]> git.proxmox.com Git - mirror_zfs-debian.git/blob - include/sys/dmu.h
d24615262737912d1e88c18aecd30fc8c9105560
[mirror_zfs-debian.git] / include / sys / dmu.h
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 */
30
31 /* Portions Copyright 2010 Robert Milkowski */
32
33 #ifndef _SYS_DMU_H
34 #define _SYS_DMU_H
35
36 /*
37 * This file describes the interface that the DMU provides for its
38 * consumers.
39 *
40 * The DMU also interacts with the SPA. That interface is described in
41 * dmu_spa.h.
42 */
43
44 #include <sys/zfs_context.h>
45 #include <sys/inttypes.h>
46 #include <sys/cred.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/zio_compress.h>
49 #include <sys/zio_priority.h>
50 #include <sys/uio.h>
51
52 #ifdef __cplusplus
53 extern "C" {
54 #endif
55
56 struct page;
57 struct vnode;
58 struct spa;
59 struct zilog;
60 struct zio;
61 struct blkptr;
62 struct zap_cursor;
63 struct dsl_dataset;
64 struct dsl_pool;
65 struct dnode;
66 struct drr_begin;
67 struct drr_end;
68 struct zbookmark_phys;
69 struct spa;
70 struct nvlist;
71 struct arc_buf;
72 struct zio_prop;
73 struct sa_handle;
74
75 typedef struct objset objset_t;
76 typedef struct dmu_tx dmu_tx_t;
77 typedef struct dsl_dir dsl_dir_t;
78 typedef struct dnode dnode_t;
79
80 typedef enum dmu_object_byteswap {
81 DMU_BSWAP_UINT8,
82 DMU_BSWAP_UINT16,
83 DMU_BSWAP_UINT32,
84 DMU_BSWAP_UINT64,
85 DMU_BSWAP_ZAP,
86 DMU_BSWAP_DNODE,
87 DMU_BSWAP_OBJSET,
88 DMU_BSWAP_ZNODE,
89 DMU_BSWAP_OLDACL,
90 DMU_BSWAP_ACL,
91 /*
92 * Allocating a new byteswap type number makes the on-disk format
93 * incompatible with any other format that uses the same number.
94 *
95 * Data can usually be structured to work with one of the
96 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
97 */
98 DMU_BSWAP_NUMFUNCS
99 } dmu_object_byteswap_t;
100
101 #define DMU_OT_NEWTYPE 0x80
102 #define DMU_OT_METADATA 0x40
103 #define DMU_OT_BYTESWAP_MASK 0x3f
104
105 /*
106 * Defines a uint8_t object type. Object types specify if the data
107 * in the object is metadata (boolean) and how to byteswap the data
108 * (dmu_object_byteswap_t).
109 */
110 #define DMU_OT(byteswap, metadata) \
111 (DMU_OT_NEWTYPE | \
112 ((metadata) ? DMU_OT_METADATA : 0) | \
113 ((byteswap) & DMU_OT_BYTESWAP_MASK))
114
115 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
116 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
117 (ot) < DMU_OT_NUMTYPES)
118
119 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
120 ((ot) & DMU_OT_METADATA) : \
121 dmu_ot[(int)(ot)].ot_metadata)
122
123 /*
124 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
125 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
126 * is repurposed for embedded BPs.
