]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/vdev_raidz.c
ba850b4f83d814648f5834f40dad3768236aef02
[mirror_zfs-debian.git] / module / zfs / vdev_raidz.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2016 Gvozden Nešković. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/vdev_impl.h>
31 #include <sys/zio.h>
32 #include <sys/zio_checksum.h>
33 #include <sys/abd.h>
34 #include <sys/fs/zfs.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/vdev_raidz.h>
37 #include <sys/vdev_raidz_impl.h>
38
39 /*
40 * Virtual device vector for RAID-Z.
41 *
42 * This vdev supports single, double, and triple parity. For single parity,
43 * we use a simple XOR of all the data columns. For double or triple parity,
44 * we use a special case of Reed-Solomon coding. This extends the
45 * technique described in "The mathematics of RAID-6" by H. Peter Anvin by
46 * drawing on the system described in "A Tutorial on Reed-Solomon Coding for
47 * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the
48 * former is also based. The latter is designed to provide higher performance
49 * for writes.
50 *
51 * Note that the Plank paper claimed to support arbitrary N+M, but was then
52 * amended six years later identifying a critical flaw that invalidates its
53 * claims. Nevertheless, the technique can be adapted to work for up to
54 * triple parity. For additional parity, the amendment "Note: Correction to
55 * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding
56 * is viable, but the additional complexity means that write performance will
57 * suffer.
58 *
59 * All of the methods above operate on a Galois field, defined over the
60 * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements
61 * can be expressed with a single byte. Briefly, the operations on the
62 * field are defined as follows:
63 *
64 * o addition (+) is represented by a bitwise XOR
65 * o subtraction (-) is therefore identical to addition: A + B = A - B
66 * o multiplication of A by 2 is defined by the following bitwise expression:
67 *
68 * (A * 2)_7 = A_6
69 * (A * 2)_6 = A_5
70 * (A * 2)_5 = A_4
71 * (A * 2)_4 = A_3 + A_7
72 * (A * 2)_3 = A_2 + A_7
73 * (A * 2)_2 = A_1 + A_7
74 * (A * 2)_1 = A_0
75 * (A * 2)_0 = A_7
76 *
77 * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)).
78 * As an aside, this multiplication is derived from the error correcting
79 * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1.
80 *
81 * Observe that any number in the field (except for 0) can be expressed as a
82 * power of 2 -- a generator for the field. We store a table of the powers of
83 * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can
84 * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather
85 * than field addition). The inverse of a field element A (A^-1) is therefore
86 * A ^ (255 - 1) = A^254.
87 *
88 * The up-to-three parity columns, P, Q, R over several data columns,
89 * D_0, ... D_n-1, can be expressed by field operations:
90 *
91 * P = D_0 + D_1 + ... + D_n-2 + D_n-1
92 * Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1
93 * = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1
94 * R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1
95 * = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1
96 *
97 * We chose 1, 2, and 4 as our generators because 1 corresponds to the trival
98 * XOR operation, and 2 and 4 can be computed quickly and generate linearly-
99 * independent coefficients. (There are no additional coefficients that have
100 * this property which is why the uncorrected Plank method breaks down.)
101 *
102 * See the reconstruction code below for how P, Q and R can used individually
103 * or in concert to recover missing data columns.
104 */
105
106 #define VDEV_RAIDZ_P 0
107 #define VDEV_RAIDZ_Q 1
108 #define VDEV_RAIDZ_R 2
109
110 #define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
111 #define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))
112
113 /*
114 * We provide a mechanism to perform the field multiplication operation on a
115 * 64-bit value all at once rather than a byte at a time. This works by
116 * creating a mask from the top bit in each byte and using that to
117 * conditionally apply the XOR of 0x1d.
118 */
119 #define VDEV_RAIDZ_64MUL_2(x, mask) \
120 { \
121 (mask) = (x) & 0x8080808080808080ULL; \
122 (mask) = ((mask) << 1) - ((mask) >> 7); \
123 (x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
124 ((mask) & 0x1d1d1d1d1d1d1d1dULL); \
125 }
126
127 #define VDEV_RAIDZ_64MUL_4(x, mask) \
128 { \
129 VDEV_RAIDZ_64MUL_2((x), mask); \
130 VDEV_RAIDZ_64MUL_2((x), mask); \
131 }
132
133 void
134 vdev_raidz_map_free(raidz_map_t *rm)
135 {
136 int c;
137
138 for (c = 0; c < rm->rm_firstdatacol; c++) {
139 abd_free(rm->rm_col[c].rc_abd);
140
141 if (rm->rm_col[c].rc_gdata != NULL)
142 abd_free(rm->rm_col[c].rc_gdata);
143 }
144
145 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
146 abd_put(rm->rm_col[c].rc_abd);
147
148 if (rm->rm_abd_copy != NULL)
149 abd_free(rm->rm_abd_copy);
150
151 kmem_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_scols]));
152 }
153
154 static void
155 vdev_raidz_map_free_vsd(zio_t *zio)
156 {
157 raidz_map_t *rm = zio->io_vsd;
158
159 ASSERT0(rm->rm_freed);
160 rm->rm_freed = 1;
161
162 if (rm->rm_reports == 0)
163 vdev_raidz_map_free(rm);
164 }
165
166 /*ARGSUSED*/
167 static void
168 vdev_raidz_cksum_free(void *arg, size_t ignored)
169 {
170 raidz_map_t *rm = arg;
171
172 ASSERT3U(rm->rm_reports, >, 0);
173
174 if (--rm->rm_reports == 0 && rm->rm_freed != 0)
175 vdev_raidz_map_free(rm);
176 }
177
178 static void
179 vdev_raidz_cksum_finish(zio_cksum_report_t *zcr, const abd_t *good_data)
180 {
181 raidz_map_t *rm = zcr->zcr_cbdata;
182 const size_t c = zcr->zcr_cbinfo;
183 size_t x, offset;
184
185 const abd_t *good = NULL;
186 const abd_t *bad = rm->rm_col[c].rc_abd;
187
188 if (good_data == NULL) {
189 zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE);
190 return;
191 }
192
193 if (c < rm->rm_firstdatacol) {
194 /*
195 * The first time through, calculate the parity blocks for
196 * the good data (this relies on the fact that the good
197 * data never changes for a given logical ZIO)
198 */
199 if (rm->rm_col[0].rc_gdata == NULL) {
200 abd_t *bad_parity[VDEV_RAIDZ_MAXPARITY];
201
202 /*
203 * Set up the rm_col[]s to generate the parity for
204 * good_data, first saving the parity bufs and
205 * replacing them with buffers to hold the result.
206 */
207 for (x = 0; x < rm->rm_firstdatacol; x++) {
208 bad_parity[x] = rm->rm_col[x].rc_abd;
209 rm->rm_col[x].rc_abd =
210 rm->rm_col[x].rc_gdata =
211 abd_alloc_sametype(rm->rm_col[x].rc_abd,
212 rm->rm_col[x].rc_size);
213 }
214
215 /* fill in the data columns from good_data */
216 offset = 0;
217 for (; x < rm->rm_cols; x++) {
218 abd_put(rm->rm_col[x].rc_abd);
219
220 rm->rm_col[x].rc_abd =
221 abd_get_offset_size((abd_t *)good_data,
222 offset, rm->rm_col[x].rc_size);
223 offset += rm->rm_col[x].rc_size;
224 }
225
226 /*
227 * Construct the parity from the good data.
228 */
229 vdev_raidz_generate_parity(rm);
230
231 /* restore everything back to its original state */
232 for (x = 0; x < rm->rm_firstdatacol; x++)
233 rm->rm_col[x].rc_abd = bad_parity[x];
234
235 offset = 0;
236 for (x = rm->rm_firstdatacol; x < rm->rm_cols; x++) {
237 abd_put(rm->rm_col[x].rc_abd);
238 rm->rm_col[x].rc_abd = abd_get_offset_size(
239 rm->rm_abd_copy, offset,
240 rm->rm_col[x].rc_size);
241 offset += rm->rm_col[x].rc_size;
242 }
243 }
244
245 ASSERT3P(rm->rm_col[c].rc_gdata, !=, NULL);
246 good = abd_get_offset_size(rm->rm_col[c].rc_gdata, 0,
247 rm->rm_col[c].rc_size);
248 } else {
249 /* adjust good_data to point at the start of our column */
250 offset = 0;
251 for (x = rm->rm_firstdatacol; x < c; x++)
252 offset += rm->rm_col[x].rc_size;
253
254 good = abd_get_offset_size((abd_t *)good_data, offset,
255 rm->rm_col[c].rc_size);
256 }
257
258 /* we drop the ereport if it ends up that the data was good */
259 zfs_ereport_finish_checksum(zcr, good, bad, B_TRUE);
260 abd_put((abd_t *)good);
261 }
262
263 /*
264 * Invoked indirectly by zfs_ereport_start_checksum(), called
265 * below when our read operation fails completely. The main point
266 * is to keep a copy of everything we read from disk, so that at
267 * vdev_raidz_cksum_finish() time we can compare it with the good data.
268 */
269 static void
270 vdev_raidz_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg)
271 {
272 size_t c = (size_t)(uintptr_t)arg;
273 size_t offset;
274
275 raidz_map_t *rm = zio->io_vsd;
276 size_t size;
277
278 /* set up the report and bump the refcount */
279 zcr->zcr_cbdata = rm;
280 zcr->zcr_cbinfo = c;
281 zcr->zcr_finish = vdev_raidz_cksum_finish;
282 zcr->zcr_free = vdev_raidz_cksum_free;
283
284 rm->rm_reports++;
285 ASSERT3U(rm->rm_reports, >, 0);
286
287 if (rm->rm_abd_copy != NULL)
288 return;
289
290 /*
291 * It's the first time we're called for this raidz_map_t, so we need
292 * to copy the data aside; there's no guarantee that our zio's buffer
293 * won't be re-used for something else.
