]> git.proxmox.com Git - mirror_zfs-debian.git/blob - lib/libzfs/libzfs_import.c
8b52224758da034401995b5e5aad527ac3ca35c2
[mirror_zfs-debian.git] / lib / libzfs / libzfs_import.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25 * Copyright 2015 RackTop Systems.
26 * Copyright (c) 2016, Intel Corporation.
27 */
28
29 /*
30 * Pool import support functions.
31 *
32 * To import a pool, we rely on reading the configuration information from the
33 * ZFS label of each device. If we successfully read the label, then we
34 * organize the configuration information in the following hierarchy:
35 *
36 * pool guid -> toplevel vdev guid -> label txg
37 *
38 * Duplicate entries matching this same tuple will be discarded. Once we have
39 * examined every device, we pick the best label txg config for each toplevel
40 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
41 * update any paths that have changed. Finally, we attempt to import the pool
42 * using our derived config, and record the results.
43 */
44
45 #include <ctype.h>
46 #include <devid.h>
47 #include <dirent.h>
48 #include <errno.h>
49 #include <libintl.h>
50 #ifdef HAVE_LIBUDEV
51 #include <libudev.h>
52 #include <sched.h>
53 #endif
54 #include <stddef.h>
55 #include <stdlib.h>
56 #include <string.h>
57 #include <sys/stat.h>
58 #include <unistd.h>
59 #include <fcntl.h>
60 #include <sys/vtoc.h>
61 #include <sys/dktp/fdisk.h>
62 #include <sys/efi_partition.h>
63 #include <sys/vdev_impl.h>
64 #include <blkid/blkid.h>
65 #include "libzfs.h"
66 #include "libzfs_impl.h"
67 #include <libzfs.h>
68
69 /*
70 * Intermediate structures used to gather configuration information.
71 */
72 typedef struct config_entry {
73 uint64_t ce_txg;
74 nvlist_t *ce_config;
75 struct config_entry *ce_next;
76 } config_entry_t;
77
78 typedef struct vdev_entry {
79 uint64_t ve_guid;
80 config_entry_t *ve_configs;
81 struct vdev_entry *ve_next;
82 } vdev_entry_t;
83
84 typedef struct pool_entry {
85 uint64_t pe_guid;
86 vdev_entry_t *pe_vdevs;
87 struct pool_entry *pe_next;
88 } pool_entry_t;
89
90 typedef struct name_entry {
91 char *ne_name;
92 uint64_t ne_guid;
93 uint64_t ne_order;
94 uint64_t ne_num_labels;
95 struct name_entry *ne_next;
96 } name_entry_t;
97
98 typedef struct pool_list {
99 pool_entry_t *pools;
100 name_entry_t *names;
101 } pool_list_t;
102
103 #define DEV_BYID_PATH "/dev/disk/by-id/"
104
105 /*
106 * Linux persistent device strings for vdev labels
107 *
108 * based on libudev for consistency with libudev disk add/remove events
109 */
110 #ifdef HAVE_LIBUDEV
111
112 typedef struct vdev_dev_strs {
113 char vds_devid[128];
114 char vds_devphys[128];
115 } vdev_dev_strs_t;
116
117 /*
118 * Obtain the persistent device id string (describes what)
119 *
120 * used by ZED vdev matching for auto-{online,expand,replace}
121 */
122 int
123 zfs_device_get_devid(struct udev_device *dev, char *bufptr, size_t buflen)
124 {
125 struct udev_list_entry *entry;
126 const char *bus;
127 char devbyid[MAXPATHLEN];
128
129 /* The bus based by-id path is preferred */
130 bus = udev_device_get_property_value(dev, "ID_BUS");
131
132 if (bus == NULL) {
133 const char *dm_uuid;
134
135 /*
136 * For multipath nodes use the persistent uuid based identifier
137 *
138 * Example: /dev/disk/by-id/dm-uuid-mpath-35000c5006304de3f
139 */
140 dm_uuid = udev_device_get_property_value(dev, "DM_UUID");
141 if (dm_uuid != NULL) {
142 (void) snprintf(bufptr, buflen, "dm-uuid-%s", dm_uuid);
143 return (0);
144 }
145 return (ENODATA);
146 }
147
148 /*
149 * locate the bus specific by-id link
150 */
151 (void) snprintf(devbyid, sizeof (devbyid), "%s%s-", DEV_BYID_PATH, bus);
152 entry = udev_device_get_devlinks_list_entry(dev);
153 while (entry != NULL) {
154 const char *name;
155
156 name = udev_list_entry_get_name(entry);
157 if (strncmp(name, devbyid, strlen(devbyid)) == 0) {
158 name += strlen(DEV_BYID_PATH);
159 (void) strlcpy(bufptr, name, buflen);
160 return (0);
161 }
162 entry = udev_list_entry_get_next(entry);
163 }
164
165 return (ENODATA);
166 }
167
168 /*
169 * Obtain the persistent physical location string (describes where)
170 *
171 * used by ZED vdev matching for auto-{online,expand,replace}
172 */
173 int
174 zfs_device_get_physical(struct udev_device *dev, char *bufptr, size_t buflen)
175 {
176 const char *physpath = NULL;
177
178 /*
179 * Normal disks use ID_PATH for their physical path. Device mapper
180 * devices are virtual and don't have a physical path. For them we
181 * use ID_VDEV instead, which is setup via the /etc/vdev_id.conf file.
182 * ID_VDEV provides a persistent path to a virtual device. If you
183 * don't have vdev_id.conf setup, you cannot use multipath autoreplace.
184 */
185 if (!((physpath = udev_device_get_property_value(dev, "ID_PATH")) &&
186 physpath[0])) {
187 if (!((physpath =
188 udev_device_get_property_value(dev, "ID_VDEV")) &&
189 physpath[0])) {
190 return (ENODATA);
191 }
192 }
193
194 (void) strlcpy(bufptr, physpath, buflen);
195
196 return (0);
197 }
198
199 boolean_t
200 udev_is_mpath(struct udev_device *dev)
201 {
202 return udev_device_get_property_value(dev, "DM_UUID") &&
203 udev_device_get_property_value(dev, "MPATH_SBIN_PATH");
204 }
205
206 /*
207 * A disk is considered a multipath whole disk when:
208 * DEVNAME key value has "dm-"
209 * DM_NAME key value has "mpath" prefix
210 * DM_UUID key exists
211 * ID_PART_TABLE_TYPE key does not exist or is not gpt
212 */
213 static boolean_t
214 udev_mpath_whole_disk(struct udev_device *dev)
215 {
216 const char *devname, *type, *uuid;
217
218 devname = udev_device_get_property_value(dev, "DEVNAME");
219 type = udev_device_get_property_value(dev, "ID_PART_TABLE_TYPE");
220 uuid = udev_device_get_property_value(dev, "DM_UUID");
221
222 if ((devname != NULL && strncmp(devname, "/dev/dm-", 8) == 0) &&
223 ((type == NULL) || (strcmp(type, "gpt") != 0)) &&
224 (uuid != NULL)) {
225 return (B_TRUE);
226 }
227
228 return (B_FALSE);
229 }
230
231 /*
232 * Check if a disk is effectively a multipath whole disk
233 */
234 boolean_t
235 is_mpath_whole_disk(const char *path)
236 {
237 struct udev *udev;
238 struct udev_device *dev = NULL;
239 char nodepath[MAXPATHLEN];
240 char *sysname;
241 boolean_t wholedisk = B_FALSE;
242
243 if (realpath(path, nodepath) == NULL)
244 return (B_FALSE);
245 sysname = strrchr(nodepath, '/') + 1;
246 if (strncmp(sysname, "dm-", 3) != 0)
247 return (B_FALSE);
248 if ((udev = udev_new()) == NULL)
249 return (B_FALSE);
250 if ((dev = udev_device_new_from_subsystem_sysname(udev, "block",
251 sysname)) == NULL) {
252 udev_device_unref(dev);
253 return (B_FALSE);
254 }
255
256 wholedisk = udev_mpath_whole_disk(dev);
257
258 udev_device_unref(dev);
259 return (wholedisk);
260 }
261
262 static int
263 udev_device_is_ready(struct udev_device *dev)
264 {
265 #ifdef HAVE_LIBUDEV_UDEV_DEVICE_GET_IS_INITIALIZED
266 return (udev_device_get_is_initialized(dev));
267 #else
268 /* wait for DEVLINKS property to be initialized */
269 return (udev_device_get_property_value(dev, "DEVLINKS") != NULL);
270 #endif
271 }
272
273 /*
274 * Wait up to timeout_ms for udev to set up the device node. The device is
275 * considered ready when libudev determines it has been initialized, all of
276 * the device links have been verified to exist, and it has been allowed to
277 * settle. At this point the device the device can be accessed reliably.
278 * Depending on the complexity of the udev rules this process could take
279 * several seconds.
