
5492 if (len < sizeof(int))
5493 return -EINVAL;
5494
5495 len = sizeof(int);
5496 val = (sctp_sk(sk)->nodelay == 1);
5497 if (put_user(len, optlen))
5498 return -EFAULT;
5499 if (copy_to_user(optval, &val, len))
5500 return -EFAULT;
5501 return 0;
5502 }
5503
5504 /*
5505 *
5506 * 7.1.1 SCTP_RTOINFO
5507 *
5508 * The protocol parameters used to initialize and bound retransmission
5509 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5510 * and modify these parameters.
5511 * All parameters are time values, in milliseconds. A value of 0, when
5512 * modifying the parameters, indicates that the current value should not
5513 * be changed.
5514 *
5515 */
5516 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5517 char __user *optval,
5518 int __user *optlen) {
5519 struct sctp_rtoinfo rtoinfo;
5520 struct sctp_association *asoc;
5521
5522 if (len < sizeof (struct sctp_rtoinfo))
5523 return -EINVAL;
5524
5525 len = sizeof(struct sctp_rtoinfo);
5526
5527 if (copy_from_user(&rtoinfo, optval, len))
5528 return -EFAULT;
5529
5530 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5531
5532 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5533 return -EINVAL;
5534
5535 /* Values corresponding to the specific association. */
5536 if (asoc) {
5537 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5538 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5539 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5540 } else {
5541 /* Values corresponding to the endpoint. */
5542 struct sctp_sock *sp = sctp_sk(sk);
5543
5544 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5545 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5546 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5547 }
5548
5549 if (put_user(len, optlen))
5550 return -EFAULT;
5551
5552 if (copy_to_user(optval, &rtoinfo, len))
5553 return -EFAULT;
5554
5555 return 0;
5556 }
5557
5558 /*
5559 *
5560 * 7.1.2 SCTP_ASSOCINFO
5561 *
5562 * This option is used to tune the maximum retransmission attempts
5563 * of the association.
5564 * Returns an error if the new association retransmission value is
5565 * greater than the sum of the retransmission value of the peer.
5566 * See [SCTP] for more information.
5567 *
5568 */
5569 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5570 char __user *optval,
5571 int __user *optlen)
5572 {
5573
5574 struct sctp_assocparams assocparams;
5575 struct sctp_association *asoc;
5576 struct list_head *pos;
5577 int cnt = 0;
5578
5579 if (len < sizeof (struct sctp_assocparams))
5580 return -EINVAL;
5581
5582 len = sizeof(struct sctp_assocparams);
5583
5584 if (copy_from_user(&assocparams, optval, len))
5585 return -EFAULT;
5586
5587 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5588
5589 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5590 return -EINVAL;
5591
5592 /* Values correspoinding to the specific association */
5593 if (asoc) {
5594 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5595 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5596 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5597 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5598
5599 list_for_each(pos, &asoc->peer.transport_addr_list) {
5600 cnt++;
5601 }
5602
5603 assocparams.sasoc_number_peer_destinations = cnt;
5604 } else {
5605 /* Values corresponding to the endpoint */
5606 struct sctp_sock *sp = sctp_sk(sk);
5607
5608 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5609 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5610 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5611 assocparams.sasoc_cookie_life =
5612 sp->assocparams.sasoc_cookie_life;
5613 assocparams.sasoc_number_peer_destinations =
5614 sp->assocparams.
5615 sasoc_number_peer_destinations;
5616 }
5617
5618 if (put_user(len, optlen))
5619 return -EFAULT;
5620
5621 if (copy_to_user(optval, &assocparams, len))
5622 return -EFAULT;
5623
5624 return 0;
5625 }
5626
5627 /*
5628 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5629 *
5630 * This socket option is a boolean flag which turns on or off mapped V4
5631 * addresses. If this option is turned on and the socket is type
5632 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5633 * If this option is turned off, then no mapping will be done of V4
5634 * addresses and a user will receive both PF_INET6 and PF_INET type
5635 * addresses on the socket.
5636 */
5637 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5638 char __user *optval, int __user *optlen)
5639 {
5640 int val;
5641 struct sctp_sock *sp = sctp_sk(sk);
5642
5643 if (len < sizeof(int))
5644 return -EINVAL;
5645
5646 len = sizeof(int);
5647 val = sp->v4mapped;
5648 if (put_user(len, optlen))
5649 return -EFAULT;
5650 if (copy_to_user(optval, &val, len))
5651 return -EFAULT;
5652
5653 return 0;
5654 }
5655
5656 /*
5657 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5658 * (chapter and verse is quoted at sctp_setsockopt_context())
5659 */
5660 static int sctp_getsockopt_context(struct sock *sk, int len,
5661 char __user *optval, int __user *optlen)
5662 {
5663 struct sctp_assoc_value params;
5664 struct sctp_sock *sp;
5665 struct sctp_association *asoc;
5666
5667 if (len < sizeof(struct sctp_assoc_value))
5668 return -EINVAL;
5669
5670 len = sizeof(struct sctp_assoc_value);
5671
5672 if (copy_from_user(&params, optval, len))
5673 return -EFAULT;
5674
5675 sp = sctp_sk(sk);
5676
5677 if (params.assoc_id != 0) {
5678 asoc = sctp_id2assoc(sk, params.assoc_id);
5679 if (!asoc)
5680 return -EINVAL;
5681 params.assoc_value = asoc->default_rcv_context;
5682 } else {
5683 params.assoc_value = sp->default_rcv_context;
5684 }
5685
5686 if (put_user(len, optlen))
5687 return -EFAULT;
5688 if (copy_to_user(optval, &params, len))
5689 return -EFAULT;
5690
5691 return 0;
5692 }
5693
5694 /*
5695 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5696 * This option will get or set the maximum size to put in any outgoing
5697 * SCTP DATA chunk. If a message is larger than this size it will be
5698 * fragmented by SCTP into the specified size. Note that the underlying
5699 * SCTP implementation may fragment into smaller sized chunks when the
5700 * PMTU of the underlying association is smaller than the value set by
5701 * the user. The default value for this option is '0' which indicates
5702 * the user is NOT limiting fragmentation and only the PMTU will effect
5703 * SCTP's choice of DATA chunk size. Note also that values set larger
5704 * than the maximum size of an IP datagram will effectively let SCTP
5705 * control fragmentation (i.e. the same as setting this option to 0).
5706 *
5707 * The following structure is used to access and modify this parameter:
5708 *
5709 * struct sctp_assoc_value {
5710 * sctp_assoc_t assoc_id;
5711 * uint32_t assoc_value;
5712 * };
5713 *
5714 * assoc_id: This parameter is ignored for one-to-one style sockets.
5715 * For one-to-many style sockets this parameter indicates which
5716 * association the user is performing an action upon. Note that if
5717 * this field's value is zero then the endpoints default value is
5718 * changed (effecting future associations only).
5719 * assoc_value: This parameter specifies the maximum size in bytes.