294 *
295 * Our parity data is already in separate buffers, so there's no need
296 * to copy them.
297 */
298
299 size = 0;
300 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
301 size += rm->rm_col[c].rc_size;
302
303 rm->rm_abd_copy = abd_alloc_for_io(size, B_FALSE);
304
305 for (offset = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
306 raidz_col_t *col = &rm->rm_col[c];
307 abd_t *tmp = abd_get_offset_size(rm->rm_abd_copy, offset,
308 col->rc_size);
309
310 abd_copy(tmp, col->rc_abd, col->rc_size);
311
312 abd_put(col->rc_abd);
313 col->rc_abd = tmp;
314
315 offset += col->rc_size;
316 }
317 ASSERT3U(offset, ==, size);
318 }
319
320 static const zio_vsd_ops_t vdev_raidz_vsd_ops = {
321 vdev_raidz_map_free_vsd,
322 vdev_raidz_cksum_report
323 };
324
325 /*
326 * Divides the IO evenly across all child vdevs; usually, dcols is
327 * the number of children in the target vdev.
328 *
329 * Avoid inlining the function to keep vdev_raidz_io_start(), which
330 * is this functions only caller, as small as possible on the stack.
331 */
332 noinline raidz_map_t *
333 vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
334 uint64_t nparity)
335 {
336 raidz_map_t *rm;
337 /* The starting RAIDZ (parent) vdev sector of the block. */
338 uint64_t b = zio->io_offset >> ashift;
339 /* The zio's size in units of the vdev's minimum sector size. */
340 uint64_t s = zio->io_size >> ashift;
341 /* The first column for this stripe. */
342 uint64_t f = b % dcols;
343 /* The starting byte offset on each child vdev. */
344 uint64_t o = (b / dcols) << ashift;
345 uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;
346 uint64_t off = 0;
347
348 /*
349 * "Quotient": The number of data sectors for this stripe on all but
350 * the "big column" child vdevs that also contain "remainder" data.
351 */
352 q = s / (dcols - nparity);
353
354 /*
355 * "Remainder": The number of partial stripe data sectors in this I/O.
356 * This will add a sector to some, but not all, child vdevs.
357 */
358 r = s - q * (dcols - nparity);
359
360 /* The number of "big columns" - those which contain remainder data. */
361 bc = (r == 0 ? 0 : r + nparity);
362
363 /*
364 * The total number of data and parity sectors associated with
365 * this I/O.
366 */
367 tot = s + nparity * (q + (r == 0 ? 0 : 1));
368
369 /* acols: The columns that will be accessed. */
370 /* scols: The columns that will be accessed or skipped. */
371 if (q == 0) {
372 /* Our I/O request doesn't span all child vdevs. */
373 acols = bc;
374 scols = MIN(dcols, roundup(bc, nparity + 1));
375 } else {
376 acols = dcols;
377 scols = dcols;
378 }
379
380 ASSERT3U(acols, <=, scols);
381
382 rm = kmem_alloc(offsetof(raidz_map_t, rm_col[scols]), KM_SLEEP);
383
384 rm->rm_cols = acols;
385 rm->rm_scols = scols;
386 rm->rm_bigcols = bc;
387 rm->rm_skipstart = bc;
388 rm->rm_missingdata = 0;
389 rm->rm_missingparity = 0;
390 rm->rm_firstdatacol = nparity;
391 rm->rm_abd_copy = NULL;
392 rm->rm_reports = 0;
393 rm->rm_freed = 0;
394 rm->rm_ecksuminjected = 0;
395
396 asize = 0;
397
398 for (c = 0; c < scols; c++) {
399 col = f + c;
400 coff = o;
401 if (col >= dcols) {
402 col -= dcols;
403 coff += 1ULL << ashift;
404 }
405 rm->rm_col[c].rc_devidx = col;
406 rm->rm_col[c].rc_offset = coff;
407 rm->rm_col[c].rc_abd = NULL;
408 rm->rm_col[c].rc_gdata = NULL;
409 rm->rm_col[c].rc_error = 0;
410 rm->rm_col[c].rc_tried = 0;
411 rm->rm_col[c].rc_skipped = 0;
412
413 if (c >= acols)
414 rm->rm_col[c].rc_size = 0;
415 else if (c < bc)
416 rm->rm_col[c].rc_size = (q + 1) << ashift;
417 else
418 rm->rm_col[c].rc_size = q << ashift;
419
420 asize += rm->rm_col[c].rc_size;
421 }
422
423 ASSERT3U(asize, ==, tot << ashift);
424 rm->rm_asize = roundup(asize, (nparity + 1) << ashift);
425 rm->rm_nskip = roundup(tot, nparity + 1) - tot;
426 ASSERT3U(rm->rm_asize - asize, ==, rm->rm_nskip << ashift);
427 ASSERT3U(rm->rm_nskip, <=, nparity);
428
429 for (c = 0; c < rm->rm_firstdatacol; c++)
430 rm->rm_col[c].rc_abd =
431 abd_alloc_linear(rm->rm_col[c].rc_size, B_FALSE);
432
433 rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, 0,
434 rm->rm_col[c].rc_size);
435 off = rm->rm_col[c].rc_size;
436
437 for (c = c + 1; c < acols; c++) {
438 rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, off,
439 rm->rm_col[c].rc_size);
440 off += rm->rm_col[c].rc_size;
441 }
442
443 /*
444 * If all data stored spans all columns, there's a danger that parity
445 * will always be on the same device and, since parity isn't read
446 * during normal operation, that that device's I/O bandwidth won't be
447 * used effectively. We therefore switch the parity every 1MB.
448 *
449 * ... at least that was, ostensibly, the theory. As a practical
450 * matter unless we juggle the parity between all devices evenly, we
451 * won't see any benefit. Further, occasional writes that aren't a
452 * multiple of the LCM of the number of children and the minimum
453 * stripe width are sufficient to avoid pessimal behavior.
454 * Unfortunately, this decision created an implicit on-disk format
455 * requirement that we need to support for all eternity, but only
456 * for single-parity RAID-Z.
457 *
458 * If we intend to skip a sector in the zeroth column for padding
459 * we must make sure to note this swap. We will never intend to
460 * skip the first column since at least one data and one parity
461 * column must appear in each row.
462 */
463 ASSERT(rm->rm_cols >= 2);
464 ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size);
465
466 if (rm->rm_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
467 devidx = rm->rm_col[0].rc_devidx;
468 o = rm->rm_col[0].rc_offset;
469 rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx;
470 rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset;
471 rm->rm_col[1].rc_devidx = devidx;
472 rm->rm_col[1].rc_offset = o;
473
474 if (rm->rm_skipstart == 0)
475 rm->rm_skipstart = 1;
476 }
477
478 zio->io_vsd = rm;
479 zio->io_vsd_ops = &vdev_raidz_vsd_ops;
480
481 /* init RAIDZ parity ops */
482 rm->rm_ops = vdev_raidz_math_get_ops();
483
484 return (rm);
485 }
486
487 struct pqr_struct {
488 uint64_t *p;
489 uint64_t *q;
490 uint64_t *r;
491 };
492
493 static int
494 vdev_raidz_p_func(void *buf, size_t size, void *private)
495 {
496 struct pqr_struct *pqr = private;
497 const uint64_t *src = buf;
498 int i, cnt = size / sizeof (src[0]);
499
500 ASSERT(pqr->p && !pqr->q && !pqr->r);
501
502 for (i = 0; i < cnt; i++, src++, pqr->p++)
503 *pqr->p ^= *src;
504
505 return (0);
506 }
507
508 static int
509 vdev_raidz_pq_func(void *buf, size_t size, void *private)
510 {
511 struct pqr_struct *pqr = private;
512 const uint64_t *src = buf;
513 uint64_t mask;
514 int i, cnt = size / sizeof (src[0]);
515
516 ASSERT(pqr->p && pqr->q && !pqr->r);
517
518 for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) {
519 *pqr->p ^= *src;
520 VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
521 *pqr->q ^= *src;
522 }
523
524 return (0);
525 }
526
527 static int
528 vdev_raidz_pqr_func(void *buf, size_t size, void *private)
529 {
530 struct pqr_struct *pqr = private;
531 const uint64_t *src = buf;
532 uint64_t mask;
533 int i, cnt = size / sizeof (src[0]);
534
535 ASSERT(pqr->p && pqr->q && pqr->r);
536
537 for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) {
538 *pqr->p ^= *src;
539 VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
540 *pqr->q ^= *src;
541 VDEV_RAIDZ_64MUL_4(*pqr->r, mask);
542 *pqr->r ^= *src;
543 }
544
545 return (0);
546 }
547
548 static void
549 vdev_raidz_generate_parity_p(raidz_map_t *rm)
550 {
551 uint64_t *p;
552 int c;
553 abd_t *src;
554
555 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
556 src = rm->rm_col[c].rc_abd;
557 p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
558
559 if (c == rm->rm_firstdatacol) {
560 abd_copy_to_buf(p, src, rm->rm_col[c].rc_size);
561 } else {
562 struct pqr_struct pqr = { p, NULL, NULL };
563 (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
564 vdev_raidz_p_func, &pqr);
565 }
566 }
567 }
568
569 static void
570 vdev_raidz_generate_parity_pq(raidz_map_t *rm)
571 {
572 uint64_t *p, *q, pcnt, ccnt, mask, i;
573 int c;
574 abd_t *src;
575
576 pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
577 ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
578 rm->rm_col[VDEV_RAIDZ_Q].rc_size);
579
580 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
581 src = rm->rm_col[c].rc_abd;
582 p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
583 q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
584
585 ccnt = rm->rm_col[c].rc_size / sizeof (p[0]);
586
587 if (c == rm->rm_firstdatacol) {
588 ASSERT(ccnt == pcnt || ccnt == 0);
589 abd_copy_to_buf(p, src, rm->rm_col[c].rc_size);
590 (void) memcpy(q, p, rm->rm_col[c].rc_size);
591
592 for (i = ccnt; i < pcnt; i++) {
593 p[i] = 0;
594 q[i] = 0;
595 }
596 } else {
597 struct pqr_struct pqr = { p, q, NULL };
598
599 ASSERT(ccnt <= pcnt);
600 (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
601 vdev_raidz_pq_func, &pqr);
602
603 /*
604 * Treat short columns as though they are full of 0s.
