]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/zfs_vnops.c
6f6ce79db20e92c66412387bd336e230c0143531
[mirror_zfs-debian.git] / module / zfs / zfs_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/resource.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/file.h>
42 #include <sys/stat.h>
43 #include <sys/kmem.h>
44 #include <sys/taskq.h>
45 #include <sys/uio.h>
46 #include <sys/vmsystm.h>
47 #include <sys/atomic.h>
48 #include <vm/pvn.h>
49 #include <sys/pathname.h>
50 #include <sys/cmn_err.h>
51 #include <sys/errno.h>
52 #include <sys/unistd.h>
53 #include <sys/zfs_dir.h>
54 #include <sys/zfs_acl.h>
55 #include <sys/zfs_ioctl.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/dmu.h>
58 #include <sys/dmu_objset.h>
59 #include <sys/spa.h>
60 #include <sys/txg.h>
61 #include <sys/dbuf.h>
62 #include <sys/zap.h>
63 #include <sys/sa.h>
64 #include <sys/dirent.h>
65 #include <sys/policy.h>
66 #include <sys/sunddi.h>
67 #include <sys/sid.h>
68 #include <sys/mode.h>
69 #include "fs/fs_subr.h"
70 #include <sys/zfs_ctldir.h>
71 #include <sys/zfs_fuid.h>
72 #include <sys/zfs_sa.h>
73 #include <sys/zfs_vnops.h>
74 #include <sys/dnlc.h>
75 #include <sys/zfs_rlock.h>
76 #include <sys/extdirent.h>
77 #include <sys/kidmap.h>
78 #include <sys/cred.h>
79 #include <sys/attr.h>
80 #include <sys/zpl.h>
81
82 /*
83 * Programming rules.
84 *
85 * Each vnode op performs some logical unit of work. To do this, the ZPL must
86 * properly lock its in-core state, create a DMU transaction, do the work,
87 * record this work in the intent log (ZIL), commit the DMU transaction,
88 * and wait for the intent log to commit if it is a synchronous operation.
89 * Moreover, the vnode ops must work in both normal and log replay context.
90 * The ordering of events is important to avoid deadlocks and references
91 * to freed memory. The example below illustrates the following Big Rules:
92 *
93 * (1) A check must be made in each zfs thread for a mounted file system.
94 * This is done avoiding races using ZFS_ENTER(zfsvfs).
95 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
96 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
97 * can return EIO from the calling function.
98 *
99 * (2) iput() should always be the last thing except for zil_commit()
100 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
101 * First, if it's the last reference, the vnode/znode
102 * can be freed, so the zp may point to freed memory. Second, the last
103 * reference will call zfs_zinactive(), which may induce a lot of work --
104 * pushing cached pages (which acquires range locks) and syncing out
105 * cached atime changes. Third, zfs_zinactive() may require a new tx,
106 * which could deadlock the system if you were already holding one.
107 * If you must call iput() within a tx then use zfs_iput_async().
108 *
109 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
110 * as they can span dmu_tx_assign() calls.
111 *
112 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
113 * dmu_tx_assign(). This is critical because we don't want to block
114 * while holding locks.
115 *
116 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
117 * reduces lock contention and CPU usage when we must wait (note that if
118 * throughput is constrained by the storage, nearly every transaction
119 * must wait).
120 *
121 * Note, in particular, that if a lock is sometimes acquired before
122 * the tx assigns, and sometimes after (e.g. z_lock), then failing
123 * to use a non-blocking assign can deadlock the system. The scenario:
124 *
125 * Thread A has grabbed a lock before calling dmu_tx_assign().
126 * Thread B is in an already-assigned tx, and blocks for this lock.
127 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
128 * forever, because the previous txg can't quiesce until B's tx commits.
129 *
130 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
131 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
132 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
133 * to indicate that this operation has already called dmu_tx_wait().
134 * This will ensure that we don't retry forever, waiting a short bit
135 * each time.
136 *
137 * (5) If the operation succeeded, generate the intent log entry for it
138 * before dropping locks. This ensures that the ordering of events
139 * in the intent log matches the order in which they actually occurred.
140 * During ZIL replay the zfs_log_* functions will update the sequence
141 * number to indicate the zil transaction has replayed.
142 *
143 * (6) At the end of each vnode op, the DMU tx must always commit,
144 * regardless of whether there were any errors.
145 *
146 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
147 * to ensure that synchronous semantics are provided when necessary.
148 *
149 * In general, this is how things should be ordered in each vnode op:
150 *
151 * ZFS_ENTER(zfsvfs); // exit if unmounted
152 * top:
153 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
154 * rw_enter(...); // grab any other locks you need
155 * tx = dmu_tx_create(...); // get DMU tx
156 * dmu_tx_hold_*(); // hold each object you might modify
157 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
158 * if (error) {
159 * rw_exit(...); // drop locks
160 * zfs_dirent_unlock(dl); // unlock directory entry
161 * iput(...); // release held vnodes
162 * if (error == ERESTART) {
163 * waited = B_TRUE;
164 * dmu_tx_wait(tx);
165 * dmu_tx_abort(tx);
166 * goto top;
167 * }
168 * dmu_tx_abort(tx); // abort DMU tx
169 * ZFS_EXIT(zfsvfs); // finished in zfs
170 * return (error); // really out of space
171 * }
172 * error = do_real_work(); // do whatever this VOP does
173 * if (error == 0)
174 * zfs_log_*(...); // on success, make ZIL entry
175 * dmu_tx_commit(tx); // commit DMU tx -- error or not
176 * rw_exit(...); // drop locks
177 * zfs_dirent_unlock(dl); // unlock directory entry
178 * iput(...); // release held vnodes
179 * zil_commit(zilog, foid); // synchronous when necessary
180 * ZFS_EXIT(zfsvfs); // finished in zfs
181 * return (error); // done, report error
182 */
183
184 /*
185 * Virus scanning is unsupported. It would be possible to add a hook
186 * here to performance the required virus scan. This could be done
187 * entirely in the kernel or potentially as an update to invoke a
188 * scanning utility.
189 */
190 static int
191 zfs_vscan(struct inode *ip, cred_t *cr, int async)
192 {
193 return (0);
194 }
195
196 /* ARGSUSED */
197 int
198 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
199 {
200 znode_t *zp = ITOZ(ip);
201 zfsvfs_t *zfsvfs = ITOZSB(ip);
202
203 ZFS_ENTER(zfsvfs);
204 ZFS_VERIFY_ZP(zp);
205
206 /* Honor ZFS_APPENDONLY file attribute */
207 if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
208 ((flag & O_APPEND) == 0)) {
209 ZFS_EXIT(zfsvfs);
210 return (SET_ERROR(EPERM));
211 }
212
213 /* Virus scan eligible files on open */
214 if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) &&
215 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
216 if (zfs_vscan(ip, cr, 0) != 0) {
217 ZFS_EXIT(zfsvfs);
218 return (SET_ERROR(EACCES));
219 }
220 }
221
222 /* Keep a count of the synchronous opens in the znode */
223 if (flag & O_SYNC)
224 atomic_inc_32(&zp->z_sync_cnt);
225
226 ZFS_EXIT(zfsvfs);
227 return (0);
228 }
229
230 /* ARGSUSED */
231 int
232 zfs_close(struct inode *ip, int flag, cred_t *cr)
233 {
234 znode_t *zp = ITOZ(ip);
235 zfsvfs_t *zfsvfs = ITOZSB(ip);
236
237 ZFS_ENTER(zfsvfs);
238 ZFS_VERIFY_ZP(zp);
239
240 /* Decrement the synchronous opens in the znode */
241 if (flag & O_SYNC)
242 atomic_dec_32(&zp->z_sync_cnt);
243
244 if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) &&
245 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
246 VERIFY(zfs_vscan(ip, cr, 1) == 0);
247
248 ZFS_EXIT(zfsvfs);
249 return (0);
250 }
251
252 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
253 /*
254 * Lseek support for finding holes (cmd == SEEK_HOLE) and
255 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
256 */
257 static int
258 zfs_holey_common(struct inode *ip, int cmd, loff_t *off)
259 {
260 znode_t *zp = ITOZ(ip);
261 uint64_t noff = (uint64_t)*off; /* new offset */
262 uint64_t file_sz;
263 int error;
264 boolean_t hole;
265
266 file_sz = zp->z_size;
267 if (noff >= file_sz) {
268 return (SET_ERROR(ENXIO));
269 }
270
271 if (cmd == SEEK_HOLE)
272 hole = B_TRUE;
273 else
274 hole = B_FALSE;
275
276 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
277
278 if (error == ESRCH)
279 return (SET_ERROR(ENXIO));
280
281 /* file was dirty, so fall back to using generic logic */
282 if (error == EBUSY) {
283 if (hole)
284 *off = file_sz;
285
286 return (0);
287 }
288
289 /*
290 * We could find a hole that begins after the logical end-of-file,
291 * because dmu_offset_next() only works on whole blocks. If the
292 * EOF falls mid-block, then indicate that the "virtual hole"
293 * at the end of the file begins at the logical EOF, rather than
294 * at the end of the last block.
295 */
296 if (noff > file_sz) {
297 ASSERT(hole);
298 noff = file_sz;
299 }
300
301 if (noff < *off)
302 return (error);
303 *off = noff;
304 return (error);
305 }
306
307 int
308 zfs_holey(struct inode *ip, int cmd, loff_t *off)
309 {
310 znode_t *zp = ITOZ(ip);
311 zfsvfs_t *zfsvfs = ITOZSB(ip);
312 int error;
313
314 ZFS_ENTER(zfsvfs);
315 ZFS_VERIFY_ZP(zp);
316
317 error = zfs_holey_common(ip, cmd, off);
318
319 ZFS_EXIT(zfsvfs);
320 return (error);
321 }
322 #endif /* SEEK_HOLE && SEEK_DATA */
323
324 #if defined(_KERNEL)
325 /*
326 * When a file is memory mapped, we must keep the IO data synchronized
327 * between the DMU cache and the memory mapped pages. What this means:
328 *
329 * On Write: If we find a memory mapped page, we write to *both*
330 * the page and the dmu buffer.
331 */
332 static void
333 update_pages(struct inode *ip, int64_t start, int len,
334 objset_t *os, uint64_t oid)
335 {
336 struct address_space *mp = ip->i_mapping;
337 struct page *pp;
338 uint64_t nbytes;
339 int64_t off;
340 void *pb;
341
342 off = start & (PAGE_SIZE-1);
343 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
344 nbytes = MIN(PAGE_SIZE - off, len);
345
346 pp = find_lock_page(mp, start >> PAGE_SHIFT);
347 if (pp) {
348 if (mapping_writably_mapped(mp))
349 flush_dcache_page(pp);
350
351 pb = kmap(pp);
352 (void) dmu_read(os, oid, start+off, nbytes, pb+off,
353 DMU_READ_PREFETCH);
354 kunmap(pp);
355
356 if (mapping_writably_mapped(mp))
357 flush_dcache_page(pp);
358
359 mark_page_accessed(pp);
360 SetPageUptodate(pp);
361 ClearPageError(pp);
362 unlock_page(pp);
363 put_page(pp);
364 }
365
366 len -= nbytes;
367 off = 0;
368 }
369 }
370
371 /*
372 * When a file is memory mapped, we must keep the IO data synchronized
373 * between the DMU cache and the memory mapped pages. What this means:
374 *
375 * On Read: We "read" preferentially from memory mapped pages,
376 * else we default from the dmu buffer.
377 *
378 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
379 * the file is memory mapped.
380 */
381 static int
382 mappedread(struct inode *ip, int nbytes, uio_t *uio)
383 {
384 struct address_space *mp = ip->i_mapping;
385 struct page *pp;
386 znode_t *zp = ITOZ(ip);
387 int64_t start, off;
388 uint64_t bytes;
389 int len = nbytes;
390 int error = 0;
391 void *pb;
392
393 start = uio->uio_loffset;
394 off = start & (PAGE_SIZE-1);
395 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
396 bytes = MIN(PAGE_SIZE - off, len);
397
398 pp = find_lock_page(mp, start >> PAGE_SHIFT);
399 if (pp) {
400 ASSERT(PageUptodate(pp));
401
402 pb = kmap(pp);
403 error = uiomove(pb + off, bytes, UIO_READ, uio);
404 kunmap(pp);
405
406 if (mapping_writably_mapped(mp))
407 flush_dcache_page(pp);
408
409 mark_page_accessed(pp);
410 unlock_page(pp);
411 put_page(pp);
412 } else {
413 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
414 uio, bytes);
415 }
416
417 len -= bytes;
418 off = 0;
419 if (error)
420 break;
421 }
422 return (error);
423 }
424 #endif /* _KERNEL */
425
426 unsigned long zfs_read_chunk_size = 1024 * 1024; /* Tunable */
427 unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
428
429 /*
430 * Read bytes from specified file into supplied buffer.
431 *
432 * IN: ip - inode of file to be read from.
433 * uio - structure supplying read location, range info,
434 * and return buffer.
435 * ioflag - FSYNC flags; used to provide FRSYNC semantics.
436 * O_DIRECT flag; used to bypass page cache.
437 * cr - credentials of caller.
438 *
439 * OUT: uio - updated offset and range, buffer filled.
440 *
441 * RETURN: 0 on success, error code on failure.