280 */
281 int
282 zpool_label_disk_wait(char *path, int timeout_ms)
283 {
284 struct udev *udev;
285 struct udev_device *dev = NULL;
286 char nodepath[MAXPATHLEN];
287 char *sysname = NULL;
288 int ret = ENODEV;
289 int settle_ms = 50;
290 long sleep_ms = 10;
291 hrtime_t start, settle;
292
293 if ((udev = udev_new()) == NULL)
294 return (ENXIO);
295
296 start = gethrtime();
297 settle = 0;
298
299 do {
300 if (sysname == NULL) {
301 if (realpath(path, nodepath) != NULL) {
302 sysname = strrchr(nodepath, '/') + 1;
303 } else {
304 (void) usleep(sleep_ms * MILLISEC);
305 continue;
306 }
307 }
308
309 dev = udev_device_new_from_subsystem_sysname(udev,
310 "block", sysname);
311 if ((dev != NULL) && udev_device_is_ready(dev)) {
312 struct udev_list_entry *links, *link;
313
314 ret = 0;
315 links = udev_device_get_devlinks_list_entry(dev);
316
317 udev_list_entry_foreach(link, links) {
318 struct stat64 statbuf;
319 const char *name;
320
321 name = udev_list_entry_get_name(link);
322 errno = 0;
323 if (stat64(name, &statbuf) == 0 && errno == 0)
324 continue;
325
326 settle = 0;
327 ret = ENODEV;
328 break;
329 }
330
331 if (ret == 0) {
332 if (settle == 0) {
333 settle = gethrtime();
334 } else if (NSEC2MSEC(gethrtime() - settle) >=
335 settle_ms) {
336 udev_device_unref(dev);
337 break;
338 }
339 }
340 }
341
342 udev_device_unref(dev);
343 (void) usleep(sleep_ms * MILLISEC);
344
345 } while (NSEC2MSEC(gethrtime() - start) < timeout_ms);
346
347 udev_unref(udev);
348
349 return (ret);
350 }
351
352
353 /*
354 * Encode the persistent devices strings
355 * used for the vdev disk label
356 */
357 static int
358 encode_device_strings(const char *path, vdev_dev_strs_t *ds,
359 boolean_t wholedisk)
360 {
361 struct udev *udev;
362 struct udev_device *dev = NULL;
363 char nodepath[MAXPATHLEN];
364 char *sysname;
365 int ret = ENODEV;
366 hrtime_t start;
367
368 if ((udev = udev_new()) == NULL)
369 return (ENXIO);
370
371 /* resolve path to a runtime device node instance */
372 if (realpath(path, nodepath) == NULL)
373 goto no_dev;
374
375 sysname = strrchr(nodepath, '/') + 1;
376
377 /*
378 * Wait up to 3 seconds for udev to set up the device node context
379 */
380 start = gethrtime();
381 do {
382 dev = udev_device_new_from_subsystem_sysname(udev, "block",
383 sysname);
384 if (dev == NULL)
385 goto no_dev;
386 if (udev_device_is_ready(dev))
387 break; /* udev ready */
388
389 udev_device_unref(dev);
390 dev = NULL;
391
392 if (NSEC2MSEC(gethrtime() - start) < 10)
393 (void) sched_yield(); /* yield/busy wait up to 10ms */
394 else
395 (void) usleep(10 * MILLISEC);
396
397 } while (NSEC2MSEC(gethrtime() - start) < (3 * MILLISEC));
398
399 if (dev == NULL)
400 goto no_dev;
401
402 /*
403 * Only whole disks require extra device strings
404 */
405 if (!wholedisk && !udev_mpath_whole_disk(dev))
406 goto no_dev;
407
408 ret = zfs_device_get_devid(dev, ds->vds_devid, sizeof (ds->vds_devid));
409 if (ret != 0)
410 goto no_dev_ref;
411
412 /* physical location string (optional) */
413 if (zfs_device_get_physical(dev, ds->vds_devphys,
414 sizeof (ds->vds_devphys)) != 0) {
415 ds->vds_devphys[0] = '\0'; /* empty string --> not available */
416 }
417
418 no_dev_ref:
419 udev_device_unref(dev);
420 no_dev:
421 udev_unref(udev);
422
423 return (ret);
424 }
425
426 /*
427 * Update a leaf vdev's persistent device strings (Linux only)
428 *
429 * - only applies for a dedicated leaf vdev (aka whole disk)
430 * - updated during pool create|add|attach|import
431 * - used for matching device matching during auto-{online,expand,replace}
432 * - stored in a leaf disk config label (i.e. alongside 'path' NVP)
433 * - these strings are currently not used in kernel (i.e. for vdev_disk_open)
434 *
435 * single device node example:
436 * devid: 'scsi-MG03SCA300_350000494a8cb3d67-part1'
437 * phys_path: 'pci-0000:04:00.0-sas-0x50000394a8cb3d67-lun-0'
438 *
439 * multipath device node example:
440 * devid: 'dm-uuid-mpath-35000c5006304de3f'
441 *
442 * We also store the enclosure sysfs path for turning on enclosure LEDs
443 * (if applicable):
444 * vdev_enc_sysfs_path: '/sys/class/enclosure/11:0:1:0/SLOT 4'
445 */
446 void
447 update_vdev_config_dev_strs(nvlist_t *nv)
448 {
449 vdev_dev_strs_t vds;
450 char *env, *type, *path;
451 uint64_t wholedisk = 0;
452 char *upath, *spath;
453
454 /*
455 * For the benefit of legacy ZFS implementations, allow
456 * for opting out of devid strings in the vdev label.
457 *
458 * example use:
459 * env ZFS_VDEV_DEVID_OPT_OUT=YES zpool import dozer
460 *
461 * explanation:
462 * Older ZFS on Linux implementations had issues when attempting to
463 * display pool config VDEV names if a "devid" NVP value is present
464 * in the pool's config.
465 *
466 * For example, a pool that originated on illumos platform would
467 * have a devid value in the config and "zpool status" would fail
468 * when listing the config.
469 *
470 * A pool can be stripped of any "devid" values on import or
471 * prevented from adding them on zpool create|add by setting
472 * ZFS_VDEV_DEVID_OPT_OUT.
473 */
474 env = getenv("ZFS_VDEV_DEVID_OPT_OUT");
475 if (env && (strtoul(env, NULL, 0) > 0 ||
476 !strncasecmp(env, "YES", 3) || !strncasecmp(env, "ON", 2))) {
477 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
478 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_PHYS_PATH);
479 return;
480 }
481
482 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0 ||
483 strcmp(type, VDEV_TYPE_DISK) != 0) {
484 return;
485 }
486 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
487 return;
488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
489
490 /*
491 * Update device string values in config nvlist
492 */
493 if (encode_device_strings(path, &vds, (boolean_t)wholedisk) == 0) {
494 (void) nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vds.vds_devid);
495 if (vds.vds_devphys[0] != '\0') {
496 (void) nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
497 vds.vds_devphys);
498 }
499
500 /* Add enclosure sysfs path (if disk is in an enclosure) */
501 upath = zfs_get_underlying_path(path);
502 spath = zfs_get_enclosure_sysfs_path(upath);
503 if (spath)
504 nvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
505 spath);
506 else
507 nvlist_remove_all(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH);
508
509 free(upath);
510 free(spath);
511 } else {
512 /* clear out any stale entries */
513 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
514 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_PHYS_PATH);
515 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH);
516 }
517 }
518 #else
519
520 boolean_t
521 is_mpath_whole_disk(const char *path)
522 {
523 return (B_FALSE);
524 }
525
526 /*
527 * Wait up to timeout_ms for udev to set up the device node. The device is
528 * considered ready when the provided path have been verified to exist and
529 * it has been allowed to settle. At this point the device the device can
530 * be accessed reliably. Depending on the complexity of the udev rules thisi
531 * process could take several seconds.
532 */
533 int
534 zpool_label_disk_wait(char *path, int timeout_ms)
535 {
536 int settle_ms = 50;
537 long sleep_ms = 10;
538 hrtime_t start, settle;
539 struct stat64 statbuf;
540
541 start = gethrtime();
542 settle = 0;
543
544 do {
545 errno = 0;
546 if ((stat64(path, &statbuf) == 0) && (errno == 0)) {
547 if (settle == 0)
548 settle = gethrtime();
549 else if (NSEC2MSEC(gethrtime() - settle) >= settle_ms)
550 return (0);
551 } else if (errno != ENOENT) {
552 return (errno);
553 }
554
555 usleep(sleep_ms * MILLISEC);
556 } while (NSEC2MSEC(gethrtime() - start) < timeout_ms);
557
558 return (ENODEV);
559 }
560
561 void
562 update_vdev_config_dev_strs(nvlist_t *nv)
563 {
564 }
565
566 #endif /* HAVE_LIBUDEV */
567
568 /*
569 * Go through and fix up any path and/or devid information for the given vdev
570 * configuration.
571 */
572 static int
573 fix_paths(nvlist_t *nv, name_entry_t *names)
574 {
575 nvlist_t **child;
576 uint_t c, children;
577 uint64_t guid;
578 name_entry_t *ne, *best;
579 char *path;
580
581 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
582 &child, &children) == 0) {
583 for (c = 0; c < children; c++)
584 if (fix_paths(child[c], names) != 0)
585 return (-1);
586 return (0);
587 }
588
589 /*
590 * This is a leaf (file or disk) vdev. In either case, go through
591 * the name list and see if we find a matching guid. If so, replace
592 * the path and see if we can calculate a new devid.
593 *
594 * There may be multiple names associated with a particular guid, in
595 * which case we have overlapping partitions or multiple paths to the
596 * same disk. In this case we prefer to use the path name which
597 * matches the ZPOOL_CONFIG_PATH. If no matching entry is found we
598 * use the lowest order device which corresponds to the first match
599 * while traversing the ZPOOL_IMPORT_PATH search path.
