]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/spa.c
f1f1444f1c94587a41213f7e1c06016ffa4bdf4a
[mirror_zfs-debian.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 * Copyright 2016 Toomas Soome <tsoome@me.com>
31 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
32 * Copyright (c) 2017 Datto Inc.
33 * Copyright 2017 Joyent, Inc.
34 */
35
36 /*
37 * SPA: Storage Pool Allocator
38 *
39 * This file contains all the routines used when modifying on-disk SPA state.
40 * This includes opening, importing, destroying, exporting a pool, and syncing a
41 * pool.
42 */
43
44 #include <sys/zfs_context.h>
45 #include <sys/fm/fs/zfs.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zio.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/dmu.h>
50 #include <sys/dmu_tx.h>
51 #include <sys/zap.h>
52 #include <sys/zil.h>
53 #include <sys/ddt.h>
54 #include <sys/vdev_impl.h>
55 #include <sys/vdev_disk.h>
56 #include <sys/metaslab.h>
57 #include <sys/metaslab_impl.h>
58 #include <sys/mmp.h>
59 #include <sys/uberblock_impl.h>
60 #include <sys/txg.h>
61 #include <sys/avl.h>
62 #include <sys/dmu_traverse.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/unique.h>
65 #include <sys/dsl_pool.h>
66 #include <sys/dsl_dataset.h>
67 #include <sys/dsl_dir.h>
68 #include <sys/dsl_prop.h>
69 #include <sys/dsl_synctask.h>
70 #include <sys/fs/zfs.h>
71 #include <sys/arc.h>
72 #include <sys/callb.h>
73 #include <sys/systeminfo.h>
74 #include <sys/spa_boot.h>
75 #include <sys/zfs_ioctl.h>
76 #include <sys/dsl_scan.h>
77 #include <sys/zfeature.h>
78 #include <sys/dsl_destroy.h>
79 #include <sys/zvol.h>
80
81 #ifdef _KERNEL
82 #include <sys/fm/protocol.h>
83 #include <sys/fm/util.h>
84 #include <sys/bootprops.h>
85 #include <sys/callb.h>
86 #include <sys/cpupart.h>
87 #include <sys/pool.h>
88 #include <sys/sysdc.h>
89 #include <sys/zone.h>
90 #endif /* _KERNEL */
91
92 #include "zfs_prop.h"
93 #include "zfs_comutil.h"
94
95 /*
96 * The interval, in seconds, at which failed configuration cache file writes
97 * should be retried.
98 */
99 static int zfs_ccw_retry_interval = 300;
100
101 typedef enum zti_modes {
102 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
103 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
104 ZTI_MODE_NULL, /* don't create a taskq */
105 ZTI_NMODES
106 } zti_modes_t;
107
108 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
109 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
110 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
111 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
112
113 #define ZTI_N(n) ZTI_P(n, 1)
114 #define ZTI_ONE ZTI_N(1)
115
116 typedef struct zio_taskq_info {
117 zti_modes_t zti_mode;
118 uint_t zti_value;
119 uint_t zti_count;
120 } zio_taskq_info_t;
121
122 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
123 "iss", "iss_h", "int", "int_h"
124 };
125
126 /*
127 * This table defines the taskq settings for each ZFS I/O type. When
128 * initializing a pool, we use this table to create an appropriately sized
129 * taskq. Some operations are low volume and therefore have a small, static
130 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
131 * macros. Other operations process a large amount of data; the ZTI_BATCH
132 * macro causes us to create a taskq oriented for throughput. Some operations
133 * are so high frequency and short-lived that the taskq itself can become a a
134 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
135 * additional degree of parallelism specified by the number of threads per-
136 * taskq and the number of taskqs; when dispatching an event in this case, the
137 * particular taskq is chosen at random.
138 *
139 * The different taskq priorities are to handle the different contexts (issue
140 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
141 * need to be handled with minimum delay.
142 */
143 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
144 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
145 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
146 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
147 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
148 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
149 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
150 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
151 };
152
153 static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl,
154 const char *name);
155 static void spa_event_post(sysevent_t *ev);
156 static void spa_sync_version(void *arg, dmu_tx_t *tx);
157 static void spa_sync_props(void *arg, dmu_tx_t *tx);
158 static boolean_t spa_has_active_shared_spare(spa_t *spa);
159 static inline int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
160 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
161 char **ereport);
162 static void spa_vdev_resilver_done(spa_t *spa);
163
164 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
165 id_t zio_taskq_psrset_bind = PS_NONE;
166 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
167 uint_t zio_taskq_basedc = 80; /* base duty cycle */
168
169 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
170
171 /*
172 * This (illegal) pool name is used when temporarily importing a spa_t in order
173 * to get the vdev stats associated with the imported devices.
174 */
175 #define TRYIMPORT_NAME "$import"
176
177 /*
178 * ==========================================================================
179 * SPA properties routines
180 * ==========================================================================
181 */
182
183 /*
184 * Add a (source=src, propname=propval) list to an nvlist.
185 */
186 static void
187 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
188 uint64_t intval, zprop_source_t src)
189 {
190 const char *propname = zpool_prop_to_name(prop);
191 nvlist_t *propval;
192
193 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
194 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
195
196 if (strval != NULL)
197 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
198 else
199 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
200
201 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
202 nvlist_free(propval);
203 }
204
205 /*
206 * Get property values from the spa configuration.
207 */
208 static void
209 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
210 {
211 vdev_t *rvd = spa->spa_root_vdev;
212 dsl_pool_t *pool = spa->spa_dsl_pool;
213 uint64_t size, alloc, cap, version;
214 const zprop_source_t src = ZPROP_SRC_NONE;
215 spa_config_dirent_t *dp;
216 metaslab_class_t *mc = spa_normal_class(spa);
217
218 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
219
220 if (rvd != NULL) {
221 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
222 size = metaslab_class_get_space(spa_normal_class(spa));
223 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
224 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
225 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
226 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
227 size - alloc, src);
228
229 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
230 metaslab_class_fragmentation(mc), src);
231 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
232 metaslab_class_expandable_space(mc), src);
233 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
234 (spa_mode(spa) == FREAD), src);
235
236 cap = (size == 0) ? 0 : (alloc * 100 / size);
237 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
238
239 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
240 ddt_get_pool_dedup_ratio(spa), src);
241
242 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
243 rvd->vdev_state, src);
244
245 version = spa_version(spa);
246 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
247 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
248 version, ZPROP_SRC_DEFAULT);
249 } else {
250 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
251 version, ZPROP_SRC_LOCAL);
252 }
253 }
254
255 if (pool != NULL) {
256 /*
257 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
258 * when opening pools before this version freedir will be NULL.
259 */
260 if (pool->dp_free_dir != NULL) {
261 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
262 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
263 src);
264 } else {
265 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
266 NULL, 0, src);
267 }
268
269 if (pool->dp_leak_dir != NULL) {
270 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
271 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
272 src);
273 } else {
274 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
275 NULL, 0, src);
276 }
277 }
278
279 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
280
281 if (spa->spa_comment != NULL) {
282 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
283 0, ZPROP_SRC_LOCAL);
284 }
285
286 if (spa->spa_root != NULL)
287 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
288 0, ZPROP_SRC_LOCAL);
289
290 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
291 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
292 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
293 } else {
294 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
295 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
296 }
297
298 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
299 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
300 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
301 } else {
302 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
303 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
304 }
305
306 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
307 if (dp->scd_path == NULL) {
308 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
309 "none", 0, ZPROP_SRC_LOCAL);
310 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
311 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
312 dp->scd_path, 0, ZPROP_SRC_LOCAL);
313 }
314 }
315 }
316
317 /*
318 * Get zpool property values.
319 */
320 int
321 spa_prop_get(spa_t *spa, nvlist_t **nvp)
322 {
323 objset_t *mos = spa->spa_meta_objset;
324 zap_cursor_t zc;
325 zap_attribute_t za;
326 int err;
327
328 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
329 if (err)
330 return (err);
331
332 mutex_enter(&spa->spa_props_lock);
333
334 /*
335 * Get properties from the spa config.
336 */
337 spa_prop_get_config(spa, nvp);
338
339 /* If no pool property object, no more prop to get. */
340 if (mos == NULL || spa->spa_pool_props_object == 0) {
341 mutex_exit(&spa->spa_props_lock);
342 goto out;
343 }
344
345 /*
346 * Get properties from the MOS pool property object.
347 */
348 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
349 (err = zap_cursor_retrieve(&zc, &za)) == 0;
350 zap_cursor_advance(&zc)) {
351 uint64_t intval = 0;
352 char *strval = NULL;
353 zprop_source_t src = ZPROP_SRC_DEFAULT;
354 zpool_prop_t prop;
355
356 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
357 continue;
358
359 switch (za.za_integer_length) {
360 case 8:
361 /* integer property */
362 if (za.za_first_integer !=
363 zpool_prop_default_numeric(prop))
364 src = ZPROP_SRC_LOCAL;
365
366 if (prop == ZPOOL_PROP_BOOTFS) {
367 dsl_pool_t *dp;
368 dsl_dataset_t *ds = NULL;
369
370 dp = spa_get_dsl(spa);
371 dsl_pool_config_enter(dp, FTAG);
372 if ((err = dsl_dataset_hold_obj(dp,
373 za.za_first_integer, FTAG, &ds))) {
374 dsl_pool_config_exit(dp, FTAG);
375 break;
376 }
377
378 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
379 KM_SLEEP);
380 dsl_dataset_name(ds, strval);
381 dsl_dataset_rele(ds, FTAG);
382 dsl_pool_config_exit(dp, FTAG);
383 } else {
384 strval = NULL;
385 intval = za.za_first_integer;
386 }
387
388 spa_prop_add_list(*nvp, prop, strval, intval, src);
389
390 if (strval != NULL)
391 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
392
393 break;
394
395 case 1:
396 /* string property */
397 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
398 err = zap_lookup(mos, spa->spa_pool_props_object,
399 za.za_name, 1, za.za_num_integers, strval);
400 if (err) {
401 kmem_free(strval, za.za_num_integers);
402 break;
403 }
404 spa_prop_add_list(*nvp, prop, strval, 0, src);
405 kmem_free(strval, za.za_num_integers);
406 break;
407
408 default:
409 break;
410 }
411 }
412 zap_cursor_fini(&zc);
413 mutex_exit(&spa->spa_props_lock);
414 out:
415 if (err && err != ENOENT) {
416 nvlist_free(*nvp);
417 *nvp = NULL;
418 return (err);
419 }
420
421 return (0);
422 }
423
424 /*
425 * Validate the given pool properties nvlist and modify the list
426 * for the property values to be set.
427 */
428 static int
429 spa_prop_validate(spa_t *spa, nvlist_t *props)
430 {
431 nvpair_t *elem;
432 int error = 0, reset_bootfs = 0;
433 uint64_t objnum = 0;
434 boolean_t has_feature = B_FALSE;
435
436 elem = NULL;
437 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
438 uint64_t intval;
439 char *strval, *slash, *check, *fname;
440 const char *propname = nvpair_name(elem);
441 zpool_prop_t prop = zpool_name_to_prop(propname);
442
443 switch ((int)prop) {
444 case ZPROP_INVAL:
445 if (!zpool_prop_feature(propname)) {
446 error = SET_ERROR(EINVAL);
447 break;
448 }
449
450 /*
451 * Sanitize the input.
452 */
453 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
454 error = SET_ERROR(EINVAL);
455 break;
456 }
457
458 if (nvpair_value_uint64(elem, &intval) != 0) {
459 error = SET_ERROR(EINVAL);
460 break;
461 }
462
463 if (intval != 0) {
464 error = SET_ERROR(EINVAL);
465 break;
466 }
467
468 fname = strchr(propname, '@') + 1;
469 if (zfeature_lookup_name(fname, NULL) != 0) {
470 error = SET_ERROR(EINVAL);
471 break;
472 }
473
474 has_feature = B_TRUE;
475 break;
476
477 case ZPOOL_PROP_VERSION:
478 error = nvpair_value_uint64(elem, &intval);
479 if (!error &&
480 (intval < spa_version(spa) ||
481 intval > SPA_VERSION_BEFORE_FEATURES ||
482 has_feature))
483 error = SET_ERROR(EINVAL);
484 break;
485
486 case ZPOOL_PROP_DELEGATION:
487 case ZPOOL_PROP_AUTOREPLACE:
488 case ZPOOL_PROP_LISTSNAPS:
489 case ZPOOL_PROP_AUTOEXPAND:
490 error = nvpair_value_uint64(elem, &intval);
491 if (!error && intval > 1)
492 error = SET_ERROR(EINVAL);
493 break;
494
495 case ZPOOL_PROP_MULTIHOST:
496 error = nvpair_value_uint64(elem, &intval);
497 if (!error && intval > 1)
498 error = SET_ERROR(EINVAL);
499
500 if (!error && !spa_get_hostid())
501 error = SET_ERROR(ENOTSUP);
502
503 break;
504
505 case ZPOOL_PROP_BOOTFS:
506 /*
507 * If the pool version is less than SPA_VERSION_BOOTFS,
508 * or the pool is still being created (version == 0),
509 * the bootfs property cannot be set.
510 */
511 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
512 error = SET_ERROR(ENOTSUP);
513 break;
514 }
515
516 /*
517 * Make sure the vdev config is bootable
518 */
519 if (!vdev_is_bootable(spa->spa_root_vdev)) {
520 error = SET_ERROR(ENOTSUP);
521 break;
522 }
523
524 reset_bootfs = 1;
525
526 error = nvpair_value_string(elem, &strval);
527
528 if (!error) {
529 objset_t *os;
530 uint64_t propval;
531
532 if (strval == NULL || strval[0] == '\0') {
533 objnum = zpool_prop_default_numeric(
534 ZPOOL_PROP_BOOTFS);
535 break;
536 }
537
538 error = dmu_objset_hold(strval, FTAG, &os);
539 if (error)
540 break;
541
542 /*
543 * Must be ZPL, and its property settings
544 * must be supported by GRUB (compression
545 * is not gzip, and large blocks or large
546 * dnodes are not used).
547 */
548
549 if (dmu_objset_type(os) != DMU_OST_ZFS) {
550 error = SET_ERROR(ENOTSUP);
551 } else if ((error =
552 dsl_prop_get_int_ds(dmu_objset_ds(os),
553 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
554 &propval)) == 0 &&
555 !BOOTFS_COMPRESS_VALID(propval)) {
556 error = SET_ERROR(ENOTSUP);
557 } else if ((error =
558 dsl_prop_get_int_ds(dmu_objset_ds(os),
559 zfs_prop_to_name(ZFS_PROP_DNODESIZE),
560 &propval)) == 0 &&
561 propval != ZFS_DNSIZE_LEGACY) {
562 error = SET_ERROR(ENOTSUP);
563 } else {
564 objnum = dmu_objset_id(os);
565 }
566 dmu_objset_rele(os, FTAG);
567 }
568 break;
569
570 case ZPOOL_PROP_FAILUREMODE:
571 error = nvpair_value_uint64(elem, &intval);
572 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
573 error = SET_ERROR(EINVAL);
574
575 /*
576 * This is a special case which only occurs when
577 * the pool has completely failed. This allows
578 * the user to change the in-core failmode property
579 * without syncing it out to disk (I/Os might
580 * currently be blocked). We do this by returning
581 * EIO to the caller (spa_prop_set) to trick it
582 * into thinking we encountered a property validation
583 * error.
584 */
585 if (!error && spa_suspended(spa)) {
586 spa->spa_failmode = intval;
587 error = SET_ERROR(EIO);
588 }
589 break;
590
591 case ZPOOL_PROP_CACHEFILE:
592 if ((error = nvpair_value_string(elem, &strval)) != 0)
593 break;
594
595 if (strval[0] == '\0')
596 break;
597
598 if (strcmp(strval, "none") == 0)
599 break;
600
601 if (strval[0] != '/') {
602 error = SET_ERROR(EINVAL);
603 break;
604 }
605
606 slash = strrchr(strval, '/');
607 ASSERT(slash != NULL);
608
609 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
610 strcmp(slash, "/..") == 0)
611 error = SET_ERROR(EINVAL);
612 break;
613
614 case ZPOOL_PROP_COMMENT:
615 if ((error = nvpair_value_string(elem, &strval)) != 0)
616 break;
617 for (check = strval; *check != '\0'; check++) {
618 if (!isprint(*check)) {
619 error = SET_ERROR(EINVAL);
620 break;
621 }
622 }
623 if (strlen(strval) > ZPROP_MAX_COMMENT)
624 error = SET_ERROR(E2BIG);
625 break;
626
627 case ZPOOL_PROP_DEDUPDITTO:
628 if (spa_version(spa) < SPA_VERSION_DEDUP)
629 error = SET_ERROR(ENOTSUP);
630 else
631 error = nvpair_value_uint64(elem, &intval);
632 if (error == 0 &&
633 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
634 error = SET_ERROR(EINVAL);
635 break;
636
637 default:
638 break;
639 }
640
641 if (error)
642 break;
643 }
644
645 if (!error && reset_bootfs) {
646 error = nvlist_remove(props,
647 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
648
649 if (!error) {
650 error = nvlist_add_uint64(props,
651 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
652 }
653 }
654
655 return (error);
656 }
657
658 void
659 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
660 {
661 char *cachefile;
662 spa_config_dirent_t *dp;
663
664 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
665 &cachefile) != 0)
666 return;
667
668 dp = kmem_alloc(sizeof (spa_config_dirent_t),
669 KM_SLEEP);
670
671 if (cachefile[0] == '\0')
672 dp->scd_path = spa_strdup(spa_config_path);
673 else if (strcmp(cachefile, "none") == 0)
674 dp->scd_path = NULL;
675 else
676 dp->scd_path = spa_strdup(cachefile);
677
678 list_insert_head(&spa->spa_config_list, dp);
679 if (need_sync)
680 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
681 }
682
683 int
684 spa_prop_set(spa_t *spa, nvlist_t *nvp)
685 {
686 int error;
687 nvpair_t *elem = NULL;
688 boolean_t need_sync = B_FALSE;
689
690 if ((error = spa_prop_validate(spa, nvp)) != 0)
691 return (error);
692
693 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
694 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
695
696 if (prop == ZPOOL_PROP_CACHEFILE ||
697 prop == ZPOOL_PROP_ALTROOT ||
698 prop == ZPOOL_PROP_READONLY)
699 continue;
700
701 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
702 uint64_t ver;
703
704 if (prop == ZPOOL_PROP_VERSION) {
705 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
706 } else {
707 ASSERT(zpool_prop_feature(nvpair_name(elem)));
708 ver = SPA_VERSION_FEATURES;
709 need_sync = B_TRUE;
710 }
711
712 /* Save time if the version is already set. */
713 if (ver == spa_version(spa))
714 continue;
715
716 /*
717 * In addition to the pool directory object, we might
718 * create the pool properties object, the features for
719 * read object, the features for write object, or the
720 * feature descriptions object.
721 */
722 error = dsl_sync_task(spa->spa_name, NULL,
723 spa_sync_version, &ver,
724 6, ZFS_SPACE_CHECK_RESERVED);
725 if (error)
726 return (error);
727 continue;
728 }
729
730 need_sync = B_TRUE;
731 break;
732 }
733
734 if (need_sync) {
735 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
736 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
737 }
738
739 return (0);
740 }
741
742 /*
743 * If the bootfs property value is dsobj, clear it.
744 */
745 void
746 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
747 {
748 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
749 VERIFY(zap_remove(spa->spa_meta_objset,
750 spa->spa_pool_props_object,
751 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
752 spa->spa_bootfs = 0;
753 }
754 }
755
756 /*ARGSUSED*/
757 static int
758 spa_change_guid_check(void *arg, dmu_tx_t *tx)
759 {
760 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
761 vdev_t *rvd = spa->spa_root_vdev;
762 uint64_t vdev_state;
763 ASSERTV(uint64_t *newguid = arg);
764
765 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
766 vdev_state = rvd->vdev_state;
767 spa_config_exit(spa, SCL_STATE, FTAG);
768
769 if (vdev_state != VDEV_STATE_HEALTHY)
770 return (SET_ERROR(ENXIO));
771
772 ASSERT3U(spa_guid(spa), !=, *newguid);
773
774 return (0);
775 }
776
777 static void
778 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
779 {
780 uint64_t *newguid = arg;
781 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
782 uint64_t oldguid;
783 vdev_t *rvd = spa->spa_root_vdev;
784
785 oldguid = spa_guid(spa);
786
787 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
788 rvd->vdev_guid = *newguid;
789 rvd->vdev_guid_sum += (*newguid - oldguid);
790 vdev_config_dirty(rvd);
791 spa_config_exit(spa, SCL_STATE, FTAG);
792
793 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
794 oldguid, *newguid);
795 }
796
797 /*
798 * Change the GUID for the pool. This is done so that we can later
799 * re-import a pool built from a clone of our own vdevs. We will modify
800 * the root vdev's guid, our own pool guid, and then mark all of our
801 * vdevs dirty. Note that we must make sure that all our vdevs are
802 * online when we do this, or else any vdevs that weren't present
803 * would be orphaned from our pool. We are also going to issue a
804 * sysevent to update any watchers.
805 */
806 int
807 spa_change_guid(spa_t *spa)
808 {
809 int error;
810 uint64_t guid;
811
812 mutex_enter(&spa->spa_vdev_top_lock);
813 mutex_enter(&spa_namespace_lock);
814 guid = spa_generate_guid(NULL);
815
816 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
817 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
818
819 if (error == 0) {
820 spa_config_sync(spa, B_FALSE, B_TRUE);
821 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
822 }
823
824 mutex_exit(&spa_namespace_lock);
825 mutex_exit(&spa->spa_vdev_top_lock);
826
827 return (error);
828 }
829
830 /*
831 * ==========================================================================
832 * SPA state manipulation (open/create/destroy/import/export)
833 * ==========================================================================
834 */
835
836 static int
837 spa_error_entry_compare(const void *a, const void *b)
838 {
839 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
840 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
841 int ret;
842
843 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
844 sizeof (zbookmark_phys_t));
845
846 return (AVL_ISIGN(ret));
847 }
848
849 /*
850 * Utility function which retrieves copies of the current logs and
851 * re-initializes them in the process.
852 */
853 void
854 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
855 {
856 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
857
858 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
859 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
860
861 avl_create(&spa->spa_errlist_scrub,
862 spa_error_entry_compare, sizeof (spa_error_entry_t),
863 offsetof(spa_error_entry_t, se_avl));
864 avl_create(&spa->spa_errlist_last,
865 spa_error_entry_compare, sizeof (spa_error_entry_t),
866 offsetof(spa_error_entry_t, se_avl));
867 }
868
869 static void
870 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
871 {
872 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
873 enum zti_modes mode = ztip->zti_mode;
874 uint_t value = ztip->zti_value;
875 uint_t count = ztip->zti_count;
876 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
877 char name[32];
878 uint_t i, flags = 0;
879 boolean_t batch = B_FALSE;
880
881 if (mode == ZTI_MODE_NULL) {
882 tqs->stqs_count = 0;
883 tqs->stqs_taskq = NULL;
884 return;
885 }
886
887 ASSERT3U(count, >, 0);
888
889 tqs->stqs_count = count;
890 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
891
892 switch (mode) {
893 case ZTI_MODE_FIXED:
894 ASSERT3U(value, >=, 1);
895 value = MAX(value, 1);
896 flags |= TASKQ_DYNAMIC;
897 break;
898
899 case ZTI_MODE_BATCH:
900 batch = B_TRUE;
901 flags |= TASKQ_THREADS_CPU_PCT;
902 value = MIN(zio_taskq_batch_pct, 100);
903 break;
904
905 default:
906 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
907 "spa_activate()",
908 zio_type_name[t], zio_taskq_types[q], mode, value);
909 break;
910 }
911
912 for (i = 0; i < count; i++) {
913 taskq_t *tq;
914
915 if (count > 1) {
916 (void) snprintf(name, sizeof (name), "%s_%s_%u",
917 zio_type_name[t], zio_taskq_types[q], i);
918 } else {
919 (void) snprintf(name, sizeof (name), "%s_%s",
920 zio_type_name[t], zio_taskq_types[q]);
921 }
922
923 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
924 if (batch)
925 flags |= TASKQ_DC_BATCH;
926
927 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
928 spa->spa_proc, zio_taskq_basedc, flags);
929 } else {
930 pri_t pri = maxclsyspri;
931 /*
932 * The write issue taskq can be extremely CPU
933 * intensive. Run it at slightly less important
934 * priority than the other taskqs. Under Linux this
935 * means incrementing the priority value on platforms
936 * like illumos it should be decremented.
937 */
938 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
939 pri++;
940
941 tq = taskq_create_proc(name, value, pri, 50,
942 INT_MAX, spa->spa_proc, flags);
943 }
944
945 tqs->stqs_taskq[i] = tq;
946 }
947 }
948
949 static void
950 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
951 {
952 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
953 uint_t i;
954
955 if (tqs->stqs_taskq == NULL) {
956 ASSERT3U(tqs->stqs_count, ==, 0);
957 return;
958 }
959
960 for (i = 0; i < tqs->stqs_count; i++) {
961 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
962 taskq_destroy(tqs->stqs_taskq[i]);
963 }
964
965 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
966 tqs->stqs_taskq = NULL;
967 }
968
969 /*
970 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
971 * Note that a type may have multiple discrete taskqs to avoid lock contention
972 * on the taskq itself. In that case we choose which taskq at random by using
973 * the low bits of gethrtime().