127 */
128 #define DMU_OT_HAS_FILL(ot) \
129 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
130
131 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
132 ((ot) & DMU_OT_BYTESWAP_MASK) : \
133 dmu_ot[(int)(ot)].ot_byteswap)
134
135 typedef enum dmu_object_type {
136 DMU_OT_NONE,
137 /* general: */
138 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
139 DMU_OT_OBJECT_ARRAY, /* UINT64 */
140 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
141 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
142 DMU_OT_BPOBJ, /* UINT64 */
143 DMU_OT_BPOBJ_HDR, /* UINT64 */
144 /* spa: */
145 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
146 DMU_OT_SPACE_MAP, /* UINT64 */
147 /* zil: */
148 DMU_OT_INTENT_LOG, /* UINT64 */
149 /* dmu: */
150 DMU_OT_DNODE, /* DNODE */
151 DMU_OT_OBJSET, /* OBJSET */
152 /* dsl: */
153 DMU_OT_DSL_DIR, /* UINT64 */
154 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
155 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
156 DMU_OT_DSL_PROPS, /* ZAP */
157 DMU_OT_DSL_DATASET, /* UINT64 */
158 /* zpl: */
159 DMU_OT_ZNODE, /* ZNODE */
160 DMU_OT_OLDACL, /* Old ACL */
161 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
162 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
163 DMU_OT_MASTER_NODE, /* ZAP */
164 DMU_OT_UNLINKED_SET, /* ZAP */
165 /* zvol: */
166 DMU_OT_ZVOL, /* UINT8 */
167 DMU_OT_ZVOL_PROP, /* ZAP */
168 /* other; for testing only! */
169 DMU_OT_PLAIN_OTHER, /* UINT8 */
170 DMU_OT_UINT64_OTHER, /* UINT64 */
171 DMU_OT_ZAP_OTHER, /* ZAP */
172 /* new object types: */
173 DMU_OT_ERROR_LOG, /* ZAP */
174 DMU_OT_SPA_HISTORY, /* UINT8 */
175 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
176 DMU_OT_POOL_PROPS, /* ZAP */
177 DMU_OT_DSL_PERMS, /* ZAP */
178 DMU_OT_ACL, /* ACL */
179 DMU_OT_SYSACL, /* SYSACL */
180 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
181 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
182 DMU_OT_NEXT_CLONES, /* ZAP */
183 DMU_OT_SCAN_QUEUE, /* ZAP */
184 DMU_OT_USERGROUP_USED, /* ZAP */
185 DMU_OT_USERGROUP_QUOTA, /* ZAP */
186 DMU_OT_USERREFS, /* ZAP */
187 DMU_OT_DDT_ZAP, /* ZAP */
188 DMU_OT_DDT_STATS, /* ZAP */
189 DMU_OT_SA, /* System attr */
190 DMU_OT_SA_MASTER_NODE, /* ZAP */
191 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
192 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
193 DMU_OT_SCAN_XLATE, /* ZAP */
194 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
195 DMU_OT_DEADLIST, /* ZAP */
196 DMU_OT_DEADLIST_HDR, /* UINT64 */
197 DMU_OT_DSL_CLONES, /* ZAP */
198 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
199 /*
200 * Do not allocate new object types here. Doing so makes the on-disk
201 * format incompatible with any other format that uses the same object
202 * type number.
203 *
204 * When creating an object which does not have one of the above types
205 * use the DMU_OTN_* type with the correct byteswap and metadata
206 * values.
207 *
208 * The DMU_OTN_* types do not have entries in the dmu_ot table,
209 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
210 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
211 * and DMU_OTN_* types).
212 */
213 DMU_OT_NUMTYPES,
214
215 /*
216 * Names for valid types declared with DMU_OT().
217 */
218 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
219 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
220 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
221 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
222 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
223 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
224 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
225 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
226 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
227 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
228 } dmu_object_type_t;
229
230 typedef enum txg_how {
231 TXG_WAIT = 1,
232 TXG_NOWAIT,
233 TXG_WAITED,
234 } txg_how_t;
235
236 void byteswap_uint64_array(void *buf, size_t size);
237 void byteswap_uint32_array(void *buf, size_t size);
238 void byteswap_uint16_array(void *buf, size_t size);
239 void byteswap_uint8_array(void *buf, size_t size);
240 void zap_byteswap(void *buf, size_t size);
241 void zfs_oldacl_byteswap(void *buf, size_t size);
242 void zfs_acl_byteswap(void *buf, size_t size);
243 void zfs_znode_byteswap(void *buf, size_t size);
244
245 #define DS_FIND_SNAPSHOTS (1<<0)
246 #define DS_FIND_CHILDREN (1<<1)
247 #define DS_FIND_SERIALIZE (1<<2)
248
249 /*
250 * The maximum number of bytes that can be accessed as part of one
251 * operation, including metadata.