442 *
443 * Side Effects:
444 * inode - atime updated if byte count > 0
445 */
446 /* ARGSUSED */
447 int
448 zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
449 {
450 znode_t *zp = ITOZ(ip);
451 zfsvfs_t *zfsvfs = ITOZSB(ip);
452 ssize_t n, nbytes;
453 int error = 0;
454 rl_t *rl;
455 #ifdef HAVE_UIO_ZEROCOPY
456 xuio_t *xuio = NULL;
457 #endif /* HAVE_UIO_ZEROCOPY */
458
459 ZFS_ENTER(zfsvfs);
460 ZFS_VERIFY_ZP(zp);
461
462 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
463 ZFS_EXIT(zfsvfs);
464 return (SET_ERROR(EACCES));
465 }
466
467 /*
468 * Validate file offset
469 */
470 if (uio->uio_loffset < (offset_t)0) {
471 ZFS_EXIT(zfsvfs);
472 return (SET_ERROR(EINVAL));
473 }
474
475 /*
476 * Fasttrack empty reads
477 */
478 if (uio->uio_resid == 0) {
479 ZFS_EXIT(zfsvfs);
480 return (0);
481 }
482
483 /*
484 * If we're in FRSYNC mode, sync out this znode before reading it.
485 * Only do this for non-snapshots.
486 */
487 if (zfsvfs->z_log &&
488 (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
489 zil_commit(zfsvfs->z_log, zp->z_id);
490
491 /*
492 * Lock the range against changes.
493 */
494 rl = zfs_range_lock(&zp->z_range_lock, uio->uio_loffset, uio->uio_resid,
495 RL_READER);
496
497 /*
498 * If we are reading past end-of-file we can skip
499 * to the end; but we might still need to set atime.
500 */
501 if (uio->uio_loffset >= zp->z_size) {
502 error = 0;
503 goto out;
504 }
505
506 ASSERT(uio->uio_loffset < zp->z_size);
507 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
508
509 #ifdef HAVE_UIO_ZEROCOPY
510 if ((uio->uio_extflg == UIO_XUIO) &&
511 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
512 int nblk;
513 int blksz = zp->z_blksz;
514 uint64_t offset = uio->uio_loffset;
515
516 xuio = (xuio_t *)uio;
517 if ((ISP2(blksz))) {
518 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
519 blksz)) / blksz;
520 } else {
521 ASSERT(offset + n <= blksz);
522 nblk = 1;
523 }
524 (void) dmu_xuio_init(xuio, nblk);
525
526 if (vn_has_cached_data(ip)) {
527 /*
528 * For simplicity, we always allocate a full buffer
529 * even if we only expect to read a portion of a block.
530 */
531 while (--nblk >= 0) {
532 (void) dmu_xuio_add(xuio,
533 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
534 blksz), 0, blksz);
535 }
536 }
537 }
538 #endif /* HAVE_UIO_ZEROCOPY */
539
540 while (n > 0) {
541 nbytes = MIN(n, zfs_read_chunk_size -
542 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
543
544 if (zp->z_is_mapped && !(ioflag & O_DIRECT)) {
545 error = mappedread(ip, nbytes, uio);
546 } else {
547 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
548 uio, nbytes);
549 }
550
551 if (error) {
552 /* convert checksum errors into IO errors */
553 if (error == ECKSUM)
554 error = SET_ERROR(EIO);
555 break;
556 }
557
558 n -= nbytes;
559 }
560 out:
561 zfs_range_unlock(rl);
562
563 ZFS_EXIT(zfsvfs);
564 return (error);
565 }
566
567 /*
568 * Write the bytes to a file.
569 *
570 * IN: ip - inode of file to be written to.
571 * uio - structure supplying write location, range info,
572 * and data buffer.
573 * ioflag - FAPPEND flag set if in append mode.
574 * O_DIRECT flag; used to bypass page cache.
575 * cr - credentials of caller.
576 *
577 * OUT: uio - updated offset and range.
578 *
579 * RETURN: 0 if success
580 * error code if failure
581 *
582 * Timestamps:
583 * ip - ctime|mtime updated if byte count > 0
584 */
585
586 /* ARGSUSED */
587 int
588 zfs_write(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
589 {
590 znode_t *zp = ITOZ(ip);
591 rlim64_t limit = uio->uio_limit;
592 ssize_t start_resid = uio->uio_resid;
593 ssize_t tx_bytes;
594 uint64_t end_size;
595 dmu_tx_t *tx;
596 zfsvfs_t *zfsvfs = ZTOZSB(zp);
597 zilog_t *zilog;
598 offset_t woff;
599 ssize_t n, nbytes;
600 rl_t *rl;
601 int max_blksz = zfsvfs->z_max_blksz;
602 int error = 0;
603 arc_buf_t *abuf;
604 const iovec_t *aiov = NULL;
605 xuio_t *xuio = NULL;
606 int write_eof;
607 int count = 0;
608 sa_bulk_attr_t bulk[4];
609 uint64_t mtime[2], ctime[2];
610 uint32_t uid;
611 #ifdef HAVE_UIO_ZEROCOPY
612 int i_iov = 0;
613 const iovec_t *iovp = uio->uio_iov;
614 ASSERTV(int iovcnt = uio->uio_iovcnt);
615 #endif
616
617 /*
618 * Fasttrack empty write
619 */
620 n = start_resid;
621 if (n == 0)
622 return (0);
623
624 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
625 limit = MAXOFFSET_T;
626
627 ZFS_ENTER(zfsvfs);
628 ZFS_VERIFY_ZP(zp);
629
630 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
631 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
632 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
633 &zp->z_size, 8);
634 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
635 &zp->z_pflags, 8);
636
637 /*
638 * Callers might not be able to detect properly that we are read-only,
639 * so check it explicitly here.
640 */
641 if (zfs_is_readonly(zfsvfs)) {
642 ZFS_EXIT(zfsvfs);
643 return (SET_ERROR(EROFS));
644 }
645
646 /*
647 * If immutable or not appending then return EPERM
648 */
649 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
650 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
651 (uio->uio_loffset < zp->z_size))) {
652 ZFS_EXIT(zfsvfs);
653 return (SET_ERROR(EPERM));
654 }
655
656 zilog = zfsvfs->z_log;
657
658 /*
659 * Validate file offset
660 */
661 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
662 if (woff < 0) {
663 ZFS_EXIT(zfsvfs);
664 return (SET_ERROR(EINVAL));
665 }
666
667 /*
668 * Pre-fault the pages to ensure slow (eg NFS) pages
669 * don't hold up txg.
670 * Skip this if uio contains loaned arc_buf.
671 */
672 #ifdef HAVE_UIO_ZEROCOPY
673 if ((uio->uio_extflg == UIO_XUIO) &&
674 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
675 xuio = (xuio_t *)uio;
676 else
677 #endif
678 uio_prefaultpages(MIN(n, max_blksz), uio);
679
680 /*
681 * If in append mode, set the io offset pointer to eof.
682 */
683 if (ioflag & FAPPEND) {
684 /*
685 * Obtain an appending range lock to guarantee file append
686 * semantics. We reset the write offset once we have the lock.
687 */
688 rl = zfs_range_lock(&zp->z_range_lock, 0, n, RL_APPEND);
689 woff = rl->r_off;
690 if (rl->r_len == UINT64_MAX) {
691 /*
692 * We overlocked the file because this write will cause
693 * the file block size to increase.
694 * Note that zp_size cannot change with this lock held.
695 */
696 woff = zp->z_size;
697 }
698 uio->uio_loffset = woff;
699 } else {
700 /*
701 * Note that if the file block size will change as a result of
702 * this write, then this range lock will lock the entire file
703 * so that we can re-write the block safely.
704 */
705 rl = zfs_range_lock(&zp->z_range_lock, woff, n, RL_WRITER);
706 }
707
708 if (woff >= limit) {
709 zfs_range_unlock(rl);
710 ZFS_EXIT(zfsvfs);
711 return (SET_ERROR(EFBIG));
712 }
713
714 if ((woff + n) > limit || woff > (limit - n))
715 n = limit - woff;
716
717 /* Will this write extend the file length? */
718 write_eof = (woff + n > zp->z_size);
719
720 end_size = MAX(zp->z_size, woff + n);
721
722 /*
723 * Write the file in reasonable size chunks. Each chunk is written
724 * in a separate transaction; this keeps the intent log records small
725 * and allows us to do more fine-grained space accounting.
726 */
727 while (n > 0) {
728 abuf = NULL;
729 woff = uio->uio_loffset;
730 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
731 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
732 if (abuf != NULL)
733 dmu_return_arcbuf(abuf);
734 error = SET_ERROR(EDQUOT);
735 break;
736 }
737
738 if (xuio && abuf == NULL) {
739 #ifdef HAVE_UIO_ZEROCOPY
740 ASSERT(i_iov < iovcnt);
741 ASSERT3U(uio->uio_segflg, !=, UIO_BVEC);
742 aiov = &iovp[i_iov];
743 abuf = dmu_xuio_arcbuf(xuio, i_iov);
744 dmu_xuio_clear(xuio, i_iov);
745 ASSERT((aiov->iov_base == abuf->b_data) ||
746 ((char *)aiov->iov_base - (char *)abuf->b_data +
747 aiov->iov_len == arc_buf_size(abuf)));
748 i_iov++;
749 #endif
750 } else if (abuf == NULL && n >= max_blksz &&
751 woff >= zp->z_size &&
752 P2PHASE(woff, max_blksz) == 0 &&
753 zp->z_blksz == max_blksz) {
754 /*
755 * This write covers a full block. "Borrow" a buffer
756 * from the dmu so that we can fill it before we enter
757 * a transaction. This avoids the possibility of
758 * holding up the transaction if the data copy hangs
759 * up on a pagefault (e.g., from an NFS server mapping).
760 */
761 size_t cbytes;
762
763 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
764 max_blksz);
765 ASSERT(abuf != NULL);
766 ASSERT(arc_buf_size(abuf) == max_blksz);
767 if ((error = uiocopy(abuf->b_data, max_blksz,
768 UIO_WRITE, uio, &cbytes))) {
769 dmu_return_arcbuf(abuf);
770 break;
771 }
772 ASSERT(cbytes == max_blksz);
773 }
774
775 /*
776 * Start a transaction.
777 */
778 tx = dmu_tx_create(zfsvfs->z_os);
779 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
780 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
781 zfs_sa_upgrade_txholds(tx, zp);
782 error = dmu_tx_assign(tx, TXG_WAIT);
783 if (error) {
784 dmu_tx_abort(tx);
785 if (abuf != NULL)
786 dmu_return_arcbuf(abuf);
787 break;
788 }
789
790 /*
791 * If zfs_range_lock() over-locked we grow the blocksize
792 * and then reduce the lock range. This will only happen
793 * on the first iteration since zfs_range_reduce() will
794 * shrink down r_len to the appropriate size.
795 */
796 if (rl->r_len == UINT64_MAX) {
797 uint64_t new_blksz;
798
799 if (zp->z_blksz > max_blksz) {
800 /*
801 * File's blocksize is already larger than the
802 * "recordsize" property. Only let it grow to
803 * the next power of 2.
804 */
805 ASSERT(!ISP2(zp->z_blksz));
806 new_blksz = MIN(end_size,
807 1 << highbit64(zp->z_blksz));
808 } else {
809 new_blksz = MIN(end_size, max_blksz);
810 }
811 zfs_grow_blocksize(zp, new_blksz, tx);
812 zfs_range_reduce(rl, woff, n);
813 }
814
815 /*
816 * XXX - should we really limit each write to z_max_blksz?
817 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
818 */
819 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
820
821 if (abuf == NULL) {
822 tx_bytes = uio->uio_resid;
823 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
824 uio, nbytes, tx);
825 tx_bytes -= uio->uio_resid;
826 } else {
827 tx_bytes = nbytes;
828 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
829 /*
830 * If this is not a full block write, but we are
831 * extending the file past EOF and this data starts
832 * block-aligned, use assign_arcbuf(). Otherwise,
833 * write via dmu_write().
834 */
835 if (tx_bytes < max_blksz && (!write_eof ||
836 aiov->iov_base != abuf->b_data)) {
837 ASSERT(xuio);
838 dmu_write(zfsvfs->z_os, zp->z_id, woff,
839 /* cppcheck-suppress nullPointer */
840 aiov->iov_len, aiov->iov_base, tx);
841 dmu_return_arcbuf(abuf);
842 xuio_stat_wbuf_copied();
843 } else {
844 ASSERT(xuio || tx_bytes == max_blksz);
845 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
846 woff, abuf, tx);
847 }
848 ASSERT(tx_bytes <= uio->uio_resid);
849 uioskip(uio, tx_bytes);
850 }
851 if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT)) {
852 update_pages(ip, woff,
853 tx_bytes, zfsvfs->z_os, zp->z_id);
854 }
855
856 /*
857 * If we made no progress, we're done. If we made even
858 * partial progress, update the znode and ZIL accordingly.
859 */
860 if (tx_bytes == 0) {
861 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
862 (void *)&zp->z_size, sizeof (uint64_t), tx);
863 dmu_tx_commit(tx);
864 ASSERT(error != 0);
865 break;
866 }
867
868 /*
869 * Clear Set-UID/Set-GID bits on successful write if not
870 * privileged and at least one of the execute bits is set.
871 *
872 * It would be nice to to this after all writes have
873 * been done, but that would still expose the ISUID/ISGID
874 * to another app after the partial write is committed.
875 *
876 * Note: we don't call zfs_fuid_map_id() here because
877 * user 0 is not an ephemeral uid.