600 */
601 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
602 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
603 path = NULL;
604
605 best = NULL;
606 for (ne = names; ne != NULL; ne = ne->ne_next) {
607 if (ne->ne_guid == guid) {
608 if (path == NULL) {
609 best = ne;
610 break;
611 }
612
613 if ((strlen(path) == strlen(ne->ne_name)) &&
614 strncmp(path, ne->ne_name, strlen(path)) == 0) {
615 best = ne;
616 break;
617 }
618
619 if (best == NULL) {
620 best = ne;
621 continue;
622 }
623
624 /* Prefer paths with move vdev labels. */
625 if (ne->ne_num_labels > best->ne_num_labels) {
626 best = ne;
627 continue;
628 }
629
630 /* Prefer paths earlier in the search order. */
631 if (ne->ne_num_labels == best->ne_num_labels &&
632 ne->ne_order < best->ne_order) {
633 best = ne;
634 continue;
635 }
636 }
637 }
638
639 if (best == NULL)
640 return (0);
641
642 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
643 return (-1);
644
645 /* Linux only - update ZPOOL_CONFIG_DEVID and ZPOOL_CONFIG_PHYS_PATH */
646 update_vdev_config_dev_strs(nv);
647
648 return (0);
649 }
650
651 /*
652 * Add the given configuration to the list of known devices.
653 */
654 static int
655 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
656 int order, int num_labels, nvlist_t *config)
657 {
658 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
659 pool_entry_t *pe;
660 vdev_entry_t *ve;
661 config_entry_t *ce;
662 name_entry_t *ne;
663
664 /*
665 * If this is a hot spare not currently in use or level 2 cache
666 * device, add it to the list of names to translate, but don't do
667 * anything else.
668 */
669 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
670 &state) == 0 &&
671 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
672 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
673 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) {
674 nvlist_free(config);
675 return (-1);
676 }
677
678 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
679 free(ne);
680 nvlist_free(config);
681 return (-1);
682 }
683 ne->ne_guid = vdev_guid;
684 ne->ne_order = order;
685 ne->ne_num_labels = num_labels;
686 ne->ne_next = pl->names;
687 pl->names = ne;
688 nvlist_free(config);
689 return (0);
690 }
691
692 /*
693 * If we have a valid config but cannot read any of these fields, then
694 * it means we have a half-initialized label. In vdev_label_init()
695 * we write a label with txg == 0 so that we can identify the device
696 * in case the user refers to the same disk later on. If we fail to
697 * create the pool, we'll be left with a label in this state
698 * which should not be considered part of a valid pool.
699 */
700 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
701 &pool_guid) != 0 ||
702 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
703 &vdev_guid) != 0 ||
704 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
705 &top_guid) != 0 ||
706 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
707 &txg) != 0 || txg == 0) {
708 nvlist_free(config);
709 return (0);
710 }
711
712 /*
713 * First, see if we know about this pool. If not, then add it to the
714 * list of known pools.
715 */
716 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
717 if (pe->pe_guid == pool_guid)
718 break;
719 }
720
721 if (pe == NULL) {
722 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
723 nvlist_free(config);
724 return (-1);
725 }
726 pe->pe_guid = pool_guid;
727 pe->pe_next = pl->pools;
728 pl->pools = pe;
729 }
730
731 /*
732 * Second, see if we know about this toplevel vdev. Add it if its
733 * missing.
734 */
735 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
736 if (ve->ve_guid == top_guid)
737 break;
738 }
739
740 if (ve == NULL) {
741 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
742 nvlist_free(config);
743 return (-1);
744 }
745 ve->ve_guid = top_guid;
746 ve->ve_next = pe->pe_vdevs;
747 pe->pe_vdevs = ve;
748 }
749
750 /*
751 * Third, see if we have a config with a matching transaction group. If
752 * so, then we do nothing. Otherwise, add it to the list of known
753 * configs.
754 */
755 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
756 if (ce->ce_txg == txg)
757 break;
758 }
759
760 if (ce == NULL) {
761 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
762 nvlist_free(config);
763 return (-1);
764 }
765 ce->ce_txg = txg;
766 ce->ce_config = config;
767 ce->ce_next = ve->ve_configs;
768 ve->ve_configs = ce;
769 } else {
770 nvlist_free(config);
771 }
772
773 /*
774 * At this point we've successfully added our config to the list of
775 * known configs. The last thing to do is add the vdev guid -> path
776 * mappings so that we can fix up the configuration as necessary before
777 * doing the import.
778 */
779 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
780 return (-1);
781
782 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
783 free(ne);
784 return (-1);
785 }
786
787 ne->ne_guid = vdev_guid;
788 ne->ne_order = order;
789 ne->ne_num_labels = num_labels;
790 ne->ne_next = pl->names;
791 pl->names = ne;
792
793 return (0);
794 }
795
796 /*
797 * Returns true if the named pool matches the given GUID.
798 */
799 static int
800 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
801 boolean_t *isactive)
802 {
803 zpool_handle_t *zhp;
804 uint64_t theguid;
805
806 if (zpool_open_silent(hdl, name, &zhp) != 0)
807 return (-1);
808
809 if (zhp == NULL) {
810 *isactive = B_FALSE;
811 return (0);
812 }
813
814 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
815 &theguid) == 0);
816
817 zpool_close(zhp);
818
819 *isactive = (theguid == guid);
820 return (0);
821 }
822
823 static nvlist_t *
824 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
825 {
826 nvlist_t *nvl;
827 zfs_cmd_t zc = {"\0"};
828 int err, dstbuf_size;
829
830 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
831 return (NULL);
832
833 dstbuf_size = MAX(CONFIG_BUF_MINSIZE, zc.zc_nvlist_conf_size * 4);
834
835 if (zcmd_alloc_dst_nvlist(hdl, &zc, dstbuf_size) != 0) {
836 zcmd_free_nvlists(&zc);
837 return (NULL);
838 }
839
840 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
841 &zc)) != 0 && errno == ENOMEM) {
842 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
843 zcmd_free_nvlists(&zc);
844 return (NULL);
845 }
846 }
847
848 if (err) {
849 zcmd_free_nvlists(&zc);
850 return (NULL);
851 }
852
853 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
854 zcmd_free_nvlists(&zc);
855 return (NULL);
856 }
857
858 zcmd_free_nvlists(&zc);
859 return (nvl);
860 }
861
862 /*
863 * Determine if the vdev id is a hole in the namespace.
864 */
865 boolean_t
866 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
867 {
868 int c;
869
870 for (c = 0; c < holes; c++) {
871
872 /* Top-level is a hole */
873 if (hole_array[c] == id)
874 return (B_TRUE);
875 }
876 return (B_FALSE);
877 }
878
879 /*
880 * Convert our list of pools into the definitive set of configurations. We
881 * start by picking the best config for each toplevel vdev. Once that's done,
882 * we assemble the toplevel vdevs into a full config for the pool. We make a
883 * pass to fix up any incorrect paths, and then add it to the main list to
884 * return to the user.
885 */
886 static nvlist_t *
887 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
888 {
889 pool_entry_t *pe;
890 vdev_entry_t *ve;
891 config_entry_t *ce;
892 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
893 nvlist_t **spares, **l2cache;
894 uint_t i, nspares, nl2cache;
895 boolean_t config_seen;
896 uint64_t best_txg;
897 char *name, *hostname = NULL;
898 uint64_t guid;
899 uint_t children = 0;
900 nvlist_t **child = NULL;
901 uint_t holes;
902 uint64_t *hole_array, max_id;
903 uint_t c;
904 boolean_t isactive;
905 uint64_t hostid;
906 nvlist_t *nvl;
907 boolean_t valid_top_config = B_FALSE;
908
909 if (nvlist_alloc(&ret, 0, 0) != 0)
910 goto nomem;
911
912 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
913 uint64_t id, max_txg = 0;
914
915 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
916 goto nomem;
917 config_seen = B_FALSE;
918
919 /*
920 * Iterate over all toplevel vdevs. Grab the pool configuration
921 * from the first one we find, and then go through the rest and
922 * add them as necessary to the 'vdevs' member of the config.
923 */
924 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
925
926 /*
927 * Determine the best configuration for this vdev by
928 * selecting the config with the latest transaction
929 * group.
930 */
931 best_txg = 0;
932 for (ce = ve->ve_configs; ce != NULL;
933 ce = ce->ce_next) {
934
935 if (ce->ce_txg > best_txg) {
936 tmp = ce->ce_config;
937 best_txg = ce->ce_txg;
938 }
939 }
940
941 /*
942 * We rely on the fact that the max txg for the
943 * pool will contain the most up-to-date information
944 * about the valid top-levels in the vdev namespace.