974 */
975 void
976 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
977 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
978 {
979 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
980 taskq_t *tq;
981
982 ASSERT3P(tqs->stqs_taskq, !=, NULL);
983 ASSERT3U(tqs->stqs_count, !=, 0);
984
985 if (tqs->stqs_count == 1) {
986 tq = tqs->stqs_taskq[0];
987 } else {
988 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
989 }
990
991 taskq_dispatch_ent(tq, func, arg, flags, ent);
992 }
993
994 /*
995 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
996 */
997 void
998 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
999 task_func_t *func, void *arg, uint_t flags)
1000 {
1001 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1002 taskq_t *tq;
1003 taskqid_t id;
1004
1005 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1006 ASSERT3U(tqs->stqs_count, !=, 0);
1007
1008 if (tqs->stqs_count == 1) {
1009 tq = tqs->stqs_taskq[0];
1010 } else {
1011 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1012 }
1013
1014 id = taskq_dispatch(tq, func, arg, flags);
1015 if (id)
1016 taskq_wait_id(tq, id);
1017 }
1018
1019 static void
1020 spa_create_zio_taskqs(spa_t *spa)
1021 {
1022 int t, q;
1023
1024 for (t = 0; t < ZIO_TYPES; t++) {
1025 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1026 spa_taskqs_init(spa, t, q);
1027 }
1028 }
1029 }
1030
1031 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1032 static void
1033 spa_thread(void *arg)
1034 {
1035 callb_cpr_t cprinfo;
1036
1037 spa_t *spa = arg;
1038 user_t *pu = PTOU(curproc);
1039
1040 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1041 spa->spa_name);
1042
1043 ASSERT(curproc != &p0);
1044 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1045 "zpool-%s", spa->spa_name);
1046 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1047
1048 /* bind this thread to the requested psrset */
1049 if (zio_taskq_psrset_bind != PS_NONE) {
1050 pool_lock();
1051 mutex_enter(&cpu_lock);
1052 mutex_enter(&pidlock);
1053 mutex_enter(&curproc->p_lock);
1054
1055 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1056 0, NULL, NULL) == 0) {
1057 curthread->t_bind_pset = zio_taskq_psrset_bind;
1058 } else {
1059 cmn_err(CE_WARN,
1060 "Couldn't bind process for zfs pool \"%s\" to "
1061 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1062 }
1063
1064 mutex_exit(&curproc->p_lock);
1065 mutex_exit(&pidlock);
1066 mutex_exit(&cpu_lock);
1067 pool_unlock();
1068 }
1069
1070 if (zio_taskq_sysdc) {
1071 sysdc_thread_enter(curthread, 100, 0);
1072 }
1073
1074 spa->spa_proc = curproc;
1075 spa->spa_did = curthread->t_did;
1076
1077 spa_create_zio_taskqs(spa);
1078
1079 mutex_enter(&spa->spa_proc_lock);
1080 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1081
1082 spa->spa_proc_state = SPA_PROC_ACTIVE;
1083 cv_broadcast(&spa->spa_proc_cv);
1084
1085 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1086 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1087 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1088 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1089
1090 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1091 spa->spa_proc_state = SPA_PROC_GONE;
1092 spa->spa_proc = &p0;
1093 cv_broadcast(&spa->spa_proc_cv);
1094 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1095
1096 mutex_enter(&curproc->p_lock);
1097 lwp_exit();
1098 }
1099 #endif
1100
1101 /*
1102 * Activate an uninitialized pool.
1103 */
1104 static void
1105 spa_activate(spa_t *spa, int mode)
1106 {
1107 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1108
1109 spa->spa_state = POOL_STATE_ACTIVE;
1110 spa->spa_mode = mode;
1111
1112 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1113 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1114
1115 /* Try to create a covering process */
1116 mutex_enter(&spa->spa_proc_lock);
1117 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1118 ASSERT(spa->spa_proc == &p0);
1119 spa->spa_did = 0;
1120
1121 #ifdef HAVE_SPA_THREAD
1122 /* Only create a process if we're going to be around a while. */
1123 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1124 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1125 NULL, 0) == 0) {
1126 spa->spa_proc_state = SPA_PROC_CREATED;
1127 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1128 cv_wait(&spa->spa_proc_cv,
1129 &spa->spa_proc_lock);
1130 }
1131 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1132 ASSERT(spa->spa_proc != &p0);
1133 ASSERT(spa->spa_did != 0);
1134 } else {
1135 #ifdef _KERNEL
1136 cmn_err(CE_WARN,
1137 "Couldn't create process for zfs pool \"%s\"\n",
1138 spa->spa_name);
1139 #endif
1140 }
1141 }
1142 #endif /* HAVE_SPA_THREAD */
1143 mutex_exit(&spa->spa_proc_lock);
1144
1145 /* If we didn't create a process, we need to create our taskqs. */
1146 if (spa->spa_proc == &p0) {
1147 spa_create_zio_taskqs(spa);
1148 }
1149
1150 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1151 offsetof(vdev_t, vdev_config_dirty_node));
1152 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1153 offsetof(objset_t, os_evicting_node));
1154 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1155 offsetof(vdev_t, vdev_state_dirty_node));
1156
1157 txg_list_create(&spa->spa_vdev_txg_list, spa,
1158 offsetof(struct vdev, vdev_txg_node));
1159
1160 avl_create(&spa->spa_errlist_scrub,
1161 spa_error_entry_compare, sizeof (spa_error_entry_t),
1162 offsetof(spa_error_entry_t, se_avl));
1163 avl_create(&spa->spa_errlist_last,
1164 spa_error_entry_compare, sizeof (spa_error_entry_t),
1165 offsetof(spa_error_entry_t, se_avl));
1166
1167 /*
1168 * This taskq is used to perform zvol-minor-related tasks
1169 * asynchronously. This has several advantages, including easy
1170 * resolution of various deadlocks (zfsonlinux bug #3681).
1171 *
1172 * The taskq must be single threaded to ensure tasks are always
1173 * processed in the order in which they were dispatched.
1174 *
1175 * A taskq per pool allows one to keep the pools independent.
1176 * This way if one pool is suspended, it will not impact another.
1177 *
1178 * The preferred location to dispatch a zvol minor task is a sync
1179 * task. In this context, there is easy access to the spa_t and minimal
1180 * error handling is required because the sync task must succeed.
1181 */
1182 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1183 1, INT_MAX, 0);
1184
1185 /*
1186 * The taskq to upgrade datasets in this pool. Currently used by
1187 * feature SPA_FEATURE_USEROBJ_ACCOUNTING.
1188 */
1189 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1190 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1191 }
1192
1193 /*
1194 * Opposite of spa_activate().
1195 */
1196 static void
1197 spa_deactivate(spa_t *spa)
1198 {
1199 int t, q;
1200
1201 ASSERT(spa->spa_sync_on == B_FALSE);
1202 ASSERT(spa->spa_dsl_pool == NULL);
1203 ASSERT(spa->spa_root_vdev == NULL);
1204 ASSERT(spa->spa_async_zio_root == NULL);
1205 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1206
1207 spa_evicting_os_wait(spa);
1208
1209 if (spa->spa_zvol_taskq) {
1210 taskq_destroy(spa->spa_zvol_taskq);
1211 spa->spa_zvol_taskq = NULL;
1212 }
1213
1214 if (spa->spa_upgrade_taskq) {
1215 taskq_destroy(spa->spa_upgrade_taskq);
1216 spa->spa_upgrade_taskq = NULL;
1217 }
1218
1219 txg_list_destroy(&spa->spa_vdev_txg_list);
1220
1221 list_destroy(&spa->spa_config_dirty_list);
1222 list_destroy(&spa->spa_evicting_os_list);
1223 list_destroy(&spa->spa_state_dirty_list);
1224
1225 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1226
1227 for (t = 0; t < ZIO_TYPES; t++) {
1228 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1229 spa_taskqs_fini(spa, t, q);
1230 }
1231 }
1232
1233 metaslab_class_destroy(spa->spa_normal_class);
1234 spa->spa_normal_class = NULL;
1235
1236 metaslab_class_destroy(spa->spa_log_class);
1237 spa->spa_log_class = NULL;
1238
1239 /*
1240 * If this was part of an import or the open otherwise failed, we may
1241 * still have errors left in the queues. Empty them just in case.
1242 */
1243 spa_errlog_drain(spa);
1244
1245 avl_destroy(&spa->spa_errlist_scrub);
1246 avl_destroy(&spa->spa_errlist_last);
1247
1248 spa->spa_state = POOL_STATE_UNINITIALIZED;
1249
1250 mutex_enter(&spa->spa_proc_lock);
1251 if (spa->spa_proc_state != SPA_PROC_NONE) {
1252 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1253 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1254 cv_broadcast(&spa->spa_proc_cv);
1255 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1256 ASSERT(spa->spa_proc != &p0);
1257 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1258 }
1259 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1260 spa->spa_proc_state = SPA_PROC_NONE;
1261 }
1262 ASSERT(spa->spa_proc == &p0);
1263 mutex_exit(&spa->spa_proc_lock);
1264
1265 /*
1266 * We want to make sure spa_thread() has actually exited the ZFS
1267 * module, so that the module can't be unloaded out from underneath
1268 * it.
1269 */
1270 if (spa->spa_did != 0) {
1271 thread_join(spa->spa_did);
1272 spa->spa_did = 0;
1273 }
1274 }
1275
1276 /*
1277 * Verify a pool configuration, and construct the vdev tree appropriately. This
1278 * will create all the necessary vdevs in the appropriate layout, with each vdev
1279 * in the CLOSED state. This will prep the pool before open/creation/import.
1280 * All vdev validation is done by the vdev_alloc() routine.
1281 */
1282 static int
1283 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1284 uint_t id, int atype)
1285 {
1286 nvlist_t **child;
1287 uint_t children;
1288 int error;
1289 int c;
1290
1291 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1292 return (error);
1293
1294 if ((*vdp)->vdev_ops->vdev_op_leaf)
1295 return (0);
1296
1297 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1298 &child, &children);
1299
1300 if (error == ENOENT)
1301 return (0);
1302
1303 if (error) {
1304 vdev_free(*vdp);
1305 *vdp = NULL;
1306 return (SET_ERROR(EINVAL));
1307 }
1308
1309 for (c = 0; c < children; c++) {
1310 vdev_t *vd;
1311 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1312 atype)) != 0) {
1313 vdev_free(*vdp);
1314 *vdp = NULL;
1315 return (error);
1316 }
1317 }
1318
1319 ASSERT(*vdp != NULL);
1320
1321 return (0);
1322 }
1323
1324 /*
1325 * Opposite of spa_load().
1326 */
1327 static void
1328 spa_unload(spa_t *spa)
1329 {
1330 int i, c;
1331
1332 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1333
1334 /*
1335 * Stop async tasks.
1336 */
1337 spa_async_suspend(spa);
1338
1339 /*
1340 * Stop syncing.
1341 */
1342 if (spa->spa_sync_on) {
1343 txg_sync_stop(spa->spa_dsl_pool);
1344 spa->spa_sync_on = B_FALSE;
1345 }
1346
1347 /*
1348 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1349 * to call it earlier, before we wait for async i/o to complete.
1350 * This ensures that there is no async metaslab prefetching, by
1351 * calling taskq_wait(mg_taskq).
1352 */
1353 if (spa->spa_root_vdev != NULL) {
1354 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1355 for (c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1356 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1357 spa_config_exit(spa, SCL_ALL, FTAG);
1358 }
1359
1360 if (spa->spa_mmp.mmp_thread)
1361 mmp_thread_stop(spa);
1362
1363 /*
1364 * Wait for any outstanding async I/O to complete.
1365 */
1366 if (spa->spa_async_zio_root != NULL) {
1367 for (i = 0; i < max_ncpus; i++)
1368 (void) zio_wait(spa->spa_async_zio_root[i]);
1369 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1370 spa->spa_async_zio_root = NULL;
1371 }
1372
1373 bpobj_close(&spa->spa_deferred_bpobj);
1374
1375 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1376
1377 /*
1378 * Close all vdevs.
1379 */
1380 if (spa->spa_root_vdev)
1381 vdev_free(spa->spa_root_vdev);
1382 ASSERT(spa->spa_root_vdev == NULL);
1383
1384 /*
1385 * Close the dsl pool.
1386 */
1387 if (spa->spa_dsl_pool) {
1388 dsl_pool_close(spa->spa_dsl_pool);
1389 spa->spa_dsl_pool = NULL;
1390 spa->spa_meta_objset = NULL;
1391 }
1392
1393 ddt_unload(spa);
1394
1395 /*
1396 * Drop and purge level 2 cache
1397 */
1398 spa_l2cache_drop(spa);
1399
1400 for (i = 0; i < spa->spa_spares.sav_count; i++)
1401 vdev_free(spa->spa_spares.sav_vdevs[i]);
1402 if (spa->spa_spares.sav_vdevs) {
1403 kmem_free(spa->spa_spares.sav_vdevs,
1404 spa->spa_spares.sav_count * sizeof (void *));
1405 spa->spa_spares.sav_vdevs = NULL;
1406 }
1407 if (spa->spa_spares.sav_config) {
1408 nvlist_free(spa->spa_spares.sav_config);
1409 spa->spa_spares.sav_config = NULL;
1410 }
1411 spa->spa_spares.sav_count = 0;
1412
1413 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1414 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1415 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1416 }
1417 if (spa->spa_l2cache.sav_vdevs) {
1418 kmem_free(spa->spa_l2cache.sav_vdevs,
1419 spa->spa_l2cache.sav_count * sizeof (void *));
1420 spa->spa_l2cache.sav_vdevs = NULL;
1421 }
1422 if (spa->spa_l2cache.sav_config) {
1423 nvlist_free(spa->spa_l2cache.sav_config);
1424 spa->spa_l2cache.sav_config = NULL;
1425 }
1426 spa->spa_l2cache.sav_count = 0;
1427
1428 spa->spa_async_suspended = 0;
1429
1430 if (spa->spa_comment != NULL) {
1431 spa_strfree(spa->spa_comment);
1432 spa->spa_comment = NULL;
1433 }
1434
1435 spa_config_exit(spa, SCL_ALL, FTAG);
1436 }
1437
1438 /*
1439 * Load (or re-load) the current list of vdevs describing the active spares for
1440 * this pool. When this is called, we have some form of basic information in
1441 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1442 * then re-generate a more complete list including status information.
1443 */
1444 static void
1445 spa_load_spares(spa_t *spa)
1446 {
1447 nvlist_t **spares;
1448 uint_t nspares;
1449 int i;
1450 vdev_t *vd, *tvd;
1451
1452 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1453
1454 /*
1455 * First, close and free any existing spare vdevs.
1456 */
1457 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1458 vd = spa->spa_spares.sav_vdevs[i];
1459
1460 /* Undo the call to spa_activate() below */
1461 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1462 B_FALSE)) != NULL && tvd->vdev_isspare)
1463 spa_spare_remove(tvd);
1464 vdev_close(vd);
1465 vdev_free(vd);
1466 }
1467
1468 if (spa->spa_spares.sav_vdevs)
1469 kmem_free(spa->spa_spares.sav_vdevs,
1470 spa->spa_spares.sav_count * sizeof (void *));
1471
1472 if (spa->spa_spares.sav_config == NULL)
1473 nspares = 0;
1474 else
1475 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1476 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1477
1478 spa->spa_spares.sav_count = (int)nspares;
1479 spa->spa_spares.sav_vdevs = NULL;
1480
1481 if (nspares == 0)
1482 return;
1483
1484 /*
1485 * Construct the array of vdevs, opening them to get status in the
1486 * process. For each spare, there is potentially two different vdev_t
1487 * structures associated with it: one in the list of spares (used only
1488 * for basic validation purposes) and one in the active vdev
1489 * configuration (if it's spared in). During this phase we open and
1490 * validate each vdev on the spare list. If the vdev also exists in the
1491 * active configuration, then we also mark this vdev as an active spare.
1492 */
1493 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1494 KM_SLEEP);
1495 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1496 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1497 VDEV_ALLOC_SPARE) == 0);
1498 ASSERT(vd != NULL);
1499
1500 spa->spa_spares.sav_vdevs[i] = vd;
1501
1502 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1503 B_FALSE)) != NULL) {
1504 if (!tvd->vdev_isspare)
1505 spa_spare_add(tvd);
1506
1507 /*
1508 * We only mark the spare active if we were successfully
1509 * able to load the vdev. Otherwise, importing a pool
1510 * with a bad active spare would result in strange
1511 * behavior, because multiple pool would think the spare
1512 * is actively in use.
1513 *
1514 * There is a vulnerability here to an equally bizarre
1515 * circumstance, where a dead active spare is later
1516 * brought back to life (onlined or otherwise). Given
1517 * the rarity of this scenario, and the extra complexity
1518 * it adds, we ignore the possibility.
1519 */
1520 if (!vdev_is_dead(tvd))
1521 spa_spare_activate(tvd);
1522 }
1523
1524 vd->vdev_top = vd;
1525 vd->vdev_aux = &spa->spa_spares;
1526
1527 if (vdev_open(vd) != 0)
1528 continue;
1529
1530 if (vdev_validate_aux(vd) == 0)
1531 spa_spare_add(vd);
1532 }
1533
1534 /*
1535 * Recompute the stashed list of spares, with status information
1536 * this time.
1537 */
1538 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1539 DATA_TYPE_NVLIST_ARRAY) == 0);
1540
1541 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1542 KM_SLEEP);
1543 for (i = 0; i < spa->spa_spares.sav_count; i++)
1544 spares[i] = vdev_config_generate(spa,
1545 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1546 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1547 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1548 for (i = 0; i < spa->spa_spares.sav_count; i++)
1549 nvlist_free(spares[i]);
1550 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1551 }
1552
1553 /*
1554 * Load (or re-load) the current list of vdevs describing the active l2cache for
1555 * this pool. When this is called, we have some form of basic information in
1556 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1557 * then re-generate a more complete list including status information.
1558 * Devices which are already active have their details maintained, and are
1559 * not re-opened.
1560 */
1561 static void
1562 spa_load_l2cache(spa_t *spa)
1563 {
1564 nvlist_t **l2cache;
1565 uint_t nl2cache;
1566 int i, j, oldnvdevs;
1567 uint64_t guid;
1568 vdev_t *vd, **oldvdevs, **newvdevs;
1569 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1570
1571 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1572
1573 oldvdevs = sav->sav_vdevs;
1574 oldnvdevs = sav->sav_count;
1575 sav->sav_vdevs = NULL;
1576 sav->sav_count = 0;
1577
1578 if (sav->sav_config == NULL) {
1579 nl2cache = 0;
1580 newvdevs = NULL;
1581 goto out;
1582 }
1583
1584 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1585 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1586 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1587
1588 /*
1589 * Process new nvlist of vdevs.
1590 */
1591 for (i = 0; i < nl2cache; i++) {
1592 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1593 &guid) == 0);
1594
1595 newvdevs[i] = NULL;
1596 for (j = 0; j < oldnvdevs; j++) {
1597 vd = oldvdevs[j];
1598 if (vd != NULL && guid == vd->vdev_guid) {
1599 /*
1600 * Retain previous vdev for add/remove ops.
1601 */
1602 newvdevs[i] = vd;
1603 oldvdevs[j] = NULL;
1604 break;
1605 }
1606 }
1607
1608 if (newvdevs[i] == NULL) {
1609 /*
1610 * Create new vdev
1611 */
1612 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1613 VDEV_ALLOC_L2CACHE) == 0);
1614 ASSERT(vd != NULL);
1615 newvdevs[i] = vd;
1616
1617 /*
1618 * Commit this vdev as an l2cache device,
1619 * even if it fails to open.
1620 */
1621 spa_l2cache_add(vd);
1622
1623 vd->vdev_top = vd;
1624 vd->vdev_aux = sav;
1625
1626 spa_l2cache_activate(vd);
1627
1628 if (vdev_open(vd) != 0)
1629 continue;
1630
1631 (void) vdev_validate_aux(vd);
1632
1633 if (!vdev_is_dead(vd))
1634 l2arc_add_vdev(spa, vd);
1635 }
1636 }
1637
1638 sav->sav_vdevs = newvdevs;
1639 sav->sav_count = (int)nl2cache;
1640
1641 /*
1642 * Recompute the stashed list of l2cache devices, with status
1643 * information this time.
1644 */
1645 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1646 DATA_TYPE_NVLIST_ARRAY) == 0);
1647
1648 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1649 for (i = 0; i < sav->sav_count; i++)
1650 l2cache[i] = vdev_config_generate(spa,
1651 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1652 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1653 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1654
1655 out:
1656 /*
1657 * Purge vdevs that were dropped
1658 */
1659 for (i = 0; i < oldnvdevs; i++) {
1660 uint64_t pool;
1661
1662 vd = oldvdevs[i];
1663 if (vd != NULL) {
1664 ASSERT(vd->vdev_isl2cache);
1665
1666 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1667 pool != 0ULL && l2arc_vdev_present(vd))
1668 l2arc_remove_vdev(vd);
1669 vdev_clear_stats(vd);
1670 vdev_free(vd);
1671 }
1672 }
1673
1674 if (oldvdevs)
1675 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1676
1677 for (i = 0; i < sav->sav_count; i++)
1678 nvlist_free(l2cache[i]);
1679 if (sav->sav_count)
1680 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1681 }
1682
1683 static int
1684 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1685 {
1686 dmu_buf_t *db;
1687 char *packed = NULL;
1688 size_t nvsize = 0;
1689 int error;
1690 *value = NULL;
1691
1692 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1693 if (error)
1694 return (error);
1695
1696 nvsize = *(uint64_t *)db->db_data;
1697 dmu_buf_rele(db, FTAG);
1698
1699 packed = vmem_alloc(nvsize, KM_SLEEP);
1700 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1701 DMU_READ_PREFETCH);
1702 if (error == 0)
1703 error = nvlist_unpack(packed, nvsize, value, 0);
1704 vmem_free(packed, nvsize);
1705
1706 return (error);
1707 }
1708
1709 /*
1710 * Checks to see if the given vdev could not be opened, in which case we post a
1711 * sysevent to notify the autoreplace code that the device has been removed.
1712 */
1713 static void
1714 spa_check_removed(vdev_t *vd)
1715 {
1716 int c;
1717
1718 for (c = 0; c < vd->vdev_children; c++)
1719 spa_check_removed(vd->vdev_child[c]);
1720
1721 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1722 !vd->vdev_ishole) {
1723 zfs_post_autoreplace(vd->vdev_spa, vd);
1724 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1725 }
1726 }
1727
1728 static void
1729 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1730 {
1731 uint64_t i;
1732
1733 ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1734
1735 vd->vdev_top_zap = mvd->vdev_top_zap;
1736 vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1737
1738 for (i = 0; i < vd->vdev_children; i++) {
1739 spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1740 }
1741 }
1742
1743 /*
1744 * Validate the current config against the MOS config
1745 */
1746 static boolean_t
1747 spa_config_valid(spa_t *spa, nvlist_t *config)
1748 {
1749 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1750 nvlist_t *nv;
1751 int c, i;
1752
1753 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1754
1755 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1756 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1757
1758 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1759
1760 /*
1761 * If we're doing a normal import, then build up any additional
1762 * diagnostic information about missing devices in this config.
1763 * We'll pass this up to the user for further processing.
1764 */
1765 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1766 nvlist_t **child, *nv;
1767 uint64_t idx = 0;
1768
1769 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
1770 KM_SLEEP);
1771 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1772
1773 for (c = 0; c < rvd->vdev_children; c++) {
1774 vdev_t *tvd = rvd->vdev_child[c];
1775 vdev_t *mtvd = mrvd->vdev_child[c];
1776
1777 if (tvd->vdev_ops == &vdev_missing_ops &&
1778 mtvd->vdev_ops != &vdev_missing_ops &&
1779 mtvd->vdev_islog)
1780 child[idx++] = vdev_config_generate(spa, mtvd,
1781 B_FALSE, 0);
1782 }
1783
1784 if (idx) {
1785 VERIFY(nvlist_add_nvlist_array(nv,
1786 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1787 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1788 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1789
1790 for (i = 0; i < idx; i++)
1791 nvlist_free(child[i]);
1792 }
1793 nvlist_free(nv);
1794 kmem_free(child, rvd->vdev_children * sizeof (char **));
1795 }
1796
1797 /*
1798 * Compare the root vdev tree with the information we have
1799 * from the MOS config (mrvd). Check each top-level vdev
1800 * with the corresponding MOS config top-level (mtvd).
1801 */
1802 for (c = 0; c < rvd->vdev_children; c++) {
1803 vdev_t *tvd = rvd->vdev_child[c];
1804 vdev_t *mtvd = mrvd->vdev_child[c];
1805
1806 /*
1807 * Resolve any "missing" vdevs in the current configuration.
1808 * If we find that the MOS config has more accurate information
1809 * about the top-level vdev then use that vdev instead.
1810 */
1811 if (tvd->vdev_ops == &vdev_missing_ops &&
1812 mtvd->vdev_ops != &vdev_missing_ops) {
1813
1814 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1815 continue;
1816
1817 /*
1818 * Device specific actions.
1819 */
1820 if (mtvd->vdev_islog) {
1821 spa_set_log_state(spa, SPA_LOG_CLEAR);
1822 } else {
1823 /*
1824 * XXX - once we have 'readonly' pool
1825 * support we should be able to handle
1826 * missing data devices by transitioning
1827 * the pool to readonly.
1828 */
1829 continue;
1830 }
1831
1832 /*
1833 * Swap the missing vdev with the data we were
1834 * able to obtain from the MOS config.
1835 */
1836 vdev_remove_child(rvd, tvd);
1837 vdev_remove_child(mrvd, mtvd);
1838
1839 vdev_add_child(rvd, mtvd);
1840 vdev_add_child(mrvd, tvd);
1841
1842 spa_config_exit(spa, SCL_ALL, FTAG);
1843 vdev_load(mtvd);
1844 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1845
1846 vdev_reopen(rvd);
1847 } else {
1848 if (mtvd->vdev_islog) {
1849 /*
1850 * Load the slog device's state from the MOS
1851 * config since it's possible that the label
1852 * does not contain the most up-to-date
1853 * information.
1854 */
1855 vdev_load_log_state(tvd, mtvd);
1856 vdev_reopen(tvd);
1857 }
1858
1859 /*
1860 * Per-vdev ZAP info is stored exclusively in the MOS.
1861 */
1862 spa_config_valid_zaps(tvd, mtvd);
1863 }
1864 }
1865
1866 vdev_free(mrvd);
1867 spa_config_exit(spa, SCL_ALL, FTAG);
1868
1869 /*
1870 * Ensure we were able to validate the config.