605 * Note that there's therefore nothing needed for P.
606 */
607 for (i = ccnt; i < pcnt; i++) {
608 VDEV_RAIDZ_64MUL_2(q[i], mask);
609 }
610 }
611 }
612 }
613
614 static void
615 vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
616 {
617 uint64_t *p, *q, *r, pcnt, ccnt, mask, i;
618 int c;
619 abd_t *src;
620
621 pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
622 ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
623 rm->rm_col[VDEV_RAIDZ_Q].rc_size);
624 ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
625 rm->rm_col[VDEV_RAIDZ_R].rc_size);
626
627 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
628 src = rm->rm_col[c].rc_abd;
629 p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
630 q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
631 r = abd_to_buf(rm->rm_col[VDEV_RAIDZ_R].rc_abd);
632
633 ccnt = rm->rm_col[c].rc_size / sizeof (p[0]);
634
635 if (c == rm->rm_firstdatacol) {
636 ASSERT(ccnt == pcnt || ccnt == 0);
637 abd_copy_to_buf(p, src, rm->rm_col[c].rc_size);
638 (void) memcpy(q, p, rm->rm_col[c].rc_size);
639 (void) memcpy(r, p, rm->rm_col[c].rc_size);
640
641 for (i = ccnt; i < pcnt; i++) {
642 p[i] = 0;
643 q[i] = 0;
644 r[i] = 0;
645 }
646 } else {
647 struct pqr_struct pqr = { p, q, r };
648
649 ASSERT(ccnt <= pcnt);
650 (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
651 vdev_raidz_pqr_func, &pqr);
652
653 /*
654 * Treat short columns as though they are full of 0s.
655 * Note that there's therefore nothing needed for P.
656 */
657 for (i = ccnt; i < pcnt; i++) {
658 VDEV_RAIDZ_64MUL_2(q[i], mask);
659 VDEV_RAIDZ_64MUL_4(r[i], mask);
660 }
661 }
662 }
663 }
664
665 /*
666 * Generate RAID parity in the first virtual columns according to the number of
667 * parity columns available.
668 */
669 void
670 vdev_raidz_generate_parity(raidz_map_t *rm)
671 {
672 /* Generate using the new math implementation */
673 if (vdev_raidz_math_generate(rm) != RAIDZ_ORIGINAL_IMPL)
674 return;
675
676 switch (rm->rm_firstdatacol) {
677 case 1:
678 vdev_raidz_generate_parity_p(rm);
679 break;
680 case 2:
681 vdev_raidz_generate_parity_pq(rm);
682 break;
683 case 3:
684 vdev_raidz_generate_parity_pqr(rm);
685 break;
686 default:
687 cmn_err(CE_PANIC, "invalid RAID-Z configuration");
688 }
689 }
690
691 /* ARGSUSED */
692 static int
693 vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private)
694 {
695 uint64_t *dst = dbuf;
696 uint64_t *src = sbuf;
697 int cnt = size / sizeof (src[0]);
698 int i;
699
700 for (i = 0; i < cnt; i++) {
701 dst[i] ^= src[i];
702 }
703
704 return (0);
705 }
706
707 /* ARGSUSED */
708 static int
709 vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size,
710 void *private)
711 {
712 uint64_t *dst = dbuf;
713 uint64_t *src = sbuf;
714 uint64_t mask;
715 int cnt = size / sizeof (dst[0]);
716 int i;
717
718 for (i = 0; i < cnt; i++, dst++, src++) {
719 VDEV_RAIDZ_64MUL_2(*dst, mask);
720 *dst ^= *src;
721 }
722
723 return (0);
724 }
725
726 /* ARGSUSED */
727 static int
728 vdev_raidz_reconst_q_pre_tail_func(void *buf, size_t size, void *private)
729 {
730 uint64_t *dst = buf;
731 uint64_t mask;
732 int cnt = size / sizeof (dst[0]);
733 int i;
734
735 for (i = 0; i < cnt; i++, dst++) {
736 /* same operation as vdev_raidz_reconst_q_pre_func() on dst */
737 VDEV_RAIDZ_64MUL_2(*dst, mask);
738 }
739
740 return (0);
741 }
742
743 struct reconst_q_struct {
744 uint64_t *q;
745 int exp;
746 };
747
748 static int
749 vdev_raidz_reconst_q_post_func(void *buf, size_t size, void *private)
750 {
751 struct reconst_q_struct *rq = private;
752 uint64_t *dst = buf;
753 int cnt = size / sizeof (dst[0]);
754 int i;
755
756 for (i = 0; i < cnt; i++, dst++, rq->q++) {
757 int j;
758 uint8_t *b;
759
760 *dst ^= *rq->q;
761 for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) {
762 *b = vdev_raidz_exp2(*b, rq->exp);
763 }
764 }
765
766 return (0);
767 }
768
769 struct reconst_pq_struct {
770 uint8_t *p;
771 uint8_t *q;
772 uint8_t *pxy;
773 uint8_t *qxy;
774 int aexp;
775 int bexp;
776 };
777
778 static int
779 vdev_raidz_reconst_pq_func(void *xbuf, void *ybuf, size_t size, void *private)
780 {
781 struct reconst_pq_struct *rpq = private;
782 uint8_t *xd = xbuf;
783 uint8_t *yd = ybuf;
784 int i;
785
786 for (i = 0; i < size;
787 i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++, yd++) {
788 *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
789 vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
790 *yd = *rpq->p ^ *rpq->pxy ^ *xd;
791 }
792
793 return (0);
794 }
795
796 static int
797 vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private)
798 {
799 struct reconst_pq_struct *rpq = private;
800 uint8_t *xd = xbuf;
801 int i;
802
803 for (i = 0; i < size;
804 i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++) {
805 /* same operation as vdev_raidz_reconst_pq_func() on xd */
806 *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
807 vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
808 }
809
810 return (0);
811 }
812
813 static int
814 vdev_raidz_reconstruct_p(raidz_map_t *rm, int *tgts, int ntgts)
815 {
816 int x = tgts[0];
817 int c;
818 abd_t *dst, *src;
819
820 ASSERT(ntgts == 1);
821 ASSERT(x >= rm->rm_firstdatacol);
822 ASSERT(x < rm->rm_cols);
823
824 ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_P].rc_size);
825 ASSERT(rm->rm_col[x].rc_size > 0);
826
827 src = rm->rm_col[VDEV_RAIDZ_P].rc_abd;
828 dst = rm->rm_col[x].rc_abd;
829
830 abd_copy_from_buf(dst, abd_to_buf(src), rm->rm_col[x].rc_size);
831
832 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
833 uint64_t size = MIN(rm->rm_col[x].rc_size,
834 rm->rm_col[c].rc_size);
835
836 src = rm->rm_col[c].rc_abd;
837 dst = rm->rm_col[x].rc_abd;
838
839 if (c == x)
840 continue;
841
842 (void) abd_iterate_func2(dst, src, 0, 0, size,
843 vdev_raidz_reconst_p_func, NULL);
844 }
845
846 return (1 << VDEV_RAIDZ_P);
847 }
848
849 static int
850 vdev_raidz_reconstruct_q(raidz_map_t *rm, int *tgts, int ntgts)
851 {
852 int x = tgts[0];
853 int c, exp;
854 abd_t *dst, *src;
855 struct reconst_q_struct rq;
856
857 ASSERT(ntgts == 1);
858
859 ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_Q].rc_size);
860
861 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
862 uint64_t size = (c == x) ? 0 : MIN(rm->rm_col[x].rc_size,
863 rm->rm_col[c].rc_size);
864
865 src = rm->rm_col[c].rc_abd;
866 dst = rm->rm_col[x].rc_abd;
867
868 if (c == rm->rm_firstdatacol) {
869 abd_copy(dst, src, size);
870 if (rm->rm_col[x].rc_size > size)
871 abd_zero_off(dst, size,
872 rm->rm_col[x].rc_size - size);
873
874 } else {
875 ASSERT3U(size, <=, rm->rm_col[x].rc_size);
876 (void) abd_iterate_func2(dst, src, 0, 0, size,
877 vdev_raidz_reconst_q_pre_func, NULL);
878 (void) abd_iterate_func(dst,
879 size, rm->rm_col[x].rc_size - size,
880 vdev_raidz_reconst_q_pre_tail_func, NULL);
881 }
882 }
883
884 src = rm->rm_col[VDEV_RAIDZ_Q].rc_abd;
885 dst = rm->rm_col[x].rc_abd;
886 exp = 255 - (rm->rm_cols - 1 - x);
887 rq.q = abd_to_buf(src);
888 rq.exp = exp;
889
890 (void) abd_iterate_func(dst, 0, rm->rm_col[x].rc_size,
891 vdev_raidz_reconst_q_post_func, &rq);
892
893 return (1 << VDEV_RAIDZ_Q);
894 }
895
896 static int
897 vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
898 {
899 uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp;
900 abd_t *pdata, *qdata;
901 uint64_t xsize, ysize;
902 int x = tgts[0];
903 int y = tgts[1];
904 abd_t *xd, *yd;
905 struct reconst_pq_struct rpq;
906
907 ASSERT(ntgts == 2);
908 ASSERT(x < y);
909 ASSERT(x >= rm->rm_firstdatacol);
910 ASSERT(y < rm->rm_cols);
911
912 ASSERT(rm->rm_col[x].rc_size >= rm->rm_col[y].rc_size);
913
914 /*
915 * Move the parity data aside -- we're going to compute parity as
916 * though columns x and y were full of zeros -- Pxy and Qxy. We want to
917 * reuse the parity generation mechanism without trashing the actual
918 * parity so we make those columns appear to be full of zeros by
919 * setting their lengths to zero.