252 */
253 #define DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */
254 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
255
256 #define DMU_USERUSED_OBJECT (-1ULL)
257 #define DMU_GROUPUSED_OBJECT (-2ULL)
258
259 /*
260 * Zap prefix for object accounting in DMU_{USER,GROUP}USED_OBJECT.
261 */
262 #define DMU_OBJACCT_PREFIX "obj-"
263 #define DMU_OBJACCT_PREFIX_LEN 4
264
265 /*
266 * artificial blkids for bonus buffer and spill blocks
267 */
268 #define DMU_BONUS_BLKID (-1ULL)
269 #define DMU_SPILL_BLKID (-2ULL)
270 /*
271 * Public routines to create, destroy, open, and close objsets.
272 */
273 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
274 int dmu_objset_own(const char *name, dmu_objset_type_t type,
275 boolean_t readonly, void *tag, objset_t **osp);
276 void dmu_objset_rele(objset_t *os, void *tag);
277 void dmu_objset_disown(objset_t *os, void *tag);
278 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
279
280 void dmu_objset_evict_dbufs(objset_t *os);
281 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
282 void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
283 int dmu_objset_clone(const char *name, const char *origin);
284 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
285 struct nvlist *errlist);
286 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
287 int dmu_objset_snapshot_tmp(const char *, const char *, int);
288 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
289 int flags);
290 void dmu_objset_byteswap(void *buf, size_t size);
291 int dsl_dataset_rename_snapshot(const char *fsname,
292 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
293
294 typedef struct dmu_buf {
295 uint64_t db_object; /* object that this buffer is part of */
296 uint64_t db_offset; /* byte offset in this object */
297 uint64_t db_size; /* size of buffer in bytes */
298 void *db_data; /* data in buffer */
299 } dmu_buf_t;
300
301 /*
302 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
303 */
304 #define DMU_POOL_DIRECTORY_OBJECT 1
305 #define DMU_POOL_CONFIG "config"
306 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
307 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
308 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
309 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
310 #define DMU_POOL_ROOT_DATASET "root_dataset"
311 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
312 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
313 #define DMU_POOL_ERRLOG_LAST "errlog_last"
314 #define DMU_POOL_SPARES "spares"
315 #define DMU_POOL_DEFLATE "deflate"
316 #define DMU_POOL_HISTORY "history"
317 #define DMU_POOL_PROPS "pool_props"
318 #define DMU_POOL_L2CACHE "l2cache"
319 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
320 #define DMU_POOL_DDT "DDT-%s-%s-%s"
321 #define DMU_POOL_DDT_STATS "DDT-statistics"
322 #define DMU_POOL_CREATION_VERSION "creation_version"
323 #define DMU_POOL_SCAN "scan"
324 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
325 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
326 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
327 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt"
328 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map"
329
330 /*
331 * Allocate an object from this objset. The range of object numbers
332 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
333 *
334 * The transaction must be assigned to a txg. The newly allocated
335 * object will be "held" in the transaction (ie. you can modify the
336 * newly allocated object in this transaction).
337 *
338 * dmu_object_alloc() chooses an object and returns it in *objectp.
339 *
340 * dmu_object_claim() allocates a specific object number. If that
341 * number is already allocated, it fails and returns EEXIST.
342 *
343 * Return 0 on success, or ENOSPC or EEXIST as specified above.
344 */
345 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
346 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
347 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
348 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
349 int dnodesize, dmu_tx_t *tx);
350 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
351 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
352 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
353 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
354 int dnodesize, dmu_tx_t *tx);
355 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
356 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
357 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
358 dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
359 int bonuslen, int dnodesize, dmu_tx_t *txp);
360
361 /*
362 * Free an object from this objset.