878 */
879 mutex_enter(&zp->z_acl_lock);
880 uid = KUID_TO_SUID(ip->i_uid);
881 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
882 (S_IXUSR >> 6))) != 0 &&
883 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
884 secpolicy_vnode_setid_retain(cr,
885 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
886 uint64_t newmode;
887 zp->z_mode &= ~(S_ISUID | S_ISGID);
888 ip->i_mode = newmode = zp->z_mode;
889 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
890 (void *)&newmode, sizeof (uint64_t), tx);
891 }
892 mutex_exit(&zp->z_acl_lock);
893
894 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
895
896 /*
897 * Update the file size (zp_size) if it has changed;
898 * account for possible concurrent updates.
899 */
900 while ((end_size = zp->z_size) < uio->uio_loffset) {
901 (void) atomic_cas_64(&zp->z_size, end_size,
902 uio->uio_loffset);
903 ASSERT(error == 0);
904 }
905 /*
906 * If we are replaying and eof is non zero then force
907 * the file size to the specified eof. Note, there's no
908 * concurrency during replay.
909 */
910 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
911 zp->z_size = zfsvfs->z_replay_eof;
912
913 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
914
915 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
916 NULL, NULL);
917 dmu_tx_commit(tx);
918
919 if (error != 0)
920 break;
921 ASSERT(tx_bytes == nbytes);
922 n -= nbytes;
923
924 if (!xuio && n > 0)
925 uio_prefaultpages(MIN(n, max_blksz), uio);
926 }
927
928 zfs_inode_update(zp);
929 zfs_range_unlock(rl);
930
931 /*
932 * If we're in replay mode, or we made no progress, return error.
933 * Otherwise, it's at least a partial write, so it's successful.
934 */
935 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
936 ZFS_EXIT(zfsvfs);
937 return (error);
938 }
939
940 if (ioflag & (FSYNC | FDSYNC) ||
941 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
942 zil_commit(zilog, zp->z_id);
943
944 ZFS_EXIT(zfsvfs);
945 return (0);
946 }
947
948 /*
949 * Drop a reference on the passed inode asynchronously. This ensures
950 * that the caller will never drop the last reference on an inode in
951 * the current context. Doing so while holding open a tx could result
952 * in a deadlock if iput_final() re-enters the filesystem code.
953 */
954 void
955 zfs_iput_async(struct inode *ip)
956 {
957 objset_t *os = ITOZSB(ip)->z_os;
958
959 ASSERT(atomic_read(&ip->i_count) > 0);
960 ASSERT(os != NULL);
961
962 if (atomic_read(&ip->i_count) == 1)
963 VERIFY(taskq_dispatch(dsl_pool_iput_taskq(dmu_objset_pool(os)),
964 (task_func_t *)iput, ip, TQ_SLEEP) != TASKQID_INVALID);
965 else
966 iput(ip);
967 }
968
969 void
970 zfs_get_done(zgd_t *zgd, int error)
971 {
972 znode_t *zp = zgd->zgd_private;
973
974 if (zgd->zgd_db)
975 dmu_buf_rele(zgd->zgd_db, zgd);
976
977 zfs_range_unlock(zgd->zgd_rl);
978
979 /*
980 * Release the vnode asynchronously as we currently have the
981 * txg stopped from syncing.
982 */
983 zfs_iput_async(ZTOI(zp));
984
985 if (error == 0 && zgd->zgd_bp)
986 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
987
988 kmem_free(zgd, sizeof (zgd_t));
989 }
990
991 #ifdef DEBUG
992 static int zil_fault_io = 0;
993 #endif
994
995 /*
996 * Get data to generate a TX_WRITE intent log record.
997 */
998 int
999 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1000 {
1001 zfsvfs_t *zfsvfs = arg;
1002 objset_t *os = zfsvfs->z_os;
1003 znode_t *zp;
1004 uint64_t object = lr->lr_foid;
1005 uint64_t offset = lr->lr_offset;
1006 uint64_t size = lr->lr_length;
1007 dmu_buf_t *db;
1008 zgd_t *zgd;
1009 int error = 0;
1010
1011 ASSERT(zio != NULL);
1012 ASSERT(size != 0);
1013
1014 /*
1015 * Nothing to do if the file has been removed
1016 */
1017 if (zfs_zget(zfsvfs, object, &zp) != 0)
1018 return (SET_ERROR(ENOENT));
1019 if (zp->z_unlinked) {
1020 /*
1021 * Release the vnode asynchronously as we currently have the
1022 * txg stopped from syncing.
1023 */
1024 zfs_iput_async(ZTOI(zp));
1025 return (SET_ERROR(ENOENT));
1026 }
1027
1028 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1029 zgd->zgd_zilog = zfsvfs->z_log;
1030 zgd->zgd_private = zp;
1031
1032 /*
1033 * Write records come in two flavors: immediate and indirect.
1034 * For small writes it's cheaper to store the data with the
1035 * log record (immediate); for large writes it's cheaper to
1036 * sync the data and get a pointer to it (indirect) so that
1037 * we don't have to write the data twice.
1038 */
1039 if (buf != NULL) { /* immediate write */
1040 zgd->zgd_rl = zfs_range_lock(&zp->z_range_lock, offset, size,
1041 RL_READER);
1042 /* test for truncation needs to be done while range locked */
1043 if (offset >= zp->z_size) {
1044 error = SET_ERROR(ENOENT);
1045 } else {
1046 error = dmu_read(os, object, offset, size, buf,
1047 DMU_READ_NO_PREFETCH);
1048 }
1049 ASSERT(error == 0 || error == ENOENT);
1050 } else { /* indirect write */
1051 /*
1052 * Have to lock the whole block to ensure when it's
1053 * written out and its checksum is being calculated
1054 * that no one can change the data. We need to re-check
1055 * blocksize after we get the lock in case it's changed!
1056 */
1057 for (;;) {
1058 uint64_t blkoff;
1059 size = zp->z_blksz;
1060 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1061 offset -= blkoff;
1062 zgd->zgd_rl = zfs_range_lock(&zp->z_range_lock, offset,
1063 size, RL_READER);
1064 if (zp->z_blksz == size)
1065 break;
1066 offset += blkoff;
1067 zfs_range_unlock(zgd->zgd_rl);
1068 }
1069 /* test for truncation needs to be done while range locked */
1070 if (lr->lr_offset >= zp->z_size)
1071 error = SET_ERROR(ENOENT);
1072 #ifdef DEBUG
1073 if (zil_fault_io) {
1074 error = SET_ERROR(EIO);
1075 zil_fault_io = 0;
1076 }
1077 #endif
1078 if (error == 0)
1079 error = dmu_buf_hold(os, object, offset, zgd, &db,
1080 DMU_READ_NO_PREFETCH);
1081
1082 if (error == 0) {
1083 blkptr_t *bp = &lr->lr_blkptr;
1084
1085 zgd->zgd_db = db;
1086 zgd->zgd_bp = bp;
1087
1088 ASSERT(db->db_offset == offset);
1089 ASSERT(db->db_size == size);
1090
1091 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1092 zfs_get_done, zgd);
1093 ASSERT(error || lr->lr_length <= size);
1094
1095 /*
1096 * On success, we need to wait for the write I/O
1097 * initiated by dmu_sync() to complete before we can
1098 * release this dbuf. We will finish everything up
1099 * in the zfs_get_done() callback.
1100 */
1101 if (error == 0)
1102 return (0);
1103
1104 if (error == EALREADY) {
1105 lr->lr_common.lrc_txtype = TX_WRITE2;
1106 error = 0;
1107 }
1108 }
1109 }
1110
1111 zfs_get_done(zgd, error);
1112
1113 return (error);
1114 }
1115
1116 /*ARGSUSED*/
1117 int
1118 zfs_access(struct inode *ip, int mode, int flag, cred_t *cr)
1119 {
1120 znode_t *zp = ITOZ(ip);
1121 zfsvfs_t *zfsvfs = ITOZSB(ip);
1122 int error;
1123
1124 ZFS_ENTER(zfsvfs);
1125 ZFS_VERIFY_ZP(zp);
1126
1127 if (flag & V_ACE_MASK)
1128 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1129 else
1130 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1131
1132 ZFS_EXIT(zfsvfs);
1133 return (error);
1134 }
1135
1136 /*
1137 * Lookup an entry in a directory, or an extended attribute directory.
1138 * If it exists, return a held inode reference for it.
1139 *
1140 * IN: dip - inode of directory to search.
1141 * nm - name of entry to lookup.
1142 * flags - LOOKUP_XATTR set if looking for an attribute.
1143 * cr - credentials of caller.
1144 * direntflags - directory lookup flags
1145 * realpnp - returned pathname.
1146 *
1147 * OUT: ipp - inode of located entry, NULL if not found.
1148 *
1149 * RETURN: 0 on success, error code on failure.
1150 *
1151 * Timestamps:
1152 * NA
1153 */
1154 /* ARGSUSED */
1155 int
1156 zfs_lookup(struct inode *dip, char *nm, struct inode **ipp, int flags,
1157 cred_t *cr, int *direntflags, pathname_t *realpnp)
1158 {
1159 znode_t *zdp = ITOZ(dip);
1160 zfsvfs_t *zfsvfs = ITOZSB(dip);
1161 int error = 0;
1162
1163 /*
1164 * Fast path lookup, however we must skip DNLC lookup
1165 * for case folding or normalizing lookups because the
1166 * DNLC code only stores the passed in name. This means
1167 * creating 'a' and removing 'A' on a case insensitive
1168 * file system would work, but DNLC still thinks 'a'
1169 * exists and won't let you create it again on the next
1170 * pass through fast path.
1171 */
1172 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1173
1174 if (!S_ISDIR(dip->i_mode)) {
1175 return (SET_ERROR(ENOTDIR));
1176 } else if (zdp->z_sa_hdl == NULL) {
1177 return (SET_ERROR(EIO));
1178 }
1179
1180 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1181 error = zfs_fastaccesschk_execute(zdp, cr);
1182 if (!error) {
1183 *ipp = dip;
1184 igrab(*ipp);
1185 return (0);
1186 }
1187 return (error);
1188 #ifdef HAVE_DNLC
1189 } else if (!zdp->z_zfsvfs->z_norm &&
1190 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1191
1192 vnode_t *tvp = dnlc_lookup(dvp, nm);
1193
1194 if (tvp) {
1195 error = zfs_fastaccesschk_execute(zdp, cr);
1196 if (error) {
1197 iput(tvp);
1198 return (error);
1199 }
1200 if (tvp == DNLC_NO_VNODE) {
1201 iput(tvp);
1202 return (SET_ERROR(ENOENT));
1203 } else {
1204 *vpp = tvp;
1205 return (specvp_check(vpp, cr));
1206 }
1207 }
1208 #endif /* HAVE_DNLC */
1209 }
1210 }
1211
1212 ZFS_ENTER(zfsvfs);
1213 ZFS_VERIFY_ZP(zdp);
1214
1215 *ipp = NULL;
1216
1217 if (flags & LOOKUP_XATTR) {
1218 /*
1219 * We don't allow recursive attributes..
1220 * Maybe someday we will.
1221 */
1222 if (zdp->z_pflags & ZFS_XATTR) {
1223 ZFS_EXIT(zfsvfs);
1224 return (SET_ERROR(EINVAL));
1225 }
1226
1227 if ((error = zfs_get_xattrdir(zdp, ipp, cr, flags))) {
1228 ZFS_EXIT(zfsvfs);
1229 return (error);
1230 }
1231
1232 /*
1233 * Do we have permission to get into attribute directory?
1234 */
1235
1236 if ((error = zfs_zaccess(ITOZ(*ipp), ACE_EXECUTE, 0,
1237 B_FALSE, cr))) {
1238 iput(*ipp);
1239 *ipp = NULL;
1240 }
1241
1242 ZFS_EXIT(zfsvfs);
1243 return (error);
1244 }
1245
1246 if (!S_ISDIR(dip->i_mode)) {
1247 ZFS_EXIT(zfsvfs);
1248 return (SET_ERROR(ENOTDIR));
1249 }
1250
1251 /*
1252 * Check accessibility of directory.
1253 */
1254
1255 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
1256 ZFS_EXIT(zfsvfs);
1257 return (error);
1258 }
1259
1260 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1261 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1262 ZFS_EXIT(zfsvfs);
1263 return (SET_ERROR(EILSEQ));
1264 }
1265
1266 error = zfs_dirlook(zdp, nm, ipp, flags, direntflags, realpnp);
1267 if ((error == 0) && (*ipp))
1268 zfs_inode_update(ITOZ(*ipp));
1269
1270 ZFS_EXIT(zfsvfs);
1271 return (error);
1272 }
1273
1274 /*
1275 * Attempt to create a new entry in a directory. If the entry
1276 * already exists, truncate the file if permissible, else return
1277 * an error. Return the ip of the created or trunc'd file.
1278 *
1279 * IN: dip - inode of directory to put new file entry in.
1280 * name - name of new file entry.
1281 * vap - attributes of new file.
1282 * excl - flag indicating exclusive or non-exclusive mode.
1283 * mode - mode to open file with.
1284 * cr - credentials of caller.
1285 * flag - large file flag [UNUSED].
1286 * vsecp - ACL to be set
1287 *
1288 * OUT: ipp - inode of created or trunc'd entry.
1289 *
1290 * RETURN: 0 on success, error code on failure.