1871 */
1872 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1873 }
1874
1875 /*
1876 * Check for missing log devices
1877 */
1878 static boolean_t
1879 spa_check_logs(spa_t *spa)
1880 {
1881 boolean_t rv = B_FALSE;
1882 dsl_pool_t *dp = spa_get_dsl(spa);
1883
1884 switch (spa->spa_log_state) {
1885 default:
1886 break;
1887 case SPA_LOG_MISSING:
1888 /* need to recheck in case slog has been restored */
1889 case SPA_LOG_UNKNOWN:
1890 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1891 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1892 if (rv)
1893 spa_set_log_state(spa, SPA_LOG_MISSING);
1894 break;
1895 }
1896 return (rv);
1897 }
1898
1899 static boolean_t
1900 spa_passivate_log(spa_t *spa)
1901 {
1902 vdev_t *rvd = spa->spa_root_vdev;
1903 boolean_t slog_found = B_FALSE;
1904 int c;
1905
1906 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1907
1908 if (!spa_has_slogs(spa))
1909 return (B_FALSE);
1910
1911 for (c = 0; c < rvd->vdev_children; c++) {
1912 vdev_t *tvd = rvd->vdev_child[c];
1913 metaslab_group_t *mg = tvd->vdev_mg;
1914
1915 if (tvd->vdev_islog) {
1916 metaslab_group_passivate(mg);
1917 slog_found = B_TRUE;
1918 }
1919 }
1920
1921 return (slog_found);
1922 }
1923
1924 static void
1925 spa_activate_log(spa_t *spa)
1926 {
1927 vdev_t *rvd = spa->spa_root_vdev;
1928 int c;
1929
1930 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1931
1932 for (c = 0; c < rvd->vdev_children; c++) {
1933 vdev_t *tvd = rvd->vdev_child[c];
1934 metaslab_group_t *mg = tvd->vdev_mg;
1935
1936 if (tvd->vdev_islog)
1937 metaslab_group_activate(mg);
1938 }
1939 }
1940
1941 int
1942 spa_offline_log(spa_t *spa)
1943 {
1944 int error;
1945
1946 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1947 NULL, DS_FIND_CHILDREN);
1948 if (error == 0) {
1949 /*
1950 * We successfully offlined the log device, sync out the
1951 * current txg so that the "stubby" block can be removed
1952 * by zil_sync().
1953 */
1954 txg_wait_synced(spa->spa_dsl_pool, 0);
1955 }
1956 return (error);
1957 }
1958
1959 static void
1960 spa_aux_check_removed(spa_aux_vdev_t *sav)
1961 {
1962 int i;
1963
1964 for (i = 0; i < sav->sav_count; i++)
1965 spa_check_removed(sav->sav_vdevs[i]);
1966 }
1967
1968 void
1969 spa_claim_notify(zio_t *zio)
1970 {
1971 spa_t *spa = zio->io_spa;
1972
1973 if (zio->io_error)
1974 return;
1975
1976 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1977 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1978 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1979 mutex_exit(&spa->spa_props_lock);
1980 }
1981
1982 typedef struct spa_load_error {
1983 uint64_t sle_meta_count;
1984 uint64_t sle_data_count;
1985 } spa_load_error_t;
1986
1987 static void
1988 spa_load_verify_done(zio_t *zio)
1989 {
1990 blkptr_t *bp = zio->io_bp;
1991 spa_load_error_t *sle = zio->io_private;
1992 dmu_object_type_t type = BP_GET_TYPE(bp);
1993 int error = zio->io_error;
1994 spa_t *spa = zio->io_spa;
1995
1996 abd_free(zio->io_abd);
1997 if (error) {
1998 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1999 type != DMU_OT_INTENT_LOG)
2000 atomic_inc_64(&sle->sle_meta_count);
2001 else
2002 atomic_inc_64(&sle->sle_data_count);
2003 }
2004
2005 mutex_enter(&spa->spa_scrub_lock);
2006 spa->spa_scrub_inflight--;
2007 cv_broadcast(&spa->spa_scrub_io_cv);
2008 mutex_exit(&spa->spa_scrub_lock);
2009 }
2010
2011 /*
2012 * Maximum number of concurrent scrub i/os to create while verifying
2013 * a pool while importing it.
2014 */
2015 int spa_load_verify_maxinflight = 10000;
2016 int spa_load_verify_metadata = B_TRUE;
2017 int spa_load_verify_data = B_TRUE;
2018
2019 /*ARGSUSED*/
2020 static int
2021 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2022 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2023 {
2024 zio_t *rio;
2025 size_t size;
2026
2027 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2028 return (0);
2029 /*
2030 * Note: normally this routine will not be called if
2031 * spa_load_verify_metadata is not set. However, it may be useful
2032 * to manually set the flag after the traversal has begun.
2033 */
2034 if (!spa_load_verify_metadata)
2035 return (0);
2036 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2037 return (0);
2038
2039 rio = arg;
2040 size = BP_GET_PSIZE(bp);
2041
2042 mutex_enter(&spa->spa_scrub_lock);
2043 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
2044 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2045 spa->spa_scrub_inflight++;
2046 mutex_exit(&spa->spa_scrub_lock);
2047
2048 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2049 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2050 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2051 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2052 return (0);
2053 }
2054
2055 /* ARGSUSED */
2056 int
2057 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2058 {
2059 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2060 return (SET_ERROR(ENAMETOOLONG));
2061
2062 return (0);
2063 }
2064
2065 static int
2066 spa_load_verify(spa_t *spa)
2067 {
2068 zio_t *rio;
2069 spa_load_error_t sle = { 0 };
2070 zpool_rewind_policy_t policy;
2071 boolean_t verify_ok = B_FALSE;
2072 int error = 0;
2073
2074 zpool_get_rewind_policy(spa->spa_config, &policy);
2075
2076 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2077 return (0);
2078
2079 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2080 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2081 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2082 DS_FIND_CHILDREN);
2083 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2084 if (error != 0)
2085 return (error);
2086
2087 rio = zio_root(spa, NULL, &sle,
2088 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2089
2090 if (spa_load_verify_metadata) {
2091 error = traverse_pool(spa, spa->spa_verify_min_txg,
2092 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2093 spa_load_verify_cb, rio);
2094 }
2095
2096 (void) zio_wait(rio);
2097
2098 spa->spa_load_meta_errors = sle.sle_meta_count;
2099 spa->spa_load_data_errors = sle.sle_data_count;
2100
2101 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2102 sle.sle_data_count <= policy.zrp_maxdata) {
2103 int64_t loss = 0;
2104
2105 verify_ok = B_TRUE;
2106 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2107 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2108
2109 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2110 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2111 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2112 VERIFY(nvlist_add_int64(spa->spa_load_info,
2113 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2114 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2115 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2116 } else {
2117 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2118 }
2119
2120 if (error) {
2121 if (error != ENXIO && error != EIO)
2122 error = SET_ERROR(EIO);
2123 return (error);
2124 }
2125
2126 return (verify_ok ? 0 : EIO);
2127 }
2128
2129 /*
2130 * Find a value in the pool props object.
2131 */
2132 static void
2133 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2134 {
2135 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2136 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2137 }
2138
2139 /*
2140 * Find a value in the pool directory object.
2141 */
2142 static int
2143 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2144 {
2145 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2146 name, sizeof (uint64_t), 1, val));
2147 }
2148
2149 static int
2150 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2151 {
2152 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2153 return (err);
2154 }
2155
2156 /*
2157 * Fix up config after a partly-completed split. This is done with the
2158 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2159 * pool have that entry in their config, but only the splitting one contains
2160 * a list of all the guids of the vdevs that are being split off.
2161 *
2162 * This function determines what to do with that list: either rejoin
2163 * all the disks to the pool, or complete the splitting process. To attempt
2164 * the rejoin, each disk that is offlined is marked online again, and
2165 * we do a reopen() call. If the vdev label for every disk that was
2166 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2167 * then we call vdev_split() on each disk, and complete the split.
2168 *
2169 * Otherwise we leave the config alone, with all the vdevs in place in
2170 * the original pool.
2171 */
2172 static void
2173 spa_try_repair(spa_t *spa, nvlist_t *config)
2174 {
2175 uint_t extracted;
2176 uint64_t *glist;
2177 uint_t i, gcount;
2178 nvlist_t *nvl;
2179 vdev_t **vd;
2180 boolean_t attempt_reopen;
2181
2182 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2183 return;
2184
2185 /* check that the config is complete */
2186 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2187 &glist, &gcount) != 0)
2188 return;
2189
2190 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2191
2192 /* attempt to online all the vdevs & validate */
2193 attempt_reopen = B_TRUE;
2194 for (i = 0; i < gcount; i++) {
2195 if (glist[i] == 0) /* vdev is hole */
2196 continue;
2197
2198 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2199 if (vd[i] == NULL) {
2200 /*
2201 * Don't bother attempting to reopen the disks;
2202 * just do the split.
2203 */
2204 attempt_reopen = B_FALSE;
2205 } else {
2206 /* attempt to re-online it */
2207 vd[i]->vdev_offline = B_FALSE;
2208 }
2209 }
2210
2211 if (attempt_reopen) {
2212 vdev_reopen(spa->spa_root_vdev);
2213
2214 /* check each device to see what state it's in */
2215 for (extracted = 0, i = 0; i < gcount; i++) {
2216 if (vd[i] != NULL &&
2217 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2218 break;
2219 ++extracted;
2220 }
2221 }
2222
2223 /*
2224 * If every disk has been moved to the new pool, or if we never
2225 * even attempted to look at them, then we split them off for
2226 * good.
2227 */
2228 if (!attempt_reopen || gcount == extracted) {
2229 for (i = 0; i < gcount; i++)
2230 if (vd[i] != NULL)
2231 vdev_split(vd[i]);
2232 vdev_reopen(spa->spa_root_vdev);
2233 }
2234
2235 kmem_free(vd, gcount * sizeof (vdev_t *));
2236 }
2237
2238 static int
2239 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2240 boolean_t mosconfig)
2241 {
2242 nvlist_t *config = spa->spa_config;
2243 char *ereport = FM_EREPORT_ZFS_POOL;
2244 char *comment;
2245 int error;
2246 uint64_t pool_guid;
2247 nvlist_t *nvl;
2248
2249 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2250 return (SET_ERROR(EINVAL));
2251
2252 ASSERT(spa->spa_comment == NULL);
2253 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2254 spa->spa_comment = spa_strdup(comment);
2255
2256 /*
2257 * Versioning wasn't explicitly added to the label until later, so if
2258 * it's not present treat it as the initial version.
2259 */
2260 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2261 &spa->spa_ubsync.ub_version) != 0)
2262 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2263
2264 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2265 &spa->spa_config_txg);
2266
2267 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2268 spa_guid_exists(pool_guid, 0)) {
2269 error = SET_ERROR(EEXIST);
2270 } else {
2271 spa->spa_config_guid = pool_guid;
2272
2273 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2274 &nvl) == 0) {
2275 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2276 KM_SLEEP) == 0);
2277 }
2278
2279 nvlist_free(spa->spa_load_info);
2280 spa->spa_load_info = fnvlist_alloc();
2281
2282 gethrestime(&spa->spa_loaded_ts);
2283 error = spa_load_impl(spa, pool_guid, config, state, type,
2284 mosconfig, &ereport);
2285 }
2286
2287 /*
2288 * Don't count references from objsets that are already closed
2289 * and are making their way through the eviction process.
2290 */
2291 spa_evicting_os_wait(spa);
2292 spa->spa_minref = refcount_count(&spa->spa_refcount);
2293 if (error) {
2294 if (error != EEXIST) {
2295 spa->spa_loaded_ts.tv_sec = 0;
2296 spa->spa_loaded_ts.tv_nsec = 0;
2297 }
2298 if (error != EBADF) {
2299 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2300 }
2301 }
2302 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2303 spa->spa_ena = 0;
2304
2305 return (error);
2306 }
2307
2308 #ifdef ZFS_DEBUG
2309 /*
2310 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2311 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2312 * spa's per-vdev ZAP list.
2313 */
2314 static uint64_t
2315 vdev_count_verify_zaps(vdev_t *vd)
2316 {
2317 spa_t *spa = vd->vdev_spa;
2318 uint64_t total = 0;
2319 uint64_t i;
2320
2321 if (vd->vdev_top_zap != 0) {
2322 total++;
2323 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2324 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2325 }
2326 if (vd->vdev_leaf_zap != 0) {
2327 total++;
2328 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2329 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2330 }
2331
2332 for (i = 0; i < vd->vdev_children; i++) {
2333 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2334 }
2335
2336 return (total);
2337 }
2338 #endif
2339
2340 /*
2341 * Determine whether the activity check is required.
2342 */
2343 static boolean_t
2344 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2345 {
2346 uint64_t state = 0;
2347 uint64_t hostid = 0;
2348 uint64_t tryconfig_txg = 0;
2349 uint64_t tryconfig_timestamp = 0;
2350 nvlist_t *nvinfo;
2351
2352 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2353 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2354 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2355 &tryconfig_txg);
2356 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2357 &tryconfig_timestamp);
2358 }
2359
2360 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2361 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_HOSTID, &hostid);
2362
2363 /*
2364 * Disable the MMP activity check - This is used by zdb which
2365 * is intended to be used on potentially active pools.
2366 */
2367 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2368 return (B_FALSE);
2369
2370 /*
2371 * Skip the activity check when the MMP feature is disabled.
2372 */
2373 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2374 return (B_FALSE);
2375 /*
2376 * If the tryconfig_* values are nonzero, they are the results of an
2377 * earlier tryimport. If they match the uberblock we just found, then
2378 * the pool has not changed and we return false so we do not test a
2379 * second time.
2380 */
2381 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2382 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp)
2383 return (B_FALSE);
2384
2385 /*
2386 * Allow the activity check to be skipped when importing the pool
2387 * on the same host which last imported it.
2388 */
2389 if (hostid == spa_get_hostid())
2390 return (B_FALSE);
2391
2392 /*
2393 * Skip the activity test when the pool was cleanly exported.
2394 */
2395 if (state != POOL_STATE_ACTIVE)
2396 return (B_FALSE);
2397
2398 return (B_TRUE);
2399 }
2400
2401 /*
2402 * Perform the import activity check. If the user canceled the import or
2403 * we detected activity then fail.
2404 */
2405 static int
2406 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2407 {
2408 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2409 uint64_t txg = ub->ub_txg;
2410 uint64_t timestamp = ub->ub_timestamp;
2411 uint64_t import_delay = NANOSEC;
2412 hrtime_t import_expire;
2413 nvlist_t *mmp_label = NULL;
2414 vdev_t *rvd = spa->spa_root_vdev;
2415 kcondvar_t cv;
2416 kmutex_t mtx;
2417 int error = 0;
2418
2419 cv_init(&cv, NULL, CV_DEFAULT, NULL);
2420 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2421 mutex_enter(&mtx);
2422
2423 /*
2424 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2425 * during the earlier tryimport. If the txg recorded there is 0 then
2426 * the pool is known to be active on another host.
2427 *
2428 * Otherwise, the pool might be in use on another node. Check for
2429 * changes in the uberblocks on disk if necessary.
2430 */
2431 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2432 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2433 ZPOOL_CONFIG_LOAD_INFO);
2434
2435 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2436 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2437 vdev_uberblock_load(rvd, ub, &mmp_label);
2438 error = SET_ERROR(EREMOTEIO);
2439 goto out;
2440 }
2441 }
2442
2443 /*
2444 * Preferentially use the zfs_multihost_interval from the node which
2445 * last imported the pool. This value is stored in an MMP uberblock as.
2446 *
2447 * ub_mmp_delay * vdev_count_leaves() == zfs_multihost_interval
2448 */
2449 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay)
2450 import_delay = MAX(import_delay, import_intervals *
2451 ub->ub_mmp_delay * MAX(vdev_count_leaves(spa), 1));
2452
2453 /* Apply a floor using the local default values. */
2454 import_delay = MAX(import_delay, import_intervals *
2455 MSEC2NSEC(MAX(zfs_multihost_interval, MMP_MIN_INTERVAL)));
2456
2457 /* Add a small random factor in case of simultaneous imports (0-25%) */
2458 import_expire = gethrtime() + import_delay +
2459 (import_delay * spa_get_random(250) / 1000);
2460
2461 while (gethrtime() < import_expire) {
2462 vdev_uberblock_load(rvd, ub, &mmp_label);
2463
2464 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp) {
2465 error = SET_ERROR(EREMOTEIO);
2466 break;
2467 }
2468
2469 if (mmp_label) {
2470 nvlist_free(mmp_label);
2471 mmp_label = NULL;
2472 }
2473
2474 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2475 if (error != -1) {
2476 error = SET_ERROR(EINTR);
2477 break;
2478 }
2479 error = 0;
2480 }
2481
2482 out:
2483 mutex_exit(&mtx);
2484 mutex_destroy(&mtx);
2485 cv_destroy(&cv);
2486
2487 /*
2488 * If the pool is determined to be active store the status in the
2489 * spa->spa_load_info nvlist. If the remote hostname or hostid are
2490 * available from configuration read from disk store them as well.
2491 * This allows 'zpool import' to generate a more useful message.
2492 *
2493 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
2494 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2495 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
2496 */
2497 if (error == EREMOTEIO) {
2498 char *hostname = "<unknown>";
2499 uint64_t hostid = 0;
2500
2501 if (mmp_label) {
2502 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2503 hostname = fnvlist_lookup_string(mmp_label,
2504 ZPOOL_CONFIG_HOSTNAME);
2505 fnvlist_add_string(spa->spa_load_info,
2506 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2507 }
2508
2509 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2510 hostid = fnvlist_lookup_uint64(mmp_label,
2511 ZPOOL_CONFIG_HOSTID);
2512 fnvlist_add_uint64(spa->spa_load_info,
2513 ZPOOL_CONFIG_MMP_HOSTID, hostid);
2514 }
2515 }
2516
2517 fnvlist_add_uint64(spa->spa_load_info,
2518 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2519 fnvlist_add_uint64(spa->spa_load_info,
2520 ZPOOL_CONFIG_MMP_TXG, 0);
2521
2522 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2523 }
2524
2525 if (mmp_label)
2526 nvlist_free(mmp_label);
2527
2528 return (error);
2529 }
2530
2531 /*
2532 * Load an existing storage pool, using the pool's builtin spa_config as a
2533 * source of configuration information.
2534 */
2535 __attribute__((always_inline))
2536 static inline int
2537 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2538 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2539 char **ereport)
2540 {
2541 int error = 0;
2542 nvlist_t *nvroot = NULL;
2543 nvlist_t *label;
2544 vdev_t *rvd;
2545 uberblock_t *ub = &spa->spa_uberblock;
2546 uint64_t children, config_cache_txg = spa->spa_config_txg;
2547 int orig_mode = spa->spa_mode;
2548 int parse, i;
2549 uint64_t obj;
2550 boolean_t missing_feat_write = B_FALSE;
2551 boolean_t activity_check = B_FALSE;
2552 nvlist_t *mos_config;
2553
2554 /*
2555 * If this is an untrusted config, access the pool in read-only mode.
2556 * This prevents things like resilvering recently removed devices.
2557 */
2558 if (!mosconfig)
2559 spa->spa_mode = FREAD;
2560
2561 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2562
2563 spa->spa_load_state = state;
2564
2565 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2566 return (SET_ERROR(EINVAL));
2567
2568 parse = (type == SPA_IMPORT_EXISTING ?
2569 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2570
2571 /*
2572 * Create "The Godfather" zio to hold all async IOs
2573 */
2574 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2575 KM_SLEEP);
2576 for (i = 0; i < max_ncpus; i++) {
2577 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2578 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2579 ZIO_FLAG_GODFATHER);
2580 }
2581
2582 /*
2583 * Parse the configuration into a vdev tree. We explicitly set the
2584 * value that will be returned by spa_version() since parsing the
2585 * configuration requires knowing the version number.
2586 */
2587 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2588 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2589 spa_config_exit(spa, SCL_ALL, FTAG);
2590
2591 if (error != 0)
2592 return (error);
2593
2594 ASSERT(spa->spa_root_vdev == rvd);
2595 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2596 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2597
2598 if (type != SPA_IMPORT_ASSEMBLE) {
2599 ASSERT(spa_guid(spa) == pool_guid);
2600 }
2601
2602 /*
2603 * Try to open all vdevs, loading each label in the process.
2604 */
2605 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2606 error = vdev_open(rvd);
2607 spa_config_exit(spa, SCL_ALL, FTAG);
2608 if (error != 0)
2609 return (error);
2610
2611 /*
2612 * We need to validate the vdev labels against the configuration that
2613 * we have in hand, which is dependent on the setting of mosconfig. If
2614 * mosconfig is true then we're validating the vdev labels based on
2615 * that config. Otherwise, we're validating against the cached config
2616 * (zpool.cache) that was read when we loaded the zfs module, and then
2617 * later we will recursively call spa_load() and validate against
2618 * the vdev config.
2619 *
2620 * If we're assembling a new pool that's been split off from an
2621 * existing pool, the labels haven't yet been updated so we skip
2622 * validation for now.
2623 */
2624 if (type != SPA_IMPORT_ASSEMBLE) {
2625 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2626 error = vdev_validate(rvd, mosconfig);
2627 spa_config_exit(spa, SCL_ALL, FTAG);
2628
2629 if (error != 0)
2630 return (error);
2631
2632 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2633 return (SET_ERROR(ENXIO));
2634 }
2635
2636 /*
2637 * Find the best uberblock.
2638 */
2639 vdev_uberblock_load(rvd, ub, &label);
2640
2641 /*
2642 * If we weren't able to find a single valid uberblock, return failure.
2643 */
2644 if (ub->ub_txg == 0) {
2645 nvlist_free(label);
2646 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2647 }
2648
2649 /*
2650 * For pools which have the multihost property on determine if the
2651 * pool is truly inactive and can be safely imported. Prevent
2652 * hosts which don't have a hostid set from importing the pool.
2653 */
2654 activity_check = spa_activity_check_required(spa, ub, config);
2655 if (activity_check) {
2656 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
2657 spa_get_hostid() == 0) {
2658 nvlist_free(label);
2659 fnvlist_add_uint64(spa->spa_load_info,
2660 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
2661 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
2662 }
2663
2664 error = spa_activity_check(spa, ub, config);
2665 if (error) {
2666 nvlist_free(label);
2667 return (error);
2668 }
2669
2670 fnvlist_add_uint64(spa->spa_load_info,
2671 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
2672 fnvlist_add_uint64(spa->spa_load_info,
2673 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
2674 }
2675
2676 /*
2677 * If the pool has an unsupported version we can't open it.
2678 */
2679 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2680 nvlist_free(label);
2681 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2682 }
2683
2684 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2685 nvlist_t *features;
2686
2687 /*
2688 * If we weren't able to find what's necessary for reading the
2689 * MOS in the label, return failure.
2690 */
2691 if (label == NULL || nvlist_lookup_nvlist(label,
2692 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2693 nvlist_free(label);
2694 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2695 ENXIO));
2696 }
2697
2698 /*
2699 * Update our in-core representation with the definitive values
2700 * from the label.
2701 */
2702 nvlist_free(spa->spa_label_features);
2703 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2704 }
2705
2706 nvlist_free(label);
2707
2708 /*
2709 * Look through entries in the label nvlist's features_for_read. If
2710 * there is a feature listed there which we don't understand then we
2711 * cannot open a pool.
2712 */
2713 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2714 nvlist_t *unsup_feat;
2715 nvpair_t *nvp;
2716
2717 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2718 0);
2719
2720 for (nvp = nvlist_next_nvpair(spa->spa_label_features, NULL);
2721 nvp != NULL;
2722 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2723 if (!zfeature_is_supported(nvpair_name(nvp))) {
2724 VERIFY(nvlist_add_string(unsup_feat,
2725 nvpair_name(nvp), "") == 0);
2726 }
2727 }
2728
2729 if (!nvlist_empty(unsup_feat)) {
2730 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2731 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2732 nvlist_free(unsup_feat);
2733 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2734 ENOTSUP));
2735 }
2736
2737 nvlist_free(unsup_feat);
2738 }
2739
2740 /*
2741 * If the vdev guid sum doesn't match the uberblock, we have an
2742 * incomplete configuration. We first check to see if the pool
2743 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2744 * If it is, defer the vdev_guid_sum check till later so we
2745 * can handle missing vdevs.
2746 */
2747 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2748 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2749 rvd->vdev_guid_sum != ub->ub_guid_sum)
2750 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2751
2752 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2753 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2754 spa_try_repair(spa, config);
2755 spa_config_exit(spa, SCL_ALL, FTAG);
2756 nvlist_free(spa->spa_config_splitting);
2757 spa->spa_config_splitting = NULL;
2758 }
2759
2760 /*
2761 * Initialize internal SPA structures.
2762 */
2763 spa->spa_state = POOL_STATE_ACTIVE;
2764 spa->spa_ubsync = spa->spa_uberblock;
2765 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2766 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2767 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2768 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2769 spa->spa_claim_max_txg = spa->spa_first_txg;
2770 spa->spa_prev_software_version = ub->ub_software_version;
2771
2772 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2773 if (error)
2774 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2775 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2776
2777 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2778 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2779
2780 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2781 boolean_t missing_feat_read = B_FALSE;
2782 nvlist_t *unsup_feat, *enabled_feat;
2783 spa_feature_t i;
2784
2785 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2786 &spa->spa_feat_for_read_obj) != 0) {
2787 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2788 }
2789
2790 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2791 &spa->spa_feat_for_write_obj) != 0) {
2792 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2793 }
2794
2795 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2796 &spa->spa_feat_desc_obj) != 0) {
2797 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2798 }
2799
2800 enabled_feat = fnvlist_alloc();
2801 unsup_feat = fnvlist_alloc();
2802
2803 if (!spa_features_check(spa, B_FALSE,
2804 unsup_feat, enabled_feat))
2805 missing_feat_read = B_TRUE;
2806
2807 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2808 if (!spa_features_check(spa, B_TRUE,
2809 unsup_feat, enabled_feat)) {
2810 missing_feat_write = B_TRUE;
2811 }
2812 }
2813
2814 fnvlist_add_nvlist(spa->spa_load_info,
2815 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2816
2817 if (!nvlist_empty(unsup_feat)) {
2818 fnvlist_add_nvlist(spa->spa_load_info,
2819 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2820 }
2821
2822 fnvlist_free(enabled_feat);
2823 fnvlist_free(unsup_feat);
2824
2825 if (!missing_feat_read) {
2826 fnvlist_add_boolean(spa->spa_load_info,
2827 ZPOOL_CONFIG_CAN_RDONLY);
2828 }
2829
2830 /*
2831 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2832 * twofold: to determine whether the pool is available for
2833 * import in read-write mode and (if it is not) whether the
2834 * pool is available for import in read-only mode. If the pool
2835 * is available for import in read-write mode, it is displayed
2836 * as available in userland; if it is not available for import
2837 * in read-only mode, it is displayed as unavailable in
2838 * userland. If the pool is available for import in read-only
2839 * mode but not read-write mode, it is displayed as unavailable
2840 * in userland with a special note that the pool is actually
2841 * available for open in read-only mode.
2842 *
2843 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2844 * missing a feature for write, we must first determine whether
2845 * the pool can be opened read-only before returning to
2846 * userland in order to know whether to display the
2847 * abovementioned note.