363 *
364 * The object's data will be freed as well (ie. you don't need to call
365 * dmu_free(object, 0, -1, tx)).
366 *
367 * The object need not be held in the transaction.
368 *
369 * If there are any holds on this object's buffers (via dmu_buf_hold()),
370 * or tx holds on the object (via dmu_tx_hold_object()), you can not
371 * free it; it fails and returns EBUSY.
372 *
373 * If the object is not allocated, it fails and returns ENOENT.
374 *
375 * Return 0 on success, or EBUSY or ENOENT as specified above.
376 */
377 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
378
379 /*
380 * Find the next allocated or free object.
381 *
382 * The objectp parameter is in-out. It will be updated to be the next
383 * object which is allocated. Ignore objects which have not been
384 * modified since txg.
385 *
386 * XXX Can only be called on a objset with no dirty data.
387 *
388 * Returns 0 on success, or ENOENT if there are no more objects.
389 */
390 int dmu_object_next(objset_t *os, uint64_t *objectp,
391 boolean_t hole, uint64_t txg);
392
393 /*
394 * Set the data blocksize for an object.
395 *
396 * The object cannot have any blocks allcated beyond the first. If
397 * the first block is allocated already, the new size must be greater
398 * than the current block size. If these conditions are not met,
399 * ENOTSUP will be returned.
400 *
401 * Returns 0 on success, or EBUSY if there are any holds on the object
402 * contents, or ENOTSUP as described above.
403 */
404 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
405 int ibs, dmu_tx_t *tx);
406
407 /*
408 * Set the checksum property on a dnode. The new checksum algorithm will
409 * apply to all newly written blocks; existing blocks will not be affected.
410 */
411 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
412 dmu_tx_t *tx);
413
414 /*
415 * Set the compress property on a dnode. The new compression algorithm will
416 * apply to all newly written blocks; existing blocks will not be affected.
417 */
418 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
419 dmu_tx_t *tx);
420
421 void
422 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
423 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
424 int compressed_size, int byteorder, dmu_tx_t *tx);
425
426 /*
427 * Decide how to write a block: checksum, compression, number of copies, etc.
428 */
429 #define WP_NOFILL 0x1
430 #define WP_DMU_SYNC 0x2
431 #define WP_SPILL 0x4
432
433 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
434 struct zio_prop *zp);
435 /*
436 * The bonus data is accessed more or less like a regular buffer.
437 * You must dmu_bonus_hold() to get the buffer, which will give you a
438 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
439 * data. As with any normal buffer, you must call dmu_buf_read() to
440 * read db_data, dmu_buf_will_dirty() before modifying it, and the
441 * object must be held in an assigned transaction before calling
442 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
443 * buffer as well. You must release what you hold with dmu_buf_rele().
444 *
445 * Returns ENOENT, EIO, or 0.
446 */
447 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
448 int dmu_bonus_max(void);
449 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
450 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
451 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
452 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
453
454 /*
455 * Special spill buffer support used by "SA" framework
456 */
457
458 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
459 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
460 void *tag, dmu_buf_t **dbp);
461 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
462
463 /*
464 * Obtain the DMU buffer from the specified object which contains the
465 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
466 * that it will remain in memory. You must release the hold with
467 * dmu_buf_rele(). You must not access the dmu_buf_t after releasing
468 * what you hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
469 *
470 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
471 * on the returned buffer before reading or writing the buffer's
472 * db_data. The comments for those routines describe what particular
473 * operations are valid after calling them.
474 *
475 * The object number must be a valid, allocated object number.
476 */
477 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
478 void *tag, dmu_buf_t **, int flags);
479 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
480 void *tag, dmu_buf_t **dbp, int flags);
481
482 /*
483 * Add a reference to a dmu buffer that has already been held via
484 * dmu_buf_hold() in the current context.
485 */
486 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
487
488 /*
489 * Attempt to add a reference to a dmu buffer that is in an unknown state,
490 * using a pointer that may have been invalidated by eviction processing.