945 */
946 if (best_txg > max_txg) {
947 (void) nvlist_remove(config,
948 ZPOOL_CONFIG_VDEV_CHILDREN,
949 DATA_TYPE_UINT64);
950 (void) nvlist_remove(config,
951 ZPOOL_CONFIG_HOLE_ARRAY,
952 DATA_TYPE_UINT64_ARRAY);
953
954 max_txg = best_txg;
955 hole_array = NULL;
956 holes = 0;
957 max_id = 0;
958 valid_top_config = B_FALSE;
959
960 if (nvlist_lookup_uint64(tmp,
961 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
962 verify(nvlist_add_uint64(config,
963 ZPOOL_CONFIG_VDEV_CHILDREN,
964 max_id) == 0);
965 valid_top_config = B_TRUE;
966 }
967
968 if (nvlist_lookup_uint64_array(tmp,
969 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
970 &holes) == 0) {
971 verify(nvlist_add_uint64_array(config,
972 ZPOOL_CONFIG_HOLE_ARRAY,
973 hole_array, holes) == 0);
974 }
975 }
976
977 if (!config_seen) {
978 /*
979 * Copy the relevant pieces of data to the pool
980 * configuration:
981 *
982 * version
983 * pool guid
984 * name
985 * comment (if available)
986 * pool state
987 * hostid (if available)
988 * hostname (if available)
989 */
990 uint64_t state, version;
991 char *comment = NULL;
992
993 version = fnvlist_lookup_uint64(tmp,
994 ZPOOL_CONFIG_VERSION);
995 fnvlist_add_uint64(config,
996 ZPOOL_CONFIG_VERSION, version);
997 guid = fnvlist_lookup_uint64(tmp,
998 ZPOOL_CONFIG_POOL_GUID);
999 fnvlist_add_uint64(config,
1000 ZPOOL_CONFIG_POOL_GUID, guid);
1001 name = fnvlist_lookup_string(tmp,
1002 ZPOOL_CONFIG_POOL_NAME);
1003 fnvlist_add_string(config,
1004 ZPOOL_CONFIG_POOL_NAME, name);
1005
1006 if (nvlist_lookup_string(tmp,
1007 ZPOOL_CONFIG_COMMENT, &comment) == 0)
1008 fnvlist_add_string(config,
1009 ZPOOL_CONFIG_COMMENT, comment);
1010
1011 state = fnvlist_lookup_uint64(tmp,
1012 ZPOOL_CONFIG_POOL_STATE);
1013 fnvlist_add_uint64(config,
1014 ZPOOL_CONFIG_POOL_STATE, state);
1015
1016 hostid = 0;
1017 if (nvlist_lookup_uint64(tmp,
1018 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1019 fnvlist_add_uint64(config,
1020 ZPOOL_CONFIG_HOSTID, hostid);
1021 hostname = fnvlist_lookup_string(tmp,
1022 ZPOOL_CONFIG_HOSTNAME);
1023 fnvlist_add_string(config,
1024 ZPOOL_CONFIG_HOSTNAME, hostname);
1025 }
1026
1027 config_seen = B_TRUE;
1028 }
1029
1030 /*
1031 * Add this top-level vdev to the child array.
1032 */
1033 verify(nvlist_lookup_nvlist(tmp,
1034 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
1035 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
1036 &id) == 0);
1037
1038 if (id >= children) {
1039 nvlist_t **newchild;
1040
1041 newchild = zfs_alloc(hdl, (id + 1) *
1042 sizeof (nvlist_t *));
1043 if (newchild == NULL)
1044 goto nomem;
1045
1046 for (c = 0; c < children; c++)
1047 newchild[c] = child[c];
1048
1049 free(child);
1050 child = newchild;
1051 children = id + 1;
1052 }
1053 if (nvlist_dup(nvtop, &child[id], 0) != 0)
1054 goto nomem;
1055
1056 }
1057
1058 /*
1059 * If we have information about all the top-levels then
1060 * clean up the nvlist which we've constructed. This
1061 * means removing any extraneous devices that are
1062 * beyond the valid range or adding devices to the end
1063 * of our array which appear to be missing.
1064 */
1065 if (valid_top_config) {
1066 if (max_id < children) {
1067 for (c = max_id; c < children; c++)
1068 nvlist_free(child[c]);
1069 children = max_id;
1070 } else if (max_id > children) {
1071 nvlist_t **newchild;
1072
1073 newchild = zfs_alloc(hdl, (max_id) *
1074 sizeof (nvlist_t *));
1075 if (newchild == NULL)
1076 goto nomem;
1077
1078 for (c = 0; c < children; c++)
1079 newchild[c] = child[c];
1080
1081 free(child);
1082 child = newchild;
1083 children = max_id;
1084 }
1085 }
1086
1087 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1088 &guid) == 0);
1089
1090 /*
1091 * The vdev namespace may contain holes as a result of
1092 * device removal. We must add them back into the vdev
1093 * tree before we process any missing devices.
1094 */
1095 if (holes > 0) {
1096 ASSERT(valid_top_config);
1097
1098 for (c = 0; c < children; c++) {
1099 nvlist_t *holey;
1100
1101 if (child[c] != NULL ||
1102 !vdev_is_hole(hole_array, holes, c))
1103 continue;
1104
1105 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
1106 0) != 0)
1107 goto nomem;
1108
1109 /*
1110 * Holes in the namespace are treated as
1111 * "hole" top-level vdevs and have a
1112 * special flag set on them.
1113 */
1114 if (nvlist_add_string(holey,
1115 ZPOOL_CONFIG_TYPE,
1116 VDEV_TYPE_HOLE) != 0 ||
1117 nvlist_add_uint64(holey,
1118 ZPOOL_CONFIG_ID, c) != 0 ||
1119 nvlist_add_uint64(holey,
1120 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
1121 nvlist_free(holey);
1122 goto nomem;
1123 }
1124 child[c] = holey;
1125 }
1126 }
1127
1128 /*
1129 * Look for any missing top-level vdevs. If this is the case,
1130 * create a faked up 'missing' vdev as a placeholder. We cannot
1131 * simply compress the child array, because the kernel performs
1132 * certain checks to make sure the vdev IDs match their location
1133 * in the configuration.
1134 */
1135 for (c = 0; c < children; c++) {
1136 if (child[c] == NULL) {
1137 nvlist_t *missing;
1138 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
1139 0) != 0)
1140 goto nomem;
1141 if (nvlist_add_string(missing,
1142 ZPOOL_CONFIG_TYPE,
1143 VDEV_TYPE_MISSING) != 0 ||
1144 nvlist_add_uint64(missing,
1145 ZPOOL_CONFIG_ID, c) != 0 ||
1146 nvlist_add_uint64(missing,
1147 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
1148 nvlist_free(missing);
1149 goto nomem;
1150 }
1151 child[c] = missing;
1152 }
1153 }
1154
1155 /*
1156 * Put all of this pool's top-level vdevs into a root vdev.
1157 */
1158 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
1159 goto nomem;
1160 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1161 VDEV_TYPE_ROOT) != 0 ||
1162 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
1163 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
1164 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1165 child, children) != 0) {
1166 nvlist_free(nvroot);
1167 goto nomem;
1168 }
1169
1170 for (c = 0; c < children; c++)
1171 nvlist_free(child[c]);
1172 free(child);
1173 children = 0;
1174 child = NULL;
1175
1176 /*
1177 * Go through and fix up any paths and/or devids based on our
1178 * known list of vdev GUID -> path mappings.
1179 */
1180 if (fix_paths(nvroot, pl->names) != 0) {
1181 nvlist_free(nvroot);
1182 goto nomem;
1183 }
1184
1185 /*
1186 * Add the root vdev to this pool's configuration.
1187 */
1188 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1189 nvroot) != 0) {
1190 nvlist_free(nvroot);
1191 goto nomem;
1192 }
1193 nvlist_free(nvroot);
1194
1195 /*
1196 * zdb uses this path to report on active pools that were
1197 * imported or created using -R.
1198 */
1199 if (active_ok)
1200 goto add_pool;
1201
1202 /*
1203 * Determine if this pool is currently active, in which case we
1204 * can't actually import it.
1205 */
1206 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1207 &name) == 0);
1208 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1209 &guid) == 0);
1210
1211 if (pool_active(hdl, name, guid, &isactive) != 0)
1212 goto error;
1213
1214 if (isactive) {
1215 nvlist_free(config);
1216 config = NULL;
1217 continue;
1218 }
1219
1220 if ((nvl = refresh_config(hdl, config)) == NULL) {
1221 nvlist_free(config);
1222 config = NULL;
1223 continue;
1224 }
1225
1226 nvlist_free(config);
1227 config = nvl;
1228
1229 /*
1230 * Go through and update the paths for spares, now that we have
1231 * them.
1232 */
1233 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1234 &nvroot) == 0);
1235 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1236 &spares, &nspares) == 0) {
1237 for (i = 0; i < nspares; i++) {
1238 if (fix_paths(spares[i], pl->names) != 0)
1239 goto nomem;
1240 }
1241 }
1242
1243 /*
1244 * Update the paths for l2cache devices.
1245 */
1246 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1247 &l2cache, &nl2cache) == 0) {
1248 for (i = 0; i < nl2cache; i++) {
1249 if (fix_paths(l2cache[i], pl->names) != 0)
1250 goto nomem;
1251 }
1252 }
1253
1254 /*
1255 * Restore the original information read from the actual label.
1256 */
1257 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
1258 DATA_TYPE_UINT64);
1259 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
1260 DATA_TYPE_STRING);
1261 if (hostid != 0) {
1262 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
1263 hostid) == 0);
1264 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
1265 hostname) == 0);
1266 }
1267
1268 add_pool:
1269 /*
1270 * Add this pool to the list of configs.
1271 */
1272 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1273 &name) == 0);
1274 if (nvlist_add_nvlist(ret, name, config) != 0)
1275 goto nomem;
1276
1277 nvlist_free(config);
1278 config = NULL;
1279 }
1280
1281 return (ret);
1282
1283 nomem:
1284 (void) no_memory(hdl);
1285 error:
1286 nvlist_free(config);
1287 nvlist_free(ret);
1288 for (c = 0; c < children; c++)
1289 nvlist_free(child[c]);
1290 free(child);
1291
1292 return (NULL);
1293 }
1294
1295 /*
1296 * Return the offset of the given label.