5720 */
5721 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5722 char __user *optval, int __user *optlen)
5723 {
5724 struct sctp_assoc_value params;
5725 struct sctp_association *asoc;
5726
5727 if (len == sizeof(int)) {
5728 pr_warn_ratelimited(DEPRECATED
5729 "%s (pid %d) "
5730 "Use of int in maxseg socket option.\n"
5731 "Use struct sctp_assoc_value instead\n",
5732 current->comm, task_pid_nr(current));
5733 params.assoc_id = 0;
5734 } else if (len >= sizeof(struct sctp_assoc_value)) {
5735 len = sizeof(struct sctp_assoc_value);
5736 if (copy_from_user(&params, optval, sizeof(params)))
5737 return -EFAULT;
5738 } else
5739 return -EINVAL;
5740
5741 asoc = sctp_id2assoc(sk, params.assoc_id);
5742 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5743 return -EINVAL;
5744
5745 if (asoc)
5746 params.assoc_value = asoc->frag_point;
5747 else
5748 params.assoc_value = sctp_sk(sk)->user_frag;
5749
5750 if (put_user(len, optlen))
5751 return -EFAULT;
5752 if (len == sizeof(int)) {
5753 if (copy_to_user(optval, &params.assoc_value, len))
5754 return -EFAULT;
5755 } else {
5756 if (copy_to_user(optval, &params, len))
5757 return -EFAULT;
5758 }
5759
5760 return 0;
5761 }
5762
5763 /*
5764 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5765 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5766 */
5767 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5768 char __user *optval, int __user *optlen)
5769 {
5770 int val;
5771
5772 if (len < sizeof(int))
5773 return -EINVAL;
5774
5775 len = sizeof(int);
5776
5777 val = sctp_sk(sk)->frag_interleave;
5778 if (put_user(len, optlen))
5779 return -EFAULT;
5780 if (copy_to_user(optval, &val, len))
5781 return -EFAULT;
5782
5783 return 0;
5784 }
5785
5786 /*
5787 * 7.1.25. Set or Get the sctp partial delivery point
5788 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5789 */
5790 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5791 char __user *optval,
5792 int __user *optlen)
5793 {
5794 u32 val;
5795
5796 if (len < sizeof(u32))
5797 return -EINVAL;
5798
5799 len = sizeof(u32);
5800
5801 val = sctp_sk(sk)->pd_point;
5802 if (put_user(len, optlen))
5803 return -EFAULT;
5804 if (copy_to_user(optval, &val, len))
5805 return -EFAULT;
5806
5807 return 0;
5808 }
5809
5810 /*
5811 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5812 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5813 */
5814 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5815 char __user *optval,
5816 int __user *optlen)
5817 {
5818 struct sctp_assoc_value params;
5819 struct sctp_sock *sp;
5820 struct sctp_association *asoc;
5821
5822 if (len == sizeof(int)) {
5823 pr_warn_ratelimited(DEPRECATED
5824 "%s (pid %d) "
5825 "Use of int in max_burst socket option.\n"
5826 "Use struct sctp_assoc_value instead\n",
5827 current->comm, task_pid_nr(current));
5828 params.assoc_id = 0;
5829 } else if (len >= sizeof(struct sctp_assoc_value)) {
5830 len = sizeof(struct sctp_assoc_value);
5831 if (copy_from_user(&params, optval, len))
5832 return -EFAULT;
5833 } else
5834 return -EINVAL;
5835
5836 sp = sctp_sk(sk);
5837
5838 if (params.assoc_id != 0) {
5839 asoc = sctp_id2assoc(sk, params.assoc_id);
5840 if (!asoc)
5841 return -EINVAL;
5842 params.assoc_value = asoc->max_burst;
5843 } else
5844 params.assoc_value = sp->max_burst;
5845
5846 if (len == sizeof(int)) {
5847 if (copy_to_user(optval, &params.assoc_value, len))
5848 return -EFAULT;
5849 } else {
5850 if (copy_to_user(optval, &params, len))
5851 return -EFAULT;
5852 }
5853
5854 return 0;
5855
5856 }
5857
5858 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5859 char __user *optval, int __user *optlen)
5860 {
5861 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5862 struct sctp_hmacalgo __user *p = (void __user *)optval;
5863 struct sctp_hmac_algo_param *hmacs;
5864 __u16 data_len = 0;
5865 u32 num_idents;
5866 int i;
5867
5868 if (!ep->auth_enable)
5869 return -EACCES;
5870
5871 hmacs = ep->auth_hmacs_list;
5872 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5873
5874 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5875 return -EINVAL;
5876
5877 len = sizeof(struct sctp_hmacalgo) + data_len;
5878 num_idents = data_len / sizeof(u16);
5879
5880 if (put_user(len, optlen))
5881 return -EFAULT;
5882 if (put_user(num_idents, &p->shmac_num_idents))
5883 return -EFAULT;
5884 for (i = 0; i < num_idents; i++) {
5885 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
5886
5887 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
5888 return -EFAULT;
5889 }
5890 return 0;
5891 }
5892
5893 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5894 char __user *optval, int __user *optlen)
5895 {
5896 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5897 struct sctp_authkeyid val;
5898 struct sctp_association *asoc;
5899
5900 if (!ep->auth_enable)
5901 return -EACCES;
5902
5903 if (len < sizeof(struct sctp_authkeyid))
5904 return -EINVAL;
5905 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5906 return -EFAULT;
5907
5908 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5909 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5910 return -EINVAL;
5911
5912 if (asoc)
5913 val.scact_keynumber = asoc->active_key_id;
5914 else
5915 val.scact_keynumber = ep->active_key_id;
5916
5917 len = sizeof(struct sctp_authkeyid);
5918 if (put_user(len, optlen))
5919 return -EFAULT;
5920 if (copy_to_user(optval, &val, len))
5921 return -EFAULT;
5922
5923 return 0;
5924 }
5925
5926 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5927 char __user *optval, int __user *optlen)
5928 {
5929 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5930 struct sctp_authchunks __user *p = (void __user *)optval;
5931 struct sctp_authchunks val;
5932 struct sctp_association *asoc;
5933 struct sctp_chunks_param *ch;
5934 u32 num_chunks = 0;
5935 char __user *to;
5936
5937 if (!ep->auth_enable)
5938 return -EACCES;
5939
5940 if (len < sizeof(struct sctp_authchunks))
5941 return -EINVAL;
5942
5943 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5944 return -EFAULT;
5945
5946 to = p->gauth_chunks;
5947 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5948 if (!asoc)
5949 return -EINVAL;
5950
5951 ch = asoc->peer.peer_chunks;
5952 if (!ch)
5953 goto num;
5954
5955 /* See if the user provided enough room for all the data */
5956 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5957 if (len < num_chunks)
5958 return -EINVAL;
5959
5960 if (copy_to_user(to, ch->chunks, num_chunks))
5961 return -EFAULT;
5962 num:
5963 len = sizeof(struct sctp_authchunks) + num_chunks;
5964 if (put_user(len, optlen))
5965 return -EFAULT;
5966 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5967 return -EFAULT;
5968 return 0;
5969 }
5970
5971 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5972 char __user *optval, int __user *optlen)
5973 {
5974 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5975 struct sctp_authchunks __user *p = (void __user *)optval;
5976 struct sctp_authchunks val;
5977 struct sctp_association *asoc;
5978 struct sctp_chunks_param *ch;
5979 u32 num_chunks = 0;
5980 char __user *to;
5981
5982 if (!ep->auth_enable)
5983 return -EACCES;
5984
5985 if (len < sizeof(struct sctp_authchunks))
5986 return -EINVAL;
5987
5988 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5989 return -EFAULT;
5990
5991 to = p->gauth_chunks;
5992 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5993 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5994 return -EINVAL;
5995
5996 if (asoc)
5997 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5998 else
5999 ch = ep->auth_chunk_list;
6000
6001 if (!ch)
6002 goto num;
6003
6004 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
6005 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6006 return -EINVAL;
6007
6008 if (copy_to_user(to, ch->chunks, num_chunks))
6009 return -EFAULT;
6010 num:
6011 len = sizeof(struct sctp_authchunks) + num_chunks;
6012 if (put_user(len, optlen))
6013 return -EFAULT;
6014 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6015 return -EFAULT;
6016
6017 return 0;
6018 }
6019
6020 /*
6021 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6022 * This option gets the current number of associations that are attached
6023 * to a one-to-many style socket. The option value is an uint32_t.
6024 */
6025 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6026 char __user *optval, int __user *optlen)
6027 {
6028 struct sctp_sock *sp = sctp_sk(sk);
6029 struct sctp_association *asoc;
6030 u32 val = 0;
6031
6032 if (sctp_style(sk, TCP))
6033 return -EOPNOTSUPP;
6034
6035 if (len < sizeof(u32))
6036 return -EINVAL;
6037
6038 len = sizeof(u32);
6039
6040 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6041 val++;
6042 }
6043
6044 if (put_user(len, optlen))
6045 return -EFAULT;
6046 if (copy_to_user(optval, &val, len))
6047 return -EFAULT;
6048
6049 return 0;
6050 }
6051
6052 /*
6053 * 8.1.23 SCTP_AUTO_ASCONF
6054 * See the corresponding setsockopt entry as description
6055 */
6056 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6057 char __user *optval, int __user *optlen)
6058 {
6059 int val = 0;
6060
6061 if (len < sizeof(int))
6062 return -EINVAL;
6063
6064 len = sizeof(int);
6065 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6066 val = 1;
6067 if (put_user(len, optlen))
6068 return -EFAULT;
6069 if (copy_to_user(optval, &val, len))
6070 return -EFAULT;
6071 return 0;
6072 }
6073
6074 /*
6075 * 8.2.6. Get the Current Identifiers of Associations
6076 * (SCTP_GET_ASSOC_ID_LIST)
6077 *
6078 * This option gets the current list of SCTP association identifiers of
6079 * the SCTP associations handled by a one-to-many style socket.