920 */
921 pdata = rm->rm_col[VDEV_RAIDZ_P].rc_abd;
922 qdata = rm->rm_col[VDEV_RAIDZ_Q].rc_abd;
923 xsize = rm->rm_col[x].rc_size;
924 ysize = rm->rm_col[y].rc_size;
925
926 rm->rm_col[VDEV_RAIDZ_P].rc_abd =
927 abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_P].rc_size, B_TRUE);
928 rm->rm_col[VDEV_RAIDZ_Q].rc_abd =
929 abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_Q].rc_size, B_TRUE);
930 rm->rm_col[x].rc_size = 0;
931 rm->rm_col[y].rc_size = 0;
932
933 vdev_raidz_generate_parity_pq(rm);
934
935 rm->rm_col[x].rc_size = xsize;
936 rm->rm_col[y].rc_size = ysize;
937
938 p = abd_to_buf(pdata);
939 q = abd_to_buf(qdata);
940 pxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
941 qxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
942 xd = rm->rm_col[x].rc_abd;
943 yd = rm->rm_col[y].rc_abd;
944
945 /*
946 * We now have:
947 * Pxy = P + D_x + D_y
948 * Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
949 *
950 * We can then solve for D_x:
951 * D_x = A * (P + Pxy) + B * (Q + Qxy)
952 * where
953 * A = 2^(x - y) * (2^(x - y) + 1)^-1
954 * B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
955 *
956 * With D_x in hand, we can easily solve for D_y:
957 * D_y = P + Pxy + D_x
958 */
959
960 a = vdev_raidz_pow2[255 + x - y];
961 b = vdev_raidz_pow2[255 - (rm->rm_cols - 1 - x)];
962 tmp = 255 - vdev_raidz_log2[a ^ 1];
963
964 aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
965 bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];
966
967 ASSERT3U(xsize, >=, ysize);
968 rpq.p = p;
969 rpq.q = q;
970 rpq.pxy = pxy;
971 rpq.qxy = qxy;
972 rpq.aexp = aexp;
973 rpq.bexp = bexp;
974
975 (void) abd_iterate_func2(xd, yd, 0, 0, ysize,
976 vdev_raidz_reconst_pq_func, &rpq);
977 (void) abd_iterate_func(xd, ysize, xsize - ysize,
978 vdev_raidz_reconst_pq_tail_func, &rpq);
979
980 abd_free(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
981 abd_free(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
982
983 /*
984 * Restore the saved parity data.
985 */
986 rm->rm_col[VDEV_RAIDZ_P].rc_abd = pdata;
987 rm->rm_col[VDEV_RAIDZ_Q].rc_abd = qdata;
988
989 return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q));
990 }
991
992 /* BEGIN CSTYLED */
993 /*
994 * In the general case of reconstruction, we must solve the system of linear
995 * equations defined by the coeffecients used to generate parity as well as
996 * the contents of the data and parity disks. This can be expressed with
997 * vectors for the original data (D) and the actual data (d) and parity (p)
998 * and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
999 *
1000 * __ __ __ __
1001 * | | __ __ | p_0 |
1002 * | V | | D_0 | | p_m-1 |
1003 * | | x | : | = | d_0 |
1004 * | I | | D_n-1 | | : |
1005 * | | ~~ ~~ | d_n-1 |
1006 * ~~ ~~ ~~ ~~
1007 *
1008 * I is simply a square identity matrix of size n, and V is a vandermonde
1009 * matrix defined by the coeffecients we chose for the various parity columns
1010 * (1, 2, 4). Note that these values were chosen both for simplicity, speedy
1011 * computation as well as linear separability.
1012 *
1013 * __ __ __ __
1014 * | 1 .. 1 1 1 | | p_0 |
1015 * | 2^n-1 .. 4 2 1 | __ __ | : |
1016 * | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 |
1017 * | 1 .. 0 0 0 | | D_1 | | d_0 |
1018 * | 0 .. 0 0 0 | x | D_2 | = | d_1 |
1019 * | : : : : | | : | | d_2 |
1020 * | 0 .. 1 0 0 | | D_n-1 | | : |
1021 * | 0 .. 0 1 0 | ~~ ~~ | : |
1022 * | 0 .. 0 0 1 | | d_n-1 |
1023 * ~~ ~~ ~~ ~~
1024 *
1025 * Note that I, V, d, and p are known. To compute D, we must invert the
1026 * matrix and use the known data and parity values to reconstruct the unknown
1027 * data values. We begin by removing the rows in V|I and d|p that correspond
1028 * to failed or missing columns; we then make V|I square (n x n) and d|p
1029 * sized n by removing rows corresponding to unused parity from the bottom up
1030 * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)'
1031 * using Gauss-Jordan elimination. In the example below we use m=3 parity
1032 * columns, n=8 data columns, with errors in d_1, d_2, and p_1:
1033 * __ __
1034 * | 1 1 1 1 1 1 1 1 |
1035 * | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks
1036 * | 19 205 116 29 64 16 4 1 | / /
1037 * | 1 0 0 0 0 0 0 0 | / /
1038 * | 0 1 0 0 0 0 0 0 | <--' /
1039 * (V|I) = | 0 0 1 0 0 0 0 0 | <---'
1040 * | 0 0 0 1 0 0 0 0 |
1041 * | 0 0 0 0 1 0 0 0 |
1042 * | 0 0 0 0 0 1 0 0 |
1043 * | 0 0 0 0 0 0 1 0 |
1044 * | 0 0 0 0 0 0 0 1 |
1045 * ~~ ~~
1046 * __ __
1047 * | 1 1 1 1 1 1 1 1 |
1048 * | 128 64 32 16 8 4 2 1 |
1049 * | 19 205 116 29 64 16 4 1 |
1050 * | 1 0 0 0 0 0 0 0 |
1051 * | 0 1 0 0 0 0 0 0 |
1052 * (V|I)' = | 0 0 1 0 0 0 0 0 |
1053 * | 0 0 0 1 0 0 0 0 |
1054 * | 0 0 0 0 1 0 0 0 |
1055 * | 0 0 0 0 0 1 0 0 |
1056 * | 0 0 0 0 0 0 1 0 |
1057 * | 0 0 0 0 0 0 0 1 |
1058 * ~~ ~~
1059 *
1060 * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We
1061 * have carefully chosen the seed values 1, 2, and 4 to ensure that this
1062 * matrix is not singular.
1063 * __ __
1064 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
1065 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
1066 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1067 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1068 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1069 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1070 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1071 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1072 * ~~ ~~
1073 * __ __
1074 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1075 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
1076 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
1077 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1078 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1079 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1080 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1081 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1082 * ~~ ~~
1083 * __ __
1084 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1085 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1086 * | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 |
1087 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1088 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1089 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1090 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1091 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1092 * ~~ ~~
1093 * __ __
1094 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1095 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1096 * | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 |
1097 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1098 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1099 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1100 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1101 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1102 * ~~ ~~
1103 * __ __
1104 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1105 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1106 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
1107 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1108 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1109 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1110 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1111 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1112 * ~~ ~~
1113 * __ __
1114 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1115 * | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 |
1116 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
1117 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1118 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1119 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1120 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1121 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1122 * ~~ ~~
1123 * __ __
1124 * | 0 0 1 0 0 0 0 0 |
1125 * | 167 100 5 41 159 169 217 208 |
1126 * | 166 100 4 40 158 168 216 209 |
1127 * (V|I)'^-1 = | 0 0 0 1 0 0 0 0 |
1128 * | 0 0 0 0 1 0 0 0 |
1129 * | 0 0 0 0 0 1 0 0 |
1130 * | 0 0 0 0 0 0 1 0 |
1131 * | 0 0 0 0 0 0 0 1 |
1132 * ~~ ~~
1133 *
1134 * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values
1135 * of the missing data.
1136 *
1137 * As is apparent from the example above, the only non-trivial rows in the
1138 * inverse matrix correspond to the data disks that we're trying to
1139 * reconstruct. Indeed, those are the only rows we need as the others would
1140 * only be useful for reconstructing data known or assumed to be valid. For
1141 * that reason, we only build the coefficients in the rows that correspond to
1142 * targeted columns.
1143 */
1144 /* END CSTYLED */
1145
1146 static void
1147 vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map,
1148 uint8_t **rows)
1149 {
1150 int i, j;
1151 int pow;
1152
1153 ASSERT(n == rm->rm_cols - rm->rm_firstdatacol);
1154
1155 /*
1156 * Fill in the missing rows of interest.
1157 */
1158 for (i = 0; i < nmap; i++) {
1159 ASSERT3S(0, <=, map[i]);
1160 ASSERT3S(map[i], <=, 2);
1161
1162 pow = map[i] * n;
1163 if (pow > 255)
1164 pow -= 255;
1165 ASSERT(pow <= 255);
1166
1167 for (j = 0; j < n; j++) {
1168 pow -= map[i];
1169 if (pow < 0)
1170 pow += 255;
1171 rows[i][j] = vdev_raidz_pow2[pow];
1172 }
1173 }
1174 }
1175
1176 static void
1177 vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
1178 uint8_t **rows, uint8_t **invrows, const uint8_t *used)
1179 {
1180 int i, j, ii, jj;
1181 uint8_t log;
1182
1183 /*
1184 * Assert that the first nmissing entries from the array of used
1185 * columns correspond to parity columns and that subsequent entries
1186 * correspond to data columns.