1297 */
1298 static uint64_t
1299 label_offset(uint64_t size, int l)
1300 {
1301 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
1302 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
1303 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
1304 }
1305
1306 /*
1307 * Given a file descriptor, read the label information and return an nvlist
1308 * describing the configuration, if there is one. The number of valid
1309 * labels found will be returned in num_labels when non-NULL.
1310 */
1311 int
1312 zpool_read_label(int fd, nvlist_t **config, int *num_labels)
1313 {
1314 struct stat64 statbuf;
1315 int l, count = 0;
1316 vdev_label_t *label;
1317 nvlist_t *expected_config = NULL;
1318 uint64_t expected_guid = 0, size;
1319 int error;
1320
1321 *config = NULL;
1322
1323 if (fstat64_blk(fd, &statbuf) == -1)
1324 return (0);
1325 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1326
1327 error = posix_memalign((void **)&label, PAGESIZE, sizeof (*label));
1328 if (error)
1329 return (-1);
1330
1331 for (l = 0; l < VDEV_LABELS; l++) {
1332 uint64_t state, guid, txg;
1333
1334 if (pread64(fd, label, sizeof (vdev_label_t),
1335 label_offset(size, l)) != sizeof (vdev_label_t))
1336 continue;
1337
1338 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
1339 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
1340 continue;
1341
1342 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID,
1343 &guid) != 0 || guid == 0) {
1344 nvlist_free(*config);
1345 continue;
1346 }
1347
1348 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
1349 &state) != 0 || state > POOL_STATE_L2CACHE) {
1350 nvlist_free(*config);
1351 continue;
1352 }
1353
1354 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
1355 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
1356 &txg) != 0 || txg == 0)) {
1357 nvlist_free(*config);
1358 continue;
1359 }
1360
1361 if (expected_guid) {
1362 if (expected_guid == guid)
1363 count++;
1364
1365 nvlist_free(*config);
1366 } else {
1367 expected_config = *config;
1368 expected_guid = guid;
1369 count++;
1370 }
1371 }
1372
1373 if (num_labels != NULL)
1374 *num_labels = count;
1375
1376 free(label);
1377 *config = expected_config;
1378
1379 return (0);
1380 }
1381
1382 typedef struct rdsk_node {
1383 char *rn_name; /* Full path to device */
1384 int rn_order; /* Preferred order (low to high) */
1385 int rn_num_labels; /* Number of valid labels */
1386 uint64_t rn_vdev_guid; /* Expected vdev guid when set */
1387 libzfs_handle_t *rn_hdl;
1388 nvlist_t *rn_config; /* Label config */
1389 avl_tree_t *rn_avl;
1390 avl_node_t rn_node;
1391 kmutex_t *rn_lock;
1392 boolean_t rn_labelpaths;
1393 } rdsk_node_t;
1394
1395 /*
1396 * Sorted by vdev guid and full path to allow for multiple entries with
1397 * the same full path name. This is required because it's possible to
1398 * have multiple block devices with labels that refer to the same
1399 * ZPOOL_CONFIG_PATH yet have different vdev guids. In this case both
1400 * entries need to be added to the cache. Scenarios where this can occur
1401 * include overwritten pool labels, devices which are visible from multiple
1402 * hosts and multipath devices.
1403 */
1404 static int
1405 slice_cache_compare(const void *arg1, const void *arg2)
1406 {
1407 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
1408 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
1409 uint64_t guid1 = ((rdsk_node_t *)arg1)->rn_vdev_guid;
1410 uint64_t guid2 = ((rdsk_node_t *)arg2)->rn_vdev_guid;
1411 int rv;
1412
1413 rv = AVL_CMP(guid1, guid2);
1414 if (rv)
1415 return (rv);
1416
1417 return (AVL_ISIGN(strcmp(nm1, nm2)));
1418 }
1419
1420 static boolean_t
1421 is_watchdog_dev(char *dev)
1422 {
1423 /* For 'watchdog' dev */
1424 if (strcmp(dev, "watchdog") == 0)
1425 return (B_TRUE);
1426
1427 /* For 'watchdog<digit><whatever> */
1428 if (strstr(dev, "watchdog") == dev && isdigit(dev[8]))
1429 return (B_TRUE);
1430
1431 return (B_FALSE);
1432 }
1433
1434 static int
1435 label_paths_impl(libzfs_handle_t *hdl, nvlist_t *nvroot, uint64_t pool_guid,
1436 uint64_t vdev_guid, char **path, char **devid)
1437 {
1438 nvlist_t **child;
1439 uint_t c, children;
1440 uint64_t guid;
1441 char *val;
1442 int error;
1443
1444 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1445 &child, &children) == 0) {
1446 for (c = 0; c < children; c++) {
1447 error = label_paths_impl(hdl, child[c],
1448 pool_guid, vdev_guid, path, devid);
1449 if (error)
1450 return (error);
1451 }
1452 return (0);
1453 }
1454
1455 if (nvroot == NULL)
1456 return (0);
1457
1458 error = nvlist_lookup_uint64(nvroot, ZPOOL_CONFIG_GUID, &guid);
1459 if ((error != 0) || (guid != vdev_guid))
1460 return (0);
1461
1462 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_PATH, &val);
1463 if (error == 0)
1464 *path = val;
1465
1466 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_DEVID, &val);
1467 if (error == 0)
1468 *devid = val;
1469
1470 return (0);
1471 }
1472
1473 /*
1474 * Given a disk label fetch the ZPOOL_CONFIG_PATH and ZPOOL_CONFIG_DEVID
1475 * and store these strings as config_path and devid_path respectively.
1476 * The returned pointers are only valid as long as label remains valid.
1477 */
1478 static int
1479 label_paths(libzfs_handle_t *hdl, nvlist_t *label, char **path, char **devid)
1480 {
1481 nvlist_t *nvroot;
1482 uint64_t pool_guid;
1483 uint64_t vdev_guid;
1484
1485 *path = NULL;
1486 *devid = NULL;
1487
1488 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1489 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &pool_guid) ||
1490 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &vdev_guid))
1491 return (ENOENT);
1492
1493 return (label_paths_impl(hdl, nvroot, pool_guid, vdev_guid, path,
1494 devid));
1495 }
1496
1497 static void
1498 zpool_open_func(void *arg)
1499 {
1500 rdsk_node_t *rn = arg;
1501 libzfs_handle_t *hdl = rn->rn_hdl;
1502 struct stat64 statbuf;
1503 nvlist_t *config;
1504 char *bname, *dupname;
1505 uint64_t vdev_guid = 0;
1506 int error;
1507 int num_labels;
1508 int fd;
1509
1510 /*
1511 * Skip devices with well known prefixes there can be side effects
1512 * when opening devices which need to be avoided.
1513 *
1514 * hpet - High Precision Event Timer
1515 * watchdog - Watchdog must be closed in a special way.
1516 */
1517 dupname = zfs_strdup(hdl, rn->rn_name);
1518 bname = basename(dupname);
1519 error = ((strcmp(bname, "hpet") == 0) || is_watchdog_dev(bname));
1520 free(dupname);
1521 if (error)
1522 return;
1523
1524 /*
1525 * Ignore failed stats. We only want regular files and block devices.
1526 */
1527 if (stat64(rn->rn_name, &statbuf) != 0 ||
1528 (!S_ISREG(statbuf.st_mode) && !S_ISBLK(statbuf.st_mode)))
1529 return;
1530
1531 /*
1532 * Preferentially open using O_DIRECT to bypass the block device
1533 * cache which may be stale for multipath devices. An EINVAL errno
1534 * indicates O_DIRECT is unsupported so fallback to just O_RDONLY.
1535 */
1536 fd = open(rn->rn_name, O_RDONLY | O_DIRECT);
1537 if ((fd < 0) && (errno == EINVAL))
1538 fd = open(rn->rn_name, O_RDONLY);
1539
1540 if (fd < 0)
1541 return;
1542
1543 /*
1544 * This file is too small to hold a zpool
1545 */
1546 if (S_ISREG(statbuf.st_mode) && statbuf.st_size < SPA_MINDEVSIZE) {
1547 (void) close(fd);
1548 return;
1549 }
1550
1551 error = zpool_read_label(fd, &config, &num_labels);
1552 if (error != 0) {
1553 (void) close(fd);
1554 return;
1555 }
1556
1557 if (num_labels == 0) {
1558 (void) close(fd);
1559 nvlist_free(config);
1560 return;
1561 }
1562
1563 /*
1564 * Check that the vdev is for the expected guid. Additional entries
1565 * are speculatively added based on the paths stored in the labels.
1566 * Entries with valid paths but incorrect guids must be removed.
1567 */
1568 error = nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid);
1569 if (error || (rn->rn_vdev_guid && rn->rn_vdev_guid != vdev_guid)) {
1570 (void) close(fd);
1571 nvlist_free(config);
1572 return;
1573 }
1574
1575 (void) close(fd);
1576
1577 rn->rn_config = config;
1578 rn->rn_num_labels = num_labels;
1579
1580 /*
1581 * Add additional entries for paths described by this label.
1582 */
1583 if (rn->rn_labelpaths) {
1584 char *path = NULL;
1585 char *devid = NULL;
1586 rdsk_node_t *slice;
1587 avl_index_t where;
1588 int error;
1589
1590 if (label_paths(rn->rn_hdl, rn->rn_config, &path, &devid))
1591 return;
1592
1593 /*
1594 * Allow devlinks to stabilize so all paths are available.