6080 */
6081 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6082 char __user *optval, int __user *optlen)
6083 {
6084 struct sctp_sock *sp = sctp_sk(sk);
6085 struct sctp_association *asoc;
6086 struct sctp_assoc_ids *ids;
6087 u32 num = 0;
6088
6089 if (sctp_style(sk, TCP))
6090 return -EOPNOTSUPP;
6091
6092 if (len < sizeof(struct sctp_assoc_ids))
6093 return -EINVAL;
6094
6095 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6096 num++;
6097 }
6098
6099 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6100 return -EINVAL;
6101
6102 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6103
6104 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6105 if (unlikely(!ids))
6106 return -ENOMEM;
6107
6108 ids->gaids_number_of_ids = num;
6109 num = 0;
6110 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6111 ids->gaids_assoc_id[num++] = asoc->assoc_id;
6112 }
6113
6114 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6115 kfree(ids);
6116 return -EFAULT;
6117 }
6118
6119 kfree(ids);
6120 return 0;
6121 }
6122
6123 /*
6124 * SCTP_PEER_ADDR_THLDS
6125 *
6126 * This option allows us to fetch the partially failed threshold for one or all
6127 * transports in an association. See Section 6.1 of:
6128 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6129 */
6130 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6131 char __user *optval,
6132 int len,
6133 int __user *optlen)
6134 {
6135 struct sctp_paddrthlds val;
6136 struct sctp_transport *trans;
6137 struct sctp_association *asoc;
6138
6139 if (len < sizeof(struct sctp_paddrthlds))
6140 return -EINVAL;
6141 len = sizeof(struct sctp_paddrthlds);
6142 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6143 return -EFAULT;
6144
6145 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6146 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6147 if (!asoc)
6148 return -ENOENT;
6149
6150 val.spt_pathpfthld = asoc->pf_retrans;
6151 val.spt_pathmaxrxt = asoc->pathmaxrxt;
6152 } else {
6153 trans = sctp_addr_id2transport(sk, &val.spt_address,
6154 val.spt_assoc_id);
6155 if (!trans)
6156 return -ENOENT;
6157
6158 val.spt_pathmaxrxt = trans->pathmaxrxt;
6159 val.spt_pathpfthld = trans->pf_retrans;
6160 }
6161
6162 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6163 return -EFAULT;
6164
6165 return 0;
6166 }
6167
6168 /*
6169 * SCTP_GET_ASSOC_STATS
6170 *
6171 * This option retrieves local per endpoint statistics. It is modeled
6172 * after OpenSolaris' implementation
6173 */
6174 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6175 char __user *optval,
6176 int __user *optlen)
6177 {
6178 struct sctp_assoc_stats sas;
6179 struct sctp_association *asoc = NULL;
6180
6181 /* User must provide at least the assoc id */
6182 if (len < sizeof(sctp_assoc_t))
6183 return -EINVAL;
6184
6185 /* Allow the struct to grow and fill in as much as possible */
6186 len = min_t(size_t, len, sizeof(sas));
6187
6188 if (copy_from_user(&sas, optval, len))
6189 return -EFAULT;
6190
6191 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6192 if (!asoc)
6193 return -EINVAL;
6194
6195 sas.sas_rtxchunks = asoc->stats.rtxchunks;
6196 sas.sas_gapcnt = asoc->stats.gapcnt;
6197 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6198 sas.sas_osacks = asoc->stats.osacks;
6199 sas.sas_isacks = asoc->stats.isacks;
6200 sas.sas_octrlchunks = asoc->stats.octrlchunks;
6201 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6202 sas.sas_oodchunks = asoc->stats.oodchunks;
6203 sas.sas_iodchunks = asoc->stats.iodchunks;
6204 sas.sas_ouodchunks = asoc->stats.ouodchunks;
6205 sas.sas_iuodchunks = asoc->stats.iuodchunks;
6206 sas.sas_idupchunks = asoc->stats.idupchunks;
6207 sas.sas_opackets = asoc->stats.opackets;
6208 sas.sas_ipackets = asoc->stats.ipackets;
6209
6210 /* New high max rto observed, will return 0 if not a single
6211 * RTO update took place. obs_rto_ipaddr will be bogus
6212 * in such a case
6213 */
6214 sas.sas_maxrto = asoc->stats.max_obs_rto;
6215 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6216 sizeof(struct sockaddr_storage));
6217
6218 /* Mark beginning of a new observation period */
6219 asoc->stats.max_obs_rto = asoc->rto_min;
6220
6221 if (put_user(len, optlen))
6222 return -EFAULT;
6223
6224 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6225
6226 if (copy_to_user(optval, &sas, len))
6227 return -EFAULT;
6228
6229 return 0;
6230 }
6231
6232 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
6233 char __user *optval,
6234 int __user *optlen)
6235 {
6236 int val = 0;
6237
6238 if (len < sizeof(int))
6239 return -EINVAL;
6240
6241 len = sizeof(int);
6242 if (sctp_sk(sk)->recvrcvinfo)
6243 val = 1;
6244 if (put_user(len, optlen))
6245 return -EFAULT;
6246 if (copy_to_user(optval, &val, len))
6247 return -EFAULT;
6248
6249 return 0;
6250 }
6251
6252 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
6253 char __user *optval,
6254 int __user *optlen)
6255 {
6256 int val = 0;
6257
6258 if (len < sizeof(int))
6259 return -EINVAL;
6260
6261 len = sizeof(int);
6262 if (sctp_sk(sk)->recvnxtinfo)
6263 val = 1;
6264 if (put_user(len, optlen))
6265 return -EFAULT;
6266 if (copy_to_user(optval, &val, len))
6267 return -EFAULT;
6268
6269 return 0;
6270 }
6271
6272 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6273 char __user *optval,
6274 int __user *optlen)
6275 {
6276 struct sctp_assoc_value params;
6277 struct sctp_association *asoc;
6278 int retval = -EFAULT;
6279
6280 if (len < sizeof(params)) {
6281 retval = -EINVAL;
6282 goto out;
6283 }
6284
6285 len = sizeof(params);
6286 if (copy_from_user(&params, optval, len))
6287 goto out;
6288
6289 asoc = sctp_id2assoc(sk, params.assoc_id);
6290 if (asoc) {
6291 params.assoc_value = asoc->prsctp_enable;
6292 } else if (!params.assoc_id) {
6293 struct sctp_sock *sp = sctp_sk(sk);
6294
6295 params.assoc_value = sp->ep->prsctp_enable;
6296 } else {
6297 retval = -EINVAL;
6298 goto out;
6299 }
6300
6301 if (put_user(len, optlen))
6302 goto out;
6303
6304 if (copy_to_user(optval, &params, len))
6305 goto out;
6306
6307 retval = 0;
6308
6309 out:
6310 return retval;
6311 }
6312
6313 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6314 char __user *optval,
6315 int __user *optlen)
6316 {
6317 struct sctp_default_prinfo info;
6318 struct sctp_association *asoc;
6319 int retval = -EFAULT;
6320
6321 if (len < sizeof(info)) {
6322 retval = -EINVAL;
6323 goto out;
6324 }
6325
6326 len = sizeof(info);
6327 if (copy_from_user(&info, optval, len))
6328 goto out;
6329
6330 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6331 if (asoc) {
6332 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6333 info.pr_value = asoc->default_timetolive;
6334 } else if (!info.pr_assoc_id) {
6335 struct sctp_sock *sp = sctp_sk(sk);
6336
6337 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6338 info.pr_value = sp->default_timetolive;
6339 } else {
6340 retval = -EINVAL;
6341 goto out;
6342 }
6343
6344 if (put_user(len, optlen))
6345 goto out;
6346
6347 if (copy_to_user(optval, &info, len))
6348 goto out;
6349
6350 retval = 0;
6351
6352 out:
6353 return retval;
6354 }
6355
6356 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6357 char __user *optval,
6358 int __user *optlen)
6359 {
6360 struct sctp_prstatus params;
6361 struct sctp_association *asoc;
6362 int policy;
6363 int retval = -EINVAL;
6364
6365 if (len < sizeof(params))
6366 goto out;
6367
6368 len = sizeof(params);
6369 if (copy_from_user(&params, optval, len)) {
6370 retval = -EFAULT;
6371 goto out;
6372 }
6373
6374 policy = params.sprstat_policy;
6375 if (policy & ~SCTP_PR_SCTP_MASK)
6376 goto out;
6377
6378 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6379 if (!asoc)
6380 goto out;
6381
6382 if (policy == SCTP_PR_SCTP_NONE) {
6383 params.sprstat_abandoned_unsent = 0;
6384 params.sprstat_abandoned_sent = 0;
6385 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6386 params.sprstat_abandoned_unsent +=
6387 asoc->abandoned_unsent[policy];
6388 params.sprstat_abandoned_sent +=
6389 asoc->abandoned_sent[policy];
6390 }
6391 } else {
6392 params.sprstat_abandoned_unsent =
6393 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6394 params.sprstat_abandoned_sent =
6395 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6396 }
6397
6398 if (put_user(len, optlen)) {
6399 retval = -EFAULT;
6400 goto out;
6401 }
6402
6403 if (copy_to_user(optval, &params, len)) {
6404 retval = -EFAULT;
6405 goto out;
6406 }
6407
6408 retval = 0;
6409
6410 out:
6411 return retval;
6412 }
6413
6414 static int sctp_getsockopt(struct sock *sk, int level, int optname,
6415 char __user *optval, int __user *optlen)
6416 {
6417 int retval = 0;
6418 int len;
6419
6420 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6421
6422 /* I can hardly begin to describe how wrong this is. This is
6423 * so broken as to be worse than useless. The API draft
6424 * REALLY is NOT helpful here... I am not convinced that the
6425 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6426 * are at all well-founded.