1291 *
1292 * Timestamps:
1293 * dip - ctime|mtime updated if new entry created
1294 * ip - ctime|mtime always, atime if new
1295 */
1296
1297 /* ARGSUSED */
1298 int
1299 zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl,
1300 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1301 {
1302 znode_t *zp, *dzp = ITOZ(dip);
1303 zfsvfs_t *zfsvfs = ITOZSB(dip);
1304 zilog_t *zilog;
1305 objset_t *os;
1306 zfs_dirlock_t *dl;
1307 dmu_tx_t *tx;
1308 int error;
1309 uid_t uid;
1310 gid_t gid;
1311 zfs_acl_ids_t acl_ids;
1312 boolean_t fuid_dirtied;
1313 boolean_t have_acl = B_FALSE;
1314 boolean_t waited = B_FALSE;
1315
1316 /*
1317 * If we have an ephemeral id, ACL, or XVATTR then
1318 * make sure file system is at proper version
1319 */
1320
1321 gid = crgetgid(cr);
1322 uid = crgetuid(cr);
1323
1324 if (zfsvfs->z_use_fuids == B_FALSE &&
1325 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1326 return (SET_ERROR(EINVAL));
1327
1328 if (name == NULL)
1329 return (SET_ERROR(EINVAL));
1330
1331 ZFS_ENTER(zfsvfs);
1332 ZFS_VERIFY_ZP(dzp);
1333 os = zfsvfs->z_os;
1334 zilog = zfsvfs->z_log;
1335
1336 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1337 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1338 ZFS_EXIT(zfsvfs);
1339 return (SET_ERROR(EILSEQ));
1340 }
1341
1342 if (vap->va_mask & ATTR_XVATTR) {
1343 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1344 crgetuid(cr), cr, vap->va_mode)) != 0) {
1345 ZFS_EXIT(zfsvfs);
1346 return (error);
1347 }
1348 }
1349
1350 top:
1351 *ipp = NULL;
1352 if (*name == '\0') {
1353 /*
1354 * Null component name refers to the directory itself.
1355 */
1356 igrab(dip);
1357 zp = dzp;
1358 dl = NULL;
1359 error = 0;
1360 } else {
1361 /* possible igrab(zp) */
1362 int zflg = 0;
1363
1364 if (flag & FIGNORECASE)
1365 zflg |= ZCILOOK;
1366
1367 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1368 NULL, NULL);
1369 if (error) {
1370 if (have_acl)
1371 zfs_acl_ids_free(&acl_ids);
1372 if (strcmp(name, "..") == 0)
1373 error = SET_ERROR(EISDIR);
1374 ZFS_EXIT(zfsvfs);
1375 return (error);
1376 }
1377 }
1378
1379 if (zp == NULL) {
1380 uint64_t txtype;
1381
1382 /*
1383 * Create a new file object and update the directory
1384 * to reference it.
1385 */
1386 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1387 if (have_acl)
1388 zfs_acl_ids_free(&acl_ids);
1389 goto out;
1390 }
1391
1392 /*
1393 * We only support the creation of regular files in
1394 * extended attribute directories.
1395 */
1396
1397 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
1398 if (have_acl)
1399 zfs_acl_ids_free(&acl_ids);
1400 error = SET_ERROR(EINVAL);
1401 goto out;
1402 }
1403
1404 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1405 cr, vsecp, &acl_ids)) != 0)
1406 goto out;
1407 have_acl = B_TRUE;
1408
1409 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1410 zfs_acl_ids_free(&acl_ids);
1411 error = SET_ERROR(EDQUOT);
1412 goto out;
1413 }
1414
1415 tx = dmu_tx_create(os);
1416
1417 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1418 ZFS_SA_BASE_ATTR_SIZE);
1419
1420 fuid_dirtied = zfsvfs->z_fuid_dirty;
1421 if (fuid_dirtied)
1422 zfs_fuid_txhold(zfsvfs, tx);
1423 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1424 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1425 if (!zfsvfs->z_use_sa &&
1426 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1427 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1428 0, acl_ids.z_aclp->z_acl_bytes);
1429 }
1430 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1431 if (error) {
1432 zfs_dirent_unlock(dl);
1433 if (error == ERESTART) {
1434 waited = B_TRUE;
1435 dmu_tx_wait(tx);
1436 dmu_tx_abort(tx);
1437 goto top;
1438 }
1439 zfs_acl_ids_free(&acl_ids);
1440 dmu_tx_abort(tx);
1441 ZFS_EXIT(zfsvfs);
1442 return (error);
1443 }
1444 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1445
1446 if (fuid_dirtied)
1447 zfs_fuid_sync(zfsvfs, tx);
1448
1449 (void) zfs_link_create(dl, zp, tx, ZNEW);
1450 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1451 if (flag & FIGNORECASE)
1452 txtype |= TX_CI;
1453 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1454 vsecp, acl_ids.z_fuidp, vap);
1455 zfs_acl_ids_free(&acl_ids);
1456 dmu_tx_commit(tx);
1457 } else {
1458 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1459
1460 if (have_acl)
1461 zfs_acl_ids_free(&acl_ids);
1462 have_acl = B_FALSE;
1463
1464 /*
1465 * A directory entry already exists for this name.
1466 */
1467 /*
1468 * Can't truncate an existing file if in exclusive mode.
1469 */
1470 if (excl) {
1471 error = SET_ERROR(EEXIST);
1472 goto out;
1473 }
1474 /*
1475 * Can't open a directory for writing.
1476 */
1477 if (S_ISDIR(ZTOI(zp)->i_mode)) {
1478 error = SET_ERROR(EISDIR);
1479 goto out;
1480 }
1481 /*
1482 * Verify requested access to file.
1483 */
1484 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1485 goto out;
1486 }
1487
1488 mutex_enter(&dzp->z_lock);
1489 dzp->z_seq++;
1490 mutex_exit(&dzp->z_lock);
1491
1492 /*
1493 * Truncate regular files if requested.
1494 */
1495 if (S_ISREG(ZTOI(zp)->i_mode) &&
1496 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
1497 /* we can't hold any locks when calling zfs_freesp() */
1498 if (dl) {
1499 zfs_dirent_unlock(dl);
1500 dl = NULL;
1501 }
1502 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1503 }
1504 }
1505 out:
1506
1507 if (dl)
1508 zfs_dirent_unlock(dl);
1509
1510 if (error) {
1511 if (zp)
1512 iput(ZTOI(zp));
1513 } else {
1514 zfs_inode_update(dzp);
1515 zfs_inode_update(zp);
1516 *ipp = ZTOI(zp);
1517 }
1518
1519 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1520 zil_commit(zilog, 0);
1521
1522 ZFS_EXIT(zfsvfs);
1523 return (error);
1524 }
1525
1526 /* ARGSUSED */
1527 int
1528 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
1529 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1530 {
1531 znode_t *zp = NULL, *dzp = ITOZ(dip);
1532 zfsvfs_t *zfsvfs = ITOZSB(dip);
1533 objset_t *os;
1534 dmu_tx_t *tx;
1535 int error;
1536 uid_t uid;
1537 gid_t gid;
1538 zfs_acl_ids_t acl_ids;
1539 boolean_t fuid_dirtied;
1540 boolean_t have_acl = B_FALSE;
1541 boolean_t waited = B_FALSE;
1542
1543 /*
1544 * If we have an ephemeral id, ACL, or XVATTR then
1545 * make sure file system is at proper version
1546 */
1547
1548 gid = crgetgid(cr);
1549 uid = crgetuid(cr);
1550
1551 if (zfsvfs->z_use_fuids == B_FALSE &&
1552 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1553 return (SET_ERROR(EINVAL));
1554
1555 ZFS_ENTER(zfsvfs);
1556 ZFS_VERIFY_ZP(dzp);
1557 os = zfsvfs->z_os;
1558
1559 if (vap->va_mask & ATTR_XVATTR) {
1560 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1561 crgetuid(cr), cr, vap->va_mode)) != 0) {
1562 ZFS_EXIT(zfsvfs);
1563 return (error);
1564 }
1565 }
1566
1567 top:
1568 *ipp = NULL;
1569
1570 /*
1571 * Create a new file object and update the directory
1572 * to reference it.
1573 */
1574 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1575 if (have_acl)
1576 zfs_acl_ids_free(&acl_ids);
1577 goto out;
1578 }
1579
1580 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1581 cr, vsecp, &acl_ids)) != 0)
1582 goto out;
1583 have_acl = B_TRUE;
1584
1585 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1586 zfs_acl_ids_free(&acl_ids);
1587 error = SET_ERROR(EDQUOT);
1588 goto out;
1589 }
1590
1591 tx = dmu_tx_create(os);
1592
1593 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1594 ZFS_SA_BASE_ATTR_SIZE);
1595 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1596
1597 fuid_dirtied = zfsvfs->z_fuid_dirty;
1598 if (fuid_dirtied)
1599 zfs_fuid_txhold(zfsvfs, tx);
1600 if (!zfsvfs->z_use_sa &&
1601 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1602 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1603 0, acl_ids.z_aclp->z_acl_bytes);
1604 }
1605 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1606 if (error) {
1607 if (error == ERESTART) {
1608 waited = B_TRUE;
1609 dmu_tx_wait(tx);
1610 dmu_tx_abort(tx);
1611 goto top;
1612 }
1613 zfs_acl_ids_free(&acl_ids);
1614 dmu_tx_abort(tx);
1615 ZFS_EXIT(zfsvfs);
1616 return (error);
1617 }
1618 zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
1619
1620 if (fuid_dirtied)
1621 zfs_fuid_sync(zfsvfs, tx);
1622
1623 /* Add to unlinked set */
1624 zp->z_unlinked = 1;
1625 zfs_unlinked_add(zp, tx);
1626 zfs_acl_ids_free(&acl_ids);
1627 dmu_tx_commit(tx);
1628 out:
1629
1630 if (error) {
1631 if (zp)
1632 iput(ZTOI(zp));
1633 } else {
1634 zfs_inode_update(dzp);
1635 zfs_inode_update(zp);
1636 *ipp = ZTOI(zp);
1637 }
1638
1639 ZFS_EXIT(zfsvfs);
1640 return (error);
1641 }
1642
1643 /*
1644 * Remove an entry from a directory.
1645 *
1646 * IN: dip - inode of directory to remove entry from.
1647 * name - name of entry to remove.
1648 * cr - credentials of caller.
1649 *
1650 * RETURN: 0 if success
1651 * error code if failure
1652 *
1653 * Timestamps:
1654 * dip - ctime|mtime
1655 * ip - ctime (if nlink > 0)
1656 */
1657
1658 uint64_t null_xattr = 0;
1659
1660 /*ARGSUSED*/
1661 int
1662 zfs_remove(struct inode *dip, char *name, cred_t *cr, int flags)
1663 {
1664 znode_t *zp, *dzp = ITOZ(dip);
1665 znode_t *xzp;
1666 struct inode *ip;
1667 zfsvfs_t *zfsvfs = ITOZSB(dip);
1668 zilog_t *zilog;
1669 uint64_t acl_obj, xattr_obj;
1670 uint64_t xattr_obj_unlinked = 0;
1671 uint64_t obj = 0;
1672 uint64_t links;
1673 zfs_dirlock_t *dl;
1674 dmu_tx_t *tx;
1675 boolean_t may_delete_now, delete_now = FALSE;
1676 boolean_t unlinked, toobig = FALSE;
1677 uint64_t txtype;
1678 pathname_t *realnmp = NULL;
1679 pathname_t realnm;
1680 int error;
1681 int zflg = ZEXISTS;
1682 boolean_t waited = B_FALSE;
1683
1684 if (name == NULL)
1685 return (SET_ERROR(EINVAL));
1686
1687 ZFS_ENTER(zfsvfs);
1688 ZFS_VERIFY_ZP(dzp);
1689 zilog = zfsvfs->z_log;
1690
1691 if (flags & FIGNORECASE) {
1692 zflg |= ZCILOOK;
1693 pn_alloc(&realnm);
1694 realnmp = &realnm;
1695 }
1696
1697 top:
1698 xattr_obj = 0;
1699 xzp = NULL;
1700 /*
1701 * Attempt to lock directory; fail if entry doesn't exist.
1702 */
1703 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1704 NULL, realnmp))) {
1705 if (realnmp)
1706 pn_free(realnmp);
1707 ZFS_EXIT(zfsvfs);
1708 return (error);
1709 }
1710
1711 ip = ZTOI(zp);
1712
1713 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1714 goto out;
1715 }
1716
1717 /*
1718 * Need to use rmdir for removing directories.
1719 */
1720 if (S_ISDIR(ip->i_mode)) {
1721 error = SET_ERROR(EPERM);
1722 goto out;
1723 }
1724
1725 #ifdef HAVE_DNLC
1726 if (realnmp)
1727 dnlc_remove(dvp, realnmp->pn_buf);
1728 else
1729 dnlc_remove(dvp, name);
1730 #endif /* HAVE_DNLC */
1731
1732 mutex_enter(&zp->z_lock);
1733 may_delete_now = atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped);
1734 mutex_exit(&zp->z_lock);
1735
1736 /*
1737 * We may delete the znode now, or we may put it in the unlinked set;
1738 * it depends on whether we're the last link, and on whether there are
1739 * other holds on the inode. So we dmu_tx_hold() the right things to
1740 * allow for either case.