2848 */
2849 if (missing_feat_read || (missing_feat_write &&
2850 spa_writeable(spa))) {
2851 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2852 ENOTSUP));
2853 }
2854
2855 /*
2856 * Load refcounts for ZFS features from disk into an in-memory
2857 * cache during SPA initialization.
2858 */
2859 for (i = 0; i < SPA_FEATURES; i++) {
2860 uint64_t refcount;
2861
2862 error = feature_get_refcount_from_disk(spa,
2863 &spa_feature_table[i], &refcount);
2864 if (error == 0) {
2865 spa->spa_feat_refcount_cache[i] = refcount;
2866 } else if (error == ENOTSUP) {
2867 spa->spa_feat_refcount_cache[i] =
2868 SPA_FEATURE_DISABLED;
2869 } else {
2870 return (spa_vdev_err(rvd,
2871 VDEV_AUX_CORRUPT_DATA, EIO));
2872 }
2873 }
2874 }
2875
2876 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2877 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2878 &spa->spa_feat_enabled_txg_obj) != 0)
2879 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2880 }
2881
2882 spa->spa_is_initializing = B_TRUE;
2883 error = dsl_pool_open(spa->spa_dsl_pool);
2884 spa->spa_is_initializing = B_FALSE;
2885 if (error != 0)
2886 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2887
2888 if (!mosconfig) {
2889 uint64_t hostid;
2890 nvlist_t *policy = NULL, *nvconfig;
2891
2892 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2893 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2894
2895 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2896 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2897 char *hostname;
2898 unsigned long myhostid = 0;
2899
2900 VERIFY(nvlist_lookup_string(nvconfig,
2901 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2902
2903 myhostid = spa_get_hostid();
2904 if (hostid && myhostid && hostid != myhostid) {
2905 nvlist_free(nvconfig);
2906 return (SET_ERROR(EBADF));
2907 }
2908 }
2909 if (nvlist_lookup_nvlist(spa->spa_config,
2910 ZPOOL_REWIND_POLICY, &policy) == 0)
2911 VERIFY(nvlist_add_nvlist(nvconfig,
2912 ZPOOL_REWIND_POLICY, policy) == 0);
2913
2914 spa_config_set(spa, nvconfig);
2915 spa_unload(spa);
2916 spa_deactivate(spa);
2917 spa_activate(spa, orig_mode);
2918
2919 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2920 }
2921
2922 /* Grab the checksum salt from the MOS. */
2923 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2924 DMU_POOL_CHECKSUM_SALT, 1,
2925 sizeof (spa->spa_cksum_salt.zcs_bytes),
2926 spa->spa_cksum_salt.zcs_bytes);
2927 if (error == ENOENT) {
2928 /* Generate a new salt for subsequent use */
2929 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2930 sizeof (spa->spa_cksum_salt.zcs_bytes));
2931 } else if (error != 0) {
2932 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2933 }
2934
2935 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2936 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2937 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2938 if (error != 0)
2939 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2940
2941 /*
2942 * Load the bit that tells us to use the new accounting function
2943 * (raid-z deflation). If we have an older pool, this will not
2944 * be present.
2945 */
2946 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2947 if (error != 0 && error != ENOENT)
2948 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2949
2950 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2951 &spa->spa_creation_version);
2952 if (error != 0 && error != ENOENT)
2953 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2954
2955 /*
2956 * Load the persistent error log. If we have an older pool, this will
2957 * not be present.
2958 */
2959 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2960 if (error != 0 && error != ENOENT)
2961 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2962
2963 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2964 &spa->spa_errlog_scrub);
2965 if (error != 0 && error != ENOENT)
2966 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2967
2968 /*
2969 * Load the history object. If we have an older pool, this
2970 * will not be present.
2971 */
2972 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2973 if (error != 0 && error != ENOENT)
2974 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2975
2976 /*
2977 * Load the per-vdev ZAP map. If we have an older pool, this will not
2978 * be present; in this case, defer its creation to a later time to
2979 * avoid dirtying the MOS this early / out of sync context. See
2980 * spa_sync_config_object.
2981 */
2982
2983 /* The sentinel is only available in the MOS config. */
2984 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2985 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2986
2987 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2988 &spa->spa_all_vdev_zaps);
2989
2990 if (error == ENOENT) {
2991 VERIFY(!nvlist_exists(mos_config,
2992 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
2993 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
2994 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2995 } else if (error != 0) {
2996 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2997 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2998 /*
2999 * An older version of ZFS overwrote the sentinel value, so
3000 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3001 * destruction to later; see spa_sync_config_object.
3002 */
3003 spa->spa_avz_action = AVZ_ACTION_DESTROY;
3004 /*
3005 * We're assuming that no vdevs have had their ZAPs created
3006 * before this. Better be sure of it.
3007 */
3008 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3009 }
3010 nvlist_free(mos_config);
3011
3012 /*
3013 * If we're assembling the pool from the split-off vdevs of
3014 * an existing pool, we don't want to attach the spares & cache
3015 * devices.
3016 */
3017
3018 /*
3019 * Load any hot spares for this pool.
3020 */
3021 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
3022 if (error != 0 && error != ENOENT)
3023 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3024 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3025 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3026 if (load_nvlist(spa, spa->spa_spares.sav_object,
3027 &spa->spa_spares.sav_config) != 0)
3028 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3029
3030 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3031 spa_load_spares(spa);
3032 spa_config_exit(spa, SCL_ALL, FTAG);
3033 } else if (error == 0) {
3034 spa->spa_spares.sav_sync = B_TRUE;
3035 }
3036
3037 /*
3038 * Load any level 2 ARC devices for this pool.
3039 */
3040 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3041 &spa->spa_l2cache.sav_object);
3042 if (error != 0 && error != ENOENT)
3043 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3044 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3045 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3046 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3047 &spa->spa_l2cache.sav_config) != 0)
3048 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3049
3050 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3051 spa_load_l2cache(spa);
3052 spa_config_exit(spa, SCL_ALL, FTAG);
3053 } else if (error == 0) {
3054 spa->spa_l2cache.sav_sync = B_TRUE;
3055 }
3056
3057 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3058
3059 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
3060 if (error && error != ENOENT)
3061 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3062
3063 if (error == 0) {
3064 uint64_t autoreplace = 0;
3065
3066 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3067 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3068 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3069 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3070 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3071 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3072 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3073 &spa->spa_dedup_ditto);
3074
3075 spa->spa_autoreplace = (autoreplace != 0);
3076 }
3077
3078 /*
3079 * If the 'multihost' property is set, then never allow a pool to
3080 * be imported when the system hostid is zero. The exception to
3081 * this rule is zdb which is always allowed to access pools.
3082 */
3083 if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3084 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3085 fnvlist_add_uint64(spa->spa_load_info,
3086 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3087 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3088 }
3089
3090 /*
3091 * If the 'autoreplace' property is set, then post a resource notifying
3092 * the ZFS DE that it should not issue any faults for unopenable
3093 * devices. We also iterate over the vdevs, and post a sysevent for any
3094 * unopenable vdevs so that the normal autoreplace handler can take
3095 * over.
3096 */
3097 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
3098 spa_check_removed(spa->spa_root_vdev);
3099 /*
3100 * For the import case, this is done in spa_import(), because
3101 * at this point we're using the spare definitions from
3102 * the MOS config, not necessarily from the userland config.
3103 */
3104 if (state != SPA_LOAD_IMPORT) {
3105 spa_aux_check_removed(&spa->spa_spares);
3106 spa_aux_check_removed(&spa->spa_l2cache);
3107 }
3108 }
3109
3110 /*
3111 * Load the vdev state for all toplevel vdevs.
3112 */
3113 vdev_load(rvd);
3114
3115 /*
3116 * Propagate the leaf DTLs we just loaded all the way up the tree.
3117 */
3118 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3119 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3120 spa_config_exit(spa, SCL_ALL, FTAG);
3121
3122 /*
3123 * Load the DDTs (dedup tables).
3124 */
3125 error = ddt_load(spa);
3126 if (error != 0)
3127 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3128
3129 spa_update_dspace(spa);
3130
3131 /*
3132 * Validate the config, using the MOS config to fill in any
3133 * information which might be missing. If we fail to validate
3134 * the config then declare the pool unfit for use. If we're
3135 * assembling a pool from a split, the log is not transferred
3136 * over.
3137 */
3138 if (type != SPA_IMPORT_ASSEMBLE) {
3139 nvlist_t *nvconfig;
3140
3141 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
3142 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3143
3144 if (!spa_config_valid(spa, nvconfig)) {
3145 nvlist_free(nvconfig);
3146 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3147 ENXIO));
3148 }
3149 nvlist_free(nvconfig);
3150
3151 /*
3152 * Now that we've validated the config, check the state of the
3153 * root vdev. If it can't be opened, it indicates one or
3154 * more toplevel vdevs are faulted.
3155 */
3156 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
3157 return (SET_ERROR(ENXIO));
3158
3159 if (spa_writeable(spa) && spa_check_logs(spa)) {
3160 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3161 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
3162 }
3163 }
3164
3165 if (missing_feat_write) {
3166 ASSERT(state == SPA_LOAD_TRYIMPORT);
3167
3168 /*
3169 * At this point, we know that we can open the pool in
3170 * read-only mode but not read-write mode. We now have enough
3171 * information and can return to userland.
3172 */
3173 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
3174 }
3175
3176 /*
3177 * We've successfully opened the pool, verify that we're ready
3178 * to start pushing transactions.
3179 */
3180 if (state != SPA_LOAD_TRYIMPORT) {
3181 if ((error = spa_load_verify(spa)))
3182 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3183 error));
3184 }
3185
3186 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
3187 spa->spa_load_max_txg == UINT64_MAX)) {
3188 dmu_tx_t *tx;
3189 int need_update = B_FALSE;
3190 dsl_pool_t *dp = spa_get_dsl(spa);
3191 int c;
3192
3193 ASSERT(state != SPA_LOAD_TRYIMPORT);
3194
3195 /*
3196 * Claim log blocks that haven't been committed yet.
3197 * This must all happen in a single txg.
3198 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3199 * invoked from zil_claim_log_block()'s i/o done callback.
3200 * Price of rollback is that we abandon the log.
3201 */
3202 spa->spa_claiming = B_TRUE;
3203
3204 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3205 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3206 zil_claim, tx, DS_FIND_CHILDREN);
3207 dmu_tx_commit(tx);
3208
3209 spa->spa_claiming = B_FALSE;
3210
3211 spa_set_log_state(spa, SPA_LOG_GOOD);
3212 spa->spa_sync_on = B_TRUE;
3213 txg_sync_start(spa->spa_dsl_pool);
3214 mmp_thread_start(spa);
3215
3216 /*
3217 * Wait for all claims to sync. We sync up to the highest
3218 * claimed log block birth time so that claimed log blocks
3219 * don't appear to be from the future. spa_claim_max_txg
3220 * will have been set for us by either zil_check_log_chain()
3221 * (invoked from spa_check_logs()) or zil_claim() above.
3222 */
3223 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3224
3225 /*
3226 * If the config cache is stale, or we have uninitialized
3227 * metaslabs (see spa_vdev_add()), then update the config.
3228 *
3229 * If this is a verbatim import, trust the current
3230 * in-core spa_config and update the disk labels.
3231 */
3232 if (config_cache_txg != spa->spa_config_txg ||
3233 state == SPA_LOAD_IMPORT ||
3234 state == SPA_LOAD_RECOVER ||
3235 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3236 need_update = B_TRUE;
3237
3238 for (c = 0; c < rvd->vdev_children; c++)
3239 if (rvd->vdev_child[c]->vdev_ms_array == 0)
3240 need_update = B_TRUE;
3241
3242 /*
3243 * Update the config cache asychronously in case we're the
3244 * root pool, in which case the config cache isn't writable yet.
3245 */
3246 if (need_update)
3247 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3248
3249 /*
3250 * Check all DTLs to see if anything needs resilvering.
3251 */
3252 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3253 vdev_resilver_needed(rvd, NULL, NULL))
3254 spa_async_request(spa, SPA_ASYNC_RESILVER);
3255
3256 /*
3257 * Log the fact that we booted up (so that we can detect if
3258 * we rebooted in the middle of an operation).
3259 */
3260 spa_history_log_version(spa, "open");
3261
3262 /*
3263 * Delete any inconsistent datasets.
3264 */
3265 (void) dmu_objset_find(spa_name(spa),
3266 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3267
3268 /*
3269 * Clean up any stale temporary dataset userrefs.
3270 */
3271 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3272 }
3273
3274 return (0);
3275 }
3276
3277 static int
3278 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
3279 {
3280 int mode = spa->spa_mode;
3281
3282 spa_unload(spa);
3283 spa_deactivate(spa);
3284
3285 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3286
3287 spa_activate(spa, mode);
3288 spa_async_suspend(spa);
3289
3290 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
3291 }
3292
3293 /*
3294 * If spa_load() fails this function will try loading prior txg's. If
3295 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3296 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3297 * function will not rewind the pool and will return the same error as
3298 * spa_load().
3299 */
3300 static int
3301 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
3302 uint64_t max_request, int rewind_flags)
3303 {
3304 nvlist_t *loadinfo = NULL;
3305 nvlist_t *config = NULL;
3306 int load_error, rewind_error;
3307 uint64_t safe_rewind_txg;
3308 uint64_t min_txg;
3309
3310 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3311 spa->spa_load_max_txg = spa->spa_load_txg;
3312 spa_set_log_state(spa, SPA_LOG_CLEAR);
3313 } else {
3314 spa->spa_load_max_txg = max_request;
3315 if (max_request != UINT64_MAX)
3316 spa->spa_extreme_rewind = B_TRUE;
3317 }
3318
3319 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3320 mosconfig);
3321 if (load_error == 0)
3322 return (0);
3323
3324 if (spa->spa_root_vdev != NULL)
3325 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3326
3327 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3328 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3329
3330 if (rewind_flags & ZPOOL_NEVER_REWIND) {
3331 nvlist_free(config);
3332 return (load_error);
3333 }
3334
3335 if (state == SPA_LOAD_RECOVER) {
3336 /* Price of rolling back is discarding txgs, including log */
3337 spa_set_log_state(spa, SPA_LOG_CLEAR);
3338 } else {
3339 /*
3340 * If we aren't rolling back save the load info from our first
3341 * import attempt so that we can restore it after attempting
3342 * to rewind.
3343 */
3344 loadinfo = spa->spa_load_info;
3345 spa->spa_load_info = fnvlist_alloc();
3346 }
3347
3348 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3349 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3350 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3351 TXG_INITIAL : safe_rewind_txg;
3352
3353 /*
3354 * Continue as long as we're finding errors, we're still within
3355 * the acceptable rewind range, and we're still finding uberblocks
3356 */
3357 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3358 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3359 if (spa->spa_load_max_txg < safe_rewind_txg)
3360 spa->spa_extreme_rewind = B_TRUE;
3361 rewind_error = spa_load_retry(spa, state, mosconfig);
3362 }
3363
3364 spa->spa_extreme_rewind = B_FALSE;
3365 spa->spa_load_max_txg = UINT64_MAX;
3366
3367 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3368 spa_config_set(spa, config);
3369 else
3370 nvlist_free(config);
3371
3372 if (state == SPA_LOAD_RECOVER) {
3373 ASSERT3P(loadinfo, ==, NULL);
3374 return (rewind_error);
3375 } else {
3376 /* Store the rewind info as part of the initial load info */
3377 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3378 spa->spa_load_info);
3379
3380 /* Restore the initial load info */
3381 fnvlist_free(spa->spa_load_info);
3382 spa->spa_load_info = loadinfo;
3383
3384 return (load_error);
3385 }
3386 }
3387
3388 /*
3389 * Pool Open/Import
3390 *
3391 * The import case is identical to an open except that the configuration is sent
3392 * down from userland, instead of grabbed from the configuration cache. For the
3393 * case of an open, the pool configuration will exist in the
3394 * POOL_STATE_UNINITIALIZED state.
3395 *
3396 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3397 * the same time open the pool, without having to keep around the spa_t in some
3398 * ambiguous state.
3399 */
3400 static int
3401 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3402 nvlist_t **config)
3403 {
3404 spa_t *spa;
3405 spa_load_state_t state = SPA_LOAD_OPEN;
3406 int error;
3407 int locked = B_FALSE;
3408 int firstopen = B_FALSE;
3409
3410 *spapp = NULL;
3411
3412 /*
3413 * As disgusting as this is, we need to support recursive calls to this
3414 * function because dsl_dir_open() is called during spa_load(), and ends
3415 * up calling spa_open() again. The real fix is to figure out how to
3416 * avoid dsl_dir_open() calling this in the first place.
3417 */
3418 if (mutex_owner(&spa_namespace_lock) != curthread) {
3419 mutex_enter(&spa_namespace_lock);
3420 locked = B_TRUE;
3421 }
3422
3423 if ((spa = spa_lookup(pool)) == NULL) {
3424 if (locked)
3425 mutex_exit(&spa_namespace_lock);
3426 return (SET_ERROR(ENOENT));
3427 }
3428
3429 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3430 zpool_rewind_policy_t policy;
3431
3432 firstopen = B_TRUE;
3433
3434 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3435 &policy);
3436 if (policy.zrp_request & ZPOOL_DO_REWIND)
3437 state = SPA_LOAD_RECOVER;
3438
3439 spa_activate(spa, spa_mode_global);
3440
3441 if (state != SPA_LOAD_RECOVER)
3442 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3443
3444 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3445 policy.zrp_request);
3446
3447 if (error == EBADF) {
3448 /*
3449 * If vdev_validate() returns failure (indicated by
3450 * EBADF), it indicates that one of the vdevs indicates
3451 * that the pool has been exported or destroyed. If
3452 * this is the case, the config cache is out of sync and
3453 * we should remove the pool from the namespace.
3454 */
3455 spa_unload(spa);
3456 spa_deactivate(spa);
3457 spa_config_sync(spa, B_TRUE, B_TRUE);
3458 spa_remove(spa);
3459 if (locked)
3460 mutex_exit(&spa_namespace_lock);
3461 return (SET_ERROR(ENOENT));
3462 }
3463
3464 if (error) {
3465 /*
3466 * We can't open the pool, but we still have useful
3467 * information: the state of each vdev after the
3468 * attempted vdev_open(). Return this to the user.
3469 */
3470 if (config != NULL && spa->spa_config) {
3471 VERIFY(nvlist_dup(spa->spa_config, config,
3472 KM_SLEEP) == 0);
3473 VERIFY(nvlist_add_nvlist(*config,
3474 ZPOOL_CONFIG_LOAD_INFO,
3475 spa->spa_load_info) == 0);
3476 }
3477 spa_unload(spa);
3478 spa_deactivate(spa);
3479 spa->spa_last_open_failed = error;
3480 if (locked)
3481 mutex_exit(&spa_namespace_lock);
3482 *spapp = NULL;
3483 return (error);
3484 }
3485 }
3486
3487 spa_open_ref(spa, tag);
3488
3489 if (config != NULL)
3490 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3491
3492 /*
3493 * If we've recovered the pool, pass back any information we
3494 * gathered while doing the load.
3495 */
3496 if (state == SPA_LOAD_RECOVER) {
3497 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3498 spa->spa_load_info) == 0);
3499 }
3500
3501 if (locked) {
3502 spa->spa_last_open_failed = 0;
3503 spa->spa_last_ubsync_txg = 0;
3504 spa->spa_load_txg = 0;
3505 mutex_exit(&spa_namespace_lock);
3506 }
3507
3508 if (firstopen)
3509 zvol_create_minors(spa, spa_name(spa), B_TRUE);
3510
3511 *spapp = spa;
3512
3513 return (0);
3514 }
3515
3516 int
3517 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3518 nvlist_t **config)
3519 {
3520 return (spa_open_common(name, spapp, tag, policy, config));
3521 }
3522
3523 int
3524 spa_open(const char *name, spa_t **spapp, void *tag)
3525 {
3526 return (spa_open_common(name, spapp, tag, NULL, NULL));
3527 }
3528
3529 /*
3530 * Lookup the given spa_t, incrementing the inject count in the process,
3531 * preventing it from being exported or destroyed.
3532 */
3533 spa_t *
3534 spa_inject_addref(char *name)
3535 {
3536 spa_t *spa;
3537
3538 mutex_enter(&spa_namespace_lock);
3539 if ((spa = spa_lookup(name)) == NULL) {
3540 mutex_exit(&spa_namespace_lock);
3541 return (NULL);
3542 }
3543 spa->spa_inject_ref++;
3544 mutex_exit(&spa_namespace_lock);
3545
3546 return (spa);
3547 }
3548
3549 void
3550 spa_inject_delref(spa_t *spa)
3551 {
3552 mutex_enter(&spa_namespace_lock);
3553 spa->spa_inject_ref--;
3554 mutex_exit(&spa_namespace_lock);
3555 }
3556
3557 /*
3558 * Add spares device information to the nvlist.
3559 */
3560 static void
3561 spa_add_spares(spa_t *spa, nvlist_t *config)
3562 {
3563 nvlist_t **spares;
3564 uint_t i, nspares;
3565 nvlist_t *nvroot;
3566 uint64_t guid;
3567 vdev_stat_t *vs;
3568 uint_t vsc;
3569 uint64_t pool;
3570
3571 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3572
3573 if (spa->spa_spares.sav_count == 0)
3574 return;
3575
3576 VERIFY(nvlist_lookup_nvlist(config,
3577 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3578 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3579 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3580 if (nspares != 0) {
3581 VERIFY(nvlist_add_nvlist_array(nvroot,
3582 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3583 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3584 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3585
3586 /*
3587 * Go through and find any spares which have since been
3588 * repurposed as an active spare. If this is the case, update
3589 * their status appropriately.
3590 */
3591 for (i = 0; i < nspares; i++) {
3592 VERIFY(nvlist_lookup_uint64(spares[i],
3593 ZPOOL_CONFIG_GUID, &guid) == 0);
3594 if (spa_spare_exists(guid, &pool, NULL) &&
3595 pool != 0ULL) {
3596 VERIFY(nvlist_lookup_uint64_array(
3597 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3598 (uint64_t **)&vs, &vsc) == 0);
3599 vs->vs_state = VDEV_STATE_CANT_OPEN;
3600 vs->vs_aux = VDEV_AUX_SPARED;
3601 }
3602 }
3603 }
3604 }
3605
3606 /*
3607 * Add l2cache device information to the nvlist, including vdev stats.
3608 */
3609 static void
3610 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3611 {
3612 nvlist_t **l2cache;
3613 uint_t i, j, nl2cache;
3614 nvlist_t *nvroot;
3615 uint64_t guid;
3616 vdev_t *vd;
3617 vdev_stat_t *vs;
3618 uint_t vsc;
3619
3620 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3621
3622 if (spa->spa_l2cache.sav_count == 0)
3623 return;
3624
3625 VERIFY(nvlist_lookup_nvlist(config,
3626 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3627 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3628 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3629 if (nl2cache != 0) {
3630 VERIFY(nvlist_add_nvlist_array(nvroot,
3631 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3632 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3633 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3634
3635 /*
3636 * Update level 2 cache device stats.
3637 */
3638
3639 for (i = 0; i < nl2cache; i++) {
3640 VERIFY(nvlist_lookup_uint64(l2cache[i],
3641 ZPOOL_CONFIG_GUID, &guid) == 0);
3642
3643 vd = NULL;
3644 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3645 if (guid ==
3646 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3647 vd = spa->spa_l2cache.sav_vdevs[j];
3648 break;
3649 }
3650 }
3651 ASSERT(vd != NULL);
3652
3653 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3654 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3655 == 0);
3656 vdev_get_stats(vd, vs);
3657 vdev_config_generate_stats(vd, l2cache[i]);
3658
3659 }
3660 }
3661 }
3662
3663 static void
3664 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
3665 {
3666 zap_cursor_t zc;
3667 zap_attribute_t za;
3668
3669 if (spa->spa_feat_for_read_obj != 0) {
3670 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3671 spa->spa_feat_for_read_obj);
3672 zap_cursor_retrieve(&zc, &za) == 0;
3673 zap_cursor_advance(&zc)) {
3674 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3675 za.za_num_integers == 1);
3676 VERIFY0(nvlist_add_uint64(features, za.za_name,
3677 za.za_first_integer));
3678 }
3679 zap_cursor_fini(&zc);
3680 }
3681
3682 if (spa->spa_feat_for_write_obj != 0) {
3683 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3684 spa->spa_feat_for_write_obj);
3685 zap_cursor_retrieve(&zc, &za) == 0;
3686 zap_cursor_advance(&zc)) {
3687 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3688 za.za_num_integers == 1);
3689 VERIFY0(nvlist_add_uint64(features, za.za_name,
3690 za.za_first_integer));
3691 }
3692 zap_cursor_fini(&zc);
3693 }
3694 }
3695
3696 static void
3697 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
3698 {
3699 int i;
3700
3701 for (i = 0; i < SPA_FEATURES; i++) {
3702 zfeature_info_t feature = spa_feature_table[i];
3703 uint64_t refcount;
3704
3705 if (feature_get_refcount(spa, &feature, &refcount) != 0)
3706 continue;
3707
3708 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
3709 }
3710 }
3711
3712 /*
3713 * Store a list of pool features and their reference counts in the
3714 * config.
3715 *
3716 * The first time this is called on a spa, allocate a new nvlist, fetch
3717 * the pool features and reference counts from disk, then save the list
3718 * in the spa. In subsequent calls on the same spa use the saved nvlist
3719 * and refresh its values from the cached reference counts. This
3720 * ensures we don't block here on I/O on a suspended pool so 'zpool
3721 * clear' can resume the pool.
3722 */
3723 static void
3724 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3725 {
3726 nvlist_t *features;
3727
3728 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3729
3730 mutex_enter(&spa->spa_feat_stats_lock);
3731 features = spa->spa_feat_stats;
3732
3733 if (features != NULL) {
3734 spa_feature_stats_from_cache(spa, features);
3735 } else {
3736 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
3737 spa->spa_feat_stats = features;
3738 spa_feature_stats_from_disk(spa, features);
3739 }
3740
3741 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3742 features));
3743
3744 mutex_exit(&spa->spa_feat_stats_lock);
3745 }
3746
3747 int
3748 spa_get_stats(const char *name, nvlist_t **config,
3749 char *altroot, size_t buflen)
3750 {
3751 int error;
3752 spa_t *spa;
3753
3754 *config = NULL;
3755 error = spa_open_common(name, &spa, FTAG, NULL, config);
3756
3757 if (spa != NULL) {
3758 /*
3759 * This still leaves a window of inconsistency where the spares
3760 * or l2cache devices could change and the config would be
3761 * self-inconsistent.