6427 */
6428 if (level != SOL_SCTP) {
6429 struct sctp_af *af = sctp_sk(sk)->pf->af;
6430
6431 retval = af->getsockopt(sk, level, optname, optval, optlen);
6432 return retval;
6433 }
6434
6435 if (get_user(len, optlen))
6436 return -EFAULT;
6437
6438 if (len < 0)
6439 return -EINVAL;
6440
6441 lock_sock(sk);
6442
6443 switch (optname) {
6444 case SCTP_STATUS:
6445 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6446 break;
6447 case SCTP_DISABLE_FRAGMENTS:
6448 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6449 optlen);
6450 break;
6451 case SCTP_EVENTS:
6452 retval = sctp_getsockopt_events(sk, len, optval, optlen);
6453 break;
6454 case SCTP_AUTOCLOSE:
6455 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6456 break;
6457 case SCTP_SOCKOPT_PEELOFF:
6458 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6459 break;
6460 case SCTP_PEER_ADDR_PARAMS:
6461 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6462 optlen);
6463 break;
6464 case SCTP_DELAYED_SACK:
6465 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6466 optlen);
6467 break;
6468 case SCTP_INITMSG:
6469 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6470 break;
6471 case SCTP_GET_PEER_ADDRS:
6472 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6473 optlen);
6474 break;
6475 case SCTP_GET_LOCAL_ADDRS:
6476 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6477 optlen);
6478 break;
6479 case SCTP_SOCKOPT_CONNECTX3:
6480 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6481 break;
6482 case SCTP_DEFAULT_SEND_PARAM:
6483 retval = sctp_getsockopt_default_send_param(sk, len,
6484 optval, optlen);
6485 break;
6486 case SCTP_DEFAULT_SNDINFO:
6487 retval = sctp_getsockopt_default_sndinfo(sk, len,
6488 optval, optlen);
6489 break;
6490 case SCTP_PRIMARY_ADDR:
6491 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6492 break;
6493 case SCTP_NODELAY:
6494 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6495 break;
6496 case SCTP_RTOINFO:
6497 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6498 break;
6499 case SCTP_ASSOCINFO:
6500 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6501 break;
6502 case SCTP_I_WANT_MAPPED_V4_ADDR:
6503 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6504 break;
6505 case SCTP_MAXSEG:
6506 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6507 break;
6508 case SCTP_GET_PEER_ADDR_INFO:
6509 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6510 optlen);
6511 break;
6512 case SCTP_ADAPTATION_LAYER:
6513 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6514 optlen);
6515 break;
6516 case SCTP_CONTEXT:
6517 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6518 break;
6519 case SCTP_FRAGMENT_INTERLEAVE:
6520 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6521 optlen);
6522 break;
6523 case SCTP_PARTIAL_DELIVERY_POINT:
6524 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6525 optlen);
6526 break;
6527 case SCTP_MAX_BURST:
6528 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6529 break;
6530 case SCTP_AUTH_KEY:
6531 case SCTP_AUTH_CHUNK:
6532 case SCTP_AUTH_DELETE_KEY:
6533 retval = -EOPNOTSUPP;
6534 break;
6535 case SCTP_HMAC_IDENT:
6536 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6537 break;
6538 case SCTP_AUTH_ACTIVE_KEY:
6539 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6540 break;
6541 case SCTP_PEER_AUTH_CHUNKS:
6542 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6543 optlen);
6544 break;
6545 case SCTP_LOCAL_AUTH_CHUNKS:
6546 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6547 optlen);
6548 break;
6549 case SCTP_GET_ASSOC_NUMBER:
6550 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6551 break;
6552 case SCTP_GET_ASSOC_ID_LIST:
6553 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6554 break;
6555 case SCTP_AUTO_ASCONF:
6556 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6557 break;
6558 case SCTP_PEER_ADDR_THLDS:
6559 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6560 break;
6561 case SCTP_GET_ASSOC_STATS:
6562 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6563 break;
6564 case SCTP_RECVRCVINFO:
6565 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6566 break;
6567 case SCTP_RECVNXTINFO:
6568 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6569 break;
6570 case SCTP_PR_SUPPORTED:
6571 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
6572 break;
6573 case SCTP_DEFAULT_PRINFO:
6574 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
6575 optlen);
6576 break;
6577 case SCTP_PR_ASSOC_STATUS:
6578 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
6579 optlen);
6580 break;
6581 default:
6582 retval = -ENOPROTOOPT;
6583 break;
6584 }
6585
6586 release_sock(sk);
6587 return retval;
6588 }
6589
6590 static int sctp_hash(struct sock *sk)
6591 {
6592 /* STUB */
6593 return 0;
6594 }
6595
6596 static void sctp_unhash(struct sock *sk)
6597 {
6598 /* STUB */
6599 }
6600
6601 /* Check if port is acceptable. Possibly find first available port.
6602 *
6603 * The port hash table (contained in the 'global' SCTP protocol storage
6604 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6605 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6606 * list (the list number is the port number hashed out, so as you
6607 * would expect from a hash function, all the ports in a given list have
6608 * such a number that hashes out to the same list number; you were
6609 * expecting that, right?); so each list has a set of ports, with a
6610 * link to the socket (struct sock) that uses it, the port number and
6611 * a fastreuse flag (FIXME: NPI ipg).
6612 */
6613 static struct sctp_bind_bucket *sctp_bucket_create(
6614 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6615
6616 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6617 {
6618 struct sctp_bind_hashbucket *head; /* hash list */
6619 struct sctp_bind_bucket *pp;
6620 unsigned short snum;
6621 int ret;
6622
6623 snum = ntohs(addr->v4.sin_port);
6624
6625 pr_debug("%s: begins, snum:%d\n", __func__, snum);
6626
6627 local_bh_disable();
6628
6629 if (snum == 0) {
6630 /* Search for an available port. */
6631 int low, high, remaining, index;
6632 unsigned int rover;
6633 struct net *net = sock_net(sk);
6634
6635 inet_get_local_port_range(net, &low, &high);
6636 remaining = (high - low) + 1;
6637 rover = prandom_u32() % remaining + low;
6638
6639 do {
6640 rover++;
6641 if ((rover < low) || (rover > high))
6642 rover = low;
6643 if (inet_is_local_reserved_port(net, rover))
6644 continue;
6645 index = sctp_phashfn(sock_net(sk), rover);
6646 head = &sctp_port_hashtable[index];
6647 spin_lock(&head->lock);
6648 sctp_for_each_hentry(pp, &head->chain)
6649 if ((pp->port == rover) &&
6650 net_eq(sock_net(sk), pp->net))
6651 goto next;
6652 break;
6653 next:
6654 spin_unlock(&head->lock);
6655 } while (--remaining > 0);
6656
6657 /* Exhausted local port range during search? */
6658 ret = 1;
6659 if (remaining <= 0)
6660 goto fail;
6661
6662 /* OK, here is the one we will use. HEAD (the port
6663 * hash table list entry) is non-NULL and we hold it's
6664 * mutex.
6665 */
6666 snum = rover;
6667 } else {
6668 /* We are given an specific port number; we verify
6669 * that it is not being used. If it is used, we will
6670 * exahust the search in the hash list corresponding
6671 * to the port number (snum) - we detect that with the
6672 * port iterator, pp being NULL.
6673 */
6674 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6675 spin_lock(&head->lock);
6676 sctp_for_each_hentry(pp, &head->chain) {
6677 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6678 goto pp_found;
6679 }
6680 }
6681 pp = NULL;
6682 goto pp_not_found;
6683 pp_found:
6684 if (!hlist_empty(&pp->owner)) {
6685 /* We had a port hash table hit - there is an
6686 * available port (pp != NULL) and it is being
6687 * used by other socket (pp->owner not empty); that other
6688 * socket is going to be sk2.
6689 */
6690 int reuse = sk->sk_reuse;
6691 struct sock *sk2;
6692
6693 pr_debug("%s: found a possible match\n", __func__);
6694
6695 if (pp->fastreuse && sk->sk_reuse &&
6696 sk->sk_state != SCTP_SS_LISTENING)
6697 goto success;
6698
6699 /* Run through the list of sockets bound to the port
6700 * (pp->port) [via the pointers bind_next and
6701 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6702 * we get the endpoint they describe and run through
6703 * the endpoint's list of IP (v4 or v6) addresses,
6704 * comparing each of the addresses with the address of
6705 * the socket sk. If we find a match, then that means
6706 * that this port/socket (sk) combination are already
6707 * in an endpoint.
6708 */
6709 sk_for_each_bound(sk2, &pp->owner) {
6710 struct sctp_endpoint *ep2;
6711 ep2 = sctp_sk(sk2)->ep;
6712
6713 if (sk == sk2 ||
6714 (reuse && sk2->sk_reuse &&
6715 sk2->sk_state != SCTP_SS_LISTENING))
6716 continue;
6717
6718 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6719 sctp_sk(sk2), sctp_sk(sk))) {
6720 ret = (long)sk2;
6721 goto fail_unlock;
6722 }
6723 }
6724
6725 pr_debug("%s: found a match\n", __func__);
6726 }
6727 pp_not_found:
6728 /* If there was a hash table miss, create a new port. */
6729 ret = 1;
6730 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6731 goto fail_unlock;
6732
6733 /* In either case (hit or miss), make sure fastreuse is 1 only
6734 * if sk->sk_reuse is too (that is, if the caller requested
6735 * SO_REUSEADDR on this socket -sk-).
6736 */
6737 if (hlist_empty(&pp->owner)) {
6738 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6739 pp->fastreuse = 1;
6740 else
6741 pp->fastreuse = 0;
6742 } else if (pp->fastreuse &&
6743 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6744 pp->fastreuse = 0;
6745
6746 /* We are set, so fill up all the data in the hash table
6747 * entry, tie the socket list information with the rest of the
6748 * sockets FIXME: Blurry, NPI (ipg).
6749 */
6750 success:
6751 if (!sctp_sk(sk)->bind_hash) {
6752 inet_sk(sk)->inet_num = snum;
6753 sk_add_bind_node(sk, &pp->owner);
6754 sctp_sk(sk)->bind_hash = pp;
6755 }
6756 ret = 0;
6757
6758 fail_unlock:
6759 spin_unlock(&head->lock);
6760
6761 fail:
6762 local_bh_enable();
6763 return ret;
6764 }
6765
6766 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6767 * port is requested.