1741 */
1742 obj = zp->z_id;
1743 tx = dmu_tx_create(zfsvfs->z_os);
1744 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1745 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1746 zfs_sa_upgrade_txholds(tx, zp);
1747 zfs_sa_upgrade_txholds(tx, dzp);
1748 if (may_delete_now) {
1749 toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1750 /* if the file is too big, only hold_free a token amount */
1751 dmu_tx_hold_free(tx, zp->z_id, 0,
1752 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1753 }
1754
1755 /* are there any extended attributes? */
1756 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1757 &xattr_obj, sizeof (xattr_obj));
1758 if (error == 0 && xattr_obj) {
1759 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1760 ASSERT0(error);
1761 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1762 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1763 }
1764
1765 mutex_enter(&zp->z_lock);
1766 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1767 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1768 mutex_exit(&zp->z_lock);
1769
1770 /* charge as an update -- would be nice not to charge at all */
1771 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1772
1773 /*
1774 * Mark this transaction as typically resulting in a net free of space
1775 */
1776 dmu_tx_mark_netfree(tx);
1777
1778 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1779 if (error) {
1780 zfs_dirent_unlock(dl);
1781 if (error == ERESTART) {
1782 waited = B_TRUE;
1783 dmu_tx_wait(tx);
1784 dmu_tx_abort(tx);
1785 iput(ip);
1786 if (xzp)
1787 iput(ZTOI(xzp));
1788 goto top;
1789 }
1790 if (realnmp)
1791 pn_free(realnmp);
1792 dmu_tx_abort(tx);
1793 iput(ip);
1794 if (xzp)
1795 iput(ZTOI(xzp));
1796 ZFS_EXIT(zfsvfs);
1797 return (error);
1798 }
1799
1800 /*
1801 * Remove the directory entry.
1802 */
1803 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1804
1805 if (error) {
1806 dmu_tx_commit(tx);
1807 goto out;
1808 }
1809
1810 if (unlinked) {
1811 /*
1812 * Hold z_lock so that we can make sure that the ACL obj
1813 * hasn't changed. Could have been deleted due to
1814 * zfs_sa_upgrade().
1815 */
1816 mutex_enter(&zp->z_lock);
1817 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1818 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1819 delete_now = may_delete_now && !toobig &&
1820 atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped) &&
1821 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1822 acl_obj;
1823 }
1824
1825 if (delete_now) {
1826 if (xattr_obj_unlinked) {
1827 ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1828 mutex_enter(&xzp->z_lock);
1829 xzp->z_unlinked = 1;
1830 clear_nlink(ZTOI(xzp));
1831 links = 0;
1832 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1833 &links, sizeof (links), tx);
1834 ASSERT3U(error, ==, 0);
1835 mutex_exit(&xzp->z_lock);
1836 zfs_unlinked_add(xzp, tx);
1837
1838 if (zp->z_is_sa)
1839 error = sa_remove(zp->z_sa_hdl,
1840 SA_ZPL_XATTR(zfsvfs), tx);
1841 else
1842 error = sa_update(zp->z_sa_hdl,
1843 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1844 sizeof (uint64_t), tx);
1845 ASSERT0(error);
1846 }
1847 /*
1848 * Add to the unlinked set because a new reference could be
1849 * taken concurrently resulting in a deferred destruction.
1850 */
1851 zfs_unlinked_add(zp, tx);
1852 mutex_exit(&zp->z_lock);
1853 } else if (unlinked) {
1854 mutex_exit(&zp->z_lock);
1855 zfs_unlinked_add(zp, tx);
1856 }
1857
1858 txtype = TX_REMOVE;
1859 if (flags & FIGNORECASE)
1860 txtype |= TX_CI;
1861 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1862
1863 dmu_tx_commit(tx);
1864 out:
1865 if (realnmp)
1866 pn_free(realnmp);
1867
1868 zfs_dirent_unlock(dl);
1869 zfs_inode_update(dzp);
1870 zfs_inode_update(zp);
1871
1872 if (delete_now)
1873 iput(ip);
1874 else
1875 zfs_iput_async(ip);
1876
1877 if (xzp) {
1878 zfs_inode_update(xzp);
1879 zfs_iput_async(ZTOI(xzp));
1880 }
1881
1882 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1883 zil_commit(zilog, 0);
1884
1885 ZFS_EXIT(zfsvfs);
1886 return (error);
1887 }
1888
1889 /*
1890 * Create a new directory and insert it into dip using the name
1891 * provided. Return a pointer to the inserted directory.
1892 *
1893 * IN: dip - inode of directory to add subdir to.
1894 * dirname - name of new directory.
1895 * vap - attributes of new directory.
1896 * cr - credentials of caller.
1897 * vsecp - ACL to be set
1898 *
1899 * OUT: ipp - inode of created directory.
1900 *
1901 * RETURN: 0 if success
1902 * error code if failure
1903 *
1904 * Timestamps:
1905 * dip - ctime|mtime updated
1906 * ipp - ctime|mtime|atime updated
1907 */
1908 /*ARGSUSED*/
1909 int
1910 zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp,
1911 cred_t *cr, int flags, vsecattr_t *vsecp)
1912 {
1913 znode_t *zp, *dzp = ITOZ(dip);
1914 zfsvfs_t *zfsvfs = ITOZSB(dip);
1915 zilog_t *zilog;
1916 zfs_dirlock_t *dl;
1917 uint64_t txtype;
1918 dmu_tx_t *tx;
1919 int error;
1920 int zf = ZNEW;
1921 uid_t uid;
1922 gid_t gid = crgetgid(cr);
1923 zfs_acl_ids_t acl_ids;
1924 boolean_t fuid_dirtied;
1925 boolean_t waited = B_FALSE;
1926
1927 ASSERT(S_ISDIR(vap->va_mode));
1928
1929 /*
1930 * If we have an ephemeral id, ACL, or XVATTR then
1931 * make sure file system is at proper version
1932 */
1933
1934 uid = crgetuid(cr);
1935 if (zfsvfs->z_use_fuids == B_FALSE &&
1936 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1937 return (SET_ERROR(EINVAL));
1938
1939 if (dirname == NULL)
1940 return (SET_ERROR(EINVAL));
1941
1942 ZFS_ENTER(zfsvfs);
1943 ZFS_VERIFY_ZP(dzp);
1944 zilog = zfsvfs->z_log;
1945
1946 if (dzp->z_pflags & ZFS_XATTR) {
1947 ZFS_EXIT(zfsvfs);
1948 return (SET_ERROR(EINVAL));
1949 }
1950
1951 if (zfsvfs->z_utf8 && u8_validate(dirname,
1952 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1953 ZFS_EXIT(zfsvfs);
1954 return (SET_ERROR(EILSEQ));
1955 }
1956 if (flags & FIGNORECASE)
1957 zf |= ZCILOOK;
1958
1959 if (vap->va_mask & ATTR_XVATTR) {
1960 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1961 crgetuid(cr), cr, vap->va_mode)) != 0) {
1962 ZFS_EXIT(zfsvfs);
1963 return (error);
1964 }
1965 }
1966
1967 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1968 vsecp, &acl_ids)) != 0) {
1969 ZFS_EXIT(zfsvfs);
1970 return (error);
1971 }
1972 /*
1973 * First make sure the new directory doesn't exist.
1974 *
1975 * Existence is checked first to make sure we don't return
1976 * EACCES instead of EEXIST which can cause some applications
1977 * to fail.
1978 */
1979 top:
1980 *ipp = NULL;
1981
1982 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1983 NULL, NULL))) {
1984 zfs_acl_ids_free(&acl_ids);
1985 ZFS_EXIT(zfsvfs);
1986 return (error);
1987 }
1988
1989 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
1990 zfs_acl_ids_free(&acl_ids);
1991 zfs_dirent_unlock(dl);
1992 ZFS_EXIT(zfsvfs);
1993 return (error);
1994 }
1995
1996 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1997 zfs_acl_ids_free(&acl_ids);
1998 zfs_dirent_unlock(dl);
1999 ZFS_EXIT(zfsvfs);
2000 return (SET_ERROR(EDQUOT));
2001 }
2002
2003 /*
2004 * Add a new entry to the directory.
2005 */
2006 tx = dmu_tx_create(zfsvfs->z_os);
2007 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2008 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2009 fuid_dirtied = zfsvfs->z_fuid_dirty;
2010 if (fuid_dirtied)
2011 zfs_fuid_txhold(zfsvfs, tx);
2012 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2013 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2014 acl_ids.z_aclp->z_acl_bytes);
2015 }
2016
2017 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2018 ZFS_SA_BASE_ATTR_SIZE);
2019
2020 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2021 if (error) {
2022 zfs_dirent_unlock(dl);
2023 if (error == ERESTART) {
2024 waited = B_TRUE;
2025 dmu_tx_wait(tx);
2026 dmu_tx_abort(tx);
2027 goto top;
2028 }
2029 zfs_acl_ids_free(&acl_ids);
2030 dmu_tx_abort(tx);
2031 ZFS_EXIT(zfsvfs);
2032 return (error);
2033 }
2034
2035 /*
2036 * Create new node.
2037 */
2038 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2039
2040 if (fuid_dirtied)
2041 zfs_fuid_sync(zfsvfs, tx);
2042
2043 /*
2044 * Now put new name in parent dir.
2045 */
2046 (void) zfs_link_create(dl, zp, tx, ZNEW);
2047
2048 *ipp = ZTOI(zp);
2049
2050 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2051 if (flags & FIGNORECASE)
2052 txtype |= TX_CI;
2053 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2054 acl_ids.z_fuidp, vap);
2055
2056 zfs_acl_ids_free(&acl_ids);
2057
2058 dmu_tx_commit(tx);
2059
2060 zfs_dirent_unlock(dl);
2061
2062 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2063 zil_commit(zilog, 0);
2064
2065 zfs_inode_update(dzp);
2066 zfs_inode_update(zp);
2067 ZFS_EXIT(zfsvfs);
2068 return (0);
2069 }
2070
2071 /*
2072 * Remove a directory subdir entry. If the current working
2073 * directory is the same as the subdir to be removed, the
2074 * remove will fail.
2075 *
2076 * IN: dip - inode of directory to remove from.
2077 * name - name of directory to be removed.
2078 * cwd - inode of current working directory.
2079 * cr - credentials of caller.
2080 * flags - case flags
2081 *
2082 * RETURN: 0 on success, error code on failure.
2083 *
2084 * Timestamps:
2085 * dip - ctime|mtime updated
2086 */
2087 /*ARGSUSED*/
2088 int
2089 zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr,
2090 int flags)
2091 {
2092 znode_t *dzp = ITOZ(dip);
2093 znode_t *zp;
2094 struct inode *ip;
2095 zfsvfs_t *zfsvfs = ITOZSB(dip);
2096 zilog_t *zilog;
2097 zfs_dirlock_t *dl;
2098 dmu_tx_t *tx;
2099 int error;
2100 int zflg = ZEXISTS;
2101 boolean_t waited = B_FALSE;
2102
2103 if (name == NULL)
2104 return (SET_ERROR(EINVAL));
2105
2106 ZFS_ENTER(zfsvfs);
2107 ZFS_VERIFY_ZP(dzp);
2108 zilog = zfsvfs->z_log;
2109
2110 if (flags & FIGNORECASE)
2111 zflg |= ZCILOOK;
2112 top:
2113 zp = NULL;
2114
2115 /*
2116 * Attempt to lock directory; fail if entry doesn't exist.
2117 */
2118 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2119 NULL, NULL))) {
2120 ZFS_EXIT(zfsvfs);
2121 return (error);
2122 }
2123
2124 ip = ZTOI(zp);
2125
2126 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
2127 goto out;
2128 }
2129
2130 if (!S_ISDIR(ip->i_mode)) {
2131 error = SET_ERROR(ENOTDIR);
2132 goto out;
2133 }
2134
2135 if (ip == cwd) {
2136 error = SET_ERROR(EINVAL);
2137 goto out;
2138 }
2139
2140 /*
2141 * Grab a lock on the directory to make sure that no one is
2142 * trying to add (or lookup) entries while we are removing it.
2143 */
2144 rw_enter(&zp->z_name_lock, RW_WRITER);
2145
2146 /*
2147 * Grab a lock on the parent pointer to make sure we play well
2148 * with the treewalk and directory rename code.
2149 */
2150 rw_enter(&zp->z_parent_lock, RW_WRITER);
2151
2152 tx = dmu_tx_create(zfsvfs->z_os);
2153 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2154 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2155 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2156 zfs_sa_upgrade_txholds(tx, zp);
2157 zfs_sa_upgrade_txholds(tx, dzp);
2158 dmu_tx_mark_netfree(tx);
2159 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2160 if (error) {
2161 rw_exit(&zp->z_parent_lock);
2162 rw_exit(&zp->z_name_lock);
2163 zfs_dirent_unlock(dl);
2164 if (error == ERESTART) {
2165 waited = B_TRUE;
2166 dmu_tx_wait(tx);
2167 dmu_tx_abort(tx);
2168 iput(ip);
2169 goto top;
2170 }
2171 dmu_tx_abort(tx);
2172 iput(ip);
2173 ZFS_EXIT(zfsvfs);
2174 return (error);
2175 }
2176
2177 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2178
2179 if (error == 0) {
2180 uint64_t txtype = TX_RMDIR;
2181 if (flags & FIGNORECASE)
2182 txtype |= TX_CI;
2183 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2184 }
2185
2186 dmu_tx_commit(tx);
2187
2188 rw_exit(&zp->z_parent_lock);
2189 rw_exit(&zp->z_name_lock);
2190 out:
2191 zfs_dirent_unlock(dl);
2192
2193 zfs_inode_update(dzp);
2194 zfs_inode_update(zp);
2195 iput(ip);
2196
2197 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2198 zil_commit(zilog, 0);
2199
2200 ZFS_EXIT(zfsvfs);
2201 return (error);
2202 }
2203
2204 /*
2205 * Read as many directory entries as will fit into the provided
2206 * dirent buffer from the given directory cursor position.