1595 */
1596 zpool_label_disk_wait(rn->rn_name, DISK_LABEL_WAIT);
1597
1598 if (path != NULL) {
1599 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1600 slice->rn_name = zfs_strdup(hdl, path);
1601 slice->rn_vdev_guid = vdev_guid;
1602 slice->rn_avl = rn->rn_avl;
1603 slice->rn_hdl = hdl;
1604 slice->rn_order = IMPORT_ORDER_PREFERRED_1;
1605 slice->rn_labelpaths = B_FALSE;
1606 mutex_enter(rn->rn_lock);
1607 if (avl_find(rn->rn_avl, slice, &where)) {
1608 mutex_exit(rn->rn_lock);
1609 free(slice->rn_name);
1610 free(slice);
1611 } else {
1612 avl_insert(rn->rn_avl, slice, where);
1613 mutex_exit(rn->rn_lock);
1614 zpool_open_func(slice);
1615 }
1616 }
1617
1618 if (devid != NULL) {
1619 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1620 error = asprintf(&slice->rn_name, "%s%s",
1621 DEV_BYID_PATH, devid);
1622 if (error == -1) {
1623 free(slice);
1624 return;
1625 }
1626
1627 slice->rn_vdev_guid = vdev_guid;
1628 slice->rn_avl = rn->rn_avl;
1629 slice->rn_hdl = hdl;
1630 slice->rn_order = IMPORT_ORDER_PREFERRED_2;
1631 slice->rn_labelpaths = B_FALSE;
1632 mutex_enter(rn->rn_lock);
1633 if (avl_find(rn->rn_avl, slice, &where)) {
1634 mutex_exit(rn->rn_lock);
1635 free(slice->rn_name);
1636 free(slice);
1637 } else {
1638 avl_insert(rn->rn_avl, slice, where);
1639 mutex_exit(rn->rn_lock);
1640 zpool_open_func(slice);
1641 }
1642 }
1643 }
1644 }
1645
1646 /*
1647 * Given a file descriptor, clear (zero) the label information. This function
1648 * is used in the appliance stack as part of the ZFS sysevent module and
1649 * to implement the "zpool labelclear" command.
1650 */
1651 int
1652 zpool_clear_label(int fd)
1653 {
1654 struct stat64 statbuf;
1655 int l;
1656 vdev_label_t *label;
1657 uint64_t size;
1658
1659 if (fstat64_blk(fd, &statbuf) == -1)
1660 return (0);
1661 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1662
1663 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1664 return (-1);
1665
1666 for (l = 0; l < VDEV_LABELS; l++) {
1667 if (pwrite64(fd, label, sizeof (vdev_label_t),
1668 label_offset(size, l)) != sizeof (vdev_label_t)) {
1669 free(label);
1670 return (-1);
1671 }
1672 }
1673
1674 free(label);
1675 return (0);
1676 }
1677
1678 /*
1679 * Scan a list of directories for zfs devices.
1680 */
1681 static int
1682 zpool_find_import_scan(libzfs_handle_t *hdl, kmutex_t *lock,
1683 avl_tree_t **slice_cache, char **dir, int dirs)
1684 {
1685 avl_tree_t *cache;
1686 rdsk_node_t *slice;
1687 void *cookie;
1688 int i, error;
1689
1690 *slice_cache = NULL;
1691 cache = zfs_alloc(hdl, sizeof (avl_tree_t));
1692 avl_create(cache, slice_cache_compare, sizeof (rdsk_node_t),
1693 offsetof(rdsk_node_t, rn_node));
1694
1695 for (i = 0; i < dirs; i++) {
1696 char path[MAXPATHLEN];
1697 struct dirent64 *dp;
1698 DIR *dirp;
1699
1700 if (realpath(dir[i], path) == NULL) {
1701 error = errno;
1702 if (error == ENOENT)
1703 continue;
1704
1705 zfs_error_aux(hdl, strerror(error));
1706 (void) zfs_error_fmt(hdl, EZFS_BADPATH, dgettext(
1707 TEXT_DOMAIN, "cannot resolve path '%s'"), dir[i]);
1708 goto error;
1709 }
1710
1711 dirp = opendir(path);
1712 if (dirp == NULL) {
1713 error = errno;
1714 zfs_error_aux(hdl, strerror(error));
1715 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1716 dgettext(TEXT_DOMAIN, "cannot open '%s'"), path);
1717 goto error;
1718 }
1719
1720 while ((dp = readdir64(dirp)) != NULL) {
1721 const char *name = dp->d_name;
1722 if (name[0] == '.' &&
1723 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1724 continue;
1725
1726 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1727 error = asprintf(&slice->rn_name, "%s/%s", path, name);
1728 if (error == -1) {
1729 free(slice);
1730 continue;
1731 }
1732 slice->rn_vdev_guid = 0;
1733 slice->rn_lock = lock;
1734 slice->rn_avl = cache;
1735 slice->rn_hdl = hdl;
1736 slice->rn_order = i + IMPORT_ORDER_SCAN_OFFSET;
1737 slice->rn_labelpaths = B_FALSE;
1738 mutex_enter(lock);
1739 avl_add(cache, slice);
1740 mutex_exit(lock);
1741 }
1742
1743 (void) closedir(dirp);
1744 }
1745
1746 *slice_cache = cache;
1747 return (0);
1748
1749 error:
1750 cookie = NULL;
1751 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) {
1752 free(slice->rn_name);
1753 free(slice);
1754 }
1755 free(cache);
1756
1757 return (error);
1758 }
1759
1760 /*
1761 * Use libblkid to quickly enumerate all known zfs devices.
1762 */
1763 static int
1764 zpool_find_import_blkid(libzfs_handle_t *hdl, kmutex_t *lock,
1765 avl_tree_t **slice_cache)
1766 {
1767 rdsk_node_t *slice;
1768 blkid_cache cache;
1769 blkid_dev_iterate iter;
1770 blkid_dev dev;
1771 avl_index_t where;
1772 int error;
1773
1774 *slice_cache = NULL;
1775
1776 error = blkid_get_cache(&cache, NULL);
1777 if (error != 0)
1778 return (error);
1779
1780 error = blkid_probe_all_new(cache);
1781 if (error != 0) {
1782 blkid_put_cache(cache);
1783 return (error);
1784 }
1785
1786 iter = blkid_dev_iterate_begin(cache);
1787 if (iter == NULL) {
1788 blkid_put_cache(cache);
1789 return (EINVAL);
1790 }
1791
1792 error = blkid_dev_set_search(iter, "TYPE", "zfs_member");
1793 if (error != 0) {
1794 blkid_dev_iterate_end(iter);
1795 blkid_put_cache(cache);
1796 return (error);
1797 }
1798
1799 *slice_cache = zfs_alloc(hdl, sizeof (avl_tree_t));
1800 avl_create(*slice_cache, slice_cache_compare, sizeof (rdsk_node_t),
1801 offsetof(rdsk_node_t, rn_node));
1802
1803 while (blkid_dev_next(iter, &dev) == 0) {
1804 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1805 slice->rn_name = zfs_strdup(hdl, blkid_dev_devname(dev));
1806 slice->rn_vdev_guid = 0;
1807 slice->rn_lock = lock;
1808 slice->rn_avl = *slice_cache;
1809 slice->rn_hdl = hdl;
1810 slice->rn_labelpaths = B_TRUE;
1811
1812 error = zfs_path_order(slice->rn_name, &slice->rn_order);
1813 if (error == 0)
1814 slice->rn_order += IMPORT_ORDER_SCAN_OFFSET;
1815 else
1816 slice->rn_order = IMPORT_ORDER_DEFAULT;
1817
1818 mutex_enter(lock);
1819 if (avl_find(*slice_cache, slice, &where)) {
1820 free(slice->rn_name);
1821 free(slice);
1822 } else {
1823 avl_insert(*slice_cache, slice, where);
1824 }
1825 mutex_exit(lock);
1826 }
1827
1828 blkid_dev_iterate_end(iter);
1829 blkid_put_cache(cache);
1830
1831 return (0);
1832 }
1833
1834 char *
1835 zpool_default_import_path[DEFAULT_IMPORT_PATH_SIZE] = {
1836 "/dev/disk/by-vdev", /* Custom rules, use first if they exist */
1837 "/dev/mapper", /* Use multipath devices before components */
1838 "/dev/disk/by-partlabel", /* Single unique entry set by user */
1839 "/dev/disk/by-partuuid", /* Generated partition uuid */
1840 "/dev/disk/by-label", /* Custom persistent labels */
1841 "/dev/disk/by-uuid", /* Single unique entry and persistent */
1842 "/dev/disk/by-id", /* May be multiple entries and persistent */
1843 "/dev/disk/by-path", /* Encodes physical location and persistent */
1844 "/dev" /* UNSAFE device names will change */
1845 };
1846
1847 /*
1848 * Given a list of directories to search, find all pools stored on disk. This
1849 * includes partial pools which are not available to import. If no args are
1850 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1851 * poolname or guid (but not both) are provided by the caller when trying
1852 * to import a specific pool.