6768 */
6769 static int sctp_get_port(struct sock *sk, unsigned short snum)
6770 {
6771 union sctp_addr addr;
6772 struct sctp_af *af = sctp_sk(sk)->pf->af;
6773
6774 /* Set up a dummy address struct from the sk. */
6775 af->from_sk(&addr, sk);
6776 addr.v4.sin_port = htons(snum);
6777
6778 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6779 return !!sctp_get_port_local(sk, &addr);
6780 }
6781
6782 /*
6783 * Move a socket to LISTENING state.
6784 */
6785 static int sctp_listen_start(struct sock *sk, int backlog)
6786 {
6787 struct sctp_sock *sp = sctp_sk(sk);
6788 struct sctp_endpoint *ep = sp->ep;
6789 struct crypto_shash *tfm = NULL;
6790 char alg[32];
6791
6792 /* Allocate HMAC for generating cookie. */
6793 if (!sp->hmac && sp->sctp_hmac_alg) {
6794 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6795 tfm = crypto_alloc_shash(alg, 0, 0);
6796 if (IS_ERR(tfm)) {
6797 net_info_ratelimited("failed to load transform for %s: %ld\n",
6798 sp->sctp_hmac_alg, PTR_ERR(tfm));
6799 return -ENOSYS;
6800 }
6801 sctp_sk(sk)->hmac = tfm;
6802 }
6803
6804 /*
6805 * If a bind() or sctp_bindx() is not called prior to a listen()
6806 * call that allows new associations to be accepted, the system
6807 * picks an ephemeral port and will choose an address set equivalent
6808 * to binding with a wildcard address.
6809 *
6810 * This is not currently spelled out in the SCTP sockets
6811 * extensions draft, but follows the practice as seen in TCP
6812 * sockets.
6813 *
6814 */
6815 sk->sk_state = SCTP_SS_LISTENING;
6816 if (!ep->base.bind_addr.port) {
6817 if (sctp_autobind(sk))
6818 return -EAGAIN;
6819 } else {
6820 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6821 sk->sk_state = SCTP_SS_CLOSED;
6822 return -EADDRINUSE;
6823 }
6824 }
6825
6826 sk->sk_max_ack_backlog = backlog;
6827 sctp_hash_endpoint(ep);
6828 return 0;
6829 }
6830
6831 /*
6832 * 4.1.3 / 5.1.3 listen()
6833 *
6834 * By default, new associations are not accepted for UDP style sockets.
6835 * An application uses listen() to mark a socket as being able to
6836 * accept new associations.
6837 *
6838 * On TCP style sockets, applications use listen() to ready the SCTP
6839 * endpoint for accepting inbound associations.
6840 *
6841 * On both types of endpoints a backlog of '0' disables listening.
6842 *
6843 * Move a socket to LISTENING state.
6844 */
6845 int sctp_inet_listen(struct socket *sock, int backlog)
6846 {
6847 struct sock *sk = sock->sk;
6848 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6849 int err = -EINVAL;
6850
6851 if (unlikely(backlog < 0))
6852 return err;
6853
6854 lock_sock(sk);
6855
6856 /* Peeled-off sockets are not allowed to listen(). */
6857 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6858 goto out;
6859
6860 if (sock->state != SS_UNCONNECTED)
6861 goto out;
6862
6863 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
6864 goto out;
6865
6866 /* If backlog is zero, disable listening. */
6867 if (!backlog) {
6868 if (sctp_sstate(sk, CLOSED))
6869 goto out;
6870
6871 err = 0;
6872 sctp_unhash_endpoint(ep);
6873 sk->sk_state = SCTP_SS_CLOSED;
6874 if (sk->sk_reuse)
6875 sctp_sk(sk)->bind_hash->fastreuse = 1;
6876 goto out;
6877 }
6878
6879 /* If we are already listening, just update the backlog */
6880 if (sctp_sstate(sk, LISTENING))
6881 sk->sk_max_ack_backlog = backlog;
6882 else {
6883 err = sctp_listen_start(sk, backlog);
6884 if (err)
6885 goto out;
6886 }
6887
6888 err = 0;
6889 out:
6890 release_sock(sk);
6891 return err;
6892 }
6893
6894 /*
6895 * This function is done by modeling the current datagram_poll() and the
6896 * tcp_poll(). Note that, based on these implementations, we don't
6897 * lock the socket in this function, even though it seems that,
6898 * ideally, locking or some other mechanisms can be used to ensure
6899 * the integrity of the counters (sndbuf and wmem_alloc) used
6900 * in this place. We assume that we don't need locks either until proven
6901 * otherwise.
6902 *
6903 * Another thing to note is that we include the Async I/O support
6904 * here, again, by modeling the current TCP/UDP code. We don't have
6905 * a good way to test with it yet.
6906 */
6907 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6908 {
6909 struct sock *sk = sock->sk;
6910 struct sctp_sock *sp = sctp_sk(sk);
6911 unsigned int mask;
6912
6913 poll_wait(file, sk_sleep(sk), wait);
6914
6915 sock_rps_record_flow(sk);
6916
6917 /* A TCP-style listening socket becomes readable when the accept queue
6918 * is not empty.
6919 */
6920 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6921 return (!list_empty(&sp->ep->asocs)) ?
6922 (POLLIN | POLLRDNORM) : 0;
6923
6924 mask = 0;
6925
6926 /* Is there any exceptional events? */
6927 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6928 mask |= POLLERR |
6929 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6930 if (sk->sk_shutdown & RCV_SHUTDOWN)
6931 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6932 if (sk->sk_shutdown == SHUTDOWN_MASK)
6933 mask |= POLLHUP;
6934
6935 /* Is it readable? Reconsider this code with TCP-style support. */
6936 if (!skb_queue_empty(&sk->sk_receive_queue))
6937 mask |= POLLIN | POLLRDNORM;
6938
6939 /* The association is either gone or not ready. */
6940 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6941 return mask;
6942
6943 /* Is it writable? */
6944 if (sctp_writeable(sk)) {
6945 mask |= POLLOUT | POLLWRNORM;
6946 } else {
6947 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
6948 /*
6949 * Since the socket is not locked, the buffer
6950 * might be made available after the writeable check and
6951 * before the bit is set. This could cause a lost I/O
6952 * signal. tcp_poll() has a race breaker for this race
6953 * condition. Based on their implementation, we put
6954 * in the following code to cover it as well.
6955 */
6956 if (sctp_writeable(sk))
6957 mask |= POLLOUT | POLLWRNORM;
6958 }
6959 return mask;
6960 }
6961
6962 /********************************************************************
6963 * 2nd Level Abstractions
6964 ********************************************************************/
6965
6966 static struct sctp_bind_bucket *sctp_bucket_create(
6967 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6968 {
6969 struct sctp_bind_bucket *pp;
6970
6971 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6972 if (pp) {
6973 SCTP_DBG_OBJCNT_INC(bind_bucket);
6974 pp->port = snum;
6975 pp->fastreuse = 0;
6976 INIT_HLIST_HEAD(&pp->owner);
6977 pp->net = net;
6978 hlist_add_head(&pp->node, &head->chain);
6979 }
6980 return pp;
6981 }
6982
6983 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6984 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6985 {
6986 if (pp && hlist_empty(&pp->owner)) {
6987 __hlist_del(&pp->node);
6988 kmem_cache_free(sctp_bucket_cachep, pp);
6989 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6990 }
6991 }
6992
6993 /* Release this socket's reference to a local port. */
6994 static inline void __sctp_put_port(struct sock *sk)
6995 {
6996 struct sctp_bind_hashbucket *head =
6997 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6998 inet_sk(sk)->inet_num)];
6999 struct sctp_bind_bucket *pp;
7000
7001 spin_lock(&head->lock);
7002 pp = sctp_sk(sk)->bind_hash;
7003 __sk_del_bind_node(sk);
7004 sctp_sk(sk)->bind_hash = NULL;
7005 inet_sk(sk)->inet_num = 0;
7006 sctp_bucket_destroy(pp);
7007 spin_unlock(&head->lock);
7008 }
7009
7010 void sctp_put_port(struct sock *sk)
7011 {
7012 local_bh_disable();
7013 __sctp_put_port(sk);
7014 local_bh_enable();
7015 }
7016
7017 /*
7018 * The system picks an ephemeral port and choose an address set equivalent
7019 * to binding with a wildcard address.
7020 * One of those addresses will be the primary address for the association.
7021 * This automatically enables the multihoming capability of SCTP.
7022 */
7023 static int sctp_autobind(struct sock *sk)
7024 {
7025 union sctp_addr autoaddr;
7026 struct sctp_af *af;
7027 __be16 port;
7028
7029 /* Initialize a local sockaddr structure to INADDR_ANY. */
7030 af = sctp_sk(sk)->pf->af;
7031
7032 port = htons(inet_sk(sk)->inet_num);
7033 af->inaddr_any(&autoaddr, port);
7034
7035 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7036 }
7037
7038 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
7039 *
7040 * From RFC 2292
7041 * 4.2 The cmsghdr Structure *
7042 *
7043 * When ancillary data is sent or received, any number of ancillary data
7044 * objects can be specified by the msg_control and msg_controllen members of
7045 * the msghdr structure, because each object is preceded by
7046 * a cmsghdr structure defining the object's length (the cmsg_len member).