2207 *
2208 * IN: ip - inode of directory to read.
2209 * dirent - buffer for directory entries.
2210 *
2211 * OUT: dirent - filler buffer of directory entries.
2212 *
2213 * RETURN: 0 if success
2214 * error code if failure
2215 *
2216 * Timestamps:
2217 * ip - atime updated
2218 *
2219 * Note that the low 4 bits of the cookie returned by zap is always zero.
2220 * This allows us to use the low range for "special" directory entries:
2221 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2222 * we use the offset 2 for the '.zfs' directory.
2223 */
2224 /* ARGSUSED */
2225 int
2226 zfs_readdir(struct inode *ip, struct dir_context *ctx, cred_t *cr)
2227 {
2228 znode_t *zp = ITOZ(ip);
2229 zfsvfs_t *zfsvfs = ITOZSB(ip);
2230 objset_t *os;
2231 zap_cursor_t zc;
2232 zap_attribute_t zap;
2233 int error;
2234 uint8_t prefetch;
2235 uint8_t type;
2236 int done = 0;
2237 uint64_t parent;
2238 uint64_t offset; /* must be unsigned; checks for < 1 */
2239
2240 ZFS_ENTER(zfsvfs);
2241 ZFS_VERIFY_ZP(zp);
2242
2243 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2244 &parent, sizeof (parent))) != 0)
2245 goto out;
2246
2247 /*
2248 * Quit if directory has been removed (posix)
2249 */
2250 if (zp->z_unlinked)
2251 goto out;
2252
2253 error = 0;
2254 os = zfsvfs->z_os;
2255 offset = ctx->pos;
2256 prefetch = zp->z_zn_prefetch;
2257
2258 /*
2259 * Initialize the iterator cursor.
2260 */
2261 if (offset <= 3) {
2262 /*
2263 * Start iteration from the beginning of the directory.
2264 */
2265 zap_cursor_init(&zc, os, zp->z_id);
2266 } else {
2267 /*
2268 * The offset is a serialized cursor.
2269 */
2270 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2271 }
2272
2273 /*
2274 * Transform to file-system independent format
2275 */
2276 while (!done) {
2277 uint64_t objnum;
2278 /*
2279 * Special case `.', `..', and `.zfs'.
2280 */
2281 if (offset == 0) {
2282 (void) strcpy(zap.za_name, ".");
2283 zap.za_normalization_conflict = 0;
2284 objnum = zp->z_id;
2285 type = DT_DIR;
2286 } else if (offset == 1) {
2287 (void) strcpy(zap.za_name, "..");
2288 zap.za_normalization_conflict = 0;
2289 objnum = parent;
2290 type = DT_DIR;
2291 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2292 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2293 zap.za_normalization_conflict = 0;
2294 objnum = ZFSCTL_INO_ROOT;
2295 type = DT_DIR;
2296 } else {
2297 /*
2298 * Grab next entry.
2299 */
2300 if ((error = zap_cursor_retrieve(&zc, &zap))) {
2301 if (error == ENOENT)
2302 break;
2303 else
2304 goto update;
2305 }
2306
2307 /*
2308 * Allow multiple entries provided the first entry is
2309 * the object id. Non-zpl consumers may safely make
2310 * use of the additional space.
2311 *
2312 * XXX: This should be a feature flag for compatibility
2313 */
2314 if (zap.za_integer_length != 8 ||
2315 zap.za_num_integers == 0) {
2316 cmn_err(CE_WARN, "zap_readdir: bad directory "
2317 "entry, obj = %lld, offset = %lld, "
2318 "length = %d, num = %lld\n",
2319 (u_longlong_t)zp->z_id,
2320 (u_longlong_t)offset,
2321 zap.za_integer_length,
2322 (u_longlong_t)zap.za_num_integers);
2323 error = SET_ERROR(ENXIO);
2324 goto update;
2325 }
2326
2327 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2328 type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2329 }
2330
2331 done = !dir_emit(ctx, zap.za_name, strlen(zap.za_name),
2332 objnum, type);
2333 if (done)
2334 break;
2335
2336 /* Prefetch znode */
2337 if (prefetch) {
2338 dmu_prefetch(os, objnum, 0, 0, 0,
2339 ZIO_PRIORITY_SYNC_READ);
2340 }
2341
2342 /*
2343 * Move to the next entry, fill in the previous offset.
2344 */
2345 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2346 zap_cursor_advance(&zc);
2347 offset = zap_cursor_serialize(&zc);
2348 } else {
2349 offset += 1;
2350 }
2351 ctx->pos = offset;
2352 }
2353 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2354
2355 update:
2356 zap_cursor_fini(&zc);
2357 if (error == ENOENT)
2358 error = 0;
2359 out:
2360 ZFS_EXIT(zfsvfs);
2361
2362 return (error);
2363 }
2364
2365 ulong_t zfs_fsync_sync_cnt = 4;
2366
2367 int
2368 zfs_fsync(struct inode *ip, int syncflag, cred_t *cr)
2369 {
2370 znode_t *zp = ITOZ(ip);
2371 zfsvfs_t *zfsvfs = ITOZSB(ip);
2372
2373 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2374
2375 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2376 ZFS_ENTER(zfsvfs);
2377 ZFS_VERIFY_ZP(zp);
2378 zil_commit(zfsvfs->z_log, zp->z_id);
2379 ZFS_EXIT(zfsvfs);
2380 }
2381 tsd_set(zfs_fsyncer_key, NULL);
2382
2383 return (0);
2384 }
2385
2386
2387 /*
2388 * Get the requested file attributes and place them in the provided
2389 * vattr structure.
2390 *
2391 * IN: ip - inode of file.
2392 * vap - va_mask identifies requested attributes.
2393 * If ATTR_XVATTR set, then optional attrs are requested
2394 * flags - ATTR_NOACLCHECK (CIFS server context)
2395 * cr - credentials of caller.
2396 *
2397 * OUT: vap - attribute values.
2398 *
2399 * RETURN: 0 (always succeeds)
2400 */
2401 /* ARGSUSED */
2402 int
2403 zfs_getattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2404 {
2405 znode_t *zp = ITOZ(ip);
2406 zfsvfs_t *zfsvfs = ITOZSB(ip);
2407 int error = 0;
2408 uint64_t links;
2409 uint64_t atime[2], mtime[2], ctime[2];
2410 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2411 xoptattr_t *xoap = NULL;
2412 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2413 sa_bulk_attr_t bulk[3];
2414 int count = 0;
2415
2416 ZFS_ENTER(zfsvfs);
2417 ZFS_VERIFY_ZP(zp);
2418
2419 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2420
2421 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
2422 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2423 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2424
2425 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2426 ZFS_EXIT(zfsvfs);
2427 return (error);
2428 }
2429
2430 /*
2431 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2432 * Also, if we are the owner don't bother, since owner should
2433 * always be allowed to read basic attributes of file.
2434 */
2435 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2436 (vap->va_uid != crgetuid(cr))) {
2437 if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2438 skipaclchk, cr))) {
2439 ZFS_EXIT(zfsvfs);
2440 return (error);
2441 }
2442 }
2443
2444 /*
2445 * Return all attributes. It's cheaper to provide the answer
2446 * than to determine whether we were asked the question.
2447 */
2448
2449 mutex_enter(&zp->z_lock);
2450 vap->va_type = vn_mode_to_vtype(zp->z_mode);
2451 vap->va_mode = zp->z_mode;
2452 vap->va_fsid = ZTOI(zp)->i_sb->s_dev;
2453 vap->va_nodeid = zp->z_id;
2454 if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
2455 links = ZTOI(zp)->i_nlink + 1;
2456 else
2457 links = ZTOI(zp)->i_nlink;
2458 vap->va_nlink = MIN(links, ZFS_LINK_MAX);
2459 vap->va_size = i_size_read(ip);
2460 vap->va_rdev = ip->i_rdev;
2461 vap->va_seq = ip->i_generation;
2462
2463 /*
2464 * Add in any requested optional attributes and the create time.
2465 * Also set the corresponding bits in the returned attribute bitmap.
2466 */
2467 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2468 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2469 xoap->xoa_archive =
2470 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2471 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2472 }
2473
2474 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2475 xoap->xoa_readonly =
2476 ((zp->z_pflags & ZFS_READONLY) != 0);
2477 XVA_SET_RTN(xvap, XAT_READONLY);
2478 }
2479
2480 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2481 xoap->xoa_system =
2482 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2483 XVA_SET_RTN(xvap, XAT_SYSTEM);
2484 }
2485
2486 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2487 xoap->xoa_hidden =
2488 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2489 XVA_SET_RTN(xvap, XAT_HIDDEN);
2490 }
2491
2492 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2493 xoap->xoa_nounlink =
2494 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2495 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2496 }
2497
2498 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2499 xoap->xoa_immutable =
2500 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2501 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2502 }
2503
2504 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2505 xoap->xoa_appendonly =
2506 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2507 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2508 }
2509
2510 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2511 xoap->xoa_nodump =
2512 ((zp->z_pflags & ZFS_NODUMP) != 0);
2513 XVA_SET_RTN(xvap, XAT_NODUMP);
2514 }
2515
2516 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2517 xoap->xoa_opaque =
2518 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2519 XVA_SET_RTN(xvap, XAT_OPAQUE);
2520 }
2521
2522 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2523 xoap->xoa_av_quarantined =
2524 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2525 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2526 }
2527
2528 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2529 xoap->xoa_av_modified =
2530 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2531 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2532 }
2533
2534 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2535 S_ISREG(ip->i_mode)) {
2536 zfs_sa_get_scanstamp(zp, xvap);
2537 }
2538
2539 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2540 uint64_t times[2];
2541
2542 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2543 times, sizeof (times));
2544 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2545 XVA_SET_RTN(xvap, XAT_CREATETIME);
2546 }
2547
2548 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2549 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2550 XVA_SET_RTN(xvap, XAT_REPARSE);
2551 }
2552 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2553 xoap->xoa_generation = ip->i_generation;
2554 XVA_SET_RTN(xvap, XAT_GEN);
2555 }
2556
2557 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2558 xoap->xoa_offline =
2559 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2560 XVA_SET_RTN(xvap, XAT_OFFLINE);
2561 }
2562
2563 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2564 xoap->xoa_sparse =
2565 ((zp->z_pflags & ZFS_SPARSE) != 0);
2566 XVA_SET_RTN(xvap, XAT_SPARSE);
2567 }
2568 }
2569
2570 ZFS_TIME_DECODE(&vap->va_atime, atime);
2571 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2572 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2573
2574 mutex_exit(&zp->z_lock);
2575
2576 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2577
2578 if (zp->z_blksz == 0) {
2579 /*
2580 * Block size hasn't been set; suggest maximal I/O transfers.
2581 */
2582 vap->va_blksize = zfsvfs->z_max_blksz;
2583 }
2584
2585 ZFS_EXIT(zfsvfs);
2586 return (0);
2587 }
2588
2589 /*
2590 * Get the basic file attributes and place them in the provided kstat
2591 * structure. The inode is assumed to be the authoritative source
2592 * for most of the attributes. However, the znode currently has the
2593 * authoritative atime, blksize, and block count.
2594 *
2595 * IN: ip - inode of file.
2596 *
2597 * OUT: sp - kstat values.
2598 *
2599 * RETURN: 0 (always succeeds)
2600 */
2601 /* ARGSUSED */
2602 int
2603 zfs_getattr_fast(struct inode *ip, struct kstat *sp)
2604 {
2605 znode_t *zp = ITOZ(ip);
2606 zfsvfs_t *zfsvfs = ITOZSB(ip);
2607 uint32_t blksize;
2608 u_longlong_t nblocks;
2609
2610 ZFS_ENTER(zfsvfs);
2611 ZFS_VERIFY_ZP(zp);
2612
2613 mutex_enter(&zp->z_lock);
2614
2615 generic_fillattr(ip, sp);
2616
2617 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2618 sp->blksize = blksize;
2619 sp->blocks = nblocks;
2620
2621 if (unlikely(zp->z_blksz == 0)) {
2622 /*
2623 * Block size hasn't been set; suggest maximal I/O transfers.
2624 */
2625 sp->blksize = zfsvfs->z_max_blksz;
2626 }
2627
2628 mutex_exit(&zp->z_lock);
2629
2630 /*
2631 * Required to prevent NFS client from detecting different inode
2632 * numbers of snapshot root dentry before and after snapshot mount.
2633 */
2634 if (zfsvfs->z_issnap) {
2635 if (ip->i_sb->s_root->d_inode == ip)
2636 sp->ino = ZFSCTL_INO_SNAPDIRS -
2637 dmu_objset_id(zfsvfs->z_os);
2638 }
2639
2640 ZFS_EXIT(zfsvfs);
2641
2642 return (0);
2643 }
2644
2645 /*
2646 * Set the file attributes to the values contained in the
2647 * vattr structure.
2648 *
2649 * IN: ip - inode of file to be modified.
2650 * vap - new attribute values.
2651 * If ATTR_XVATTR set, then optional attrs are being set
2652 * flags - ATTR_UTIME set if non-default time values provided.
2653 * - ATTR_NOACLCHECK (CIFS context only).
2654 * cr - credentials of caller.
2655 *
2656 * RETURN: 0 if success
2657 * error code if failure
2658 *
2659 * Timestamps:
2660 * ip - ctime updated, mtime updated if size changed.