1187 */
1188 for (i = 0; i < nmissing; i++) {
1189 ASSERT3S(used[i], <, rm->rm_firstdatacol);
1190 }
1191 for (; i < n; i++) {
1192 ASSERT3S(used[i], >=, rm->rm_firstdatacol);
1193 }
1194
1195 /*
1196 * First initialize the storage where we'll compute the inverse rows.
1197 */
1198 for (i = 0; i < nmissing; i++) {
1199 for (j = 0; j < n; j++) {
1200 invrows[i][j] = (i == j) ? 1 : 0;
1201 }
1202 }
1203
1204 /*
1205 * Subtract all trivial rows from the rows of consequence.
1206 */
1207 for (i = 0; i < nmissing; i++) {
1208 for (j = nmissing; j < n; j++) {
1209 ASSERT3U(used[j], >=, rm->rm_firstdatacol);
1210 jj = used[j] - rm->rm_firstdatacol;
1211 ASSERT3S(jj, <, n);
1212 invrows[i][j] = rows[i][jj];
1213 rows[i][jj] = 0;
1214 }
1215 }
1216
1217 /*
1218 * For each of the rows of interest, we must normalize it and subtract
1219 * a multiple of it from the other rows.
1220 */
1221 for (i = 0; i < nmissing; i++) {
1222 for (j = 0; j < missing[i]; j++) {
1223 ASSERT0(rows[i][j]);
1224 }
1225 ASSERT3U(rows[i][missing[i]], !=, 0);
1226
1227 /*
1228 * Compute the inverse of the first element and multiply each
1229 * element in the row by that value.
1230 */
1231 log = 255 - vdev_raidz_log2[rows[i][missing[i]]];
1232
1233 for (j = 0; j < n; j++) {
1234 rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
1235 invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
1236 }
1237
1238 for (ii = 0; ii < nmissing; ii++) {
1239 if (i == ii)
1240 continue;
1241
1242 ASSERT3U(rows[ii][missing[i]], !=, 0);
1243
1244 log = vdev_raidz_log2[rows[ii][missing[i]]];
1245
1246 for (j = 0; j < n; j++) {
1247 rows[ii][j] ^=
1248 vdev_raidz_exp2(rows[i][j], log);
1249 invrows[ii][j] ^=
1250 vdev_raidz_exp2(invrows[i][j], log);
1251 }
1252 }
1253 }
1254
1255 /*
1256 * Verify that the data that is left in the rows are properly part of
1257 * an identity matrix.
1258 */
1259 for (i = 0; i < nmissing; i++) {
1260 for (j = 0; j < n; j++) {
1261 if (j == missing[i]) {
1262 ASSERT3U(rows[i][j], ==, 1);
1263 } else {
1264 ASSERT0(rows[i][j]);
1265 }
1266 }
1267 }
1268 }
1269
1270 static void
1271 vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
1272 int *missing, uint8_t **invrows, const uint8_t *used)
1273 {
1274 int i, j, x, cc, c;
1275 uint8_t *src;
1276 uint64_t ccount;
1277 uint8_t *dst[VDEV_RAIDZ_MAXPARITY] = { NULL };
1278 uint64_t dcount[VDEV_RAIDZ_MAXPARITY] = { 0 };
1279 uint8_t log = 0;
1280 uint8_t val;
1281 int ll;
1282 uint8_t *invlog[VDEV_RAIDZ_MAXPARITY];
1283 uint8_t *p, *pp;
1284 size_t psize;
1285
1286 psize = sizeof (invlog[0][0]) * n * nmissing;
1287 p = kmem_alloc(psize, KM_SLEEP);
1288
1289 for (pp = p, i = 0; i < nmissing; i++) {
1290 invlog[i] = pp;
1291 pp += n;
1292 }
1293
1294 for (i = 0; i < nmissing; i++) {
1295 for (j = 0; j < n; j++) {
1296 ASSERT3U(invrows[i][j], !=, 0);
1297 invlog[i][j] = vdev_raidz_log2[invrows[i][j]];
1298 }
1299 }
1300
1301 for (i = 0; i < n; i++) {
1302 c = used[i];
1303 ASSERT3U(c, <, rm->rm_cols);
1304
1305 src = abd_to_buf(rm->rm_col[c].rc_abd);
1306 ccount = rm->rm_col[c].rc_size;
1307 for (j = 0; j < nmissing; j++) {
1308 cc = missing[j] + rm->rm_firstdatacol;
1309 ASSERT3U(cc, >=, rm->rm_firstdatacol);
1310 ASSERT3U(cc, <, rm->rm_cols);
1311 ASSERT3U(cc, !=, c);
1312
1313 dst[j] = abd_to_buf(rm->rm_col[cc].rc_abd);
1314 dcount[j] = rm->rm_col[cc].rc_size;
1315 }
1316
1317 ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0);
1318
1319 for (x = 0; x < ccount; x++, src++) {
1320 if (*src != 0)
1321 log = vdev_raidz_log2[*src];
1322
1323 for (cc = 0; cc < nmissing; cc++) {
1324 if (x >= dcount[cc])
1325 continue;
1326
1327 if (*src == 0) {
1328 val = 0;
1329 } else {
1330 if ((ll = log + invlog[cc][i]) >= 255)
1331 ll -= 255;
1332 val = vdev_raidz_pow2[ll];
1333 }
1334
1335 if (i == 0)
1336 dst[cc][x] = val;
1337 else
1338 dst[cc][x] ^= val;
1339 }
1340 }
1341 }
1342
1343 kmem_free(p, psize);
1344 }
1345
1346 static int
1347 vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
1348 {
1349 int n, i, c, t, tt;
1350 int nmissing_rows;
1351 int missing_rows[VDEV_RAIDZ_MAXPARITY];
1352 int parity_map[VDEV_RAIDZ_MAXPARITY];
1353
1354 uint8_t *p, *pp;
1355 size_t psize;
1356
1357 uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
1358 uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
1359 uint8_t *used;
1360
1361 abd_t **bufs = NULL;
1362
1363 int code = 0;
1364
1365 /*
1366 * Matrix reconstruction can't use scatter ABDs yet, so we allocate
1367 * temporary linear ABDs.
1368 */
1369 if (!abd_is_linear(rm->rm_col[rm->rm_firstdatacol].rc_abd)) {
1370 bufs = kmem_alloc(rm->rm_cols * sizeof (abd_t *), KM_PUSHPAGE);
1371
1372 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1373 raidz_col_t *col = &rm->rm_col[c];
1374
1375 bufs[c] = col->rc_abd;
1376 col->rc_abd = abd_alloc_linear(col->rc_size, B_TRUE);
1377 abd_copy(col->rc_abd, bufs[c], col->rc_size);
1378 }
1379 }
1380
1381 n = rm->rm_cols - rm->rm_firstdatacol;
1382
1383 /*
1384 * Figure out which data columns are missing.
1385 */
1386 nmissing_rows = 0;
1387 for (t = 0; t < ntgts; t++) {
1388 if (tgts[t] >= rm->rm_firstdatacol) {
1389 missing_rows[nmissing_rows++] =
1390 tgts[t] - rm->rm_firstdatacol;
1391 }
1392 }
1393
1394 /*
1395 * Figure out which parity columns to use to help generate the missing
1396 * data columns.
1397 */
1398 for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
1399 ASSERT(tt < ntgts);
1400 ASSERT(c < rm->rm_firstdatacol);
1401
1402 /*
1403 * Skip any targeted parity columns.
1404 */
1405 if (c == tgts[tt]) {
1406 tt++;
1407 continue;
1408 }
1409
1410 code |= 1 << c;
1411
1412 parity_map[i] = c;
1413 i++;
1414 }
1415
1416 ASSERT(code != 0);
1417 ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY);
1418
1419 psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
1420 nmissing_rows * n + sizeof (used[0]) * n;
1421 p = kmem_alloc(psize, KM_SLEEP);
1422
1423 for (pp = p, i = 0; i < nmissing_rows; i++) {
1424 rows[i] = pp;
1425 pp += n;
1426 invrows[i] = pp;
1427 pp += n;
1428 }
1429 used = pp;
1430
1431 for (i = 0; i < nmissing_rows; i++) {
1432 used[i] = parity_map[i];
1433 }
1434
1435 for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1436 if (tt < nmissing_rows &&
1437 c == missing_rows[tt] + rm->rm_firstdatacol) {
1438 tt++;
1439 continue;
1440 }
1441
1442 ASSERT3S(i, <, n);
1443 used[i] = c;
1444 i++;
1445 }
1446
1447 /*
1448 * Initialize the interesting rows of the matrix.
1449 */
1450 vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows);
1451
1452 /*
1453 * Invert the matrix.
1454 */
1455 vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows,
1456 invrows, used);
1457
1458 /*
1459 * Reconstruct the missing data using the generated matrix.
1460 */
1461 vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows,
1462 invrows, used);
1463
1464 kmem_free(p, psize);
1465
1466 /*
1467 * copy back from temporary linear abds and free them
1468 */
1469 if (bufs) {
1470 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1471 raidz_col_t *col = &rm->rm_col[c];
1472
1473 abd_copy(bufs[c], col->rc_abd, col->rc_size);
1474 abd_free(col->rc_abd);
1475 col->rc_abd = bufs[c];
1476 }
1477 kmem_free(bufs, rm->rm_cols * sizeof (abd_t *));
1478 }
1479
1480 return (code);
1481 }
1482
1483 int
1484 vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
1485 {
1486 int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
1487 int ntgts;
1488 int i, c, ret;
1489 int code;
1490 int nbadparity, nbaddata;
1491 int parity_valid[VDEV_RAIDZ_MAXPARITY];
1492
1493 /*
1494 * The tgts list must already be sorted.