7047 * Historically Berkeley-derived implementations have passed only one object
7048 * at a time, but this API allows multiple objects to be
7049 * passed in a single call to sendmsg() or recvmsg(). The following example
7050 * shows two ancillary data objects in a control buffer.
7051 *
7052 * |<--------------------------- msg_controllen -------------------------->|
7053 * | |
7054 *
7055 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
7056 *
7057 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7058 * | | |
7059 *
7060 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
7061 *
7062 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
7063 * | | | | |
7064 *
7065 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7066 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
7067 *
7068 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
7069 *
7070 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7071 * ^
7072 * |
7073 *
7074 * msg_control
7075 * points here
7076 */
7077 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
7078 {
7079 struct cmsghdr *cmsg;
7080 struct msghdr *my_msg = (struct msghdr *)msg;
7081
7082 for_each_cmsghdr(cmsg, my_msg) {
7083 if (!CMSG_OK(my_msg, cmsg))
7084 return -EINVAL;
7085
7086 /* Should we parse this header or ignore? */
7087 if (cmsg->cmsg_level != IPPROTO_SCTP)
7088 continue;
7089
7090 /* Strictly check lengths following example in SCM code. */
7091 switch (cmsg->cmsg_type) {
7092 case SCTP_INIT:
7093 /* SCTP Socket API Extension
7094 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7095 *
7096 * This cmsghdr structure provides information for
7097 * initializing new SCTP associations with sendmsg().
7098 * The SCTP_INITMSG socket option uses this same data
7099 * structure. This structure is not used for
7100 * recvmsg().
7101 *
7102 * cmsg_level cmsg_type cmsg_data[]
7103 * ------------ ------------ ----------------------
7104 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
7105 */
7106 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7107 return -EINVAL;
7108
7109 cmsgs->init = CMSG_DATA(cmsg);
7110 break;
7111
7112 case SCTP_SNDRCV:
7113 /* SCTP Socket API Extension
7114 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7115 *
7116 * This cmsghdr structure specifies SCTP options for
7117 * sendmsg() and describes SCTP header information
7118 * about a received message through recvmsg().
7119 *
7120 * cmsg_level cmsg_type cmsg_data[]
7121 * ------------ ------------ ----------------------
7122 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
7123 */
7124 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7125 return -EINVAL;
7126
7127 cmsgs->srinfo = CMSG_DATA(cmsg);
7128
7129 if (cmsgs->srinfo->sinfo_flags &
7130 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7131 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7132 SCTP_ABORT | SCTP_EOF))
7133 return -EINVAL;
7134 break;
7135
7136 case SCTP_SNDINFO:
7137 /* SCTP Socket API Extension
7138 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7139 *
7140 * This cmsghdr structure specifies SCTP options for
7141 * sendmsg(). This structure and SCTP_RCVINFO replaces
7142 * SCTP_SNDRCV which has been deprecated.
7143 *
7144 * cmsg_level cmsg_type cmsg_data[]
7145 * ------------ ------------ ---------------------
7146 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
7147 */
7148 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7149 return -EINVAL;
7150
7151 cmsgs->sinfo = CMSG_DATA(cmsg);
7152
7153 if (cmsgs->sinfo->snd_flags &
7154 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7155 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7156 SCTP_ABORT | SCTP_EOF))
7157 return -EINVAL;
7158 break;
7159 default:
7160 return -EINVAL;
7161 }
7162 }
7163
7164 return 0;
7165 }
7166
7167 /*
7168 * Wait for a packet..
7169 * Note: This function is the same function as in core/datagram.c
7170 * with a few modifications to make lksctp work.
7171 */
7172 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7173 {
7174 int error;
7175 DEFINE_WAIT(wait);
7176
7177 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7178
7179 /* Socket errors? */
7180 error = sock_error(sk);
7181 if (error)
7182 goto out;
7183
7184 if (!skb_queue_empty(&sk->sk_receive_queue))
7185 goto ready;
7186
7187 /* Socket shut down? */
7188 if (sk->sk_shutdown & RCV_SHUTDOWN)
7189 goto out;
7190
7191 /* Sequenced packets can come disconnected. If so we report the
7192 * problem.
7193 */
7194 error = -ENOTCONN;
7195
7196 /* Is there a good reason to think that we may receive some data? */
7197 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
7198 goto out;
7199
7200 /* Handle signals. */
7201 if (signal_pending(current))
7202 goto interrupted;
7203
7204 /* Let another process have a go. Since we are going to sleep
7205 * anyway. Note: This may cause odd behaviors if the message
7206 * does not fit in the user's buffer, but this seems to be the
7207 * only way to honor MSG_DONTWAIT realistically.
7208 */
7209 release_sock(sk);
7210 *timeo_p = schedule_timeout(*timeo_p);
7211 lock_sock(sk);
7212
7213 ready:
7214 finish_wait(sk_sleep(sk), &wait);
7215 return 0;
7216
7217 interrupted:
7218 error = sock_intr_errno(*timeo_p);
7219
7220 out:
7221 finish_wait(sk_sleep(sk), &wait);
7222 *err = error;
7223 return error;
7224 }
7225
7226 /* Receive a datagram.
7227 * Note: This is pretty much the same routine as in core/datagram.c
7228 * with a few changes to make lksctp work.
7229 */
7230 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7231 int noblock, int *err)
7232 {
7233 int error;
7234 struct sk_buff *skb;
7235 long timeo;
7236
7237 timeo = sock_rcvtimeo(sk, noblock);
7238
7239 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
7240 MAX_SCHEDULE_TIMEOUT);
7241
7242 do {
7243 /* Again only user level code calls this function,
7244 * so nothing interrupt level
7245 * will suddenly eat the receive_queue.
7246 *
7247 * Look at current nfs client by the way...
7248 * However, this function was correct in any case. 8)
7249 */
7250 if (flags & MSG_PEEK) {
7251 skb = skb_peek(&sk->sk_receive_queue);
7252 if (skb)
7253 atomic_inc(&skb->users);
7254 } else {
7255 skb = __skb_dequeue(&sk->sk_receive_queue);
7256 }
7257
7258 if (skb)
7259 return skb;
7260
7261 /* Caller is allowed not to check sk->sk_err before calling. */
7262 error = sock_error(sk);
7263 if (error)
7264 goto no_packet;
7265
7266 if (sk->sk_shutdown & RCV_SHUTDOWN)
7267 break;
7268
7269 if (sk_can_busy_loop(sk) &&
7270 sk_busy_loop(sk, noblock))
7271 continue;
7272
7273 /* User doesn't want to wait. */
7274 error = -EAGAIN;
7275 if (!timeo)
7276 goto no_packet;
7277 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7278
7279 return NULL;
7280
7281 no_packet:
7282 *err = error;
7283 return NULL;
7284 }
7285
7286 /* If sndbuf has changed, wake up per association sndbuf waiters. */
7287 static void __sctp_write_space(struct sctp_association *asoc)
7288 {
7289 struct sock *sk = asoc->base.sk;
7290
7291 if (sctp_wspace(asoc) <= 0)
7292 return;
7293
7294 if (waitqueue_active(&asoc->wait))
7295 wake_up_interruptible(&asoc->wait);
7296
7297 if (sctp_writeable(sk)) {
7298 struct socket_wq *wq;
7299
7300 rcu_read_lock();
7301 wq = rcu_dereference(sk->sk_wq);
7302 if (wq) {
7303 if (waitqueue_active(&wq->wait))
7304 wake_up_interruptible(&wq->wait);
7305
7306 /* Note that we try to include the Async I/O support
7307 * here by modeling from the current TCP/UDP code.
7308 * We have not tested with it yet.
7309 */
7310 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7311 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7312 }
7313 rcu_read_unlock();
7314 }
7315 }
7316
7317 static void sctp_wake_up_waiters(struct sock *sk,
7318 struct sctp_association *asoc)
7319 {
7320 struct sctp_association *tmp = asoc;
7321
7322 /* We do accounting for the sndbuf space per association,
7323 * so we only need to wake our own association.
7324 */
7325 if (asoc->ep->sndbuf_policy)
7326 return __sctp_write_space(asoc);
7327
7328 /* If association goes down and is just flushing its
7329 * outq, then just normally notify others.
7330 */
7331 if (asoc->base.dead)
7332 return sctp_write_space(sk);
7333
7334 /* Accounting for the sndbuf space is per socket, so we
7335 * need to wake up others, try to be fair and in case of
7336 * other associations, let them have a go first instead
7337 * of just doing a sctp_write_space() call.
7338 *
7339 * Note that we reach sctp_wake_up_waiters() only when
7340 * associations free up queued chunks, thus we are under
7341 * lock and the list of associations on a socket is
7342 * guaranteed not to change.
7343 */
7344 for (tmp = list_next_entry(tmp, asocs); 1;
7345 tmp = list_next_entry(tmp, asocs)) {
7346 /* Manually skip the head element. */
7347 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7348 continue;
7349 /* Wake up association. */
7350 __sctp_write_space(tmp);
7351 /* We've reached the end. */
7352 if (tmp == asoc)
7353 break;
7354 }
7355 }
7356
7357 /* Do accounting for the sndbuf space.