3762 */
3763 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3764
3765 if (*config != NULL) {
3766 uint64_t loadtimes[2];
3767
3768 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3769 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3770 VERIFY(nvlist_add_uint64_array(*config,
3771 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3772
3773 VERIFY(nvlist_add_uint64(*config,
3774 ZPOOL_CONFIG_ERRCOUNT,
3775 spa_get_errlog_size(spa)) == 0);
3776
3777 if (spa_suspended(spa))
3778 VERIFY(nvlist_add_uint64(*config,
3779 ZPOOL_CONFIG_SUSPENDED,
3780 spa->spa_failmode) == 0);
3781
3782 spa_add_spares(spa, *config);
3783 spa_add_l2cache(spa, *config);
3784 spa_add_feature_stats(spa, *config);
3785 }
3786 }
3787
3788 /*
3789 * We want to get the alternate root even for faulted pools, so we cheat
3790 * and call spa_lookup() directly.
3791 */
3792 if (altroot) {
3793 if (spa == NULL) {
3794 mutex_enter(&spa_namespace_lock);
3795 spa = spa_lookup(name);
3796 if (spa)
3797 spa_altroot(spa, altroot, buflen);
3798 else
3799 altroot[0] = '\0';
3800 spa = NULL;
3801 mutex_exit(&spa_namespace_lock);
3802 } else {
3803 spa_altroot(spa, altroot, buflen);
3804 }
3805 }
3806
3807 if (spa != NULL) {
3808 spa_config_exit(spa, SCL_CONFIG, FTAG);
3809 spa_close(spa, FTAG);
3810 }
3811
3812 return (error);
3813 }
3814
3815 /*
3816 * Validate that the auxiliary device array is well formed. We must have an
3817 * array of nvlists, each which describes a valid leaf vdev. If this is an
3818 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3819 * specified, as long as they are well-formed.
3820 */
3821 static int
3822 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3823 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3824 vdev_labeltype_t label)
3825 {
3826 nvlist_t **dev;
3827 uint_t i, ndev;
3828 vdev_t *vd;
3829 int error;
3830
3831 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3832
3833 /*
3834 * It's acceptable to have no devs specified.
3835 */
3836 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3837 return (0);
3838
3839 if (ndev == 0)
3840 return (SET_ERROR(EINVAL));
3841
3842 /*
3843 * Make sure the pool is formatted with a version that supports this
3844 * device type.
3845 */
3846 if (spa_version(spa) < version)
3847 return (SET_ERROR(ENOTSUP));
3848
3849 /*
3850 * Set the pending device list so we correctly handle device in-use
3851 * checking.
3852 */
3853 sav->sav_pending = dev;
3854 sav->sav_npending = ndev;
3855
3856 for (i = 0; i < ndev; i++) {
3857 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3858 mode)) != 0)
3859 goto out;
3860
3861 if (!vd->vdev_ops->vdev_op_leaf) {
3862 vdev_free(vd);
3863 error = SET_ERROR(EINVAL);
3864 goto out;
3865 }
3866
3867 vd->vdev_top = vd;
3868
3869 if ((error = vdev_open(vd)) == 0 &&
3870 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3871 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3872 vd->vdev_guid) == 0);
3873 }
3874
3875 vdev_free(vd);
3876
3877 if (error &&
3878 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3879 goto out;
3880 else
3881 error = 0;
3882 }
3883
3884 out:
3885 sav->sav_pending = NULL;
3886 sav->sav_npending = 0;
3887 return (error);
3888 }
3889
3890 static int
3891 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3892 {
3893 int error;
3894
3895 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3896
3897 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3898 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3899 VDEV_LABEL_SPARE)) != 0) {
3900 return (error);
3901 }
3902
3903 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3904 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3905 VDEV_LABEL_L2CACHE));
3906 }
3907
3908 static void
3909 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3910 const char *config)
3911 {
3912 int i;
3913
3914 if (sav->sav_config != NULL) {
3915 nvlist_t **olddevs;
3916 uint_t oldndevs;
3917 nvlist_t **newdevs;
3918
3919 /*
3920 * Generate new dev list by concatenating with the
3921 * current dev list.
3922 */
3923 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3924 &olddevs, &oldndevs) == 0);
3925
3926 newdevs = kmem_alloc(sizeof (void *) *
3927 (ndevs + oldndevs), KM_SLEEP);
3928 for (i = 0; i < oldndevs; i++)
3929 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3930 KM_SLEEP) == 0);
3931 for (i = 0; i < ndevs; i++)
3932 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3933 KM_SLEEP) == 0);
3934
3935 VERIFY(nvlist_remove(sav->sav_config, config,
3936 DATA_TYPE_NVLIST_ARRAY) == 0);
3937
3938 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3939 config, newdevs, ndevs + oldndevs) == 0);
3940 for (i = 0; i < oldndevs + ndevs; i++)
3941 nvlist_free(newdevs[i]);
3942 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3943 } else {
3944 /*
3945 * Generate a new dev list.
3946 */
3947 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3948 KM_SLEEP) == 0);
3949 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3950 devs, ndevs) == 0);
3951 }
3952 }
3953
3954 /*
3955 * Stop and drop level 2 ARC devices
3956 */
3957 void
3958 spa_l2cache_drop(spa_t *spa)
3959 {
3960 vdev_t *vd;
3961 int i;
3962 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3963
3964 for (i = 0; i < sav->sav_count; i++) {
3965 uint64_t pool;
3966
3967 vd = sav->sav_vdevs[i];
3968 ASSERT(vd != NULL);
3969
3970 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3971 pool != 0ULL && l2arc_vdev_present(vd))
3972 l2arc_remove_vdev(vd);
3973 }
3974 }
3975
3976 /*
3977 * Pool Creation
3978 */
3979 int
3980 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3981 nvlist_t *zplprops)
3982 {
3983 spa_t *spa;
3984 char *altroot = NULL;
3985 vdev_t *rvd;
3986 dsl_pool_t *dp;
3987 dmu_tx_t *tx;
3988 int error = 0;
3989 uint64_t txg = TXG_INITIAL;
3990 nvlist_t **spares, **l2cache;
3991 uint_t nspares, nl2cache;
3992 uint64_t version, obj;
3993 boolean_t has_features;
3994 nvpair_t *elem;
3995 int c, i;
3996 char *poolname;
3997 nvlist_t *nvl;
3998
3999 if (nvlist_lookup_string(props, "tname", &poolname) != 0)
4000 poolname = (char *)pool;
4001
4002 /*
4003 * If this pool already exists, return failure.
4004 */
4005 mutex_enter(&spa_namespace_lock);
4006 if (spa_lookup(poolname) != NULL) {
4007 mutex_exit(&spa_namespace_lock);
4008 return (SET_ERROR(EEXIST));
4009 }
4010
4011 /*
4012 * Allocate a new spa_t structure.
4013 */
4014 nvl = fnvlist_alloc();
4015 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
4016 (void) nvlist_lookup_string(props,
4017 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4018 spa = spa_add(poolname, nvl, altroot);
4019 fnvlist_free(nvl);
4020 spa_activate(spa, spa_mode_global);
4021
4022 if (props && (error = spa_prop_validate(spa, props))) {
4023 spa_deactivate(spa);
4024 spa_remove(spa);
4025 mutex_exit(&spa_namespace_lock);
4026 return (error);
4027 }
4028
4029 /*
4030 * Temporary pool names should never be written to disk.
4031 */
4032 if (poolname != pool)
4033 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
4034
4035 has_features = B_FALSE;
4036 for (elem = nvlist_next_nvpair(props, NULL);
4037 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4038 if (zpool_prop_feature(nvpair_name(elem)))
4039 has_features = B_TRUE;
4040 }
4041
4042 if (has_features || nvlist_lookup_uint64(props,
4043 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4044 version = SPA_VERSION;
4045 }
4046 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4047
4048 spa->spa_first_txg = txg;
4049 spa->spa_uberblock.ub_txg = txg - 1;
4050 spa->spa_uberblock.ub_version = version;
4051 spa->spa_ubsync = spa->spa_uberblock;
4052 spa->spa_load_state = SPA_LOAD_CREATE;
4053
4054 /*
4055 * Create "The Godfather" zio to hold all async IOs
4056 */
4057 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4058 KM_SLEEP);
4059 for (i = 0; i < max_ncpus; i++) {
4060 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4061 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4062 ZIO_FLAG_GODFATHER);
4063 }
4064
4065 /*
4066 * Create the root vdev.
4067 */
4068 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4069
4070 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4071
4072 ASSERT(error != 0 || rvd != NULL);
4073 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4074
4075 if (error == 0 && !zfs_allocatable_devs(nvroot))
4076 error = SET_ERROR(EINVAL);
4077
4078 if (error == 0 &&
4079 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4080 (error = spa_validate_aux(spa, nvroot, txg,
4081 VDEV_ALLOC_ADD)) == 0) {
4082 for (c = 0; c < rvd->vdev_children; c++) {
4083 vdev_metaslab_set_size(rvd->vdev_child[c]);
4084 vdev_expand(rvd->vdev_child[c], txg);
4085 }
4086 }
4087
4088 spa_config_exit(spa, SCL_ALL, FTAG);
4089
4090 if (error != 0) {
4091 spa_unload(spa);
4092 spa_deactivate(spa);
4093 spa_remove(spa);
4094 mutex_exit(&spa_namespace_lock);
4095 return (error);
4096 }
4097
4098 /*
4099 * Get the list of spares, if specified.
4100 */
4101 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4102 &spares, &nspares) == 0) {
4103 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4104 KM_SLEEP) == 0);
4105 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4106 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4107 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4108 spa_load_spares(spa);
4109 spa_config_exit(spa, SCL_ALL, FTAG);
4110 spa->spa_spares.sav_sync = B_TRUE;
4111 }
4112
4113 /*
4114 * Get the list of level 2 cache devices, if specified.
4115 */
4116 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4117 &l2cache, &nl2cache) == 0) {
4118 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4119 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4120 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4121 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4122 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4123 spa_load_l2cache(spa);
4124 spa_config_exit(spa, SCL_ALL, FTAG);
4125 spa->spa_l2cache.sav_sync = B_TRUE;
4126 }
4127
4128 spa->spa_is_initializing = B_TRUE;
4129 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4130 spa->spa_meta_objset = dp->dp_meta_objset;
4131 spa->spa_is_initializing = B_FALSE;
4132
4133 /*
4134 * Create DDTs (dedup tables).
4135 */
4136 ddt_create(spa);
4137
4138 spa_update_dspace(spa);
4139
4140 tx = dmu_tx_create_assigned(dp, txg);
4141
4142 /*
4143 * Create the pool config object.
4144 */
4145 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4146 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4147 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4148
4149 if (zap_add(spa->spa_meta_objset,
4150 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4151 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4152 cmn_err(CE_PANIC, "failed to add pool config");
4153 }
4154
4155 if (spa_version(spa) >= SPA_VERSION_FEATURES)
4156 spa_feature_create_zap_objects(spa, tx);
4157
4158 if (zap_add(spa->spa_meta_objset,
4159 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4160 sizeof (uint64_t), 1, &version, tx) != 0) {
4161 cmn_err(CE_PANIC, "failed to add pool version");
4162 }
4163
4164 /* Newly created pools with the right version are always deflated. */
4165 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4166 spa->spa_deflate = TRUE;
4167 if (zap_add(spa->spa_meta_objset,
4168 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4169 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4170 cmn_err(CE_PANIC, "failed to add deflate");
4171 }
4172 }
4173
4174 /*
4175 * Create the deferred-free bpobj. Turn off compression
4176 * because sync-to-convergence takes longer if the blocksize
4177 * keeps changing.
4178 */
4179 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4180 dmu_object_set_compress(spa->spa_meta_objset, obj,
4181 ZIO_COMPRESS_OFF, tx);
4182 if (zap_add(spa->spa_meta_objset,
4183 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4184 sizeof (uint64_t), 1, &obj, tx) != 0) {
4185 cmn_err(CE_PANIC, "failed to add bpobj");
4186 }
4187 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4188 spa->spa_meta_objset, obj));
4189
4190 /*
4191 * Create the pool's history object.
4192 */
4193 if (version >= SPA_VERSION_ZPOOL_HISTORY)
4194 spa_history_create_obj(spa, tx);
4195
4196 /*
4197 * Generate some random noise for salted checksums to operate on.
4198 */
4199 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4200 sizeof (spa->spa_cksum_salt.zcs_bytes));
4201
4202 /*
4203 * Set pool properties.
4204 */
4205 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4206 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4207 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4208 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4209 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
4210
4211 if (props != NULL) {
4212 spa_configfile_set(spa, props, B_FALSE);
4213 spa_sync_props(props, tx);
4214 }
4215
4216 dmu_tx_commit(tx);
4217
4218 spa->spa_sync_on = B_TRUE;
4219 txg_sync_start(spa->spa_dsl_pool);
4220 mmp_thread_start(spa);
4221
4222 /*
4223 * We explicitly wait for the first transaction to complete so that our
4224 * bean counters are appropriately updated.
4225 */
4226 txg_wait_synced(spa->spa_dsl_pool, txg);
4227
4228 spa_config_sync(spa, B_FALSE, B_TRUE);
4229 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4230
4231 spa_history_log_version(spa, "create");
4232
4233 /*
4234 * Don't count references from objsets that are already closed
4235 * and are making their way through the eviction process.
4236 */
4237 spa_evicting_os_wait(spa);
4238 spa->spa_minref = refcount_count(&spa->spa_refcount);
4239 spa->spa_load_state = SPA_LOAD_NONE;
4240
4241 mutex_exit(&spa_namespace_lock);
4242
4243 return (0);
4244 }
4245
4246 /*
4247 * Import a non-root pool into the system.
4248 */
4249 int
4250 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4251 {
4252 spa_t *spa;
4253 char *altroot = NULL;
4254 spa_load_state_t state = SPA_LOAD_IMPORT;
4255 zpool_rewind_policy_t policy;
4256 uint64_t mode = spa_mode_global;
4257 uint64_t readonly = B_FALSE;
4258 int error;
4259 nvlist_t *nvroot;
4260 nvlist_t **spares, **l2cache;
4261 uint_t nspares, nl2cache;
4262
4263 /*
4264 * If a pool with this name exists, return failure.
4265 */
4266 mutex_enter(&spa_namespace_lock);
4267 if (spa_lookup(pool) != NULL) {
4268 mutex_exit(&spa_namespace_lock);
4269 return (SET_ERROR(EEXIST));
4270 }
4271
4272 /*
4273 * Create and initialize the spa structure.
4274 */
4275 (void) nvlist_lookup_string(props,
4276 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4277 (void) nvlist_lookup_uint64(props,
4278 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4279 if (readonly)
4280 mode = FREAD;
4281 spa = spa_add(pool, config, altroot);
4282 spa->spa_import_flags = flags;
4283
4284 /*
4285 * Verbatim import - Take a pool and insert it into the namespace
4286 * as if it had been loaded at boot.
4287 */
4288 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4289 if (props != NULL)
4290 spa_configfile_set(spa, props, B_FALSE);
4291
4292 spa_config_sync(spa, B_FALSE, B_TRUE);
4293 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4294
4295 mutex_exit(&spa_namespace_lock);
4296 return (0);
4297 }
4298
4299 spa_activate(spa, mode);
4300
4301 /*
4302 * Don't start async tasks until we know everything is healthy.
4303 */
4304 spa_async_suspend(spa);
4305
4306 zpool_get_rewind_policy(config, &policy);
4307 if (policy.zrp_request & ZPOOL_DO_REWIND)
4308 state = SPA_LOAD_RECOVER;
4309
4310 /*
4311 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
4312 * because the user-supplied config is actually the one to trust when
4313 * doing an import.
4314 */
4315 if (state != SPA_LOAD_RECOVER)
4316 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4317
4318 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4319 policy.zrp_request);
4320
4321 /*
4322 * Propagate anything learned while loading the pool and pass it
4323 * back to caller (i.e. rewind info, missing devices, etc).
4324 */
4325 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4326 spa->spa_load_info) == 0);
4327
4328 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4329 /*
4330 * Toss any existing sparelist, as it doesn't have any validity
4331 * anymore, and conflicts with spa_has_spare().
4332 */
4333 if (spa->spa_spares.sav_config) {
4334 nvlist_free(spa->spa_spares.sav_config);
4335 spa->spa_spares.sav_config = NULL;
4336 spa_load_spares(spa);
4337 }
4338 if (spa->spa_l2cache.sav_config) {
4339 nvlist_free(spa->spa_l2cache.sav_config);
4340 spa->spa_l2cache.sav_config = NULL;
4341 spa_load_l2cache(spa);
4342 }
4343
4344 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4345 &nvroot) == 0);
4346 spa_config_exit(spa, SCL_ALL, FTAG);
4347
4348 if (props != NULL)
4349 spa_configfile_set(spa, props, B_FALSE);
4350
4351 if (error != 0 || (props && spa_writeable(spa) &&
4352 (error = spa_prop_set(spa, props)))) {
4353 spa_unload(spa);
4354 spa_deactivate(spa);
4355 spa_remove(spa);
4356 mutex_exit(&spa_namespace_lock);
4357 return (error);
4358 }
4359
4360 spa_async_resume(spa);
4361
4362 /*
4363 * Override any spares and level 2 cache devices as specified by
4364 * the user, as these may have correct device names/devids, etc.
4365 */
4366 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4367 &spares, &nspares) == 0) {
4368 if (spa->spa_spares.sav_config)
4369 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4370 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4371 else
4372 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4373 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4374 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4375 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4376 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4377 spa_load_spares(spa);
4378 spa_config_exit(spa, SCL_ALL, FTAG);
4379 spa->spa_spares.sav_sync = B_TRUE;
4380 }
4381 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4382 &l2cache, &nl2cache) == 0) {
4383 if (spa->spa_l2cache.sav_config)
4384 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4385 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4386 else
4387 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4388 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4389 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4390 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4391 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4392 spa_load_l2cache(spa);
4393 spa_config_exit(spa, SCL_ALL, FTAG);
4394 spa->spa_l2cache.sav_sync = B_TRUE;
4395 }
4396
4397 /*
4398 * Check for any removed devices.
4399 */
4400 if (spa->spa_autoreplace) {
4401 spa_aux_check_removed(&spa->spa_spares);
4402 spa_aux_check_removed(&spa->spa_l2cache);
4403 }
4404
4405 if (spa_writeable(spa)) {
4406 /*
4407 * Update the config cache to include the newly-imported pool.
4408 */
4409 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4410 }
4411
4412 /*
4413 * It's possible that the pool was expanded while it was exported.
4414 * We kick off an async task to handle this for us.
4415 */
4416 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4417
4418 spa_history_log_version(spa, "import");
4419
4420 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4421
4422 zvol_create_minors(spa, pool, B_TRUE);
4423
4424 mutex_exit(&spa_namespace_lock);
4425
4426 return (0);
4427 }
4428
4429 nvlist_t *
4430 spa_tryimport(nvlist_t *tryconfig)
4431 {
4432 nvlist_t *config = NULL;
4433 char *poolname;
4434 spa_t *spa;
4435 uint64_t state;
4436 int error;
4437
4438 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4439 return (NULL);
4440
4441 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4442 return (NULL);
4443
4444 /*
4445 * Create and initialize the spa structure.
4446 */
4447 mutex_enter(&spa_namespace_lock);
4448 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4449 spa_activate(spa, FREAD);
4450
4451 /*
4452 * Pass off the heavy lifting to spa_load().
4453 * Pass TRUE for mosconfig because the user-supplied config
4454 * is actually the one to trust when doing an import.
4455 */
4456 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4457
4458 /*
4459 * If 'tryconfig' was at least parsable, return the current config.
4460 */
4461 if (spa->spa_root_vdev != NULL) {
4462 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4463 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4464 poolname) == 0);
4465 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4466 state) == 0);
4467 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4468 spa->spa_uberblock.ub_timestamp) == 0);
4469 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4470 spa->spa_load_info) == 0);
4471 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
4472 spa->spa_errata) == 0);
4473
4474 /*
4475 * If the bootfs property exists on this pool then we
4476 * copy it out so that external consumers can tell which
4477 * pools are bootable.
4478 */
4479 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4480 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4481
4482 /*
4483 * We have to play games with the name since the
4484 * pool was opened as TRYIMPORT_NAME.
4485 */
4486 if (dsl_dsobj_to_dsname(spa_name(spa),
4487 spa->spa_bootfs, tmpname) == 0) {
4488 char *cp;
4489 char *dsname;
4490
4491 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4492
4493 cp = strchr(tmpname, '/');
4494 if (cp == NULL) {
4495 (void) strlcpy(dsname, tmpname,
4496 MAXPATHLEN);
4497 } else {
4498 (void) snprintf(dsname, MAXPATHLEN,
4499 "%s/%s", poolname, ++cp);
4500 }
4501 VERIFY(nvlist_add_string(config,
4502 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4503 kmem_free(dsname, MAXPATHLEN);
4504 }
4505 kmem_free(tmpname, MAXPATHLEN);
4506 }
4507
4508 /*
4509 * Add the list of hot spares and level 2 cache devices.
4510 */
4511 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4512 spa_add_spares(spa, config);
4513 spa_add_l2cache(spa, config);
4514 spa_config_exit(spa, SCL_CONFIG, FTAG);
4515 }
4516
4517 spa_unload(spa);
4518 spa_deactivate(spa);
4519 spa_remove(spa);
4520 mutex_exit(&spa_namespace_lock);
4521
4522 return (config);
4523 }
4524
4525 /*
4526 * Pool export/destroy
4527 *
4528 * The act of destroying or exporting a pool is very simple. We make sure there
4529 * is no more pending I/O and any references to the pool are gone. Then, we
4530 * update the pool state and sync all the labels to disk, removing the
4531 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4532 * we don't sync the labels or remove the configuration cache.
4533 */
4534 static int
4535 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4536 boolean_t force, boolean_t hardforce)
4537 {
4538 spa_t *spa;
4539
4540 if (oldconfig)
4541 *oldconfig = NULL;
4542
4543 if (!(spa_mode_global & FWRITE))
4544 return (SET_ERROR(EROFS));
4545
4546 mutex_enter(&spa_namespace_lock);
4547 if ((spa = spa_lookup(pool)) == NULL) {
4548 mutex_exit(&spa_namespace_lock);
4549 return (SET_ERROR(ENOENT));
4550 }
4551
4552 /*
4553 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4554 * reacquire the namespace lock, and see if we can export.
4555 */
4556 spa_open_ref(spa, FTAG);
4557 mutex_exit(&spa_namespace_lock);
4558 spa_async_suspend(spa);
4559 if (spa->spa_zvol_taskq) {
4560 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
4561 taskq_wait(spa->spa_zvol_taskq);
4562 }
4563 mutex_enter(&spa_namespace_lock);
4564 spa_close(spa, FTAG);
4565
4566 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
4567 goto export_spa;
4568 /*
4569 * The pool will be in core if it's openable, in which case we can
4570 * modify its state. Objsets may be open only because they're dirty,
4571 * so we have to force it to sync before checking spa_refcnt.
4572 */
4573 if (spa->spa_sync_on) {
4574 txg_wait_synced(spa->spa_dsl_pool, 0);
4575 spa_evicting_os_wait(spa);
4576 }
4577
4578 /*
4579 * A pool cannot be exported or destroyed if there are active
4580 * references. If we are resetting a pool, allow references by
4581 * fault injection handlers.
4582 */
4583 if (!spa_refcount_zero(spa) ||
4584 (spa->spa_inject_ref != 0 &&
4585 new_state != POOL_STATE_UNINITIALIZED)) {
4586 spa_async_resume(spa);
4587 mutex_exit(&spa_namespace_lock);
4588 return (SET_ERROR(EBUSY));
4589 }
4590
4591 if (spa->spa_sync_on) {
4592 /*
4593 * A pool cannot be exported if it has an active shared spare.
4594 * This is to prevent other pools stealing the active spare
4595 * from an exported pool. At user's own will, such pool can
4596 * be forcedly exported.
4597 */
4598 if (!force && new_state == POOL_STATE_EXPORTED &&
4599 spa_has_active_shared_spare(spa)) {
4600 spa_async_resume(spa);
4601 mutex_exit(&spa_namespace_lock);
4602 return (SET_ERROR(EXDEV));
4603 }
4604
4605 /*
4606 * We want this to be reflected on every label,
4607 * so mark them all dirty. spa_unload() will do the
4608 * final sync that pushes these changes out.
4609 */
4610 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4611 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4612 spa->spa_state = new_state;
4613 spa->spa_final_txg = spa_last_synced_txg(spa) +
4614 TXG_DEFER_SIZE + 1;
4615 vdev_config_dirty(spa->spa_root_vdev);
4616 spa_config_exit(spa, SCL_ALL, FTAG);
4617 }
4618 }
4619
4620 export_spa:
4621 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
4622
4623 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4624 spa_unload(spa);
4625 spa_deactivate(spa);
4626 }
4627
4628 if (oldconfig && spa->spa_config)
4629 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4630
4631 if (new_state != POOL_STATE_UNINITIALIZED) {
4632 if (!hardforce)
4633 spa_config_sync(spa, B_TRUE, B_TRUE);
4634 spa_remove(spa);
4635 }
4636 mutex_exit(&spa_namespace_lock);
4637
4638 return (0);
4639 }
4640
4641 /*
4642 * Destroy a storage pool.
4643 */
4644 int
4645 spa_destroy(char *pool)
4646 {
4647 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4648 B_FALSE, B_FALSE));
4649 }
4650
4651 /*
4652 * Export a storage pool.
4653 */
4654 int
4655 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4656 boolean_t hardforce)
4657 {
4658 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4659 force, hardforce));
4660 }
4661
4662 /*
4663 * Similar to spa_export(), this unloads the spa_t without actually removing it
4664 * from the namespace in any way.
4665 */
4666 int
4667 spa_reset(char *pool)
4668 {
4669 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4670 B_FALSE, B_FALSE));
4671 }
4672
4673 /*
4674 * ==========================================================================
4675 * Device manipulation
4676 * ==========================================================================
4677 */
4678
4679 /*
4680 * Add a device to a storage pool.