1853 */
1854 static nvlist_t *
1855 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1856 {
1857 nvlist_t *ret = NULL;
1858 pool_list_t pools = { 0 };
1859 pool_entry_t *pe, *penext;
1860 vdev_entry_t *ve, *venext;
1861 config_entry_t *ce, *cenext;
1862 name_entry_t *ne, *nenext;
1863 kmutex_t lock;
1864 avl_tree_t *cache;
1865 rdsk_node_t *slice;
1866 void *cookie;
1867 taskq_t *t;
1868
1869 verify(iarg->poolname == NULL || iarg->guid == 0);
1870 mutex_init(&lock, NULL, MUTEX_DEFAULT, NULL);
1871
1872 /*
1873 * Locate pool member vdevs using libblkid or by directory scanning.
1874 * On success a newly allocated AVL tree which is populated with an
1875 * entry for each discovered vdev will be returned as the cache.
1876 * It's the callers responsibility to consume and destroy this tree.
1877 */
1878 if (iarg->scan || iarg->paths != 0) {
1879 int dirs = iarg->paths;
1880 char **dir = iarg->path;
1881
1882 if (dirs == 0) {
1883 dir = zpool_default_import_path;
1884 dirs = DEFAULT_IMPORT_PATH_SIZE;
1885 }
1886
1887 if (zpool_find_import_scan(hdl, &lock, &cache, dir, dirs) != 0)
1888 return (NULL);
1889 } else {
1890 if (zpool_find_import_blkid(hdl, &lock, &cache) != 0)
1891 return (NULL);
1892 }
1893
1894 /*
1895 * Create a thread pool to parallelize the process of reading and
1896 * validating labels, a large number of threads can be used due to
1897 * minimal contention.
1898 */
1899 t = taskq_create("z_import", 2 * boot_ncpus, defclsyspri,
1900 2 * boot_ncpus, INT_MAX, TASKQ_PREPOPULATE);
1901
1902 for (slice = avl_first(cache); slice;
1903 (slice = avl_walk(cache, slice, AVL_AFTER)))
1904 (void) taskq_dispatch(t, zpool_open_func, slice, TQ_SLEEP);
1905
1906 taskq_wait(t);
1907 taskq_destroy(t);
1908
1909 /*
1910 * Process the cache filtering out any entries which are not
1911 * for the specificed pool then adding matching label configs.
1912 */
1913 cookie = NULL;
1914 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) {
1915 if (slice->rn_config != NULL) {
1916 nvlist_t *config = slice->rn_config;
1917 boolean_t matched = B_TRUE;
1918 boolean_t aux = B_FALSE;
1919 int fd;
1920
1921 /*
1922 * Check if it's a spare or l2cache device. If it is,
1923 * we need to skip the name and guid check since they
1924 * don't exist on aux device label.
1925 */
1926 if (iarg->poolname != NULL || iarg->guid != 0) {
1927 uint64_t state;
1928 aux = nvlist_lookup_uint64(config,
1929 ZPOOL_CONFIG_POOL_STATE, &state) == 0 &&
1930 (state == POOL_STATE_SPARE ||
1931 state == POOL_STATE_L2CACHE);
1932 }
1933
1934 if (iarg->poolname != NULL && !aux) {
1935 char *pname;
1936
1937 matched = nvlist_lookup_string(config,
1938 ZPOOL_CONFIG_POOL_NAME, &pname) == 0 &&
1939 strcmp(iarg->poolname, pname) == 0;
1940 } else if (iarg->guid != 0 && !aux) {
1941 uint64_t this_guid;
1942
1943 matched = nvlist_lookup_uint64(config,
1944 ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 &&
1945 iarg->guid == this_guid;
1946 }
1947 if (!matched) {
1948 nvlist_free(config);
1949 } else {
1950 /*
1951 * Verify all remaining entries can be opened
1952 * exclusively. This will prune all underlying
1953 * multipath devices which otherwise could
1954 * result in the vdev appearing as UNAVAIL.
1955 *
1956 * Under zdb, this step isn't required and
1957 * would prevent a zdb -e of active pools with
1958 * no cachefile.
1959 */
1960 fd = open(slice->rn_name, O_RDONLY | O_EXCL);
1961 if (fd >= 0 || iarg->can_be_active) {
1962 if (fd >= 0)
1963 close(fd);
1964 add_config(hdl, &pools,
1965 slice->rn_name, slice->rn_order,
1966 slice->rn_num_labels, config);
1967 } else {
1968 nvlist_free(config);
1969 }
1970 }
1971 }
1972 free(slice->rn_name);
1973 free(slice);
1974 }
1975 avl_destroy(cache);
1976 free(cache);
1977 mutex_destroy(&lock);
1978
1979 ret = get_configs(hdl, &pools, iarg->can_be_active);
1980
1981 for (pe = pools.pools; pe != NULL; pe = penext) {
1982 penext = pe->pe_next;
1983 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1984 venext = ve->ve_next;
1985 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1986 cenext = ce->ce_next;
1987 nvlist_free(ce->ce_config);
1988 free(ce);
1989 }
1990 free(ve);
1991 }
1992 free(pe);
1993 }
1994
1995 for (ne = pools.names; ne != NULL; ne = nenext) {
1996 nenext = ne->ne_next;
1997 free(ne->ne_name);
1998 free(ne);
1999 }
2000
2001 return (ret);
2002 }
2003
2004 nvlist_t *
2005 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
2006 {
2007 importargs_t iarg = { 0 };
2008
2009 iarg.paths = argc;
2010 iarg.path = argv;
2011
2012 return (zpool_find_import_impl(hdl, &iarg));
2013 }
2014
2015 /*
2016 * Given a cache file, return the contents as a list of importable pools.
2017 * poolname or guid (but not both) are provided by the caller when trying
2018 * to import a specific pool.
2019 */
2020 nvlist_t *
2021 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
2022 char *poolname, uint64_t guid)
2023 {
2024 char *buf;
2025 int fd;
2026 struct stat64 statbuf;
2027 nvlist_t *raw, *src, *dst;
2028 nvlist_t *pools;
2029 nvpair_t *elem;
2030 char *name;
2031 uint64_t this_guid;
2032 boolean_t active;
2033
2034 verify(poolname == NULL || guid == 0);
2035
2036 if ((fd = open(cachefile, O_RDONLY)) < 0) {
2037 zfs_error_aux(hdl, "%s", strerror(errno));
2038 (void) zfs_error(hdl, EZFS_BADCACHE,
2039 dgettext(TEXT_DOMAIN, "failed to open cache file"));
2040 return (NULL);
2041 }
2042
2043 if (fstat64(fd, &statbuf) != 0) {
2044 zfs_error_aux(hdl, "%s", strerror(errno));
2045 (void) close(fd);
2046 (void) zfs_error(hdl, EZFS_BADCACHE,
2047 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
2048 return (NULL);
2049 }
2050
2051 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
2052 (void) close(fd);
2053 return (NULL);
2054 }
2055
2056 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
2057 (void) close(fd);
2058 free(buf);
2059 (void) zfs_error(hdl, EZFS_BADCACHE,
2060 dgettext(TEXT_DOMAIN,
2061 "failed to read cache file contents"));
2062 return (NULL);
2063 }
2064
2065 (void) close(fd);
2066
2067 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
2068 free(buf);
2069 (void) zfs_error(hdl, EZFS_BADCACHE,
2070 dgettext(TEXT_DOMAIN,
2071 "invalid or corrupt cache file contents"));
2072 return (NULL);
2073 }
2074
2075 free(buf);
2076
2077 /*
2078 * Go through and get the current state of the pools and refresh their
2079 * state.