1495 */
1496 for (i = 1; i < nt; i++) {
1497 ASSERT(t[i] > t[i - 1]);
1498 }
1499
1500 nbadparity = rm->rm_firstdatacol;
1501 nbaddata = rm->rm_cols - nbadparity;
1502 ntgts = 0;
1503 for (i = 0, c = 0; c < rm->rm_cols; c++) {
1504 if (c < rm->rm_firstdatacol)
1505 parity_valid[c] = B_FALSE;
1506
1507 if (i < nt && c == t[i]) {
1508 tgts[ntgts++] = c;
1509 i++;
1510 } else if (rm->rm_col[c].rc_error != 0) {
1511 tgts[ntgts++] = c;
1512 } else if (c >= rm->rm_firstdatacol) {
1513 nbaddata--;
1514 } else {
1515 parity_valid[c] = B_TRUE;
1516 nbadparity--;
1517 }
1518 }
1519
1520 ASSERT(ntgts >= nt);
1521 ASSERT(nbaddata >= 0);
1522 ASSERT(nbaddata + nbadparity == ntgts);
1523
1524 dt = &tgts[nbadparity];
1525
1526 /* Reconstruct using the new math implementation */
1527 ret = vdev_raidz_math_reconstruct(rm, parity_valid, dt, nbaddata);
1528 if (ret != RAIDZ_ORIGINAL_IMPL)
1529 return (ret);
1530
1531 /*
1532 * See if we can use any of our optimized reconstruction routines.
1533 */
1534 switch (nbaddata) {
1535 case 1:
1536 if (parity_valid[VDEV_RAIDZ_P])
1537 return (vdev_raidz_reconstruct_p(rm, dt, 1));
1538
1539 ASSERT(rm->rm_firstdatacol > 1);
1540
1541 if (parity_valid[VDEV_RAIDZ_Q])
1542 return (vdev_raidz_reconstruct_q(rm, dt, 1));
1543
1544 ASSERT(rm->rm_firstdatacol > 2);
1545 break;
1546
1547 case 2:
1548 ASSERT(rm->rm_firstdatacol > 1);
1549
1550 if (parity_valid[VDEV_RAIDZ_P] &&
1551 parity_valid[VDEV_RAIDZ_Q])
1552 return (vdev_raidz_reconstruct_pq(rm, dt, 2));
1553
1554 ASSERT(rm->rm_firstdatacol > 2);
1555
1556 break;
1557 }
1558
1559 code = vdev_raidz_reconstruct_general(rm, tgts, ntgts);
1560 ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY));
1561 ASSERT(code > 0);
1562 return (code);
1563 }
1564
1565 static int
1566 vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
1567 uint64_t *ashift)
1568 {
1569 vdev_t *cvd;
1570 uint64_t nparity = vd->vdev_nparity;
1571 int c;
1572 int lasterror = 0;
1573 int numerrors = 0;
1574
1575 ASSERT(nparity > 0);
1576
1577 if (nparity > VDEV_RAIDZ_MAXPARITY ||
1578 vd->vdev_children < nparity + 1) {
1579 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
1580 return (SET_ERROR(EINVAL));
1581 }
1582
1583 vdev_open_children(vd);
1584
1585 for (c = 0; c < vd->vdev_children; c++) {
1586 cvd = vd->vdev_child[c];
1587
1588 if (cvd->vdev_open_error != 0) {
1589 lasterror = cvd->vdev_open_error;
1590 numerrors++;
1591 continue;
1592 }
1593
1594 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
1595 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
1596 *ashift = MAX(*ashift, cvd->vdev_ashift);
1597 }
1598
1599 *asize *= vd->vdev_children;
1600 *max_asize *= vd->vdev_children;
1601
1602 if (numerrors > nparity) {
1603 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
1604 return (lasterror);
1605 }
1606
1607 return (0);
1608 }
1609
1610 static void
1611 vdev_raidz_close(vdev_t *vd)
1612 {
1613 int c;
1614
1615 for (c = 0; c < vd->vdev_children; c++)
1616 vdev_close(vd->vdev_child[c]);
1617 }
1618
1619 static uint64_t
1620 vdev_raidz_asize(vdev_t *vd, uint64_t psize)
1621 {
1622 uint64_t asize;
1623 uint64_t ashift = vd->vdev_top->vdev_ashift;
1624 uint64_t cols = vd->vdev_children;
1625 uint64_t nparity = vd->vdev_nparity;
1626
1627 asize = ((psize - 1) >> ashift) + 1;
1628 asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
1629 asize = roundup(asize, nparity + 1) << ashift;
1630
1631 return (asize);
1632 }
1633
1634 static void
1635 vdev_raidz_child_done(zio_t *zio)
1636 {
1637 raidz_col_t *rc = zio->io_private;
1638
1639 rc->rc_error = zio->io_error;
1640 rc->rc_tried = 1;
1641 rc->rc_skipped = 0;
1642 }
1643
1644 /*
1645 * Start an IO operation on a RAIDZ VDev
1646 *
1647 * Outline:
1648 * - For write operations:
1649 * 1. Generate the parity data
1650 * 2. Create child zio write operations to each column's vdev, for both
1651 * data and parity.
1652 * 3. If the column skips any sectors for padding, create optional dummy
1653 * write zio children for those areas to improve aggregation continuity.
1654 * - For read operations:
1655 * 1. Create child zio read operations to each data column's vdev to read
1656 * the range of data required for zio.
1657 * 2. If this is a scrub or resilver operation, or if any of the data
1658 * vdevs have had errors, then create zio read operations to the parity
1659 * columns' VDevs as well.
1660 */
1661 static void
1662 vdev_raidz_io_start(zio_t *zio)
1663 {
1664 vdev_t *vd = zio->io_vd;
1665 vdev_t *tvd = vd->vdev_top;
1666 vdev_t *cvd;
1667 raidz_map_t *rm;
1668 raidz_col_t *rc;
1669 int c, i;
1670
1671 rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, vd->vdev_children,
1672 vd->vdev_nparity);
1673
1674 ASSERT3U(rm->rm_asize, ==, vdev_psize_to_asize(vd, zio->io_size));
1675
1676 if (zio->io_type == ZIO_TYPE_WRITE) {
1677 vdev_raidz_generate_parity(rm);
1678
1679 for (c = 0; c < rm->rm_cols; c++) {
1680 rc = &rm->rm_col[c];
1681 cvd = vd->vdev_child[rc->rc_devidx];
1682 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1683 rc->rc_offset, rc->rc_abd, rc->rc_size,
1684 zio->io_type, zio->io_priority, 0,
1685 vdev_raidz_child_done, rc));
1686 }
1687
1688 /*
1689 * Generate optional I/Os for any skipped sectors to improve
1690 * aggregation contiguity.
1691 */
1692 for (c = rm->rm_skipstart, i = 0; i < rm->rm_nskip; c++, i++) {
1693 ASSERT(c <= rm->rm_scols);
1694 if (c == rm->rm_scols)
1695 c = 0;
1696 rc = &rm->rm_col[c];
1697 cvd = vd->vdev_child[rc->rc_devidx];
1698 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1699 rc->rc_offset + rc->rc_size, NULL,
1700 1 << tvd->vdev_ashift,
1701 zio->io_type, zio->io_priority,
1702 ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL));
1703 }
1704
1705 zio_execute(zio);
1706 return;
1707 }
1708
1709 ASSERT(zio->io_type == ZIO_TYPE_READ);
1710
1711 /*
1712 * Iterate over the columns in reverse order so that we hit the parity
1713 * last -- any errors along the way will force us to read the parity.
1714 */
1715 for (c = rm->rm_cols - 1; c >= 0; c--) {
1716 rc = &rm->rm_col[c];
1717 cvd = vd->vdev_child[rc->rc_devidx];
1718 if (!vdev_readable(cvd)) {
1719 if (c >= rm->rm_firstdatacol)
1720 rm->rm_missingdata++;
1721 else
1722 rm->rm_missingparity++;
1723 rc->rc_error = SET_ERROR(ENXIO);
1724 rc->rc_tried = 1; /* don't even try */
1725 rc->rc_skipped = 1;
1726 continue;
1727 }
1728 if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
1729 if (c >= rm->rm_firstdatacol)
1730 rm->rm_missingdata++;
1731 else
1732 rm->rm_missingparity++;
1733 rc->rc_error = SET_ERROR(ESTALE);
1734 rc->rc_skipped = 1;
1735 continue;
1736 }
1737 if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0 ||
1738 (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1739 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1740 rc->rc_offset, rc->rc_abd, rc->rc_size,
1741 zio->io_type, zio->io_priority, 0,
1742 vdev_raidz_child_done, rc));
1743 }
1744 }
1745
1746 zio_execute(zio);
1747 }
1748
1749
1750 /*
1751 * Report a checksum error for a child of a RAID-Z device.
1752 */
1753 static void
1754 raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data)
1755 {
1756 vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];
1757
1758 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
1759 zio_bad_cksum_t zbc;
1760 raidz_map_t *rm = zio->io_vsd;
1761
1762 mutex_enter(&vd->vdev_stat_lock);
1763 vd->vdev_stat.vs_checksum_errors++;
1764 mutex_exit(&vd->vdev_stat_lock);
1765
1766 zbc.zbc_has_cksum = 0;
1767 zbc.zbc_injected = rm->rm_ecksuminjected;
1768
1769 zfs_ereport_post_checksum(zio->io_spa, vd, zio,
1770 rc->rc_offset, rc->rc_size, rc->rc_abd, bad_data,
1771 &zbc);
1772 }
1773 }
1774
1775 /*
1776 * We keep track of whether or not there were any injected errors, so that
1777 * any ereports we generate can note it.
1778 */
1779 static int
1780 raidz_checksum_verify(zio_t *zio)
1781 {
1782 zio_bad_cksum_t zbc;
1783 raidz_map_t *rm = zio->io_vsd;
1784 int ret;
1785
1786 bzero(&zbc, sizeof (zio_bad_cksum_t));
1787
1788 ret = zio_checksum_error(zio, &zbc);
1789 if (ret != 0 && zbc.zbc_injected != 0)
1790 rm->rm_ecksuminjected = 1;
1791
1792 return (ret);
1793 }
1794
1795 /*
1796 * Generate the parity from the data columns. If we tried and were able to
1797 * read the parity without error, verify that the generated parity matches the
1798 * data we read. If it doesn't, we fire off a checksum error. Return the
1799 * number such failures.