4681 */
4682 int
4683 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4684 {
4685 uint64_t txg, id;
4686 int error;
4687 vdev_t *rvd = spa->spa_root_vdev;
4688 vdev_t *vd, *tvd;
4689 nvlist_t **spares, **l2cache;
4690 uint_t nspares, nl2cache;
4691 int c;
4692
4693 ASSERT(spa_writeable(spa));
4694
4695 txg = spa_vdev_enter(spa);
4696
4697 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4698 VDEV_ALLOC_ADD)) != 0)
4699 return (spa_vdev_exit(spa, NULL, txg, error));
4700
4701 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4702
4703 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4704 &nspares) != 0)
4705 nspares = 0;
4706
4707 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4708 &nl2cache) != 0)
4709 nl2cache = 0;
4710
4711 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4712 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4713
4714 if (vd->vdev_children != 0 &&
4715 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4716 return (spa_vdev_exit(spa, vd, txg, error));
4717
4718 /*
4719 * We must validate the spares and l2cache devices after checking the
4720 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4721 */
4722 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4723 return (spa_vdev_exit(spa, vd, txg, error));
4724
4725 /*
4726 * Transfer each new top-level vdev from vd to rvd.
4727 */
4728 for (c = 0; c < vd->vdev_children; c++) {
4729
4730 /*
4731 * Set the vdev id to the first hole, if one exists.
4732 */
4733 for (id = 0; id < rvd->vdev_children; id++) {
4734 if (rvd->vdev_child[id]->vdev_ishole) {
4735 vdev_free(rvd->vdev_child[id]);
4736 break;
4737 }
4738 }
4739 tvd = vd->vdev_child[c];
4740 vdev_remove_child(vd, tvd);
4741 tvd->vdev_id = id;
4742 vdev_add_child(rvd, tvd);
4743 vdev_config_dirty(tvd);
4744 }
4745
4746 if (nspares != 0) {
4747 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4748 ZPOOL_CONFIG_SPARES);
4749 spa_load_spares(spa);
4750 spa->spa_spares.sav_sync = B_TRUE;
4751 }
4752
4753 if (nl2cache != 0) {
4754 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4755 ZPOOL_CONFIG_L2CACHE);
4756 spa_load_l2cache(spa);
4757 spa->spa_l2cache.sav_sync = B_TRUE;
4758 }
4759
4760 /*
4761 * We have to be careful when adding new vdevs to an existing pool.
4762 * If other threads start allocating from these vdevs before we
4763 * sync the config cache, and we lose power, then upon reboot we may
4764 * fail to open the pool because there are DVAs that the config cache
4765 * can't translate. Therefore, we first add the vdevs without
4766 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4767 * and then let spa_config_update() initialize the new metaslabs.
4768 *
4769 * spa_load() checks for added-but-not-initialized vdevs, so that
4770 * if we lose power at any point in this sequence, the remaining
4771 * steps will be completed the next time we load the pool.
4772 */
4773 (void) spa_vdev_exit(spa, vd, txg, 0);
4774
4775 mutex_enter(&spa_namespace_lock);
4776 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4777 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
4778 mutex_exit(&spa_namespace_lock);
4779
4780 return (0);
4781 }
4782
4783 /*
4784 * Attach a device to a mirror. The arguments are the path to any device
4785 * in the mirror, and the nvroot for the new device. If the path specifies
4786 * a device that is not mirrored, we automatically insert the mirror vdev.
4787 *
4788 * If 'replacing' is specified, the new device is intended to replace the
4789 * existing device; in this case the two devices are made into their own
4790 * mirror using the 'replacing' vdev, which is functionally identical to
4791 * the mirror vdev (it actually reuses all the same ops) but has a few
4792 * extra rules: you can't attach to it after it's been created, and upon
4793 * completion of resilvering, the first disk (the one being replaced)
4794 * is automatically detached.
4795 */
4796 int
4797 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4798 {
4799 uint64_t txg, dtl_max_txg;
4800 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4801 vdev_ops_t *pvops;
4802 char *oldvdpath, *newvdpath;
4803 int newvd_isspare;
4804 int error;
4805 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
4806
4807 ASSERT(spa_writeable(spa));
4808
4809 txg = spa_vdev_enter(spa);
4810
4811 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4812
4813 if (oldvd == NULL)
4814 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4815
4816 if (!oldvd->vdev_ops->vdev_op_leaf)
4817 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4818
4819 pvd = oldvd->vdev_parent;
4820
4821 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4822 VDEV_ALLOC_ATTACH)) != 0)
4823 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4824
4825 if (newrootvd->vdev_children != 1)
4826 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4827
4828 newvd = newrootvd->vdev_child[0];
4829
4830 if (!newvd->vdev_ops->vdev_op_leaf)
4831 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4832
4833 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4834 return (spa_vdev_exit(spa, newrootvd, txg, error));
4835
4836 /*
4837 * Spares can't replace logs
4838 */
4839 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4840 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4841
4842 if (!replacing) {
4843 /*
4844 * For attach, the only allowable parent is a mirror or the root
4845 * vdev.
4846 */
4847 if (pvd->vdev_ops != &vdev_mirror_ops &&
4848 pvd->vdev_ops != &vdev_root_ops)
4849 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4850
4851 pvops = &vdev_mirror_ops;
4852 } else {
4853 /*
4854 * Active hot spares can only be replaced by inactive hot
4855 * spares.
4856 */
4857 if (pvd->vdev_ops == &vdev_spare_ops &&
4858 oldvd->vdev_isspare &&
4859 !spa_has_spare(spa, newvd->vdev_guid))
4860 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4861
4862 /*
4863 * If the source is a hot spare, and the parent isn't already a
4864 * spare, then we want to create a new hot spare. Otherwise, we
4865 * want to create a replacing vdev. The user is not allowed to
4866 * attach to a spared vdev child unless the 'isspare' state is
4867 * the same (spare replaces spare, non-spare replaces
4868 * non-spare).
4869 */
4870 if (pvd->vdev_ops == &vdev_replacing_ops &&
4871 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4872 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4873 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4874 newvd->vdev_isspare != oldvd->vdev_isspare) {
4875 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4876 }
4877
4878 if (newvd->vdev_isspare)
4879 pvops = &vdev_spare_ops;
4880 else
4881 pvops = &vdev_replacing_ops;
4882 }
4883
4884 /*
4885 * Make sure the new device is big enough.
4886 */
4887 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4888 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4889
4890 /*
4891 * The new device cannot have a higher alignment requirement
4892 * than the top-level vdev.
4893 */
4894 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4895 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4896
4897 /*
4898 * If this is an in-place replacement, update oldvd's path and devid
4899 * to make it distinguishable from newvd, and unopenable from now on.
4900 */
4901 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4902 spa_strfree(oldvd->vdev_path);
4903 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4904 KM_SLEEP);
4905 (void) sprintf(oldvd->vdev_path, "%s/%s",
4906 newvd->vdev_path, "old");
4907 if (oldvd->vdev_devid != NULL) {
4908 spa_strfree(oldvd->vdev_devid);
4909 oldvd->vdev_devid = NULL;
4910 }
4911 }
4912
4913 /* mark the device being resilvered */
4914 newvd->vdev_resilver_txg = txg;
4915
4916 /*
4917 * If the parent is not a mirror, or if we're replacing, insert the new
4918 * mirror/replacing/spare vdev above oldvd.
4919 */
4920 if (pvd->vdev_ops != pvops)
4921 pvd = vdev_add_parent(oldvd, pvops);
4922
4923 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4924 ASSERT(pvd->vdev_ops == pvops);
4925 ASSERT(oldvd->vdev_parent == pvd);
4926
4927 /*
4928 * Extract the new device from its root and add it to pvd.
4929 */
4930 vdev_remove_child(newrootvd, newvd);
4931 newvd->vdev_id = pvd->vdev_children;
4932 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4933 vdev_add_child(pvd, newvd);
4934
4935 /*
4936 * Reevaluate the parent vdev state.
4937 */
4938 vdev_propagate_state(pvd);
4939
4940 tvd = newvd->vdev_top;
4941 ASSERT(pvd->vdev_top == tvd);
4942 ASSERT(tvd->vdev_parent == rvd);
4943
4944 vdev_config_dirty(tvd);
4945
4946 /*
4947 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4948 * for any dmu_sync-ed blocks. It will propagate upward when
4949 * spa_vdev_exit() calls vdev_dtl_reassess().
4950 */
4951 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4952
4953 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4954 dtl_max_txg - TXG_INITIAL);
4955
4956 if (newvd->vdev_isspare) {
4957 spa_spare_activate(newvd);
4958 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
4959 }
4960
4961 oldvdpath = spa_strdup(oldvd->vdev_path);
4962 newvdpath = spa_strdup(newvd->vdev_path);
4963 newvd_isspare = newvd->vdev_isspare;
4964
4965 /*
4966 * Mark newvd's DTL dirty in this txg.
4967 */
4968 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4969
4970 /*
4971 * Schedule the resilver to restart in the future. We do this to
4972 * ensure that dmu_sync-ed blocks have been stitched into the
4973 * respective datasets.
4974 */
4975 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4976
4977 if (spa->spa_bootfs)
4978 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4979
4980 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
4981
4982 /*
4983 * Commit the config
4984 */
4985 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4986
4987 spa_history_log_internal(spa, "vdev attach", NULL,
4988 "%s vdev=%s %s vdev=%s",
4989 replacing && newvd_isspare ? "spare in" :
4990 replacing ? "replace" : "attach", newvdpath,
4991 replacing ? "for" : "to", oldvdpath);
4992
4993 spa_strfree(oldvdpath);
4994 spa_strfree(newvdpath);
4995
4996 return (0);
4997 }
4998
4999 /*
5000 * Detach a device from a mirror or replacing vdev.
5001 *
5002 * If 'replace_done' is specified, only detach if the parent
5003 * is a replacing vdev.
5004 */
5005 int
5006 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5007 {
5008 uint64_t txg;
5009 int error;
5010 vdev_t *vd, *pvd, *cvd, *tvd;
5011 boolean_t unspare = B_FALSE;
5012 uint64_t unspare_guid = 0;
5013 char *vdpath;
5014 int c, t;
5015 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
5016 ASSERT(spa_writeable(spa));
5017
5018 txg = spa_vdev_enter(spa);
5019
5020 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5021
5022 if (vd == NULL)
5023 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5024
5025 if (!vd->vdev_ops->vdev_op_leaf)
5026 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5027
5028 pvd = vd->vdev_parent;
5029
5030 /*
5031 * If the parent/child relationship is not as expected, don't do it.
5032 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5033 * vdev that's replacing B with C. The user's intent in replacing
5034 * is to go from M(A,B) to M(A,C). If the user decides to cancel
5035 * the replace by detaching C, the expected behavior is to end up
5036 * M(A,B). But suppose that right after deciding to detach C,
5037 * the replacement of B completes. We would have M(A,C), and then
5038 * ask to detach C, which would leave us with just A -- not what
5039 * the user wanted. To prevent this, we make sure that the
5040 * parent/child relationship hasn't changed -- in this example,
5041 * that C's parent is still the replacing vdev R.
5042 */
5043 if (pvd->vdev_guid != pguid && pguid != 0)
5044 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5045
5046 /*
5047 * Only 'replacing' or 'spare' vdevs can be replaced.
5048 */
5049 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5050 pvd->vdev_ops != &vdev_spare_ops)
5051 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5052
5053 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5054 spa_version(spa) >= SPA_VERSION_SPARES);
5055
5056 /*
5057 * Only mirror, replacing, and spare vdevs support detach.
5058 */
5059 if (pvd->vdev_ops != &vdev_replacing_ops &&
5060 pvd->vdev_ops != &vdev_mirror_ops &&
5061 pvd->vdev_ops != &vdev_spare_ops)
5062 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5063
5064 /*
5065 * If this device has the only valid copy of some data,
5066 * we cannot safely detach it.
5067 */
5068 if (vdev_dtl_required(vd))
5069 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5070
5071 ASSERT(pvd->vdev_children >= 2);
5072
5073 /*
5074 * If we are detaching the second disk from a replacing vdev, then
5075 * check to see if we changed the original vdev's path to have "/old"
5076 * at the end in spa_vdev_attach(). If so, undo that change now.
5077 */
5078 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5079 vd->vdev_path != NULL) {
5080 size_t len = strlen(vd->vdev_path);
5081
5082 for (c = 0; c < pvd->vdev_children; c++) {
5083 cvd = pvd->vdev_child[c];
5084
5085 if (cvd == vd || cvd->vdev_path == NULL)
5086 continue;
5087
5088 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5089 strcmp(cvd->vdev_path + len, "/old") == 0) {
5090 spa_strfree(cvd->vdev_path);
5091 cvd->vdev_path = spa_strdup(vd->vdev_path);
5092 break;
5093 }
5094 }
5095 }
5096
5097 /*
5098 * If we are detaching the original disk from a spare, then it implies
5099 * that the spare should become a real disk, and be removed from the
5100 * active spare list for the pool.
5101 */
5102 if (pvd->vdev_ops == &vdev_spare_ops &&
5103 vd->vdev_id == 0 &&
5104 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5105 unspare = B_TRUE;
5106
5107 /*
5108 * Erase the disk labels so the disk can be used for other things.
5109 * This must be done after all other error cases are handled,
5110 * but before we disembowel vd (so we can still do I/O to it).
5111 * But if we can't do it, don't treat the error as fatal --
5112 * it may be that the unwritability of the disk is the reason
5113 * it's being detached!
5114 */
5115 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5116
5117 /*
5118 * Remove vd from its parent and compact the parent's children.
5119 */
5120 vdev_remove_child(pvd, vd);
5121 vdev_compact_children(pvd);
5122
5123 /*
5124 * Remember one of the remaining children so we can get tvd below.
5125 */
5126 cvd = pvd->vdev_child[pvd->vdev_children - 1];
5127
5128 /*
5129 * If we need to remove the remaining child from the list of hot spares,
5130 * do it now, marking the vdev as no longer a spare in the process.
5131 * We must do this before vdev_remove_parent(), because that can
5132 * change the GUID if it creates a new toplevel GUID. For a similar
5133 * reason, we must remove the spare now, in the same txg as the detach;
5134 * otherwise someone could attach a new sibling, change the GUID, and
5135 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5136 */
5137 if (unspare) {
5138 ASSERT(cvd->vdev_isspare);
5139 spa_spare_remove(cvd);
5140 unspare_guid = cvd->vdev_guid;
5141 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5142 cvd->vdev_unspare = B_TRUE;
5143 }
5144
5145 /*
5146 * If the parent mirror/replacing vdev only has one child,
5147 * the parent is no longer needed. Remove it from the tree.
5148 */
5149 if (pvd->vdev_children == 1) {
5150 if (pvd->vdev_ops == &vdev_spare_ops)
5151 cvd->vdev_unspare = B_FALSE;
5152 vdev_remove_parent(cvd);
5153 }
5154
5155
5156 /*
5157 * We don't set tvd until now because the parent we just removed
5158 * may have been the previous top-level vdev.
5159 */
5160 tvd = cvd->vdev_top;
5161 ASSERT(tvd->vdev_parent == rvd);
5162
5163 /*
5164 * Reevaluate the parent vdev state.
5165 */
5166 vdev_propagate_state(cvd);
5167
5168 /*
5169 * If the 'autoexpand' property is set on the pool then automatically
5170 * try to expand the size of the pool. For example if the device we
5171 * just detached was smaller than the others, it may be possible to
5172 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5173 * first so that we can obtain the updated sizes of the leaf vdevs.
5174 */
5175 if (spa->spa_autoexpand) {
5176 vdev_reopen(tvd);
5177 vdev_expand(tvd, txg);
5178 }
5179
5180 vdev_config_dirty(tvd);
5181
5182 /*
5183 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
5184 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5185 * But first make sure we're not on any *other* txg's DTL list, to
5186 * prevent vd from being accessed after it's freed.
5187 */
5188 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
5189 for (t = 0; t < TXG_SIZE; t++)
5190 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5191 vd->vdev_detached = B_TRUE;
5192 vdev_dirty(tvd, VDD_DTL, vd, txg);
5193
5194 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
5195
5196 /* hang on to the spa before we release the lock */
5197 spa_open_ref(spa, FTAG);
5198
5199 error = spa_vdev_exit(spa, vd, txg, 0);
5200
5201 spa_history_log_internal(spa, "detach", NULL,
5202 "vdev=%s", vdpath);
5203 spa_strfree(vdpath);
5204
5205 /*
5206 * If this was the removal of the original device in a hot spare vdev,
5207 * then we want to go through and remove the device from the hot spare
5208 * list of every other pool.
5209 */
5210 if (unspare) {
5211 spa_t *altspa = NULL;
5212
5213 mutex_enter(&spa_namespace_lock);
5214 while ((altspa = spa_next(altspa)) != NULL) {
5215 if (altspa->spa_state != POOL_STATE_ACTIVE ||
5216 altspa == spa)
5217 continue;
5218
5219 spa_open_ref(altspa, FTAG);
5220 mutex_exit(&spa_namespace_lock);
5221 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5222 mutex_enter(&spa_namespace_lock);
5223 spa_close(altspa, FTAG);
5224 }
5225 mutex_exit(&spa_namespace_lock);
5226
5227 /* search the rest of the vdevs for spares to remove */
5228 spa_vdev_resilver_done(spa);
5229 }
5230
5231 /* all done with the spa; OK to release */
5232 mutex_enter(&spa_namespace_lock);
5233 spa_close(spa, FTAG);
5234 mutex_exit(&spa_namespace_lock);
5235
5236 return (error);
5237 }
5238
5239 /*
5240 * Split a set of devices from their mirrors, and create a new pool from them.
5241 */
5242 int
5243 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5244 nvlist_t *props, boolean_t exp)
5245 {
5246 int error = 0;
5247 uint64_t txg, *glist;
5248 spa_t *newspa;
5249 uint_t c, children, lastlog;
5250 nvlist_t **child, *nvl, *tmp;
5251 dmu_tx_t *tx;
5252 char *altroot = NULL;
5253 vdev_t *rvd, **vml = NULL; /* vdev modify list */
5254 boolean_t activate_slog;
5255
5256 ASSERT(spa_writeable(spa));
5257
5258 txg = spa_vdev_enter(spa);
5259
5260 /* clear the log and flush everything up to now */
5261 activate_slog = spa_passivate_log(spa);
5262 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5263 error = spa_offline_log(spa);
5264 txg = spa_vdev_config_enter(spa);
5265
5266 if (activate_slog)
5267 spa_activate_log(spa);
5268
5269 if (error != 0)
5270 return (spa_vdev_exit(spa, NULL, txg, error));
5271
5272 /* check new spa name before going any further */
5273 if (spa_lookup(newname) != NULL)
5274 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5275
5276 /*
5277 * scan through all the children to ensure they're all mirrors
5278 */
5279 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5280 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5281 &children) != 0)
5282 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5283
5284 /* first, check to ensure we've got the right child count */
5285 rvd = spa->spa_root_vdev;
5286 lastlog = 0;
5287 for (c = 0; c < rvd->vdev_children; c++) {
5288 vdev_t *vd = rvd->vdev_child[c];
5289
5290 /* don't count the holes & logs as children */
5291 if (vd->vdev_islog || vd->vdev_ishole) {
5292 if (lastlog == 0)
5293 lastlog = c;
5294 continue;
5295 }
5296
5297 lastlog = 0;
5298 }
5299 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5300 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5301
5302 /* next, ensure no spare or cache devices are part of the split */
5303 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5304 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5305 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5306
5307 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5308 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5309
5310 /* then, loop over each vdev and validate it */
5311 for (c = 0; c < children; c++) {
5312 uint64_t is_hole = 0;
5313
5314 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5315 &is_hole);
5316
5317 if (is_hole != 0) {
5318 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5319 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5320 continue;
5321 } else {
5322 error = SET_ERROR(EINVAL);
5323 break;
5324 }
5325 }
5326
5327 /* which disk is going to be split? */
5328 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5329 &glist[c]) != 0) {
5330 error = SET_ERROR(EINVAL);
5331 break;
5332 }
5333
5334 /* look it up in the spa */
5335 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5336 if (vml[c] == NULL) {
5337 error = SET_ERROR(ENODEV);
5338 break;
5339 }
5340
5341 /* make sure there's nothing stopping the split */
5342 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5343 vml[c]->vdev_islog ||
5344 vml[c]->vdev_ishole ||
5345 vml[c]->vdev_isspare ||
5346 vml[c]->vdev_isl2cache ||
5347 !vdev_writeable(vml[c]) ||
5348 vml[c]->vdev_children != 0 ||
5349 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5350 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5351 error = SET_ERROR(EINVAL);
5352 break;
5353 }
5354
5355 if (vdev_dtl_required(vml[c])) {
5356 error = SET_ERROR(EBUSY);
5357 break;
5358 }
5359
5360 /* we need certain info from the top level */
5361 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5362 vml[c]->vdev_top->vdev_ms_array) == 0);
5363 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5364 vml[c]->vdev_top->vdev_ms_shift) == 0);
5365 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5366 vml[c]->vdev_top->vdev_asize) == 0);
5367 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5368 vml[c]->vdev_top->vdev_ashift) == 0);
5369
5370 /* transfer per-vdev ZAPs */
5371 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5372 VERIFY0(nvlist_add_uint64(child[c],
5373 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5374
5375 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5376 VERIFY0(nvlist_add_uint64(child[c],
5377 ZPOOL_CONFIG_VDEV_TOP_ZAP,
5378 vml[c]->vdev_parent->vdev_top_zap));
5379 }
5380
5381 if (error != 0) {
5382 kmem_free(vml, children * sizeof (vdev_t *));
5383 kmem_free(glist, children * sizeof (uint64_t));
5384 return (spa_vdev_exit(spa, NULL, txg, error));
5385 }
5386
5387 /* stop writers from using the disks */
5388 for (c = 0; c < children; c++) {
5389 if (vml[c] != NULL)
5390 vml[c]->vdev_offline = B_TRUE;
5391 }
5392 vdev_reopen(spa->spa_root_vdev);
5393
5394 /*
5395 * Temporarily record the splitting vdevs in the spa config. This
5396 * will disappear once the config is regenerated.
5397 */
5398 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5399 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5400 glist, children) == 0);
5401 kmem_free(glist, children * sizeof (uint64_t));
5402
5403 mutex_enter(&spa->spa_props_lock);
5404 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5405 nvl) == 0);
5406 mutex_exit(&spa->spa_props_lock);
5407 spa->spa_config_splitting = nvl;
5408 vdev_config_dirty(spa->spa_root_vdev);
5409
5410 /* configure and create the new pool */
5411 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5412 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5413 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5414 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5415 spa_version(spa)) == 0);
5416 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5417 spa->spa_config_txg) == 0);
5418 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5419 spa_generate_guid(NULL)) == 0);
5420 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5421 (void) nvlist_lookup_string(props,
5422 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5423
5424 /* add the new pool to the namespace */
5425 newspa = spa_add(newname, config, altroot);
5426 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5427 newspa->spa_config_txg = spa->spa_config_txg;
5428 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5429
5430 /* release the spa config lock, retaining the namespace lock */
5431 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5432
5433 if (zio_injection_enabled)
5434 zio_handle_panic_injection(spa, FTAG, 1);
5435
5436 spa_activate(newspa, spa_mode_global);
5437 spa_async_suspend(newspa);
5438
5439 /* create the new pool from the disks of the original pool */
5440 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5441 if (error)
5442 goto out;
5443
5444 /* if that worked, generate a real config for the new pool */
5445 if (newspa->spa_root_vdev != NULL) {
5446 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5447 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5448 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5449 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5450 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5451 B_TRUE));
5452 }
5453
5454 /* set the props */
5455 if (props != NULL) {
5456 spa_configfile_set(newspa, props, B_FALSE);
5457 error = spa_prop_set(newspa, props);
5458 if (error)
5459 goto out;
5460 }
5461
5462 /* flush everything */
5463 txg = spa_vdev_config_enter(newspa);
5464 vdev_config_dirty(newspa->spa_root_vdev);
5465 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5466
5467 if (zio_injection_enabled)
5468 zio_handle_panic_injection(spa, FTAG, 2);
5469
5470 spa_async_resume(newspa);
5471
5472 /* finally, update the original pool's config */
5473 txg = spa_vdev_config_enter(spa);
5474 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5475 error = dmu_tx_assign(tx, TXG_WAIT);
5476 if (error != 0)
5477 dmu_tx_abort(tx);
5478 for (c = 0; c < children; c++) {
5479 if (vml[c] != NULL) {
5480 vdev_split(vml[c]);
5481 if (error == 0)
5482 spa_history_log_internal(spa, "detach", tx,
5483 "vdev=%s", vml[c]->vdev_path);
5484
5485 vdev_free(vml[c]);
5486 }
5487 }
5488 spa->spa_avz_action = AVZ_ACTION_REBUILD;
5489 vdev_config_dirty(spa->spa_root_vdev);
5490 spa->spa_config_splitting = NULL;
5491 nvlist_free(nvl);
5492 if (error == 0)
5493 dmu_tx_commit(tx);
5494 (void) spa_vdev_exit(spa, NULL, txg, 0);
5495
5496 if (zio_injection_enabled)
5497 zio_handle_panic_injection(spa, FTAG, 3);
5498
5499 /* split is complete; log a history record */
5500 spa_history_log_internal(newspa, "split", NULL,
5501 "from pool %s", spa_name(spa));
5502
5503 kmem_free(vml, children * sizeof (vdev_t *));
5504
5505 /* if we're not going to mount the filesystems in userland, export */
5506 if (exp)
5507 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5508 B_FALSE, B_FALSE);
5509
5510 return (error);
5511
5512 out:
5513 spa_unload(newspa);
5514 spa_deactivate(newspa);
5515 spa_remove(newspa);
5516
5517 txg = spa_vdev_config_enter(spa);
5518
5519 /* re-online all offlined disks */
5520 for (c = 0; c < children; c++) {
5521 if (vml[c] != NULL)
5522 vml[c]->vdev_offline = B_FALSE;
5523 }
5524 vdev_reopen(spa->spa_root_vdev);
5525
5526 nvlist_free(spa->spa_config_splitting);
5527 spa->spa_config_splitting = NULL;
5528 (void) spa_vdev_exit(spa, NULL, txg, error);
5529
5530 kmem_free(vml, children * sizeof (vdev_t *));
5531 return (error);
5532 }
5533
5534 static nvlist_t *
5535 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5536 {
5537 int i;
5538
5539 for (i = 0; i < count; i++) {
5540 uint64_t guid;
5541
5542 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5543 &guid) == 0);
5544
5545 if (guid == target_guid)
5546 return (nvpp[i]);
5547 }
5548
5549 return (NULL);
5550 }
5551
5552 static void
5553 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5554 nvlist_t *dev_to_remove)
5555 {
5556 nvlist_t **newdev = NULL;
5557 int i, j;
5558
5559 if (count > 1)
5560 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5561
5562 for (i = 0, j = 0; i < count; i++) {
5563 if (dev[i] == dev_to_remove)
5564 continue;
5565 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5566 }
5567
5568 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5569 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5570
5571 for (i = 0; i < count - 1; i++)
5572 nvlist_free(newdev[i]);
5573
5574 if (count > 1)
5575 kmem_free(newdev, (count - 1) * sizeof (void *));
5576 }
5577
5578 /*
5579 * Evacuate the device.