491 * The request will succeed if the passed in dbuf still represents the
492 * same os/object/blkid, is ineligible for eviction, and has at least
493 * one hold by a user other than the syncer.
494 */
495 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
496 uint64_t blkid, void *tag);
497
498 void dmu_buf_rele(dmu_buf_t *db, void *tag);
499 uint64_t dmu_buf_refcount(dmu_buf_t *db);
500
501 /*
502 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
503 * range of an object. A pointer to an array of dmu_buf_t*'s is
504 * returned (in *dbpp).
505 *
506 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
507 * frees the array. The hold on the array of buffers MUST be released
508 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
509 * individually with dmu_buf_rele.
510 */
511 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
512 uint64_t length, boolean_t read, void *tag,
513 int *numbufsp, dmu_buf_t ***dbpp);
514 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
515
516 typedef void dmu_buf_evict_func_t(void *user_ptr);
517
518 /*
519 * A DMU buffer user object may be associated with a dbuf for the
520 * duration of its lifetime. This allows the user of a dbuf (client)
521 * to attach private data to a dbuf (e.g. in-core only data such as a
522 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
523 * when that dbuf has been evicted. Clients typically respond to the
524 * eviction notification by freeing their private data, thus ensuring
525 * the same lifetime for both dbuf and private data.
526 *
527 * The mapping from a dmu_buf_user_t to any client private data is the
528 * client's responsibility. All current consumers of the API with private
529 * data embed a dmu_buf_user_t as the first member of the structure for
530 * their private data. This allows conversions between the two types
531 * with a simple cast. Since the DMU buf user API never needs access
532 * to the private data, other strategies can be employed if necessary
533 * or convenient for the client (e.g. using container_of() to do the
534 * conversion for private data that cannot have the dmu_buf_user_t as
535 * its first member).
536 *
537 * Eviction callbacks are executed without the dbuf mutex held or any
538 * other type of mechanism to guarantee that the dbuf is still available.
539 * For this reason, users must assume the dbuf has already been freed
540 * and not reference the dbuf from the callback context.
541 *
542 * Users requesting "immediate eviction" are notified as soon as the dbuf
543 * is only referenced by dirty records (dirties == holds). Otherwise the
544 * notification occurs after eviction processing for the dbuf begins.
545 */
546 typedef struct dmu_buf_user {
547 /*
548 * Asynchronous user eviction callback state.
549 */
550 taskq_ent_t dbu_tqent;
551
552 /*
553 * This instance's eviction function pointers.
554 *
555 * dbu_evict_func_sync is called synchronously and then
556 * dbu_evict_func_async is executed asynchronously on a taskq.
557 */
558 dmu_buf_evict_func_t *dbu_evict_func_sync;
559 dmu_buf_evict_func_t *dbu_evict_func_async;
560 #ifdef ZFS_DEBUG
561 /*
562 * Pointer to user's dbuf pointer. NULL for clients that do
563 * not associate a dbuf with their user data.
564 *
565 * The dbuf pointer is cleared upon eviction so as to catch
566 * use-after-evict bugs in clients.
567 */
568 dmu_buf_t **dbu_clear_on_evict_dbufp;
569 #endif
570 } dmu_buf_user_t;
571
572 /*
573 * Initialize the given dmu_buf_user_t instance with the eviction function
574 * evict_func, to be called when the user is evicted.
575 *
576 * NOTE: This function should only be called once on a given dmu_buf_user_t.
577 * To allow enforcement of this, dbu must already be zeroed on entry.
578 */
579 /*ARGSUSED*/
580 static inline void
581 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
582 dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp)
583 {
584 ASSERT(dbu->dbu_evict_func_sync == NULL);
585 ASSERT(dbu->dbu_evict_func_async == NULL);
586
587 /* must have at least one evict func */
588 IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
589 dbu->dbu_evict_func_sync = evict_func_sync;
590 dbu->dbu_evict_func_async = evict_func_async;
591 taskq_init_ent(&dbu->dbu_tqent);
592 #ifdef ZFS_DEBUG
593 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
594 #endif
595 }
596
597 /*
598 * Attach user data to a dbuf and mark it for normal (when the dbuf's
599 * data is cleared or its reference count goes to zero) eviction processing.