7358 * Decrement the used sndbuf space of the corresponding association by the
7359 * data size which was just transmitted(freed).
7360 */
7361 static void sctp_wfree(struct sk_buff *skb)
7362 {
7363 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7364 struct sctp_association *asoc = chunk->asoc;
7365 struct sock *sk = asoc->base.sk;
7366
7367 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7368 sizeof(struct sk_buff) +
7369 sizeof(struct sctp_chunk);
7370
7371 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
7372
7373 /*
7374 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7375 */
7376 sk->sk_wmem_queued -= skb->truesize;
7377 sk_mem_uncharge(sk, skb->truesize);
7378
7379 sock_wfree(skb);
7380 sctp_wake_up_waiters(sk, asoc);
7381
7382 sctp_association_put(asoc);
7383 }
7384
7385 /* Do accounting for the receive space on the socket.
7386 * Accounting for the association is done in ulpevent.c
7387 * We set this as a destructor for the cloned data skbs so that
7388 * accounting is done at the correct time.
7389 */
7390 void sctp_sock_rfree(struct sk_buff *skb)
7391 {
7392 struct sock *sk = skb->sk;
7393 struct sctp_ulpevent *event = sctp_skb2event(skb);
7394
7395 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7396
7397 /*
7398 * Mimic the behavior of sock_rfree
7399 */
7400 sk_mem_uncharge(sk, event->rmem_len);
7401 }
7402
7403
7404 /* Helper function to wait for space in the sndbuf. */
7405 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7406 size_t msg_len)
7407 {
7408 struct sock *sk = asoc->base.sk;
7409 int err = 0;
7410 long current_timeo = *timeo_p;
7411 DEFINE_WAIT(wait);
7412
7413 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
7414 *timeo_p, msg_len);
7415
7416 /* Increment the association's refcnt. */
7417 sctp_association_hold(asoc);
7418
7419 /* Wait on the association specific sndbuf space. */
7420 for (;;) {
7421 prepare_to_wait_exclusive(&asoc->wait, &wait,
7422 TASK_INTERRUPTIBLE);
7423 if (!*timeo_p)
7424 goto do_nonblock;
7425 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7426 asoc->base.dead)
7427 goto do_error;
7428 if (signal_pending(current))
7429 goto do_interrupted;
7430 if (msg_len <= sctp_wspace(asoc))
7431 break;
7432
7433 /* Let another process have a go. Since we are going
7434 * to sleep anyway.
7435 */
7436 release_sock(sk);
7437 current_timeo = schedule_timeout(current_timeo);
7438 lock_sock(sk);
7439
7440 *timeo_p = current_timeo;
7441 }
7442
7443 out:
7444 finish_wait(&asoc->wait, &wait);
7445
7446 /* Release the association's refcnt. */
7447 sctp_association_put(asoc);
7448
7449 return err;
7450
7451 do_error:
7452 err = -EPIPE;
7453 goto out;
7454
7455 do_interrupted:
7456 err = sock_intr_errno(*timeo_p);
7457 goto out;
7458
7459 do_nonblock:
7460 err = -EAGAIN;
7461 goto out;
7462 }
7463
7464 void sctp_data_ready(struct sock *sk)
7465 {
7466 struct socket_wq *wq;
7467
7468 rcu_read_lock();
7469 wq = rcu_dereference(sk->sk_wq);
7470 if (skwq_has_sleeper(wq))
7471 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7472 POLLRDNORM | POLLRDBAND);
7473 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7474 rcu_read_unlock();
7475 }
7476
7477 /* If socket sndbuf has changed, wake up all per association waiters. */
7478 void sctp_write_space(struct sock *sk)
7479 {
7480 struct sctp_association *asoc;
7481
7482 /* Wake up the tasks in each wait queue. */
7483 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7484 __sctp_write_space(asoc);
7485 }
7486 }
7487
7488 /* Is there any sndbuf space available on the socket?
7489 *
7490 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7491 * associations on the same socket. For a UDP-style socket with
7492 * multiple associations, it is possible for it to be "unwriteable"
7493 * prematurely. I assume that this is acceptable because
7494 * a premature "unwriteable" is better than an accidental "writeable" which
7495 * would cause an unwanted block under certain circumstances. For the 1-1
7496 * UDP-style sockets or TCP-style sockets, this code should work.
7497 * - Daisy
7498 */
7499 static int sctp_writeable(struct sock *sk)
7500 {
7501 int amt = 0;
7502
7503 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7504 if (amt < 0)
7505 amt = 0;
7506 return amt;
7507 }
7508
7509 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7510 * returns immediately with EINPROGRESS.
7511 */
7512 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7513 {
7514 struct sock *sk = asoc->base.sk;
7515 int err = 0;
7516 long current_timeo = *timeo_p;
7517 DEFINE_WAIT(wait);
7518
7519 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7520
7521 /* Increment the association's refcnt. */
7522 sctp_association_hold(asoc);
7523
7524 for (;;) {
7525 prepare_to_wait_exclusive(&asoc->wait, &wait,
7526 TASK_INTERRUPTIBLE);
7527 if (!*timeo_p)
7528 goto do_nonblock;
7529 if (sk->sk_shutdown & RCV_SHUTDOWN)
7530 break;
7531 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7532 asoc->base.dead)
7533 goto do_error;
7534 if (signal_pending(current))
7535 goto do_interrupted;
7536
7537 if (sctp_state(asoc, ESTABLISHED))
7538 break;
7539
7540 /* Let another process have a go. Since we are going
7541 * to sleep anyway.
7542 */
7543 release_sock(sk);
7544 current_timeo = schedule_timeout(current_timeo);
7545 lock_sock(sk);
7546
7547 *timeo_p = current_timeo;
7548 }
7549
7550 out:
7551 finish_wait(&asoc->wait, &wait);
7552
7553 /* Release the association's refcnt. */
7554 sctp_association_put(asoc);
7555
7556 return err;
7557
7558 do_error:
7559 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7560 err = -ETIMEDOUT;
7561 else
7562 err = -ECONNREFUSED;
7563 goto out;
7564
7565 do_interrupted:
7566 err = sock_intr_errno(*timeo_p);
7567 goto out;
7568
7569 do_nonblock:
7570 err = -EINPROGRESS;
7571 goto out;
7572 }
7573
7574 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7575 {
7576 struct sctp_endpoint *ep;
7577 int err = 0;
7578 DEFINE_WAIT(wait);
7579
7580 ep = sctp_sk(sk)->ep;
7581
7582
7583 for (;;) {
7584 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7585 TASK_INTERRUPTIBLE);
7586
7587 if (list_empty(&ep->asocs)) {
7588 release_sock(sk);
7589 timeo = schedule_timeout(timeo);
7590 lock_sock(sk);
7591 }
7592
7593 err = -EINVAL;
7594 if (!sctp_sstate(sk, LISTENING))
7595 break;
7596
7597 err = 0;
7598 if (!list_empty(&ep->asocs))
7599 break;
7600
7601 err = sock_intr_errno(timeo);
7602 if (signal_pending(current))
7603 break;
7604
7605 err = -EAGAIN;
7606 if (!timeo)
7607 break;
7608 }
7609
7610 finish_wait(sk_sleep(sk), &wait);
7611
7612 return err;
7613 }
7614
7615 static void sctp_wait_for_close(struct sock *sk, long timeout)
7616 {
7617 DEFINE_WAIT(wait);
7618
7619 do {
7620 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7621 if (list_empty(&sctp_sk(sk)->ep->asocs))
7622 break;
7623 release_sock(sk);
7624 timeout = schedule_timeout(timeout);
7625 lock_sock(sk);
7626 } while (!signal_pending(current) && timeout);
7627
7628 finish_wait(sk_sleep(sk), &wait);
7629 }
7630
7631 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7632 {
7633 struct sk_buff *frag;
7634
7635 if (!skb->data_len)
7636 goto done;
7637
7638 /* Don't forget the fragments. */
7639 skb_walk_frags(skb, frag)
7640 sctp_skb_set_owner_r_frag(frag, sk);
7641
7642 done:
7643 sctp_skb_set_owner_r(skb, sk);
7644 }
7645
7646 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7647 struct sctp_association *asoc)
7648 {
7649 struct inet_sock *inet = inet_sk(sk);
7650 struct inet_sock *newinet;
7651
7652 newsk->sk_type = sk->sk_type;
7653 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7654 newsk->sk_flags = sk->sk_flags;
7655 newsk->sk_tsflags = sk->sk_tsflags;
7656 newsk->sk_no_check_tx = sk->sk_no_check_tx;
7657 newsk->sk_no_check_rx = sk->sk_no_check_rx;
7658 newsk->sk_reuse = sk->sk_reuse;
7659
7660 newsk->sk_shutdown = sk->sk_shutdown;
7661 newsk->sk_destruct = sctp_destruct_sock;
7662 newsk->sk_family = sk->sk_family;
7663 newsk->sk_protocol = IPPROTO_SCTP;
7664 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7665 newsk->sk_sndbuf = sk->sk_sndbuf;
7666 newsk->sk_rcvbuf = sk->sk_rcvbuf;
7667 newsk->sk_lingertime = sk->sk_lingertime;
7668 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7669 newsk->sk_sndtimeo = sk->sk_sndtimeo;
7670 newsk->sk_rxhash = sk->sk_rxhash;
7671
7672 newinet = inet_sk(newsk);
7673
7674 /* Initialize sk's sport, dport, rcv_saddr and daddr for
7675 * getsockname() and getpeername()
7676 */
7677 newinet->inet_sport = inet->inet_sport;
7678 newinet->inet_saddr = inet->inet_saddr;
7679 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7680 newinet->inet_dport = htons(asoc->peer.port);
7681 newinet->pmtudisc = inet->pmtudisc;
7682 newinet->inet_id = asoc->next_tsn ^ jiffies;
7683
7684 newinet->uc_ttl = inet->uc_ttl;
7685 newinet->mc_loop = 1;
7686 newinet->mc_ttl = 1;
7687 newinet->mc_index = 0;
7688 newinet->mc_list = NULL;
7689
7690 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7691 net_enable_timestamp();
7692
7693 security_sk_clone(sk, newsk);
7694 }
7695
7696 static inline void sctp_copy_descendant(struct sock *sk_to,
7697 const struct sock *sk_from)
7698 {
7699 int ancestor_size = sizeof(struct inet_sock) +
7700 sizeof(struct sctp_sock) -
7701 offsetof(struct sctp_sock, auto_asconf_list);
7702
7703 if (sk_from->sk_family == PF_INET6)
7704 ancestor_size += sizeof(struct ipv6_pinfo);
7705
7706 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7707 }
7708
7709 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7710 * and its messages to the newsk.