2080 */
2081 if (nvlist_alloc(&pools, 0, 0) != 0) {
2082 (void) no_memory(hdl);
2083 nvlist_free(raw);
2084 return (NULL);
2085 }
2086
2087 elem = NULL;
2088 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
2089 src = fnvpair_value_nvlist(elem);
2090
2091 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
2092 if (poolname != NULL && strcmp(poolname, name) != 0)
2093 continue;
2094
2095 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
2096 if (guid != 0 && guid != this_guid)
2097 continue;
2098
2099 if (pool_active(hdl, name, this_guid, &active) != 0) {
2100 nvlist_free(raw);
2101 nvlist_free(pools);
2102 return (NULL);
2103 }
2104
2105 if (active)
2106 continue;
2107
2108 if ((dst = refresh_config(hdl, src)) == NULL) {
2109 nvlist_free(raw);
2110 nvlist_free(pools);
2111 return (NULL);
2112 }
2113
2114 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
2115 (void) no_memory(hdl);
2116 nvlist_free(dst);
2117 nvlist_free(raw);
2118 nvlist_free(pools);
2119 return (NULL);
2120 }
2121 nvlist_free(dst);
2122 }
2123
2124 nvlist_free(raw);
2125 return (pools);
2126 }
2127
2128 static int
2129 name_or_guid_exists(zpool_handle_t *zhp, void *data)
2130 {
2131 importargs_t *import = data;
2132 int found = 0;
2133
2134 if (import->poolname != NULL) {
2135 char *pool_name;
2136
2137 verify(nvlist_lookup_string(zhp->zpool_config,
2138 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
2139 if (strcmp(pool_name, import->poolname) == 0)
2140 found = 1;
2141 } else {
2142 uint64_t pool_guid;
2143
2144 verify(nvlist_lookup_uint64(zhp->zpool_config,
2145 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
2146 if (pool_guid == import->guid)
2147 found = 1;
2148 }
2149
2150 zpool_close(zhp);
2151 return (found);
2152 }
2153
2154 nvlist_t *
2155 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
2156 {
2157 verify(import->poolname == NULL || import->guid == 0);
2158
2159 if (import->unique)
2160 import->exists = zpool_iter(hdl, name_or_guid_exists, import);
2161
2162 if (import->cachefile != NULL)
2163 return (zpool_find_import_cached(hdl, import->cachefile,
2164 import->poolname, import->guid));
2165
2166 return (zpool_find_import_impl(hdl, import));
2167 }
2168
2169 static boolean_t
2170 pool_match(nvlist_t *cfg, char *tgt)
2171 {
2172 uint64_t v, guid = strtoull(tgt, NULL, 0);
2173 char *s;
2174
2175 if (guid != 0) {
2176 if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0)
2177 return (v == guid);
2178 } else {
2179 if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0)
2180 return (strcmp(s, tgt) == 0);
2181 }
2182 return (B_FALSE);
2183 }
2184
2185 int
2186 zpool_tryimport(libzfs_handle_t *hdl, char *target, nvlist_t **configp,
2187 importargs_t *args)
2188 {
2189 nvlist_t *pools;
2190 nvlist_t *match = NULL;
2191 nvlist_t *config = NULL;
2192 char *name = NULL, *sepp = NULL;
2193 char sep = '\0';
2194 int count = 0;
2195 char *targetdup = strdup(target);
2196
2197 *configp = NULL;
2198
2199 if ((sepp = strpbrk(targetdup, "/@")) != NULL) {
2200 sep = *sepp;
2201 *sepp = '\0';
2202 }
2203
2204 pools = zpool_search_import(hdl, args);
2205
2206 if (pools != NULL) {
2207 nvpair_t *elem = NULL;
2208 while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) {
2209 VERIFY0(nvpair_value_nvlist(elem, &config));
2210 if (pool_match(config, targetdup)) {
2211 count++;
2212 if (match != NULL) {
2213 /* multiple matches found */
2214 continue;
2215 } else {
2216 match = config;
2217 name = nvpair_name(elem);
2218 }
2219 }
2220 }
2221 }
2222
2223 if (count == 0) {
2224 (void) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
2225 "no pools found"));
2226 free(targetdup);
2227 return (ENOENT);
2228 }
2229
2230 if (count > 1) {
2231 (void) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
2232 "%d pools found, use pool GUID\n"), count);
2233 free(targetdup);
2234 return (EINVAL);
2235 }
2236
2237 *configp = match;
2238 free(targetdup);
2239
2240 return (0);
2241 }
2242
2243 boolean_t
2244 find_guid(nvlist_t *nv, uint64_t guid)
2245 {
2246 uint64_t tmp;
2247 nvlist_t **child;
2248 uint_t c, children;
2249
2250 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
2251 if (tmp == guid)
2252 return (B_TRUE);
2253
2254 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2255 &child, &children) == 0) {
2256 for (c = 0; c < children; c++)
2257 if (find_guid(child[c], guid))
2258 return (B_TRUE);
2259 }
2260
2261 return (B_FALSE);
2262 }
2263
2264 typedef struct aux_cbdata {
2265 const char *cb_type;
2266 uint64_t cb_guid;
2267 zpool_handle_t *cb_zhp;
2268 } aux_cbdata_t;
2269
2270 static int
2271 find_aux(zpool_handle_t *zhp, void *data)
2272 {
2273 aux_cbdata_t *cbp = data;
2274 nvlist_t **list;
2275 uint_t i, count;
2276 uint64_t guid;
2277 nvlist_t *nvroot;
2278
2279 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
2280 &nvroot) == 0);
2281
2282 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
2283 &list, &count) == 0) {
2284 for (i = 0; i < count; i++) {
2285 verify(nvlist_lookup_uint64(list[i],
2286 ZPOOL_CONFIG_GUID, &guid) == 0);
2287 if (guid == cbp->cb_guid) {
2288 cbp->cb_zhp = zhp;
2289 return (1);
2290 }
2291 }
2292 }
2293
2294 zpool_close(zhp);
2295 return (0);
2296 }
2297
2298 /*
2299 * Determines if the pool is in use. If so, it returns true and the state of
2300 * the pool as well as the name of the pool. Name string is allocated and
2301 * must be freed by the caller.
2302 */
2303 int
2304 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
2305 boolean_t *inuse)
2306 {
2307 nvlist_t *config;
2308 char *name;
2309 boolean_t ret;
2310 uint64_t guid, vdev_guid;
2311 zpool_handle_t *zhp;
2312 nvlist_t *pool_config;
2313 uint64_t stateval, isspare;
2314 aux_cbdata_t cb = { 0 };
2315 boolean_t isactive;
2316
2317 *inuse = B_FALSE;
2318
2319 if (zpool_read_label(fd, &config, NULL) != 0) {
2320 (void) no_memory(hdl);
2321 return (-1);
2322 }
2323
2324 if (config == NULL)
2325 return (0);
2326
2327 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2328 &stateval) == 0);
2329 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
2330 &vdev_guid) == 0);
2331
2332 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
2333 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
2334 &name) == 0);
2335 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2336 &guid) == 0);
2337 }
2338
2339 switch (stateval) {
2340 case POOL_STATE_EXPORTED:
2341 /*
2342 * A pool with an exported state may in fact be imported
2343 * read-only, so check the in-core state to see if it's
2344 * active and imported read-only. If it is, set
2345 * its state to active.
2346 */
2347 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
2348 (zhp = zpool_open_canfail(hdl, name)) != NULL) {
2349 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
2350 stateval = POOL_STATE_ACTIVE;
2351
2352 /*
2353 * All we needed the zpool handle for is the
2354 * readonly prop check.
2355 */
2356 zpool_close(zhp);
2357 }
2358
2359 ret = B_TRUE;
2360 break;
2361
2362 case POOL_STATE_ACTIVE:
2363 /*
2364 * For an active pool, we have to determine if it's really part
2365 * of a currently active pool (in which case the pool will exist
2366 * and the guid will be the same), or whether it's part of an
2367 * active pool that was disconnected without being explicitly
2368 * exported.
2369 */
2370 if (pool_active(hdl, name, guid, &isactive) != 0) {
2371 nvlist_free(config);
2372 return (-1);
2373 }
2374
2375 if (isactive) {
2376 /*
2377 * Because the device may have been removed while
2378 * offlined, we only report it as active if the vdev is
2379 * still present in the config. Otherwise, pretend like
2380 * it's not in use.
2381 */
2382 if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
2383 (pool_config = zpool_get_config(zhp, NULL))
2384 != NULL) {
2385 nvlist_t *nvroot;
2386
2387 verify(nvlist_lookup_nvlist(pool_config,
2388 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2389 ret = find_guid(nvroot, vdev_guid);
2390 } else {
2391 ret = B_FALSE;
2392 }
2393
2394 /*
2395 * If this is an active spare within another pool, we
2396 * treat it like an unused hot spare. This allows the
2397 * user to create a pool with a hot spare that currently
2398 * in use within another pool. Since we return B_TRUE,
2399 * libdiskmgt will continue to prevent generic consumers
2400 * from using the device.
2401 */
2402 if (ret && nvlist_lookup_uint64(config,
2403 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
2404 stateval = POOL_STATE_SPARE;
2405
2406 if (zhp != NULL)
2407 zpool_close(zhp);
2408 } else {
2409 stateval = POOL_STATE_POTENTIALLY_ACTIVE;
2410 ret = B_TRUE;
2411 }
2412 break;
2413
2414 case POOL_STATE_SPARE:
2415 /*
2416 * For a hot spare, it can be either definitively in use, or
2417 * potentially active. To determine if it's in use, we iterate
2418 * over all pools in the system and search for one with a spare
2419 * with a matching guid.
2420 *
2421 * Due to the shared nature of spares, we don't actually report
2422 * the potentially active case as in use. This means the user
2423 * can freely create pools on the hot spares of exported pools,
2424 * but to do otherwise makes the resulting code complicated, and
2425 * we end up having to deal with this case anyway.
2426 */
2427 cb.cb_zhp = NULL;
2428 cb.cb_guid = vdev_guid;
2429 cb.cb_type = ZPOOL_CONFIG_SPARES;
2430 if (zpool_iter(hdl, find_aux, &cb) == 1) {
2431 name = (char *)zpool_get_name(cb.cb_zhp);
2432 ret = B_TRUE;
2433 } else {
2434 ret = B_FALSE;
2435 }
2436 break;
2437
2438 case POOL_STATE_L2CACHE:
2439
2440 /*
2441 * Check if any pool is currently using this l2cache device.
2442 */
2443 cb.cb_zhp = NULL;
2444 cb.cb_guid = vdev_guid;
2445 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
2446 if (zpool_iter(hdl, find_aux, &cb) == 1) {
2447 name = (char *)zpool_get_name(cb.cb_zhp);
2448 ret = B_TRUE;
2449 } else {
2450 ret = B_FALSE;
2451 }
2452 break;
2453
2454 default:
2455 ret = B_FALSE;
2456 }
2457
2458
2459 if (ret) {
2460 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
2461 if (cb.cb_zhp)
2462 zpool_close(cb.cb_zhp);
2463 nvlist_free(config);
2464 return (-1);
2465 }
2466 *state = (pool_state_t)stateval;
2467 }
2468
2469 if (cb.cb_zhp)
2470 zpool_close(cb.cb_zhp);
2471
2472 nvlist_free(config);
2473 *inuse = ret;
2474 return (0);
2475 }