600 *
601 * Returns NULL on success, or the existing user if another user currently
602 * owns the buffer.
603 */
604 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
605
606 /*
607 * Attach user data to a dbuf and mark it for immediate (its dirty and
608 * reference counts are equal) eviction processing.
609 *
610 * Returns NULL on success, or the existing user if another user currently
611 * owns the buffer.
612 */
613 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
614
615 /*
616 * Replace the current user of a dbuf.
617 *
618 * If given the current user of a dbuf, replaces the dbuf's user with
619 * "new_user" and returns the user data pointer that was replaced.
620 * Otherwise returns the current, and unmodified, dbuf user pointer.
621 */
622 void *dmu_buf_replace_user(dmu_buf_t *db,
623 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
624
625 /*
626 * Remove the specified user data for a DMU buffer.
627 *
628 * Returns the user that was removed on success, or the current user if
629 * another user currently owns the buffer.
630 */
631 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
632
633 /*
634 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
635 */
636 void *dmu_buf_get_user(dmu_buf_t *db);
637
638 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
639 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
640 void dmu_buf_dnode_exit(dmu_buf_t *db);
641
642 /* Block until any in-progress dmu buf user evictions complete. */
643 void dmu_buf_user_evict_wait(void);
644
645 /*
646 * Returns the blkptr associated with this dbuf, or NULL if not set.
647 */
648 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
649
650 /*
651 * Indicate that you are going to modify the buffer's data (db_data).
652 *
653 * The transaction (tx) must be assigned to a txg (ie. you've called
654 * dmu_tx_assign()). The buffer's object must be held in the tx
655 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
656 */
657 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
658
659 /*
660 * You must create a transaction, then hold the objects which you will
661 * (or might) modify as part of this transaction. Then you must assign
662 * the transaction to a transaction group. Once the transaction has
663 * been assigned, you can modify buffers which belong to held objects as
664 * part of this transaction. You can't modify buffers before the
665 * transaction has been assigned; you can't modify buffers which don't
666 * belong to objects which this transaction holds; you can't hold
667 * objects once the transaction has been assigned. You may hold an
668 * object which you are going to free (with dmu_object_free()), but you
669 * don't have to.
670 *
671 * You can abort the transaction before it has been assigned.
672 *
673 * Note that you may hold buffers (with dmu_buf_hold) at any time,
674 * regardless of transaction state.
675 */
676
677 #define DMU_NEW_OBJECT (-1ULL)
678 #define DMU_OBJECT_END (-1ULL)
679
680 dmu_tx_t *dmu_tx_create(objset_t *os);
681 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
682 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
683 int len);
684 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
685 uint64_t len);
686 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
687 uint64_t len);
688 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
689 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
690 const char *name);
691 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
692 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
693 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
694 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
695 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
696 void dmu_tx_abort(dmu_tx_t *tx);
697 int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
698 void dmu_tx_wait(dmu_tx_t *tx);
699 void dmu_tx_commit(dmu_tx_t *tx);
700 void dmu_tx_mark_netfree(dmu_tx_t *tx);
701
702 /*
703 * To register a commit callback, dmu_tx_callback_register() must be called.
704 *
705 * dcb_data is a pointer to caller private data that is passed on as a
706 * callback parameter. The caller is responsible for properly allocating and
707 * freeing it.
708 *
709 * When registering a callback, the transaction must be already created, but
710 * it cannot be committed or aborted. It can be assigned to a txg or not.
711 *
712 * The callback will be called after the transaction has been safely written
713 * to stable storage and will also be called if the dmu_tx is aborted.
714 * If there is any error which prevents the transaction from being committed to
715 * disk, the callback will be called with a value of error != 0.