7711 */
7712 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7713 struct sctp_association *assoc,
7714 sctp_socket_type_t type)
7715 {
7716 struct sctp_sock *oldsp = sctp_sk(oldsk);
7717 struct sctp_sock *newsp = sctp_sk(newsk);
7718 struct sctp_bind_bucket *pp; /* hash list port iterator */
7719 struct sctp_endpoint *newep = newsp->ep;
7720 struct sk_buff *skb, *tmp;
7721 struct sctp_ulpevent *event;
7722 struct sctp_bind_hashbucket *head;
7723
7724 /* Migrate socket buffer sizes and all the socket level options to the
7725 * new socket.
7726 */
7727 newsk->sk_sndbuf = oldsk->sk_sndbuf;
7728 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7729 /* Brute force copy old sctp opt. */
7730 sctp_copy_descendant(newsk, oldsk);
7731
7732 /* Restore the ep value that was overwritten with the above structure
7733 * copy.
7734 */
7735 newsp->ep = newep;
7736 newsp->hmac = NULL;
7737
7738 /* Hook this new socket in to the bind_hash list. */
7739 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7740 inet_sk(oldsk)->inet_num)];
7741 spin_lock_bh(&head->lock);
7742 pp = sctp_sk(oldsk)->bind_hash;
7743 sk_add_bind_node(newsk, &pp->owner);
7744 sctp_sk(newsk)->bind_hash = pp;
7745 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7746 spin_unlock_bh(&head->lock);
7747
7748 /* Copy the bind_addr list from the original endpoint to the new
7749 * endpoint so that we can handle restarts properly
7750 */
7751 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7752 &oldsp->ep->base.bind_addr, GFP_KERNEL);
7753
7754 /* Move any messages in the old socket's receive queue that are for the
7755 * peeled off association to the new socket's receive queue.
7756 */
7757 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7758 event = sctp_skb2event(skb);
7759 if (event->asoc == assoc) {
7760 __skb_unlink(skb, &oldsk->sk_receive_queue);
7761 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7762 sctp_skb_set_owner_r_frag(skb, newsk);
7763 }
7764 }
7765
7766 /* Clean up any messages pending delivery due to partial
7767 * delivery. Three cases:
7768 * 1) No partial deliver; no work.
7769 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7770 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7771 */
7772 skb_queue_head_init(&newsp->pd_lobby);
7773 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7774
7775 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7776 struct sk_buff_head *queue;
7777
7778 /* Decide which queue to move pd_lobby skbs to. */
7779 if (assoc->ulpq.pd_mode) {
7780 queue = &newsp->pd_lobby;
7781 } else
7782 queue = &newsk->sk_receive_queue;
7783
7784 /* Walk through the pd_lobby, looking for skbs that
7785 * need moved to the new socket.
7786 */
7787 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7788 event = sctp_skb2event(skb);
7789 if (event->asoc == assoc) {
7790 __skb_unlink(skb, &oldsp->pd_lobby);
7791 __skb_queue_tail(queue, skb);
7792 sctp_skb_set_owner_r_frag(skb, newsk);
7793 }
7794 }
7795
7796 /* Clear up any skbs waiting for the partial
7797 * delivery to finish.
7798 */
7799 if (assoc->ulpq.pd_mode)
7800 sctp_clear_pd(oldsk, NULL);
7801
7802 }
7803
7804 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7805 sctp_skb_set_owner_r_frag(skb, newsk);
7806
7807 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7808 sctp_skb_set_owner_r_frag(skb, newsk);
7809
7810 /* Set the type of socket to indicate that it is peeled off from the
7811 * original UDP-style socket or created with the accept() call on a
7812 * TCP-style socket..
7813 */
7814 newsp->type = type;
7815
7816 /* Mark the new socket "in-use" by the user so that any packets
7817 * that may arrive on the association after we've moved it are
7818 * queued to the backlog. This prevents a potential race between
7819 * backlog processing on the old socket and new-packet processing
7820 * on the new socket.
7821 *
7822 * The caller has just allocated newsk so we can guarantee that other
7823 * paths won't try to lock it and then oldsk.
7824 */
7825 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7826 sctp_assoc_migrate(assoc, newsk);
7827
7828 /* If the association on the newsk is already closed before accept()
7829 * is called, set RCV_SHUTDOWN flag.
7830 */
7831 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
7832 newsk->sk_state = SCTP_SS_CLOSED;
7833 newsk->sk_shutdown |= RCV_SHUTDOWN;
7834 } else {
7835 newsk->sk_state = SCTP_SS_ESTABLISHED;
7836 }
7837
7838 release_sock(newsk);
7839 }
7840
7841
7842 /* This proto struct describes the ULP interface for SCTP. */
7843 struct proto sctp_prot = {
7844 .name = "SCTP",
7845 .owner = THIS_MODULE,
7846 .close = sctp_close,
7847 .connect = sctp_connect,
7848 .disconnect = sctp_disconnect,
7849 .accept = sctp_accept,
7850 .ioctl = sctp_ioctl,
7851 .init = sctp_init_sock,
7852 .destroy = sctp_destroy_sock,
7853 .shutdown = sctp_shutdown,
7854 .setsockopt = sctp_setsockopt,
7855 .getsockopt = sctp_getsockopt,
7856 .sendmsg = sctp_sendmsg,
7857 .recvmsg = sctp_recvmsg,
7858 .bind = sctp_bind,
7859 .backlog_rcv = sctp_backlog_rcv,
7860 .hash = sctp_hash,
7861 .unhash = sctp_unhash,
7862 .get_port = sctp_get_port,
7863 .obj_size = sizeof(struct sctp_sock),
7864 .sysctl_mem = sysctl_sctp_mem,
7865 .sysctl_rmem = sysctl_sctp_rmem,
7866 .sysctl_wmem = sysctl_sctp_wmem,
7867 .memory_pressure = &sctp_memory_pressure,
7868 .enter_memory_pressure = sctp_enter_memory_pressure,
7869 .memory_allocated = &sctp_memory_allocated,
7870 .sockets_allocated = &sctp_sockets_allocated,
7871 };
7872
7873 #if IS_ENABLED(CONFIG_IPV6)
7874
7875 #include <net/transp_v6.h>
7876 static void sctp_v6_destroy_sock(struct sock *sk)
7877 {
7878 sctp_destroy_sock(sk);
7879 inet6_destroy_sock(sk);
7880 }
7881
7882 struct proto sctpv6_prot = {
7883 .name = "SCTPv6",
7884 .owner = THIS_MODULE,
7885 .close = sctp_close,
7886 .connect = sctp_connect,
7887 .disconnect = sctp_disconnect,
7888 .accept = sctp_accept,
7889 .ioctl = sctp_ioctl,
7890 .init = sctp_init_sock,
7891 .destroy = sctp_v6_destroy_sock,
7892 .shutdown = sctp_shutdown,
7893 .setsockopt = sctp_setsockopt,
7894 .getsockopt = sctp_getsockopt,
7895 .sendmsg = sctp_sendmsg,
7896 .recvmsg = sctp_recvmsg,
7897 .bind = sctp_bind,
7898 .backlog_rcv = sctp_backlog_rcv,
7899 .hash = sctp_hash,
7900 .unhash = sctp_unhash,
7901 .get_port = sctp_get_port,
7902 .obj_size = sizeof(struct sctp6_sock),
7903 .sysctl_mem = sysctl_sctp_mem,
7904 .sysctl_rmem = sysctl_sctp_rmem,
7905 .sysctl_wmem = sysctl_sctp_wmem,
7906 .memory_pressure = &sctp_memory_pressure,
7907 .enter_memory_pressure = sctp_enter_memory_pressure,
7908 .memory_allocated = &sctp_memory_allocated,
7909 .sockets_allocated = &sctp_sockets_allocated,
7910 };
7911 #endif /* IS_ENABLED(CONFIG_IPV6) */