5580 */
5581 static int
5582 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5583 {
5584 uint64_t txg;
5585 int error = 0;
5586
5587 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5588 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5589 ASSERT(vd == vd->vdev_top);
5590
5591 /*
5592 * Evacuate the device. We don't hold the config lock as writer
5593 * since we need to do I/O but we do keep the
5594 * spa_namespace_lock held. Once this completes the device
5595 * should no longer have any blocks allocated on it.
5596 */
5597 if (vd->vdev_islog) {
5598 if (vd->vdev_stat.vs_alloc != 0)
5599 error = spa_offline_log(spa);
5600 } else {
5601 error = SET_ERROR(ENOTSUP);
5602 }
5603
5604 if (error)
5605 return (error);
5606
5607 /*
5608 * The evacuation succeeded. Remove any remaining MOS metadata
5609 * associated with this vdev, and wait for these changes to sync.
5610 */
5611 ASSERT0(vd->vdev_stat.vs_alloc);
5612 txg = spa_vdev_config_enter(spa);
5613 vd->vdev_removing = B_TRUE;
5614 vdev_dirty_leaves(vd, VDD_DTL, txg);
5615 vdev_config_dirty(vd);
5616 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5617
5618 return (0);
5619 }
5620
5621 /*
5622 * Complete the removal by cleaning up the namespace.
5623 */
5624 static void
5625 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5626 {
5627 vdev_t *rvd = spa->spa_root_vdev;
5628 uint64_t id = vd->vdev_id;
5629 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5630
5631 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5632 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5633 ASSERT(vd == vd->vdev_top);
5634
5635 /*
5636 * Only remove any devices which are empty.
5637 */
5638 if (vd->vdev_stat.vs_alloc != 0)
5639 return;
5640
5641 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5642
5643 if (list_link_active(&vd->vdev_state_dirty_node))
5644 vdev_state_clean(vd);
5645 if (list_link_active(&vd->vdev_config_dirty_node))
5646 vdev_config_clean(vd);
5647
5648 vdev_free(vd);
5649
5650 if (last_vdev) {
5651 vdev_compact_children(rvd);
5652 } else {
5653 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5654 vdev_add_child(rvd, vd);
5655 }
5656 vdev_config_dirty(rvd);
5657
5658 /*
5659 * Reassess the health of our root vdev.
5660 */
5661 vdev_reopen(rvd);
5662 }
5663
5664 /*
5665 * Remove a device from the pool -
5666 *
5667 * Removing a device from the vdev namespace requires several steps
5668 * and can take a significant amount of time. As a result we use
5669 * the spa_vdev_config_[enter/exit] functions which allow us to
5670 * grab and release the spa_config_lock while still holding the namespace
5671 * lock. During each step the configuration is synced out.
5672 *
5673 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5674 * devices.
5675 */
5676 int
5677 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5678 {
5679 vdev_t *vd;
5680 sysevent_t *ev = NULL;
5681 metaslab_group_t *mg;
5682 nvlist_t **spares, **l2cache, *nv;
5683 uint64_t txg = 0;
5684 uint_t nspares, nl2cache;
5685 int error = 0;
5686 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5687
5688 ASSERT(spa_writeable(spa));
5689
5690 if (!locked)
5691 txg = spa_vdev_enter(spa);
5692
5693 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5694
5695 if (spa->spa_spares.sav_vdevs != NULL &&
5696 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5697 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5698 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5699 /*
5700 * Only remove the hot spare if it's not currently in use
5701 * in this pool.
5702 */
5703 if (vd == NULL || unspare) {
5704 if (vd == NULL)
5705 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5706 ev = spa_event_create(spa, vd, NULL,
5707 ESC_ZFS_VDEV_REMOVE_AUX);
5708 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5709 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5710 spa_load_spares(spa);
5711 spa->spa_spares.sav_sync = B_TRUE;
5712 } else {
5713 error = SET_ERROR(EBUSY);
5714 }
5715 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5716 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5717 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5718 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5719 /*
5720 * Cache devices can always be removed.
5721 */
5722 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5723 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
5724 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5725 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5726 spa_load_l2cache(spa);
5727 spa->spa_l2cache.sav_sync = B_TRUE;
5728 } else if (vd != NULL && vd->vdev_islog) {
5729 ASSERT(!locked);
5730 ASSERT(vd == vd->vdev_top);
5731
5732 mg = vd->vdev_mg;
5733
5734 /*
5735 * Stop allocating from this vdev.
5736 */
5737 metaslab_group_passivate(mg);
5738
5739 /*
5740 * Wait for the youngest allocations and frees to sync,
5741 * and then wait for the deferral of those frees to finish.
5742 */
5743 spa_vdev_config_exit(spa, NULL,
5744 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5745
5746 /*
5747 * Attempt to evacuate the vdev.
5748 */
5749 error = spa_vdev_remove_evacuate(spa, vd);
5750
5751 txg = spa_vdev_config_enter(spa);
5752
5753 /*
5754 * If we couldn't evacuate the vdev, unwind.
5755 */
5756 if (error) {
5757 metaslab_group_activate(mg);
5758 return (spa_vdev_exit(spa, NULL, txg, error));
5759 }
5760
5761 /*
5762 * Clean up the vdev namespace.
5763 */
5764 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_DEV);
5765 spa_vdev_remove_from_namespace(spa, vd);
5766
5767 } else if (vd != NULL) {
5768 /*
5769 * Normal vdevs cannot be removed (yet).
5770 */
5771 error = SET_ERROR(ENOTSUP);
5772 } else {
5773 /*
5774 * There is no vdev of any kind with the specified guid.
5775 */
5776 error = SET_ERROR(ENOENT);
5777 }
5778
5779 if (!locked)
5780 error = spa_vdev_exit(spa, NULL, txg, error);
5781
5782 if (ev)
5783 spa_event_post(ev);
5784
5785 return (error);
5786 }
5787
5788 /*
5789 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5790 * currently spared, so we can detach it.
5791 */
5792 static vdev_t *
5793 spa_vdev_resilver_done_hunt(vdev_t *vd)
5794 {
5795 vdev_t *newvd, *oldvd;
5796 int c;
5797
5798 for (c = 0; c < vd->vdev_children; c++) {
5799 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5800 if (oldvd != NULL)
5801 return (oldvd);
5802 }
5803
5804 /*
5805 * Check for a completed replacement. We always consider the first
5806 * vdev in the list to be the oldest vdev, and the last one to be
5807 * the newest (see spa_vdev_attach() for how that works). In
5808 * the case where the newest vdev is faulted, we will not automatically
5809 * remove it after a resilver completes. This is OK as it will require
5810 * user intervention to determine which disk the admin wishes to keep.
5811 */
5812 if (vd->vdev_ops == &vdev_replacing_ops) {
5813 ASSERT(vd->vdev_children > 1);
5814
5815 newvd = vd->vdev_child[vd->vdev_children - 1];
5816 oldvd = vd->vdev_child[0];
5817
5818 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5819 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5820 !vdev_dtl_required(oldvd))
5821 return (oldvd);
5822 }
5823
5824 /*
5825 * Check for a completed resilver with the 'unspare' flag set.
5826 */
5827 if (vd->vdev_ops == &vdev_spare_ops) {
5828 vdev_t *first = vd->vdev_child[0];
5829 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5830
5831 if (last->vdev_unspare) {
5832 oldvd = first;
5833 newvd = last;
5834 } else if (first->vdev_unspare) {
5835 oldvd = last;
5836 newvd = first;
5837 } else {
5838 oldvd = NULL;
5839 }
5840
5841 if (oldvd != NULL &&
5842 vdev_dtl_empty(newvd, DTL_MISSING) &&
5843 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5844 !vdev_dtl_required(oldvd))
5845 return (oldvd);
5846
5847 /*
5848 * If there are more than two spares attached to a disk,
5849 * and those spares are not required, then we want to
5850 * attempt to free them up now so that they can be used
5851 * by other pools. Once we're back down to a single
5852 * disk+spare, we stop removing them.
5853 */
5854 if (vd->vdev_children > 2) {
5855 newvd = vd->vdev_child[1];
5856
5857 if (newvd->vdev_isspare && last->vdev_isspare &&
5858 vdev_dtl_empty(last, DTL_MISSING) &&
5859 vdev_dtl_empty(last, DTL_OUTAGE) &&
5860 !vdev_dtl_required(newvd))
5861 return (newvd);
5862 }
5863 }
5864
5865 return (NULL);
5866 }
5867
5868 static void
5869 spa_vdev_resilver_done(spa_t *spa)
5870 {
5871 vdev_t *vd, *pvd, *ppvd;
5872 uint64_t guid, sguid, pguid, ppguid;
5873
5874 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5875
5876 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5877 pvd = vd->vdev_parent;
5878 ppvd = pvd->vdev_parent;
5879 guid = vd->vdev_guid;
5880 pguid = pvd->vdev_guid;
5881 ppguid = ppvd->vdev_guid;
5882 sguid = 0;
5883 /*
5884 * If we have just finished replacing a hot spared device, then
5885 * we need to detach the parent's first child (the original hot
5886 * spare) as well.
5887 */
5888 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5889 ppvd->vdev_children == 2) {
5890 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5891 sguid = ppvd->vdev_child[1]->vdev_guid;
5892 }
5893 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5894
5895 spa_config_exit(spa, SCL_ALL, FTAG);
5896 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5897 return;
5898 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5899 return;
5900 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5901 }
5902
5903 spa_config_exit(spa, SCL_ALL, FTAG);
5904 }
5905
5906 /*
5907 * Update the stored path or FRU for this vdev.
5908 */
5909 int
5910 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5911 boolean_t ispath)
5912 {
5913 vdev_t *vd;
5914 boolean_t sync = B_FALSE;
5915
5916 ASSERT(spa_writeable(spa));
5917
5918 spa_vdev_state_enter(spa, SCL_ALL);
5919
5920 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5921 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5922
5923 if (!vd->vdev_ops->vdev_op_leaf)
5924 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5925
5926 if (ispath) {
5927 if (strcmp(value, vd->vdev_path) != 0) {
5928 spa_strfree(vd->vdev_path);
5929 vd->vdev_path = spa_strdup(value);
5930 sync = B_TRUE;
5931 }
5932 } else {
5933 if (vd->vdev_fru == NULL) {
5934 vd->vdev_fru = spa_strdup(value);
5935 sync = B_TRUE;
5936 } else if (strcmp(value, vd->vdev_fru) != 0) {
5937 spa_strfree(vd->vdev_fru);
5938 vd->vdev_fru = spa_strdup(value);
5939 sync = B_TRUE;
5940 }
5941 }
5942
5943 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5944 }
5945
5946 int
5947 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5948 {
5949 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5950 }
5951
5952 int
5953 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5954 {
5955 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5956 }
5957
5958 /*
5959 * ==========================================================================
5960 * SPA Scanning
5961 * ==========================================================================
5962 */
5963 int
5964 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
5965 {
5966 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5967
5968 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5969 return (SET_ERROR(EBUSY));
5970
5971 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
5972 }
5973
5974 int
5975 spa_scan_stop(spa_t *spa)
5976 {
5977 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5978 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5979 return (SET_ERROR(EBUSY));
5980 return (dsl_scan_cancel(spa->spa_dsl_pool));
5981 }
5982
5983 int
5984 spa_scan(spa_t *spa, pool_scan_func_t func)
5985 {
5986 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5987
5988 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5989 return (SET_ERROR(ENOTSUP));
5990
5991 /*
5992 * If a resilver was requested, but there is no DTL on a
5993 * writeable leaf device, we have nothing to do.
5994 */
5995 if (func == POOL_SCAN_RESILVER &&
5996 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5997 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5998 return (0);
5999 }
6000
6001 return (dsl_scan(spa->spa_dsl_pool, func));
6002 }
6003
6004 /*
6005 * ==========================================================================
6006 * SPA async task processing
6007 * ==========================================================================
6008 */
6009
6010 static void
6011 spa_async_remove(spa_t *spa, vdev_t *vd)
6012 {
6013 int c;
6014
6015 if (vd->vdev_remove_wanted) {
6016 vd->vdev_remove_wanted = B_FALSE;
6017 vd->vdev_delayed_close = B_FALSE;
6018 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6019
6020 /*
6021 * We want to clear the stats, but we don't want to do a full
6022 * vdev_clear() as that will cause us to throw away
6023 * degraded/faulted state as well as attempt to reopen the
6024 * device, all of which is a waste.
6025 */
6026 vd->vdev_stat.vs_read_errors = 0;
6027 vd->vdev_stat.vs_write_errors = 0;
6028 vd->vdev_stat.vs_checksum_errors = 0;
6029
6030 vdev_state_dirty(vd->vdev_top);
6031 }
6032
6033 for (c = 0; c < vd->vdev_children; c++)
6034 spa_async_remove(spa, vd->vdev_child[c]);
6035 }
6036
6037 static void
6038 spa_async_probe(spa_t *spa, vdev_t *vd)
6039 {
6040 int c;
6041
6042 if (vd->vdev_probe_wanted) {
6043 vd->vdev_probe_wanted = B_FALSE;
6044 vdev_reopen(vd); /* vdev_open() does the actual probe */
6045 }
6046
6047 for (c = 0; c < vd->vdev_children; c++)
6048 spa_async_probe(spa, vd->vdev_child[c]);
6049 }
6050
6051 static void
6052 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6053 {
6054 int c;
6055
6056 if (!spa->spa_autoexpand)
6057 return;
6058
6059 for (c = 0; c < vd->vdev_children; c++) {
6060 vdev_t *cvd = vd->vdev_child[c];
6061 spa_async_autoexpand(spa, cvd);
6062 }
6063
6064 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6065 return;
6066
6067 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
6068 }
6069
6070 static void
6071 spa_async_thread(spa_t *spa)
6072 {
6073 int tasks, i;
6074
6075 ASSERT(spa->spa_sync_on);
6076
6077 mutex_enter(&spa->spa_async_lock);
6078 tasks = spa->spa_async_tasks;
6079 spa->spa_async_tasks = 0;
6080 mutex_exit(&spa->spa_async_lock);
6081
6082 /*
6083 * See if the config needs to be updated.
6084 */
6085 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6086 uint64_t old_space, new_space;
6087
6088 mutex_enter(&spa_namespace_lock);
6089 old_space = metaslab_class_get_space(spa_normal_class(spa));
6090 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6091 new_space = metaslab_class_get_space(spa_normal_class(spa));
6092 mutex_exit(&spa_namespace_lock);
6093
6094 /*
6095 * If the pool grew as a result of the config update,
6096 * then log an internal history event.
6097 */
6098 if (new_space != old_space) {
6099 spa_history_log_internal(spa, "vdev online", NULL,
6100 "pool '%s' size: %llu(+%llu)",
6101 spa_name(spa), new_space, new_space - old_space);
6102 }
6103 }
6104
6105 /*
6106 * See if any devices need to be marked REMOVED.
6107 */
6108 if (tasks & SPA_ASYNC_REMOVE) {
6109 spa_vdev_state_enter(spa, SCL_NONE);
6110 spa_async_remove(spa, spa->spa_root_vdev);
6111 for (i = 0; i < spa->spa_l2cache.sav_count; i++)
6112 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6113 for (i = 0; i < spa->spa_spares.sav_count; i++)
6114 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6115 (void) spa_vdev_state_exit(spa, NULL, 0);
6116 }
6117
6118 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6119 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6120 spa_async_autoexpand(spa, spa->spa_root_vdev);
6121 spa_config_exit(spa, SCL_CONFIG, FTAG);
6122 }
6123
6124 /*
6125 * See if any devices need to be probed.
6126 */
6127 if (tasks & SPA_ASYNC_PROBE) {
6128 spa_vdev_state_enter(spa, SCL_NONE);
6129 spa_async_probe(spa, spa->spa_root_vdev);
6130 (void) spa_vdev_state_exit(spa, NULL, 0);
6131 }
6132
6133 /*
6134 * If any devices are done replacing, detach them.
6135 */
6136 if (tasks & SPA_ASYNC_RESILVER_DONE)
6137 spa_vdev_resilver_done(spa);
6138
6139 /*
6140 * Kick off a resilver.
6141 */
6142 if (tasks & SPA_ASYNC_RESILVER)
6143 dsl_resilver_restart(spa->spa_dsl_pool, 0);
6144
6145 /*
6146 * Let the world know that we're done.
6147 */
6148 mutex_enter(&spa->spa_async_lock);
6149 spa->spa_async_thread = NULL;
6150 cv_broadcast(&spa->spa_async_cv);
6151 mutex_exit(&spa->spa_async_lock);
6152 thread_exit();
6153 }
6154
6155 void
6156 spa_async_suspend(spa_t *spa)
6157 {
6158 mutex_enter(&spa->spa_async_lock);
6159 spa->spa_async_suspended++;
6160 while (spa->spa_async_thread != NULL)
6161 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6162 mutex_exit(&spa->spa_async_lock);
6163 }
6164
6165 void
6166 spa_async_resume(spa_t *spa)
6167 {
6168 mutex_enter(&spa->spa_async_lock);
6169 ASSERT(spa->spa_async_suspended != 0);
6170 spa->spa_async_suspended--;
6171 mutex_exit(&spa->spa_async_lock);
6172 }
6173
6174 static boolean_t
6175 spa_async_tasks_pending(spa_t *spa)
6176 {
6177 uint_t non_config_tasks;
6178 uint_t config_task;
6179 boolean_t config_task_suspended;
6180
6181 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6182 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6183 if (spa->spa_ccw_fail_time == 0) {
6184 config_task_suspended = B_FALSE;
6185 } else {
6186 config_task_suspended =
6187 (gethrtime() - spa->spa_ccw_fail_time) <
6188 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
6189 }
6190
6191 return (non_config_tasks || (config_task && !config_task_suspended));
6192 }
6193
6194 static void
6195 spa_async_dispatch(spa_t *spa)
6196 {
6197 mutex_enter(&spa->spa_async_lock);
6198 if (spa_async_tasks_pending(spa) &&
6199 !spa->spa_async_suspended &&
6200 spa->spa_async_thread == NULL &&
6201 rootdir != NULL)
6202 spa->spa_async_thread = thread_create(NULL, 0,
6203 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6204 mutex_exit(&spa->spa_async_lock);
6205 }
6206
6207 void
6208 spa_async_request(spa_t *spa, int task)
6209 {
6210 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6211 mutex_enter(&spa->spa_async_lock);
6212 spa->spa_async_tasks |= task;
6213 mutex_exit(&spa->spa_async_lock);
6214 }
6215
6216 /*
6217 * ==========================================================================
6218 * SPA syncing routines
6219 * ==========================================================================
6220 */
6221
6222 static int
6223 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6224 {
6225 bpobj_t *bpo = arg;
6226 bpobj_enqueue(bpo, bp, tx);
6227 return (0);
6228 }
6229
6230 static int
6231 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6232 {
6233 zio_t *zio = arg;
6234
6235 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6236 zio->io_flags));
6237 return (0);
6238 }
6239
6240 /*
6241 * Note: this simple function is not inlined to make it easier to dtrace the
6242 * amount of time spent syncing frees.
6243 */
6244 static void
6245 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6246 {
6247 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6248 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6249 VERIFY(zio_wait(zio) == 0);
6250 }
6251
6252 /*
6253 * Note: this simple function is not inlined to make it easier to dtrace the
6254 * amount of time spent syncing deferred frees.
6255 */
6256 static void
6257 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6258 {
6259 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6260 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6261 spa_free_sync_cb, zio, tx), ==, 0);
6262 VERIFY0(zio_wait(zio));
6263 }
6264
6265 static void
6266 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6267 {
6268 char *packed = NULL;
6269 size_t bufsize;
6270 size_t nvsize = 0;
6271 dmu_buf_t *db;
6272
6273 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6274
6275 /*
6276 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6277 * information. This avoids the dmu_buf_will_dirty() path and
6278 * saves us a pre-read to get data we don't actually care about.
6279 */
6280 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6281 packed = vmem_alloc(bufsize, KM_SLEEP);
6282
6283 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6284 KM_SLEEP) == 0);
6285 bzero(packed + nvsize, bufsize - nvsize);
6286
6287 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6288
6289 vmem_free(packed, bufsize);
6290
6291 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6292 dmu_buf_will_dirty(db, tx);
6293 *(uint64_t *)db->db_data = nvsize;
6294 dmu_buf_rele(db, FTAG);
6295 }
6296
6297 static void
6298 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6299 const char *config, const char *entry)
6300 {
6301 nvlist_t *nvroot;
6302 nvlist_t **list;
6303 int i;
6304
6305 if (!sav->sav_sync)
6306 return;
6307
6308 /*
6309 * Update the MOS nvlist describing the list of available devices.
6310 * spa_validate_aux() will have already made sure this nvlist is
6311 * valid and the vdevs are labeled appropriately.
6312 */
6313 if (sav->sav_object == 0) {
6314 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6315 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6316 sizeof (uint64_t), tx);
6317 VERIFY(zap_update(spa->spa_meta_objset,
6318 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6319 &sav->sav_object, tx) == 0);
6320 }
6321
6322 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6323 if (sav->sav_count == 0) {
6324 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6325 } else {
6326 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
6327 for (i = 0; i < sav->sav_count; i++)
6328 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6329 B_FALSE, VDEV_CONFIG_L2CACHE);
6330 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6331 sav->sav_count) == 0);
6332 for (i = 0; i < sav->sav_count; i++)
6333 nvlist_free(list[i]);
6334 kmem_free(list, sav->sav_count * sizeof (void *));
6335 }
6336
6337 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6338 nvlist_free(nvroot);
6339
6340 sav->sav_sync = B_FALSE;
6341 }
6342
6343 /*
6344 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6345 * The all-vdev ZAP must be empty.
6346 */
6347 static void
6348 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6349 {
6350 spa_t *spa = vd->vdev_spa;
6351 uint64_t i;
6352
6353 if (vd->vdev_top_zap != 0) {
6354 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6355 vd->vdev_top_zap, tx));
6356 }
6357 if (vd->vdev_leaf_zap != 0) {
6358 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6359 vd->vdev_leaf_zap, tx));
6360 }
6361 for (i = 0; i < vd->vdev_children; i++) {
6362 spa_avz_build(vd->vdev_child[i], avz, tx);
6363 }
6364 }
6365
6366 static void
6367 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6368 {
6369 nvlist_t *config;
6370
6371 /*
6372 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6373 * its config may not be dirty but we still need to build per-vdev ZAPs.
6374 * Similarly, if the pool is being assembled (e.g. after a split), we
6375 * need to rebuild the AVZ although the config may not be dirty.
6376 */
6377 if (list_is_empty(&spa->spa_config_dirty_list) &&
6378 spa->spa_avz_action == AVZ_ACTION_NONE)
6379 return;
6380
6381 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6382
6383 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6384 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
6385 spa->spa_all_vdev_zaps != 0);
6386
6387 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6388 zap_cursor_t zc;
6389 zap_attribute_t za;
6390
6391 /* Make and build the new AVZ */
6392 uint64_t new_avz = zap_create(spa->spa_meta_objset,
6393 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6394 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6395
6396 /* Diff old AVZ with new one */
6397 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6398 spa->spa_all_vdev_zaps);
6399 zap_cursor_retrieve(&zc, &za) == 0;
6400 zap_cursor_advance(&zc)) {
6401 uint64_t vdzap = za.za_first_integer;
6402 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6403 vdzap) == ENOENT) {
6404 /*
6405 * ZAP is listed in old AVZ but not in new one;
6406 * destroy it
6407 */
6408 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6409 tx));
6410 }
6411 }
6412
6413 zap_cursor_fini(&zc);
6414
6415 /* Destroy the old AVZ */
6416 VERIFY0(zap_destroy(spa->spa_meta_objset,
6417 spa->spa_all_vdev_zaps, tx));
6418
6419 /* Replace the old AVZ in the dir obj with the new one */
6420 VERIFY0(zap_update(spa->spa_meta_objset,
6421 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6422 sizeof (new_avz), 1, &new_avz, tx));
6423
6424 spa->spa_all_vdev_zaps = new_avz;
6425 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6426 zap_cursor_t zc;
6427 zap_attribute_t za;
6428
6429 /* Walk through the AVZ and destroy all listed ZAPs */
6430 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6431 spa->spa_all_vdev_zaps);
6432 zap_cursor_retrieve(&zc, &za) == 0;
6433 zap_cursor_advance(&zc)) {
6434 uint64_t zap = za.za_first_integer;
6435 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6436 }
6437
6438 zap_cursor_fini(&zc);
6439
6440 /* Destroy and unlink the AVZ itself */
6441 VERIFY0(zap_destroy(spa->spa_meta_objset,
6442 spa->spa_all_vdev_zaps, tx));
6443 VERIFY0(zap_remove(spa->spa_meta_objset,
6444 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6445 spa->spa_all_vdev_zaps = 0;
6446 }
6447
6448 if (spa->spa_all_vdev_zaps == 0) {
6449 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6450 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6451 DMU_POOL_VDEV_ZAP_MAP, tx);
6452 }
6453 spa->spa_avz_action = AVZ_ACTION_NONE;
6454
6455 /* Create ZAPs for vdevs that don't have them. */
6456 vdev_construct_zaps(spa->spa_root_vdev, tx);
6457
6458 config = spa_config_generate(spa, spa->spa_root_vdev,
6459 dmu_tx_get_txg(tx), B_FALSE);
6460
6461 /*
6462 * If we're upgrading the spa version then make sure that
6463 * the config object gets updated with the correct version.
6464 */
6465 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6466 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6467 spa->spa_uberblock.ub_version);
6468
6469 spa_config_exit(spa, SCL_STATE, FTAG);
6470
6471 nvlist_free(spa->spa_config_syncing);
6472 spa->spa_config_syncing = config;
6473
6474 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6475 }
6476
6477 static void
6478 spa_sync_version(void *arg, dmu_tx_t *tx)
6479 {
6480 uint64_t *versionp = arg;
6481 uint64_t version = *versionp;
6482 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6483
6484 /*
6485 * Setting the version is special cased when first creating the pool.