716 */
717 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
718
719 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
720 void *dcb_data);
721
722 /*
723 * Free up the data blocks for a defined range of a file. If size is
724 * -1, the range from offset to end-of-file is freed.
725 */
726 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
727 uint64_t size, dmu_tx_t *tx);
728 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
729 uint64_t size);
730 int dmu_free_long_object(objset_t *os, uint64_t object);
731
732 /*
733 * Convenience functions.
734 *
735 * Canfail routines will return 0 on success, or an errno if there is a
736 * nonrecoverable I/O error.
737 */
738 #define DMU_READ_PREFETCH 0 /* prefetch */
739 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
740 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
741 void *buf, uint32_t flags);
742 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
743 uint32_t flags);
744 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
745 const void *buf, dmu_tx_t *tx);
746 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
747 const void *buf, dmu_tx_t *tx);
748 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
749 dmu_tx_t *tx);
750 #ifdef _KERNEL
751 #include <linux/blkdev_compat.h>
752 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
753 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
754 int dmu_read_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size);
755 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
756 dmu_tx_t *tx);
757 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
758 dmu_tx_t *tx);
759 int dmu_write_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size,
760 dmu_tx_t *tx);
761 #endif
762 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
763 void dmu_return_arcbuf(struct arc_buf *buf);
764 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
765 dmu_tx_t *tx);
766 #ifdef HAVE_UIO_ZEROCOPY
767 int dmu_xuio_init(struct xuio *uio, int niov);
768 void dmu_xuio_fini(struct xuio *uio);
769 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
770 size_t n);
771 int dmu_xuio_cnt(struct xuio *uio);
772 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
773 void dmu_xuio_clear(struct xuio *uio, int i);
774 #endif /* HAVE_UIO_ZEROCOPY */
775 void xuio_stat_wbuf_copied(void);
776 void xuio_stat_wbuf_nocopy(void);
777
778 extern int zfs_prefetch_disable;
779 extern int zfs_max_recordsize;
780
781 /*
782 * Asynchronously try to read in the data.
783 */
784 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
785 uint64_t len, enum zio_priority pri);
786
787 typedef struct dmu_object_info {
788 /* All sizes are in bytes unless otherwise indicated. */
789 uint32_t doi_data_block_size;
790 uint32_t doi_metadata_block_size;
791 dmu_object_type_t doi_type;
792 dmu_object_type_t doi_bonus_type;
793 uint64_t doi_bonus_size;
794 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
795 uint8_t doi_checksum;
796 uint8_t doi_compress;
797 uint8_t doi_nblkptr;
798 uint8_t doi_pad[4];
799 uint64_t doi_dnodesize;
800 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
801 uint64_t doi_max_offset;
802 uint64_t doi_fill_count; /* number of non-empty blocks */
803 } dmu_object_info_t;
804
805 typedef void (*const arc_byteswap_func_t)(void *buf, size_t size);
806
807 typedef struct dmu_object_type_info {
808 dmu_object_byteswap_t ot_byteswap;
809 boolean_t ot_metadata;
810 char *ot_name;
811 } dmu_object_type_info_t;
812
813 typedef const struct dmu_object_byteswap_info {
814 arc_byteswap_func_t ob_func;
815 char *ob_name;
816 } dmu_object_byteswap_info_t;
817
818 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
819 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
820
821 /*
822 * Get information on a DMU object.
823 *
824 * Return 0 on success or ENOENT if object is not allocated.
825 *
826 * If doi is NULL, just indicates whether the object exists.
827 */
828 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
829 void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
830 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
831 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
832 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
833 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
834 /*
835 * Like dmu_object_info_from_db, but faster still when you only care about
836 * the size. This is specifically optimized for zfs_getattr().