2661 */
2662 /* ARGSUSED */
2663 int
2664 zfs_setattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2665 {
2666 znode_t *zp = ITOZ(ip);
2667 zfsvfs_t *zfsvfs = ITOZSB(ip);
2668 zilog_t *zilog;
2669 dmu_tx_t *tx;
2670 vattr_t oldva;
2671 xvattr_t *tmpxvattr;
2672 uint_t mask = vap->va_mask;
2673 uint_t saved_mask = 0;
2674 int trim_mask = 0;
2675 uint64_t new_mode;
2676 uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid;
2677 uint64_t xattr_obj;
2678 uint64_t mtime[2], ctime[2], atime[2];
2679 znode_t *attrzp;
2680 int need_policy = FALSE;
2681 int err, err2;
2682 zfs_fuid_info_t *fuidp = NULL;
2683 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2684 xoptattr_t *xoap;
2685 zfs_acl_t *aclp;
2686 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2687 boolean_t fuid_dirtied = B_FALSE;
2688 sa_bulk_attr_t *bulk, *xattr_bulk;
2689 int count = 0, xattr_count = 0;
2690
2691 if (mask == 0)
2692 return (0);
2693
2694 ZFS_ENTER(zfsvfs);
2695 ZFS_VERIFY_ZP(zp);
2696
2697 zilog = zfsvfs->z_log;
2698
2699 /*
2700 * Make sure that if we have ephemeral uid/gid or xvattr specified
2701 * that file system is at proper version level
2702 */
2703
2704 if (zfsvfs->z_use_fuids == B_FALSE &&
2705 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2706 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2707 (mask & ATTR_XVATTR))) {
2708 ZFS_EXIT(zfsvfs);
2709 return (SET_ERROR(EINVAL));
2710 }
2711
2712 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2713 ZFS_EXIT(zfsvfs);
2714 return (SET_ERROR(EISDIR));
2715 }
2716
2717 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2718 ZFS_EXIT(zfsvfs);
2719 return (SET_ERROR(EINVAL));
2720 }
2721
2722 /*
2723 * If this is an xvattr_t, then get a pointer to the structure of
2724 * optional attributes. If this is NULL, then we have a vattr_t.
2725 */
2726 xoap = xva_getxoptattr(xvap);
2727
2728 tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
2729 xva_init(tmpxvattr);
2730
2731 bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
2732 xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
2733
2734 /*
2735 * Immutable files can only alter immutable bit and atime
2736 */
2737 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2738 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2739 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2740 err = EPERM;
2741 goto out3;
2742 }
2743
2744 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2745 err = EPERM;
2746 goto out3;
2747 }
2748
2749 /*
2750 * Verify timestamps doesn't overflow 32 bits.
2751 * ZFS can handle large timestamps, but 32bit syscalls can't
2752 * handle times greater than 2039. This check should be removed
2753 * once large timestamps are fully supported.
2754 */
2755 if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2756 if (((mask & ATTR_ATIME) &&
2757 TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2758 ((mask & ATTR_MTIME) &&
2759 TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2760 err = EOVERFLOW;
2761 goto out3;
2762 }
2763 }
2764
2765 top:
2766 attrzp = NULL;
2767 aclp = NULL;
2768
2769 /* Can this be moved to before the top label? */
2770 if (zfs_is_readonly(zfsvfs)) {
2771 err = EROFS;
2772 goto out3;
2773 }
2774
2775 /*
2776 * First validate permissions
2777 */
2778
2779 if (mask & ATTR_SIZE) {
2780 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2781 if (err)
2782 goto out3;
2783
2784 /*
2785 * XXX - Note, we are not providing any open
2786 * mode flags here (like FNDELAY), so we may
2787 * block if there are locks present... this
2788 * should be addressed in openat().
2789 */
2790 /* XXX - would it be OK to generate a log record here? */
2791 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2792 if (err)
2793 goto out3;
2794 }
2795
2796 if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2797 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2798 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2799 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2800 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2801 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2802 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2803 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2804 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2805 skipaclchk, cr);
2806 }
2807
2808 if (mask & (ATTR_UID|ATTR_GID)) {
2809 int idmask = (mask & (ATTR_UID|ATTR_GID));
2810 int take_owner;
2811 int take_group;
2812
2813 /*
2814 * NOTE: even if a new mode is being set,
2815 * we may clear S_ISUID/S_ISGID bits.
2816 */
2817
2818 if (!(mask & ATTR_MODE))
2819 vap->va_mode = zp->z_mode;
2820
2821 /*
2822 * Take ownership or chgrp to group we are a member of
2823 */
2824
2825 take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
2826 take_group = (mask & ATTR_GID) &&
2827 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2828
2829 /*
2830 * If both ATTR_UID and ATTR_GID are set then take_owner and
2831 * take_group must both be set in order to allow taking
2832 * ownership.
2833 *
2834 * Otherwise, send the check through secpolicy_vnode_setattr()
2835 *
2836 */
2837
2838 if (((idmask == (ATTR_UID|ATTR_GID)) &&
2839 take_owner && take_group) ||
2840 ((idmask == ATTR_UID) && take_owner) ||
2841 ((idmask == ATTR_GID) && take_group)) {
2842 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2843 skipaclchk, cr) == 0) {
2844 /*
2845 * Remove setuid/setgid for non-privileged users
2846 */
2847 (void) secpolicy_setid_clear(vap, cr);
2848 trim_mask = (mask & (ATTR_UID|ATTR_GID));
2849 } else {
2850 need_policy = TRUE;
2851 }
2852 } else {
2853 need_policy = TRUE;
2854 }
2855 }
2856
2857 mutex_enter(&zp->z_lock);
2858 oldva.va_mode = zp->z_mode;
2859 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2860 if (mask & ATTR_XVATTR) {
2861 /*
2862 * Update xvattr mask to include only those attributes
2863 * that are actually changing.
2864 *
2865 * the bits will be restored prior to actually setting
2866 * the attributes so the caller thinks they were set.
2867 */
2868 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2869 if (xoap->xoa_appendonly !=
2870 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2871 need_policy = TRUE;
2872 } else {
2873 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2874 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2875 }
2876 }
2877
2878 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2879 if (xoap->xoa_nounlink !=
2880 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2881 need_policy = TRUE;
2882 } else {
2883 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2884 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2885 }
2886 }
2887
2888 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2889 if (xoap->xoa_immutable !=
2890 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2891 need_policy = TRUE;
2892 } else {
2893 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2894 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2895 }
2896 }
2897
2898 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2899 if (xoap->xoa_nodump !=
2900 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2901 need_policy = TRUE;
2902 } else {
2903 XVA_CLR_REQ(xvap, XAT_NODUMP);
2904 XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2905 }
2906 }
2907
2908 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2909 if (xoap->xoa_av_modified !=
2910 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2911 need_policy = TRUE;
2912 } else {
2913 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2914 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2915 }
2916 }
2917
2918 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2919 if ((!S_ISREG(ip->i_mode) &&
2920 xoap->xoa_av_quarantined) ||
2921 xoap->xoa_av_quarantined !=
2922 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2923 need_policy = TRUE;
2924 } else {
2925 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2926 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2927 }
2928 }
2929
2930 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2931 mutex_exit(&zp->z_lock);
2932 err = EPERM;
2933 goto out3;
2934 }
2935
2936 if (need_policy == FALSE &&
2937 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2938 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2939 need_policy = TRUE;
2940 }
2941 }
2942
2943 mutex_exit(&zp->z_lock);
2944
2945 if (mask & ATTR_MODE) {
2946 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2947 err = secpolicy_setid_setsticky_clear(ip, vap,
2948 &oldva, cr);
2949 if (err)
2950 goto out3;
2951
2952 trim_mask |= ATTR_MODE;
2953 } else {
2954 need_policy = TRUE;
2955 }
2956 }
2957
2958 if (need_policy) {
2959 /*
2960 * If trim_mask is set then take ownership
2961 * has been granted or write_acl is present and user
2962 * has the ability to modify mode. In that case remove
2963 * UID|GID and or MODE from mask so that
2964 * secpolicy_vnode_setattr() doesn't revoke it.
2965 */
2966
2967 if (trim_mask) {
2968 saved_mask = vap->va_mask;
2969 vap->va_mask &= ~trim_mask;
2970 }
2971 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2972 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2973 if (err)
2974 goto out3;
2975
2976 if (trim_mask)
2977 vap->va_mask |= saved_mask;
2978 }
2979
2980 /*
2981 * secpolicy_vnode_setattr, or take ownership may have
2982 * changed va_mask
2983 */
2984 mask = vap->va_mask;
2985
2986 if ((mask & (ATTR_UID | ATTR_GID))) {
2987 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2988 &xattr_obj, sizeof (xattr_obj));
2989
2990 if (err == 0 && xattr_obj) {
2991 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2992 if (err)
2993 goto out2;
2994 }
2995 if (mask & ATTR_UID) {
2996 new_kuid = zfs_fuid_create(zfsvfs,
2997 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2998 if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2999 zfs_fuid_overquota(zfsvfs, B_FALSE, new_kuid)) {
3000 if (attrzp)
3001 iput(ZTOI(attrzp));
3002 err = EDQUOT;
3003 goto out2;
3004 }
3005 }
3006
3007 if (mask & ATTR_GID) {
3008 new_kgid = zfs_fuid_create(zfsvfs,
3009 (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
3010 if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
3011 zfs_fuid_overquota(zfsvfs, B_TRUE, new_kgid)) {
3012 if (attrzp)
3013 iput(ZTOI(attrzp));
3014 err = EDQUOT;
3015 goto out2;
3016 }
3017 }
3018 }
3019 tx = dmu_tx_create(zfsvfs->z_os);
3020
3021 if (mask & ATTR_MODE) {
3022 uint64_t pmode = zp->z_mode;
3023 uint64_t acl_obj;
3024 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3025
3026 zfs_acl_chmod_setattr(zp, &aclp, new_mode);
3027
3028 mutex_enter(&zp->z_lock);
3029 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3030 /*
3031 * Are we upgrading ACL from old V0 format
3032 * to V1 format?
3033 */
3034 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3035 zfs_znode_acl_version(zp) ==
3036 ZFS_ACL_VERSION_INITIAL) {
3037 dmu_tx_hold_free(tx, acl_obj, 0,
3038 DMU_OBJECT_END);
3039 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3040 0, aclp->z_acl_bytes);
3041 } else {
3042 dmu_tx_hold_write(tx, acl_obj, 0,
3043 aclp->z_acl_bytes);
3044 }
3045 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3046 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3047 0, aclp->z_acl_bytes);
3048 }
3049 mutex_exit(&zp->z_lock);
3050 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3051 } else {
3052 if ((mask & ATTR_XVATTR) &&
3053 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3054 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3055 else
3056 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3057 }
3058
3059 if (attrzp) {
3060 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3061 }
3062
3063 fuid_dirtied = zfsvfs->z_fuid_dirty;
3064 if (fuid_dirtied)
3065 zfs_fuid_txhold(zfsvfs, tx);
3066
3067 zfs_sa_upgrade_txholds(tx, zp);
3068
3069 err = dmu_tx_assign(tx, TXG_WAIT);
3070 if (err)
3071 goto out;
3072
3073 count = 0;
3074 /*
3075 * Set each attribute requested.
3076 * We group settings according to the locks they need to acquire.
3077 *
3078 * Note: you cannot set ctime directly, although it will be
3079 * updated as a side-effect of calling this function.
3080 */
3081
3082
3083 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3084 mutex_enter(&zp->z_acl_lock);
3085 mutex_enter(&zp->z_lock);
3086
3087 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3088 &zp->z_pflags, sizeof (zp->z_pflags));
3089
3090 if (attrzp) {
3091 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3092 mutex_enter(&attrzp->z_acl_lock);
3093 mutex_enter(&attrzp->z_lock);
3094 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3095 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3096 sizeof (attrzp->z_pflags));
3097 }
3098
3099 if (mask & (ATTR_UID|ATTR_GID)) {
3100
3101 if (mask & ATTR_UID) {
3102 ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
3103 new_uid = zfs_uid_read(ZTOI(zp));
3104 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3105 &new_uid, sizeof (new_uid));
3106 if (attrzp) {
3107 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3108 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3109 sizeof (new_uid));
3110 ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
3111 }
3112 }
3113
3114 if (mask & ATTR_GID) {
3115 ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
3116 new_gid = zfs_gid_read(ZTOI(zp));
3117 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3118 NULL, &new_gid, sizeof (new_gid));
3119 if (attrzp) {
3120 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3121 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3122 sizeof (new_gid));
3123 ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
3124 }
3125 }
3126 if (!(mask & ATTR_MODE)) {
3127 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3128 NULL, &new_mode, sizeof (new_mode));
3129 new_mode = zp->z_mode;
3130 }
3131 err = zfs_acl_chown_setattr(zp);
3132 ASSERT(err == 0);
3133 if (attrzp) {
3134 err = zfs_acl_chown_setattr(attrzp);
3135 ASSERT(err == 0);
3136 }
3137 }
3138
3139 if (mask & ATTR_MODE) {
3140 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3141 &new_mode, sizeof (new_mode));
3142 zp->z_mode = ZTOI(zp)->i_mode = new_mode;
3143 ASSERT3P(aclp, !=, NULL);
3144 err = zfs_aclset_common(zp, aclp, cr, tx);
3145 ASSERT0(err);
3146 if (zp->z_acl_cached)
3147 zfs_acl_free(zp->z_acl_cached);
3148 zp->z_acl_cached = aclp;
3149 aclp = NULL;
3150 }
3151
3152 if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
3153 zp->z_atime_dirty = 0;
3154 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3155 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3156 &atime, sizeof (atime));
3157 }
3158
3159 if (mask & (ATTR_MTIME | ATTR_SIZE)) {
3160 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3161 ZTOI(zp)->i_mtime = timespec_trunc(vap->va_mtime,
3162 ZTOI(zp)->i_sb->s_time_gran);
3163
3164 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3165 mtime, sizeof (mtime));
3166 }
3167
3168 if (mask & (ATTR_CTIME | ATTR_SIZE)) {
3169 ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
3170 ZTOI(zp)->i_ctime = timespec_trunc(vap->va_ctime,
3171 ZTOI(zp)->i_sb->s_time_gran);
3172 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3173 ctime, sizeof (ctime));
3174 }
3175
3176 if (attrzp && mask) {
3177 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3178 SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
3179 sizeof (ctime));
3180 }
3181
3182 /*
3183 * Do this after setting timestamps to prevent timestamp
3184 * update from toggling bit
3185 */
3186
3187 if (xoap && (mask & ATTR_XVATTR)) {
3188
3189 /*
3190 * restore trimmed off masks
3191 * so that return masks can be set for caller.