1800 */
1801 static int
1802 raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
1803 {
1804 abd_t *orig[VDEV_RAIDZ_MAXPARITY];
1805 int c, ret = 0;
1806 raidz_col_t *rc;
1807
1808 blkptr_t *bp = zio->io_bp;
1809 enum zio_checksum checksum = (bp == NULL ? zio->io_prop.zp_checksum :
1810 (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
1811
1812 if (checksum == ZIO_CHECKSUM_NOPARITY)
1813 return (ret);
1814
1815 for (c = 0; c < rm->rm_firstdatacol; c++) {
1816 rc = &rm->rm_col[c];
1817 if (!rc->rc_tried || rc->rc_error != 0)
1818 continue;
1819
1820 orig[c] = abd_alloc_sametype(rc->rc_abd, rc->rc_size);
1821 abd_copy(orig[c], rc->rc_abd, rc->rc_size);
1822 }
1823
1824 vdev_raidz_generate_parity(rm);
1825
1826 for (c = 0; c < rm->rm_firstdatacol; c++) {
1827 rc = &rm->rm_col[c];
1828 if (!rc->rc_tried || rc->rc_error != 0)
1829 continue;
1830 if (abd_cmp(orig[c], rc->rc_abd) != 0) {
1831 raidz_checksum_error(zio, rc, orig[c]);
1832 rc->rc_error = SET_ERROR(ECKSUM);
1833 ret++;
1834 }
1835 abd_free(orig[c]);
1836 }
1837
1838 return (ret);
1839 }
1840
1841 static int
1842 vdev_raidz_worst_error(raidz_map_t *rm)
1843 {
1844 int c, error = 0;
1845
1846 for (c = 0; c < rm->rm_cols; c++)
1847 error = zio_worst_error(error, rm->rm_col[c].rc_error);
1848
1849 return (error);
1850 }
1851
1852 /*
1853 * Iterate over all combinations of bad data and attempt a reconstruction.
1854 * Note that the algorithm below is non-optimal because it doesn't take into
1855 * account how reconstruction is actually performed. For example, with
1856 * triple-parity RAID-Z the reconstruction procedure is the same if column 4
1857 * is targeted as invalid as if columns 1 and 4 are targeted since in both
1858 * cases we'd only use parity information in column 0.
1859 */
1860 static int
1861 vdev_raidz_combrec(zio_t *zio, int total_errors, int data_errors)
1862 {
1863 raidz_map_t *rm = zio->io_vsd;
1864 raidz_col_t *rc;
1865 abd_t *orig[VDEV_RAIDZ_MAXPARITY];
1866 int tstore[VDEV_RAIDZ_MAXPARITY + 2];
1867 int *tgts = &tstore[1];
1868 int curr, next, i, c, n;
1869 int code, ret = 0;
1870
1871 ASSERT(total_errors < rm->rm_firstdatacol);
1872
1873 /*
1874 * This simplifies one edge condition.
1875 */
1876 tgts[-1] = -1;
1877
1878 for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) {
1879 /*
1880 * Initialize the targets array by finding the first n columns
1881 * that contain no error.
1882 *
1883 * If there were no data errors, we need to ensure that we're
1884 * always explicitly attempting to reconstruct at least one
1885 * data column. To do this, we simply push the highest target
1886 * up into the data columns.
1887 */
1888 for (c = 0, i = 0; i < n; i++) {
1889 if (i == n - 1 && data_errors == 0 &&
1890 c < rm->rm_firstdatacol) {
1891 c = rm->rm_firstdatacol;
1892 }
1893
1894 while (rm->rm_col[c].rc_error != 0) {
1895 c++;
1896 ASSERT3S(c, <, rm->rm_cols);
1897 }
1898
1899 tgts[i] = c++;
1900 }
1901
1902 /*
1903 * Setting tgts[n] simplifies the other edge condition.
1904 */
1905 tgts[n] = rm->rm_cols;
1906
1907 /*
1908 * These buffers were allocated in previous iterations.
1909 */
1910 for (i = 0; i < n - 1; i++) {
1911 ASSERT(orig[i] != NULL);
1912 }
1913
1914 orig[n - 1] = abd_alloc_sametype(rm->rm_col[0].rc_abd,
1915 rm->rm_col[0].rc_size);
1916
1917 curr = 0;
1918 next = tgts[curr];
1919
1920 while (curr != n) {
1921 tgts[curr] = next;
1922 curr = 0;
1923
1924 /*
1925 * Save off the original data that we're going to
1926 * attempt to reconstruct.
1927 */
1928 for (i = 0; i < n; i++) {
1929 ASSERT(orig[i] != NULL);
1930 c = tgts[i];
1931 ASSERT3S(c, >=, 0);
1932 ASSERT3S(c, <, rm->rm_cols);
1933 rc = &rm->rm_col[c];
1934 abd_copy(orig[i], rc->rc_abd, rc->rc_size);
1935 }
1936
1937 /*
1938 * Attempt a reconstruction and exit the outer loop on
1939 * success.
1940 */
1941 code = vdev_raidz_reconstruct(rm, tgts, n);
1942 if (raidz_checksum_verify(zio) == 0) {
1943
1944 for (i = 0; i < n; i++) {
1945 c = tgts[i];
1946 rc = &rm->rm_col[c];
1947 ASSERT(rc->rc_error == 0);
1948 if (rc->rc_tried)
1949 raidz_checksum_error(zio, rc,
1950 orig[i]);
1951 rc->rc_error = SET_ERROR(ECKSUM);
1952 }
1953
1954 ret = code;
1955 goto done;
1956 }
1957
1958 /*
1959 * Restore the original data.
1960 */
1961 for (i = 0; i < n; i++) {
1962 c = tgts[i];
1963 rc = &rm->rm_col[c];
1964 abd_copy(rc->rc_abd, orig[i], rc->rc_size);
1965 }
1966
1967 do {
1968 /*
1969 * Find the next valid column after the curr
1970 * position..
1971 */
1972 for (next = tgts[curr] + 1;
1973 next < rm->rm_cols &&
1974 rm->rm_col[next].rc_error != 0; next++)
1975 continue;
1976
1977 ASSERT(next <= tgts[curr + 1]);
1978
1979 /*
1980 * If that spot is available, we're done here.
1981 */
1982 if (next != tgts[curr + 1])
1983 break;
1984
1985 /*
1986 * Otherwise, find the next valid column after
1987 * the previous position.
1988 */
1989 for (c = tgts[curr - 1] + 1;
1990 rm->rm_col[c].rc_error != 0; c++)
1991 continue;
1992
1993 tgts[curr] = c;
1994 curr++;
1995
1996 } while (curr != n);
1997 }
1998 }
1999 n--;
2000 done:
2001 for (i = 0; i < n; i++)
2002 abd_free(orig[i]);
2003
2004 return (ret);
2005 }
2006
2007 /*
2008 * Complete an IO operation on a RAIDZ VDev
2009 *
2010 * Outline:
2011 * - For write operations:
2012 * 1. Check for errors on the child IOs.
2013 * 2. Return, setting an error code if too few child VDevs were written
2014 * to reconstruct the data later. Note that partial writes are
2015 * considered successful if they can be reconstructed at all.
2016 * - For read operations:
2017 * 1. Check for errors on the child IOs.
2018 * 2. If data errors occurred:
2019 * a. Try to reassemble the data from the parity available.
2020 * b. If we haven't yet read the parity drives, read them now.
2021 * c. If all parity drives have been read but the data still doesn't
2022 * reassemble with a correct checksum, then try combinatorial
2023 * reconstruction.
2024 * d. If that doesn't work, return an error.
2025 * 3. If there were unexpected errors or this is a resilver operation,
2026 * rewrite the vdevs that had errors.
2027 */
2028 static void
2029 vdev_raidz_io_done(zio_t *zio)
2030 {
2031 vdev_t *vd = zio->io_vd;
2032 vdev_t *cvd;
2033 raidz_map_t *rm = zio->io_vsd;
2034 raidz_col_t *rc = NULL;
2035 int unexpected_errors = 0;
2036 int parity_errors = 0;
2037 int parity_untried = 0;
2038 int data_errors = 0;
2039 int total_errors = 0;
2040 int n, c;
2041 int tgts[VDEV_RAIDZ_MAXPARITY];
2042 int code;
2043
2044 ASSERT(zio->io_bp != NULL); /* XXX need to add code to enforce this */
2045
2046 ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol);
2047 ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol);
2048
2049 for (c = 0; c < rm->rm_cols; c++) {
2050 rc = &rm->rm_col[c];
2051
2052 if (rc->rc_error) {
2053 ASSERT(rc->rc_error != ECKSUM); /* child has no bp */
2054
2055 if (c < rm->rm_firstdatacol)
2056 parity_errors++;
2057 else
2058 data_errors++;
2059
2060 if (!rc->rc_skipped)
2061 unexpected_errors++;
2062
2063 total_errors++;
2064 } else if (c < rm->rm_firstdatacol && !rc->rc_tried) {
2065 parity_untried++;
2066 }
2067 }
2068
2069 if (zio->io_type == ZIO_TYPE_WRITE) {
2070 /*
2071 * XXX -- for now, treat partial writes as a success.
2072 * (If we couldn't write enough columns to reconstruct
2073 * the data, the I/O failed. Otherwise, good enough.)
2074 *
2075 * Now that we support write reallocation, it would be better
2076 * to treat partial failure as real failure unless there are
2077 * no non-degraded top-level vdevs left, and not update DTLs
2078 * if we intend to reallocate.