837 */
838 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
839 u_longlong_t *nblk512);
840
841 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
842
843 typedef struct dmu_objset_stats {
844 uint64_t dds_num_clones; /* number of clones of this */
845 uint64_t dds_creation_txg;
846 uint64_t dds_guid;
847 dmu_objset_type_t dds_type;
848 uint8_t dds_is_snapshot;
849 uint8_t dds_inconsistent;
850 char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
851 } dmu_objset_stats_t;
852
853 /*
854 * Get stats on a dataset.
855 */
856 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
857
858 /*
859 * Add entries to the nvlist for all the objset's properties. See
860 * zfs_prop_table[] and zfs(1m) for details on the properties.
861 */
862 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
863
864 /*
865 * Get the space usage statistics for statvfs().
866 *
867 * refdbytes is the amount of space "referenced" by this objset.
868 * availbytes is the amount of space available to this objset, taking
869 * into account quotas & reservations, assuming that no other objsets
870 * use the space first. These values correspond to the 'referenced' and
871 * 'available' properties, described in the zfs(1m) manpage.
872 *
873 * usedobjs and availobjs are the number of objects currently allocated,
874 * and available.
875 */
876 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
877 uint64_t *usedobjsp, uint64_t *availobjsp);
878
879 /*
880 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
881 * (Contrast with the ds_guid which is a 64-bit ID that will never
882 * change, so there is a small probability that it will collide.)
883 */
884 uint64_t dmu_objset_fsid_guid(objset_t *os);
885
886 /*
887 * Get the [cm]time for an objset's snapshot dir
888 */
889 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
890
891 int dmu_objset_is_snapshot(objset_t *os);
892
893 extern struct spa *dmu_objset_spa(objset_t *os);
894 extern struct zilog *dmu_objset_zil(objset_t *os);
895 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
896 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
897 extern void dmu_objset_name(objset_t *os, char *buf);
898 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
899 extern uint64_t dmu_objset_id(objset_t *os);
900 extern uint64_t dmu_objset_dnodesize(objset_t *os);
901 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
902 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
903 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
904 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
905 extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val);
906 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
907 int maxlen, boolean_t *conflict);
908 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
909 uint64_t *idp, uint64_t *offp);
910
911 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
912 void *bonus, uint64_t *userp, uint64_t *groupp);
913 extern void dmu_objset_register_type(dmu_objset_type_t ost,
914 objset_used_cb_t *cb);
915 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
916 extern void *dmu_objset_get_user(objset_t *os);
917
918 /*
919 * Return the txg number for the given assigned transaction.
920 */
921 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
922
923 /*
924 * Synchronous write.
925 * If a parent zio is provided this function initiates a write on the
926 * provided buffer as a child of the parent zio.
927 * In the absence of a parent zio, the write is completed synchronously.
928 * At write completion, blk is filled with the bp of the written block.
929 * Note that while the data covered by this function will be on stable
930 * storage when the write completes this new data does not become a
931 * permanent part of the file until the associated transaction commits.
932 */
933
934 /*
935 * {zfs,zvol,ztest}_get_done() args
936 */
937 typedef struct zgd {
938 struct zilog *zgd_zilog;
939 struct blkptr *zgd_bp;
940 dmu_buf_t *zgd_db;
941 struct rl *zgd_rl;
942 void *zgd_private;
943 } zgd_t;
944
945 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
946 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
947
948 /*
949 * Find the next hole or data block in file starting at *off
950 * Return found offset in *off. Return ESRCH for end of file.
951 */
952 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
953 uint64_t *off);
954
955 /*
956 * Initial setup and final teardown.
957 */
958 extern void dmu_init(void);
959 extern void dmu_fini(void);
960
961 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
962 uint64_t object, uint64_t offset, int len);
963 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
964 dmu_traverse_cb_t cb, void *arg);
965
966 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
967 struct vnode *vp, offset_t *offp);
968
969 /* CRC64 table */
970 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
971 extern uint64_t zfs_crc64_table[256];
972
973 extern int zfs_mdcomp_disable;
974
975 #ifdef __cplusplus
976 }
977 #endif
978
979 #endif /* _SYS_DMU_H */