6486 */
6487 ASSERT(tx->tx_txg != TXG_INITIAL);
6488
6489 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6490 ASSERT(version >= spa_version(spa));
6491
6492 spa->spa_uberblock.ub_version = version;
6493 vdev_config_dirty(spa->spa_root_vdev);
6494 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6495 }
6496
6497 /*
6498 * Set zpool properties.
6499 */
6500 static void
6501 spa_sync_props(void *arg, dmu_tx_t *tx)
6502 {
6503 nvlist_t *nvp = arg;
6504 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6505 objset_t *mos = spa->spa_meta_objset;
6506 nvpair_t *elem = NULL;
6507
6508 mutex_enter(&spa->spa_props_lock);
6509
6510 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6511 uint64_t intval;
6512 char *strval, *fname;
6513 zpool_prop_t prop;
6514 const char *propname;
6515 zprop_type_t proptype;
6516 spa_feature_t fid;
6517
6518 prop = zpool_name_to_prop(nvpair_name(elem));
6519 switch ((int)prop) {
6520 case ZPROP_INVAL:
6521 /*
6522 * We checked this earlier in spa_prop_validate().
6523 */
6524 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6525
6526 fname = strchr(nvpair_name(elem), '@') + 1;
6527 VERIFY0(zfeature_lookup_name(fname, &fid));
6528
6529 spa_feature_enable(spa, fid, tx);
6530 spa_history_log_internal(spa, "set", tx,
6531 "%s=enabled", nvpair_name(elem));
6532 break;
6533
6534 case ZPOOL_PROP_VERSION:
6535 intval = fnvpair_value_uint64(elem);
6536 /*
6537 * The version is synced separately before other
6538 * properties and should be correct by now.
6539 */
6540 ASSERT3U(spa_version(spa), >=, intval);
6541 break;
6542
6543 case ZPOOL_PROP_ALTROOT:
6544 /*
6545 * 'altroot' is a non-persistent property. It should
6546 * have been set temporarily at creation or import time.
6547 */
6548 ASSERT(spa->spa_root != NULL);
6549 break;
6550
6551 case ZPOOL_PROP_READONLY:
6552 case ZPOOL_PROP_CACHEFILE:
6553 /*
6554 * 'readonly' and 'cachefile' are also non-persisitent
6555 * properties.
6556 */
6557 break;
6558 case ZPOOL_PROP_COMMENT:
6559 strval = fnvpair_value_string(elem);
6560 if (spa->spa_comment != NULL)
6561 spa_strfree(spa->spa_comment);
6562 spa->spa_comment = spa_strdup(strval);
6563 /*
6564 * We need to dirty the configuration on all the vdevs
6565 * so that their labels get updated. It's unnecessary
6566 * to do this for pool creation since the vdev's
6567 * configuration has already been dirtied.
6568 */
6569 if (tx->tx_txg != TXG_INITIAL)
6570 vdev_config_dirty(spa->spa_root_vdev);
6571 spa_history_log_internal(spa, "set", tx,
6572 "%s=%s", nvpair_name(elem), strval);
6573 break;
6574 default:
6575 /*
6576 * Set pool property values in the poolprops mos object.
6577 */
6578 if (spa->spa_pool_props_object == 0) {
6579 spa->spa_pool_props_object =
6580 zap_create_link(mos, DMU_OT_POOL_PROPS,
6581 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6582 tx);
6583 }
6584
6585 /* normalize the property name */
6586 propname = zpool_prop_to_name(prop);
6587 proptype = zpool_prop_get_type(prop);
6588
6589 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6590 ASSERT(proptype == PROP_TYPE_STRING);
6591 strval = fnvpair_value_string(elem);
6592 VERIFY0(zap_update(mos,
6593 spa->spa_pool_props_object, propname,
6594 1, strlen(strval) + 1, strval, tx));
6595 spa_history_log_internal(spa, "set", tx,
6596 "%s=%s", nvpair_name(elem), strval);
6597 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6598 intval = fnvpair_value_uint64(elem);
6599
6600 if (proptype == PROP_TYPE_INDEX) {
6601 const char *unused;
6602 VERIFY0(zpool_prop_index_to_string(
6603 prop, intval, &unused));
6604 }
6605 VERIFY0(zap_update(mos,
6606 spa->spa_pool_props_object, propname,
6607 8, 1, &intval, tx));
6608 spa_history_log_internal(spa, "set", tx,
6609 "%s=%lld", nvpair_name(elem), intval);
6610 } else {
6611 ASSERT(0); /* not allowed */
6612 }
6613
6614 switch (prop) {
6615 case ZPOOL_PROP_DELEGATION:
6616 spa->spa_delegation = intval;
6617 break;
6618 case ZPOOL_PROP_BOOTFS:
6619 spa->spa_bootfs = intval;
6620 break;
6621 case ZPOOL_PROP_FAILUREMODE:
6622 spa->spa_failmode = intval;
6623 break;
6624 case ZPOOL_PROP_AUTOEXPAND:
6625 spa->spa_autoexpand = intval;
6626 if (tx->tx_txg != TXG_INITIAL)
6627 spa_async_request(spa,
6628 SPA_ASYNC_AUTOEXPAND);
6629 break;
6630 case ZPOOL_PROP_MULTIHOST:
6631 spa->spa_multihost = intval;
6632 break;
6633 case ZPOOL_PROP_DEDUPDITTO:
6634 spa->spa_dedup_ditto = intval;
6635 break;
6636 default:
6637 break;
6638 }
6639 }
6640
6641 }
6642
6643 mutex_exit(&spa->spa_props_lock);
6644 }
6645
6646 /*
6647 * Perform one-time upgrade on-disk changes. spa_version() does not
6648 * reflect the new version this txg, so there must be no changes this
6649 * txg to anything that the upgrade code depends on after it executes.
6650 * Therefore this must be called after dsl_pool_sync() does the sync
6651 * tasks.
6652 */
6653 static void
6654 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6655 {
6656 dsl_pool_t *dp = spa->spa_dsl_pool;
6657
6658 ASSERT(spa->spa_sync_pass == 1);
6659
6660 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6661
6662 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6663 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6664 dsl_pool_create_origin(dp, tx);
6665
6666 /* Keeping the origin open increases spa_minref */
6667 spa->spa_minref += 3;
6668 }
6669
6670 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6671 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6672 dsl_pool_upgrade_clones(dp, tx);
6673 }
6674
6675 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6676 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6677 dsl_pool_upgrade_dir_clones(dp, tx);
6678
6679 /* Keeping the freedir open increases spa_minref */
6680 spa->spa_minref += 3;
6681 }
6682
6683 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6684 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6685 spa_feature_create_zap_objects(spa, tx);
6686 }
6687
6688 /*
6689 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6690 * when possibility to use lz4 compression for metadata was added
6691 * Old pools that have this feature enabled must be upgraded to have
6692 * this feature active
6693 */
6694 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6695 boolean_t lz4_en = spa_feature_is_enabled(spa,
6696 SPA_FEATURE_LZ4_COMPRESS);
6697 boolean_t lz4_ac = spa_feature_is_active(spa,
6698 SPA_FEATURE_LZ4_COMPRESS);
6699
6700 if (lz4_en && !lz4_ac)
6701 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6702 }
6703
6704 /*
6705 * If we haven't written the salt, do so now. Note that the
6706 * feature may not be activated yet, but that's fine since
6707 * the presence of this ZAP entry is backwards compatible.
6708 */
6709 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6710 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6711 VERIFY0(zap_add(spa->spa_meta_objset,
6712 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6713 sizeof (spa->spa_cksum_salt.zcs_bytes),
6714 spa->spa_cksum_salt.zcs_bytes, tx));
6715 }
6716
6717 rrw_exit(&dp->dp_config_rwlock, FTAG);
6718 }
6719
6720 /*
6721 * Sync the specified transaction group. New blocks may be dirtied as
6722 * part of the process, so we iterate until it converges.
6723 */
6724 void
6725 spa_sync(spa_t *spa, uint64_t txg)
6726 {
6727 dsl_pool_t *dp = spa->spa_dsl_pool;
6728 objset_t *mos = spa->spa_meta_objset;
6729 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6730 metaslab_class_t *mc;
6731 vdev_t *rvd = spa->spa_root_vdev;
6732 vdev_t *vd;
6733 dmu_tx_t *tx;
6734 int error;
6735 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6736 zfs_vdev_queue_depth_pct / 100;
6737 uint64_t queue_depth_total;
6738 int c;
6739
6740 VERIFY(spa_writeable(spa));
6741
6742 /*
6743 * Lock out configuration changes.
6744 */
6745 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6746
6747 spa->spa_syncing_txg = txg;
6748 spa->spa_sync_pass = 0;
6749
6750 mutex_enter(&spa->spa_alloc_lock);
6751 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6752 mutex_exit(&spa->spa_alloc_lock);
6753
6754 /*
6755 * If there are any pending vdev state changes, convert them
6756 * into config changes that go out with this transaction group.
6757 */
6758 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6759 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6760 /*
6761 * We need the write lock here because, for aux vdevs,
6762 * calling vdev_config_dirty() modifies sav_config.
6763 * This is ugly and will become unnecessary when we
6764 * eliminate the aux vdev wart by integrating all vdevs
6765 * into the root vdev tree.
6766 */
6767 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6768 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6769 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6770 vdev_state_clean(vd);
6771 vdev_config_dirty(vd);
6772 }
6773 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6774 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6775 }
6776 spa_config_exit(spa, SCL_STATE, FTAG);
6777
6778 tx = dmu_tx_create_assigned(dp, txg);
6779
6780 spa->spa_sync_starttime = gethrtime();
6781 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
6782 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
6783 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
6784 NSEC_TO_TICK(spa->spa_deadman_synctime));
6785
6786 /*
6787 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6788 * set spa_deflate if we have no raid-z vdevs.
6789 */
6790 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6791 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6792 int i;
6793
6794 for (i = 0; i < rvd->vdev_children; i++) {
6795 vd = rvd->vdev_child[i];
6796 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6797 break;
6798 }
6799 if (i == rvd->vdev_children) {
6800 spa->spa_deflate = TRUE;
6801 VERIFY(0 == zap_add(spa->spa_meta_objset,
6802 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6803 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6804 }
6805 }
6806
6807 /*
6808 * Set the top-level vdev's max queue depth. Evaluate each
6809 * top-level's async write queue depth in case it changed.
6810 * The max queue depth will not change in the middle of syncing
6811 * out this txg.
6812 */
6813 queue_depth_total = 0;
6814 for (c = 0; c < rvd->vdev_children; c++) {
6815 vdev_t *tvd = rvd->vdev_child[c];
6816 metaslab_group_t *mg = tvd->vdev_mg;
6817
6818 if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6819 !metaslab_group_initialized(mg))
6820 continue;
6821
6822 /*
6823 * It is safe to do a lock-free check here because only async
6824 * allocations look at mg_max_alloc_queue_depth, and async
6825 * allocations all happen from spa_sync().
6826 */
6827 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6828 mg->mg_max_alloc_queue_depth = max_queue_depth;
6829 queue_depth_total += mg->mg_max_alloc_queue_depth;
6830 }
6831 mc = spa_normal_class(spa);
6832 ASSERT0(refcount_count(&mc->mc_alloc_slots));
6833 mc->mc_alloc_max_slots = queue_depth_total;
6834 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6835
6836 ASSERT3U(mc->mc_alloc_max_slots, <=,
6837 max_queue_depth * rvd->vdev_children);
6838
6839 /*
6840 * Iterate to convergence.
6841 */
6842 do {
6843 int pass = ++spa->spa_sync_pass;
6844
6845 spa_sync_config_object(spa, tx);
6846 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6847 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6848 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6849 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6850 spa_errlog_sync(spa, txg);
6851 dsl_pool_sync(dp, txg);
6852
6853 if (pass < zfs_sync_pass_deferred_free) {
6854 spa_sync_frees(spa, free_bpl, tx);
6855 } else {
6856 /*
6857 * We can not defer frees in pass 1, because
6858 * we sync the deferred frees later in pass 1.
6859 */
6860 ASSERT3U(pass, >, 1);
6861 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6862 &spa->spa_deferred_bpobj, tx);
6863 }
6864
6865 ddt_sync(spa, txg);
6866 dsl_scan_sync(dp, tx);
6867
6868 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)))
6869 vdev_sync(vd, txg);
6870
6871 if (pass == 1) {
6872 spa_sync_upgrades(spa, tx);
6873 ASSERT3U(txg, >=,
6874 spa->spa_uberblock.ub_rootbp.blk_birth);
6875 /*
6876 * Note: We need to check if the MOS is dirty
6877 * because we could have marked the MOS dirty
6878 * without updating the uberblock (e.g. if we
6879 * have sync tasks but no dirty user data). We
6880 * need to check the uberblock's rootbp because
6881 * it is updated if we have synced out dirty
6882 * data (though in this case the MOS will most
6883 * likely also be dirty due to second order
6884 * effects, we don't want to rely on that here).
6885 */
6886 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6887 !dmu_objset_is_dirty(mos, txg)) {
6888 /*
6889 * Nothing changed on the first pass,
6890 * therefore this TXG is a no-op. Avoid
6891 * syncing deferred frees, so that we
6892 * can keep this TXG as a no-op.
6893 */
6894 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6895 txg));
6896 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6897 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6898 break;
6899 }
6900 spa_sync_deferred_frees(spa, tx);
6901 }
6902
6903 } while (dmu_objset_is_dirty(mos, txg));
6904
6905 #ifdef ZFS_DEBUG
6906 if (!list_is_empty(&spa->spa_config_dirty_list)) {
6907 /*
6908 * Make sure that the number of ZAPs for all the vdevs matches
6909 * the number of ZAPs in the per-vdev ZAP list. This only gets
6910 * called if the config is dirty; otherwise there may be
6911 * outstanding AVZ operations that weren't completed in
6912 * spa_sync_config_object.
6913 */
6914 uint64_t all_vdev_zap_entry_count;
6915 ASSERT0(zap_count(spa->spa_meta_objset,
6916 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6917 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6918 all_vdev_zap_entry_count);
6919 }
6920 #endif
6921
6922 /*
6923 * Rewrite the vdev configuration (which includes the uberblock)
6924 * to commit the transaction group.
6925 *
6926 * If there are no dirty vdevs, we sync the uberblock to a few
6927 * random top-level vdevs that are known to be visible in the
6928 * config cache (see spa_vdev_add() for a complete description).
6929 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6930 */
6931 for (;;) {
6932 /*
6933 * We hold SCL_STATE to prevent vdev open/close/etc.
6934 * while we're attempting to write the vdev labels.
6935 */
6936 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6937
6938 if (list_is_empty(&spa->spa_config_dirty_list)) {
6939 vdev_t *svd[SPA_DVAS_PER_BP];
6940 int svdcount = 0;
6941 int children = rvd->vdev_children;
6942 int c0 = spa_get_random(children);
6943
6944 for (c = 0; c < children; c++) {
6945 vd = rvd->vdev_child[(c0 + c) % children];
6946 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6947 continue;
6948 svd[svdcount++] = vd;
6949 if (svdcount == SPA_DVAS_PER_BP)
6950 break;
6951 }
6952 error = vdev_config_sync(svd, svdcount, txg);
6953 } else {
6954 error = vdev_config_sync(rvd->vdev_child,
6955 rvd->vdev_children, txg);
6956 }
6957
6958 if (error == 0)
6959 spa->spa_last_synced_guid = rvd->vdev_guid;
6960
6961 spa_config_exit(spa, SCL_STATE, FTAG);
6962
6963 if (error == 0)
6964 break;
6965 zio_suspend(spa, NULL);
6966 zio_resume_wait(spa);
6967 }
6968 dmu_tx_commit(tx);
6969
6970 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
6971 spa->spa_deadman_tqid = 0;
6972
6973 /*
6974 * Clear the dirty config list.
6975 */
6976 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6977 vdev_config_clean(vd);
6978
6979 /*
6980 * Now that the new config has synced transactionally,
6981 * let it become visible to the config cache.
6982 */
6983 if (spa->spa_config_syncing != NULL) {
6984 spa_config_set(spa, spa->spa_config_syncing);
6985 spa->spa_config_txg = txg;
6986 spa->spa_config_syncing = NULL;
6987 }
6988
6989 dsl_pool_sync_done(dp, txg);
6990
6991 mutex_enter(&spa->spa_alloc_lock);
6992 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6993 mutex_exit(&spa->spa_alloc_lock);
6994
6995 /*
6996 * Update usable space statistics.
6997 */
6998 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
6999 vdev_sync_done(vd, txg);
7000
7001 spa_update_dspace(spa);
7002
7003 /*
7004 * It had better be the case that we didn't dirty anything
7005 * since vdev_config_sync().
7006 */
7007 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7008 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7009 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7010
7011 spa->spa_sync_pass = 0;
7012
7013 /*
7014 * Update the last synced uberblock here. We want to do this at
7015 * the end of spa_sync() so that consumers of spa_last_synced_txg()
7016 * will be guaranteed that all the processing associated with
7017 * that txg has been completed.
7018 */
7019 spa->spa_ubsync = spa->spa_uberblock;
7020 spa_config_exit(spa, SCL_CONFIG, FTAG);
7021
7022 spa_handle_ignored_writes(spa);
7023
7024 /*
7025 * If any async tasks have been requested, kick them off.
7026 */
7027 spa_async_dispatch(spa);
7028 }
7029
7030 /*
7031 * Sync all pools. We don't want to hold the namespace lock across these
7032 * operations, so we take a reference on the spa_t and drop the lock during the
7033 * sync.
7034 */
7035 void
7036 spa_sync_allpools(void)
7037 {
7038 spa_t *spa = NULL;
7039 mutex_enter(&spa_namespace_lock);
7040 while ((spa = spa_next(spa)) != NULL) {
7041 if (spa_state(spa) != POOL_STATE_ACTIVE ||
7042 !spa_writeable(spa) || spa_suspended(spa))
7043 continue;
7044 spa_open_ref(spa, FTAG);
7045 mutex_exit(&spa_namespace_lock);
7046 txg_wait_synced(spa_get_dsl(spa), 0);
7047 mutex_enter(&spa_namespace_lock);
7048 spa_close(spa, FTAG);
7049 }
7050 mutex_exit(&spa_namespace_lock);
7051 }
7052
7053 /*
7054 * ==========================================================================
7055 * Miscellaneous routines
7056 * ==========================================================================
7057 */
7058
7059 /*
7060 * Remove all pools in the system.
7061 */
7062 void
7063 spa_evict_all(void)
7064 {
7065 spa_t *spa;
7066
7067 /*
7068 * Remove all cached state. All pools should be closed now,
7069 * so every spa in the AVL tree should be unreferenced.
7070 */
7071 mutex_enter(&spa_namespace_lock);
7072 while ((spa = spa_next(NULL)) != NULL) {
7073 /*
7074 * Stop async tasks. The async thread may need to detach
7075 * a device that's been replaced, which requires grabbing
7076 * spa_namespace_lock, so we must drop it here.
7077 */
7078 spa_open_ref(spa, FTAG);
7079 mutex_exit(&spa_namespace_lock);
7080 spa_async_suspend(spa);
7081 mutex_enter(&spa_namespace_lock);
7082 spa_close(spa, FTAG);
7083
7084 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7085 spa_unload(spa);
7086 spa_deactivate(spa);
7087 }
7088 spa_remove(spa);
7089 }
7090 mutex_exit(&spa_namespace_lock);
7091 }
7092
7093 vdev_t *
7094 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7095 {
7096 vdev_t *vd;
7097 int i;
7098
7099 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7100 return (vd);
7101
7102 if (aux) {
7103 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7104 vd = spa->spa_l2cache.sav_vdevs[i];
7105 if (vd->vdev_guid == guid)
7106 return (vd);
7107 }
7108
7109 for (i = 0; i < spa->spa_spares.sav_count; i++) {
7110 vd = spa->spa_spares.sav_vdevs[i];
7111 if (vd->vdev_guid == guid)
7112 return (vd);
7113 }
7114 }
7115
7116 return (NULL);
7117 }
7118
7119 void
7120 spa_upgrade(spa_t *spa, uint64_t version)
7121 {
7122 ASSERT(spa_writeable(spa));
7123
7124 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7125
7126 /*
7127 * This should only be called for a non-faulted pool, and since a
7128 * future version would result in an unopenable pool, this shouldn't be
7129 * possible.
7130 */
7131 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7132 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7133
7134 spa->spa_uberblock.ub_version = version;
7135 vdev_config_dirty(spa->spa_root_vdev);
7136
7137 spa_config_exit(spa, SCL_ALL, FTAG);
7138
7139 txg_wait_synced(spa_get_dsl(spa), 0);
7140 }
7141
7142 boolean_t
7143 spa_has_spare(spa_t *spa, uint64_t guid)
7144 {
7145 int i;
7146 uint64_t spareguid;
7147 spa_aux_vdev_t *sav = &spa->spa_spares;
7148
7149 for (i = 0; i < sav->sav_count; i++)
7150 if (sav->sav_vdevs[i]->vdev_guid == guid)
7151 return (B_TRUE);
7152
7153 for (i = 0; i < sav->sav_npending; i++) {
7154 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7155 &spareguid) == 0 && spareguid == guid)
7156 return (B_TRUE);
7157 }
7158
7159 return (B_FALSE);
7160 }
7161
7162 /*
7163 * Check if a pool has an active shared spare device.
7164 * Note: reference count of an active spare is 2, as a spare and as a replace
7165 */
7166 static boolean_t
7167 spa_has_active_shared_spare(spa_t *spa)
7168 {
7169 int i, refcnt;
7170 uint64_t pool;
7171 spa_aux_vdev_t *sav = &spa->spa_spares;
7172
7173 for (i = 0; i < sav->sav_count; i++) {
7174 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7175 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7176 refcnt > 2)
7177 return (B_TRUE);
7178 }
7179
7180 return (B_FALSE);
7181 }
7182
7183 static sysevent_t *
7184 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7185 {
7186 sysevent_t *ev = NULL;
7187 #ifdef _KERNEL
7188 nvlist_t *resource;
7189
7190 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
7191 if (resource) {
7192 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
7193 ev->resource = resource;
7194 }
7195 #endif
7196 return (ev);
7197 }
7198
7199 static void
7200 spa_event_post(sysevent_t *ev)
7201 {
7202 #ifdef _KERNEL
7203 if (ev) {
7204 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
7205 kmem_free(ev, sizeof (*ev));
7206 }
7207 #endif
7208 }
7209
7210 /*
7211 * Post a zevent corresponding to the given sysevent. The 'name' must be one
7212 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
7213 * filled in from the spa and (optionally) the vdev. This doesn't do anything
7214 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7215 * or zdb as real changes.
7216 */
7217 void
7218 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7219 {
7220 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
7221 }
7222
7223 #if defined(_KERNEL) && defined(HAVE_SPL)
7224 /* state manipulation functions */
7225 EXPORT_SYMBOL(spa_open);
7226 EXPORT_SYMBOL(spa_open_rewind);
7227 EXPORT_SYMBOL(spa_get_stats);
7228 EXPORT_SYMBOL(spa_create);
7229 EXPORT_SYMBOL(spa_import);
7230 EXPORT_SYMBOL(spa_tryimport);
7231 EXPORT_SYMBOL(spa_destroy);
7232 EXPORT_SYMBOL(spa_export);
7233 EXPORT_SYMBOL(spa_reset);
7234 EXPORT_SYMBOL(spa_async_request);
7235 EXPORT_SYMBOL(spa_async_suspend);
7236 EXPORT_SYMBOL(spa_async_resume);
7237 EXPORT_SYMBOL(spa_inject_addref);
7238 EXPORT_SYMBOL(spa_inject_delref);
7239 EXPORT_SYMBOL(spa_scan_stat_init);
7240 EXPORT_SYMBOL(spa_scan_get_stats);
7241
7242 /* device maniion */
7243 EXPORT_SYMBOL(spa_vdev_add);
7244 EXPORT_SYMBOL(spa_vdev_attach);
7245 EXPORT_SYMBOL(spa_vdev_detach);
7246 EXPORT_SYMBOL(spa_vdev_remove);
7247 EXPORT_SYMBOL(spa_vdev_setpath);
7248 EXPORT_SYMBOL(spa_vdev_setfru);
7249 EXPORT_SYMBOL(spa_vdev_split_mirror);
7250
7251 /* spare statech is global across all pools) */
7252 EXPORT_SYMBOL(spa_spare_add);
7253 EXPORT_SYMBOL(spa_spare_remove);
7254 EXPORT_SYMBOL(spa_spare_exists);
7255 EXPORT_SYMBOL(spa_spare_activate);
7256
7257 /* L2ARC statech is global across all pools) */
7258 EXPORT_SYMBOL(spa_l2cache_add);
7259 EXPORT_SYMBOL(spa_l2cache_remove);
7260 EXPORT_SYMBOL(spa_l2cache_exists);
7261 EXPORT_SYMBOL(spa_l2cache_activate);
7262 EXPORT_SYMBOL(spa_l2cache_drop);
7263
7264 /* scanning */
7265 EXPORT_SYMBOL(spa_scan);
7266 EXPORT_SYMBOL(spa_scan_stop);
7267
7268 /* spa syncing */
7269 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
7270 EXPORT_SYMBOL(spa_sync_allpools);
7271
7272 /* properties */
7273 EXPORT_SYMBOL(spa_prop_set);
7274 EXPORT_SYMBOL(spa_prop_get);
7275 EXPORT_SYMBOL(spa_prop_clear_bootfs);
7276
7277 /* asynchronous event notification */
7278 EXPORT_SYMBOL(spa_event_notify);
7279 #endif
7280
7281 #if defined(_KERNEL) && defined(HAVE_SPL)
7282 module_param(spa_load_verify_maxinflight, int, 0644);
7283 MODULE_PARM_DESC(spa_load_verify_maxinflight,
7284 "Max concurrent traversal I/Os while verifying pool during import -X");
7285
7286 module_param(spa_load_verify_metadata, int, 0644);
7287 MODULE_PARM_DESC(spa_load_verify_metadata,
7288 "Set to traverse metadata on pool import");
7289
7290 module_param(spa_load_verify_data, int, 0644);
7291 MODULE_PARM_DESC(spa_load_verify_data,
7292 "Set to traverse data on pool import");
7293
7294 /* CSTYLED */
7295 module_param(zio_taskq_batch_pct, uint, 0444);
7296 MODULE_PARM_DESC(zio_taskq_batch_pct,
7297 "Percentage of CPUs to run an IO worker thread");
7298
7299 #endif