2079 */
2080 /* XXPOLICY */
2081 if (total_errors > rm->rm_firstdatacol)
2082 zio->io_error = vdev_raidz_worst_error(rm);
2083
2084 return;
2085 }
2086
2087 ASSERT(zio->io_type == ZIO_TYPE_READ);
2088 /*
2089 * There are three potential phases for a read:
2090 * 1. produce valid data from the columns read
2091 * 2. read all disks and try again
2092 * 3. perform combinatorial reconstruction
2093 *
2094 * Each phase is progressively both more expensive and less likely to
2095 * occur. If we encounter more errors than we can repair or all phases
2096 * fail, we have no choice but to return an error.
2097 */
2098
2099 /*
2100 * If the number of errors we saw was correctable -- less than or equal
2101 * to the number of parity disks read -- attempt to produce data that
2102 * has a valid checksum. Naturally, this case applies in the absence of
2103 * any errors.
2104 */
2105 if (total_errors <= rm->rm_firstdatacol - parity_untried) {
2106 if (data_errors == 0) {
2107 if (raidz_checksum_verify(zio) == 0) {
2108 /*
2109 * If we read parity information (unnecessarily
2110 * as it happens since no reconstruction was
2111 * needed) regenerate and verify the parity.
2112 * We also regenerate parity when resilvering
2113 * so we can write it out to the failed device
2114 * later.
2115 */
2116 if (parity_errors + parity_untried <
2117 rm->rm_firstdatacol ||
2118 (zio->io_flags & ZIO_FLAG_RESILVER)) {
2119 n = raidz_parity_verify(zio, rm);
2120 unexpected_errors += n;
2121 ASSERT(parity_errors + n <=
2122 rm->rm_firstdatacol);
2123 }
2124 goto done;
2125 }
2126 } else {
2127 /*
2128 * We either attempt to read all the parity columns or
2129 * none of them. If we didn't try to read parity, we
2130 * wouldn't be here in the correctable case. There must
2131 * also have been fewer parity errors than parity
2132 * columns or, again, we wouldn't be in this code path.
2133 */
2134 ASSERT(parity_untried == 0);
2135 ASSERT(parity_errors < rm->rm_firstdatacol);
2136
2137 /*
2138 * Identify the data columns that reported an error.
2139 */
2140 n = 0;
2141 for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
2142 rc = &rm->rm_col[c];
2143 if (rc->rc_error != 0) {
2144 ASSERT(n < VDEV_RAIDZ_MAXPARITY);
2145 tgts[n++] = c;
2146 }
2147 }
2148
2149 ASSERT(rm->rm_firstdatacol >= n);
2150
2151 code = vdev_raidz_reconstruct(rm, tgts, n);
2152
2153 if (raidz_checksum_verify(zio) == 0) {
2154 /*
2155 * If we read more parity disks than were used
2156 * for reconstruction, confirm that the other
2157 * parity disks produced correct data. This
2158 * routine is suboptimal in that it regenerates
2159 * the parity that we already used in addition
2160 * to the parity that we're attempting to
2161 * verify, but this should be a relatively
2162 * uncommon case, and can be optimized if it
2163 * becomes a problem. Note that we regenerate
2164 * parity when resilvering so we can write it
2165 * out to failed devices later.
2166 */
2167 if (parity_errors < rm->rm_firstdatacol - n ||
2168 (zio->io_flags & ZIO_FLAG_RESILVER)) {
2169 n = raidz_parity_verify(zio, rm);
2170 unexpected_errors += n;
2171 ASSERT(parity_errors + n <=
2172 rm->rm_firstdatacol);
2173 }
2174
2175 goto done;
2176 }
2177 }
2178 }
2179
2180 /*
2181 * This isn't a typical situation -- either we got a read error or
2182 * a child silently returned bad data. Read every block so we can
2183 * try again with as much data and parity as we can track down. If
2184 * we've already been through once before, all children will be marked
2185 * as tried so we'll proceed to combinatorial reconstruction.
2186 */
2187 unexpected_errors = 1;
2188 rm->rm_missingdata = 0;
2189 rm->rm_missingparity = 0;
2190
2191 for (c = 0; c < rm->rm_cols; c++) {
2192 if (rm->rm_col[c].rc_tried)
2193 continue;
2194
2195 zio_vdev_io_redone(zio);
2196 do {
2197 rc = &rm->rm_col[c];
2198 if (rc->rc_tried)
2199 continue;
2200 zio_nowait(zio_vdev_child_io(zio, NULL,
2201 vd->vdev_child[rc->rc_devidx],
2202 rc->rc_offset, rc->rc_abd, rc->rc_size,
2203 zio->io_type, zio->io_priority, 0,
2204 vdev_raidz_child_done, rc));
2205 } while (++c < rm->rm_cols);
2206
2207 return;
2208 }
2209
2210 /*
2211 * At this point we've attempted to reconstruct the data given the
2212 * errors we detected, and we've attempted to read all columns. There
2213 * must, therefore, be one or more additional problems -- silent errors
2214 * resulting in invalid data rather than explicit I/O errors resulting
2215 * in absent data. We check if there is enough additional data to
2216 * possibly reconstruct the data and then perform combinatorial
2217 * reconstruction over all possible combinations. If that fails,
2218 * we're cooked.
2219 */
2220 if (total_errors > rm->rm_firstdatacol) {
2221 zio->io_error = vdev_raidz_worst_error(rm);
2222
2223 } else if (total_errors < rm->rm_firstdatacol &&
2224 (code = vdev_raidz_combrec(zio, total_errors, data_errors)) != 0) {
2225 /*
2226 * If we didn't use all the available parity for the
2227 * combinatorial reconstruction, verify that the remaining
2228 * parity is correct.
2229 */
2230 if (code != (1 << rm->rm_firstdatacol) - 1)
2231 (void) raidz_parity_verify(zio, rm);
2232 } else {
2233 /*
2234 * We're here because either:
2235 *
2236 * total_errors == rm_first_datacol, or
2237 * vdev_raidz_combrec() failed
2238 *
2239 * In either case, there is enough bad data to prevent
2240 * reconstruction.
2241 *
2242 * Start checksum ereports for all children which haven't
2243 * failed, and the IO wasn't speculative.
2244 */
2245 zio->io_error = SET_ERROR(ECKSUM);
2246
2247 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2248 for (c = 0; c < rm->rm_cols; c++) {
2249 rc = &rm->rm_col[c];
2250 if (rc->rc_error == 0) {
2251 zio_bad_cksum_t zbc;
2252 zbc.zbc_has_cksum = 0;
2253 zbc.zbc_injected =
2254 rm->rm_ecksuminjected;
2255
2256 zfs_ereport_start_checksum(
2257 zio->io_spa,
2258 vd->vdev_child[rc->rc_devidx],
2259 zio, rc->rc_offset, rc->rc_size,
2260 (void *)(uintptr_t)c, &zbc);
2261 }
2262 }
2263 }
2264 }
2265
2266 done:
2267 zio_checksum_verified(zio);
2268
2269 if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
2270 (unexpected_errors || (zio->io_flags & ZIO_FLAG_RESILVER))) {
2271 /*
2272 * Use the good data we have in hand to repair damaged children.
2273 */
2274 for (c = 0; c < rm->rm_cols; c++) {
2275 rc = &rm->rm_col[c];
2276 cvd = vd->vdev_child[rc->rc_devidx];
2277
2278 if (rc->rc_error == 0)
2279 continue;
2280
2281 zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2282 rc->rc_offset, rc->rc_abd, rc->rc_size,
2283 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
2284 ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
2285 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
2286 }
2287 }
2288 }
2289
2290 static void
2291 vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
2292 {
2293 if (faulted > vd->vdev_nparity)
2294 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2295 VDEV_AUX_NO_REPLICAS);
2296 else if (degraded + faulted != 0)
2297 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
2298 else
2299 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
2300 }
2301
2302 /*
2303 * Determine if any portion of the provided block resides on a child vdev
2304 * with a dirty DTL and therefore needs to be resilvered. The function
2305 * assumes that at least one DTL is dirty which imples that full stripe
2306 * width blocks must be resilvered.
2307 */
2308 static boolean_t
2309 vdev_raidz_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2310 {
2311 uint64_t dcols = vd->vdev_children;
2312 uint64_t nparity = vd->vdev_nparity;
2313 uint64_t ashift = vd->vdev_top->vdev_ashift;
2314 /* The starting RAIDZ (parent) vdev sector of the block. */
2315 uint64_t b = offset >> ashift;
2316 /* The zio's size in units of the vdev's minimum sector size. */
2317 uint64_t s = ((psize - 1) >> ashift) + 1;
2318 /* The first column for this stripe. */
2319 uint64_t f = b % dcols;
2320
2321 if (s + nparity >= dcols)
2322 return (B_TRUE);
2323
2324 for (uint64_t c = 0; c < s + nparity; c++) {
2325 uint64_t devidx = (f + c) % dcols;
2326 vdev_t *cvd = vd->vdev_child[devidx];
2327
2328 /*
2329 * dsl_scan_need_resilver() already checked vd with
2330 * vdev_dtl_contains(). So here just check cvd with
2331 * vdev_dtl_empty(), cheaper and a good approximation.
2332 */
2333 if (!vdev_dtl_empty(cvd, DTL_PARTIAL))
2334 return (B_TRUE);
2335 }
2336
2337 return (B_FALSE);
2338 }
2339
2340 vdev_ops_t vdev_raidz_ops = {
2341 vdev_raidz_open,
2342 vdev_raidz_close,
2343 vdev_raidz_asize,
2344 vdev_raidz_io_start,
2345 vdev_raidz_io_done,
2346 vdev_raidz_state_change,
2347 vdev_raidz_need_resilver,
2348 NULL,
2349 NULL,
2350 VDEV_TYPE_RAIDZ, /* name of this vdev type */
2351 B_FALSE /* not a leaf vdev */
2352 };