3192 */
3193
3194 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
3195 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3196 }
3197 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
3198 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3199 }
3200 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
3201 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3202 }
3203 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
3204 XVA_SET_REQ(xvap, XAT_NODUMP);
3205 }
3206 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
3207 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3208 }
3209 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
3210 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3211 }
3212
3213 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3214 ASSERT(S_ISREG(ip->i_mode));
3215
3216 zfs_xvattr_set(zp, xvap, tx);
3217 }
3218
3219 if (fuid_dirtied)
3220 zfs_fuid_sync(zfsvfs, tx);
3221
3222 if (mask != 0)
3223 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3224
3225 mutex_exit(&zp->z_lock);
3226 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3227 mutex_exit(&zp->z_acl_lock);
3228
3229 if (attrzp) {
3230 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3231 mutex_exit(&attrzp->z_acl_lock);
3232 mutex_exit(&attrzp->z_lock);
3233 }
3234 out:
3235 if (err == 0 && attrzp) {
3236 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3237 xattr_count, tx);
3238 ASSERT(err2 == 0);
3239 }
3240
3241 if (aclp)
3242 zfs_acl_free(aclp);
3243
3244 if (fuidp) {
3245 zfs_fuid_info_free(fuidp);
3246 fuidp = NULL;
3247 }
3248
3249 if (err) {
3250 dmu_tx_abort(tx);
3251 if (attrzp)
3252 iput(ZTOI(attrzp));
3253 if (err == ERESTART)
3254 goto top;
3255 } else {
3256 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3257 dmu_tx_commit(tx);
3258 if (attrzp)
3259 iput(ZTOI(attrzp));
3260 zfs_inode_update(zp);
3261 }
3262
3263 out2:
3264 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3265 zil_commit(zilog, 0);
3266
3267 out3:
3268 kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * 7);
3269 kmem_free(bulk, sizeof (sa_bulk_attr_t) * 7);
3270 kmem_free(tmpxvattr, sizeof (xvattr_t));
3271 ZFS_EXIT(zfsvfs);
3272 return (err);
3273 }
3274
3275 typedef struct zfs_zlock {
3276 krwlock_t *zl_rwlock; /* lock we acquired */
3277 znode_t *zl_znode; /* znode we held */
3278 struct zfs_zlock *zl_next; /* next in list */
3279 } zfs_zlock_t;
3280
3281 /*
3282 * Drop locks and release vnodes that were held by zfs_rename_lock().
3283 */
3284 static void
3285 zfs_rename_unlock(zfs_zlock_t **zlpp)
3286 {
3287 zfs_zlock_t *zl;
3288
3289 while ((zl = *zlpp) != NULL) {
3290 if (zl->zl_znode != NULL)
3291 zfs_iput_async(ZTOI(zl->zl_znode));
3292 rw_exit(zl->zl_rwlock);
3293 *zlpp = zl->zl_next;
3294 kmem_free(zl, sizeof (*zl));
3295 }
3296 }
3297
3298 /*
3299 * Search back through the directory tree, using the ".." entries.
3300 * Lock each directory in the chain to prevent concurrent renames.
3301 * Fail any attempt to move a directory into one of its own descendants.
3302 * XXX - z_parent_lock can overlap with map or grow locks
3303 */
3304 static int
3305 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3306 {
3307 zfs_zlock_t *zl;
3308 znode_t *zp = tdzp;
3309 uint64_t rootid = ZTOZSB(zp)->z_root;
3310 uint64_t oidp = zp->z_id;
3311 krwlock_t *rwlp = &szp->z_parent_lock;
3312 krw_t rw = RW_WRITER;
3313
3314 /*
3315 * First pass write-locks szp and compares to zp->z_id.
3316 * Later passes read-lock zp and compare to zp->z_parent.
3317 */
3318 do {
3319 if (!rw_tryenter(rwlp, rw)) {
3320 /*
3321 * Another thread is renaming in this path.
3322 * Note that if we are a WRITER, we don't have any
3323 * parent_locks held yet.
3324 */
3325 if (rw == RW_READER && zp->z_id > szp->z_id) {
3326 /*
3327 * Drop our locks and restart
3328 */
3329 zfs_rename_unlock(&zl);
3330 *zlpp = NULL;
3331 zp = tdzp;
3332 oidp = zp->z_id;
3333 rwlp = &szp->z_parent_lock;
3334 rw = RW_WRITER;
3335 continue;
3336 } else {
3337 /*
3338 * Wait for other thread to drop its locks
3339 */
3340 rw_enter(rwlp, rw);
3341 }
3342 }
3343
3344 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3345 zl->zl_rwlock = rwlp;
3346 zl->zl_znode = NULL;
3347 zl->zl_next = *zlpp;
3348 *zlpp = zl;
3349
3350 if (oidp == szp->z_id) /* We're a descendant of szp */
3351 return (SET_ERROR(EINVAL));
3352
3353 if (oidp == rootid) /* We've hit the top */
3354 return (0);
3355
3356 if (rw == RW_READER) { /* i.e. not the first pass */
3357 int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
3358 if (error)
3359 return (error);
3360 zl->zl_znode = zp;
3361 }
3362 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
3363 &oidp, sizeof (oidp));
3364 rwlp = &zp->z_parent_lock;
3365 rw = RW_READER;
3366
3367 } while (zp->z_id != sdzp->z_id);
3368
3369 return (0);
3370 }
3371
3372 /*
3373 * Move an entry from the provided source directory to the target
3374 * directory. Change the entry name as indicated.
3375 *
3376 * IN: sdip - Source directory containing the "old entry".
3377 * snm - Old entry name.
3378 * tdip - Target directory to contain the "new entry".
3379 * tnm - New entry name.
3380 * cr - credentials of caller.
3381 * flags - case flags
3382 *
3383 * RETURN: 0 on success, error code on failure.
3384 *
3385 * Timestamps:
3386 * sdip,tdip - ctime|mtime updated
3387 */
3388 /*ARGSUSED*/
3389 int
3390 zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm,
3391 cred_t *cr, int flags)
3392 {
3393 znode_t *tdzp, *szp, *tzp;
3394 znode_t *sdzp = ITOZ(sdip);
3395 zfsvfs_t *zfsvfs = ITOZSB(sdip);
3396 zilog_t *zilog;
3397 zfs_dirlock_t *sdl, *tdl;
3398 dmu_tx_t *tx;
3399 zfs_zlock_t *zl;
3400 int cmp, serr, terr;
3401 int error = 0;
3402 int zflg = 0;
3403 boolean_t waited = B_FALSE;
3404
3405 if (snm == NULL || tnm == NULL)
3406 return (SET_ERROR(EINVAL));
3407
3408 ZFS_ENTER(zfsvfs);
3409 ZFS_VERIFY_ZP(sdzp);
3410 zilog = zfsvfs->z_log;
3411
3412 tdzp = ITOZ(tdip);
3413 ZFS_VERIFY_ZP(tdzp);
3414
3415 /*
3416 * We check i_sb because snapshots and the ctldir must have different
3417 * super blocks.
3418 */
3419 if (tdip->i_sb != sdip->i_sb || zfsctl_is_node(tdip)) {
3420 ZFS_EXIT(zfsvfs);
3421 return (SET_ERROR(EXDEV));
3422 }
3423
3424 if (zfsvfs->z_utf8 && u8_validate(tnm,
3425 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3426 ZFS_EXIT(zfsvfs);
3427 return (SET_ERROR(EILSEQ));
3428 }
3429
3430 if (flags & FIGNORECASE)
3431 zflg |= ZCILOOK;
3432
3433 top:
3434 szp = NULL;
3435 tzp = NULL;
3436 zl = NULL;
3437
3438 /*
3439 * This is to prevent the creation of links into attribute space
3440 * by renaming a linked file into/outof an attribute directory.
3441 * See the comment in zfs_link() for why this is considered bad.
3442 */
3443 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3444 ZFS_EXIT(zfsvfs);
3445 return (SET_ERROR(EINVAL));
3446 }
3447
3448 /*
3449 * Lock source and target directory entries. To prevent deadlock,
3450 * a lock ordering must be defined. We lock the directory with
3451 * the smallest object id first, or if it's a tie, the one with
3452 * the lexically first name.
3453 */
3454 if (sdzp->z_id < tdzp->z_id) {
3455 cmp = -1;
3456 } else if (sdzp->z_id > tdzp->z_id) {
3457 cmp = 1;
3458 } else {
3459 /*
3460 * First compare the two name arguments without
3461 * considering any case folding.
3462 */
3463 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3464
3465 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3466 ASSERT(error == 0 || !zfsvfs->z_utf8);
3467 if (cmp == 0) {
3468 /*
3469 * POSIX: "If the old argument and the new argument
3470 * both refer to links to the same existing file,
3471 * the rename() function shall return successfully
3472 * and perform no other action."
3473 */
3474 ZFS_EXIT(zfsvfs);
3475 return (0);
3476 }
3477 /*
3478 * If the file system is case-folding, then we may
3479 * have some more checking to do. A case-folding file
3480 * system is either supporting mixed case sensitivity
3481 * access or is completely case-insensitive. Note
3482 * that the file system is always case preserving.
3483 *
3484 * In mixed sensitivity mode case sensitive behavior
3485 * is the default. FIGNORECASE must be used to
3486 * explicitly request case insensitive behavior.
3487 *
3488 * If the source and target names provided differ only
3489 * by case (e.g., a request to rename 'tim' to 'Tim'),
3490 * we will treat this as a special case in the
3491 * case-insensitive mode: as long as the source name
3492 * is an exact match, we will allow this to proceed as
3493 * a name-change request.
3494 */
3495 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3496 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3497 flags & FIGNORECASE)) &&
3498 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3499 &error) == 0) {
3500 /*
3501 * case preserving rename request, require exact
3502 * name matches
3503 */
3504 zflg |= ZCIEXACT;
3505 zflg &= ~ZCILOOK;
3506 }
3507 }
3508
3509 /*
3510 * If the source and destination directories are the same, we should
3511 * grab the z_name_lock of that directory only once.
3512 */
3513 if (sdzp == tdzp) {
3514 zflg |= ZHAVELOCK;
3515 rw_enter(&sdzp->z_name_lock, RW_READER);
3516 }
3517
3518 if (cmp < 0) {
3519 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3520 ZEXISTS | zflg, NULL, NULL);
3521 terr = zfs_dirent_lock(&tdl,
3522 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3523 } else {
3524 terr = zfs_dirent_lock(&tdl,
3525 tdzp, tnm, &tzp, zflg, NULL, NULL);
3526 serr = zfs_dirent_lock(&sdl,
3527 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3528 NULL, NULL);
3529 }
3530
3531 if (serr) {
3532 /*
3533 * Source entry invalid or not there.
3534 */
3535 if (!terr) {
3536 zfs_dirent_unlock(tdl);
3537 if (tzp)
3538 iput(ZTOI(tzp));
3539 }
3540
3541 if (sdzp == tdzp)
3542 rw_exit(&sdzp->z_name_lock);
3543
3544 if (strcmp(snm, "..") == 0)
3545 serr = EINVAL;
3546 ZFS_EXIT(zfsvfs);
3547 return (serr);
3548 }
3549 if (terr) {
3550 zfs_dirent_unlock(sdl);
3551 iput(ZTOI(szp));
3552
3553 if (sdzp == tdzp)
3554 rw_exit(&sdzp->z_name_lock);
3555
3556 if (strcmp(tnm, "..") == 0)
3557 terr = EINVAL;
3558 ZFS_EXIT(zfsvfs);
3559 return (terr);
3560 }
3561
3562 /*
3563 * Must have write access at the source to remove the old entry
3564 * and write access at the target to create the new entry.
3565 * Note that if target and source are the same, this can be
3566 * done in a single check.
3567 */
3568
3569 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
3570 goto out;
3571
3572 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3573 /*
3574 * Check to make sure rename is valid.
3575 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3576 */
3577 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
3578 goto out;
3579 }
3580
3581 /*
3582 * Does target exist?
3583 */
3584 if (tzp) {
3585 /*
3586 * Source and target must be the same type.
3587 */
3588 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3589 if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
3590 error = SET_ERROR(ENOTDIR);
3591 goto out;
3592 }
3593 } else {
3594 if (S_ISDIR(ZTOI(tzp)->i_mode)) {
3595 error = SET_ERROR(EISDIR);
3596 goto out;
3597 }
3598 }
3599 /*
3600 * POSIX dictates that when the source and target
3601 * entries refer to the same file object, rename
3602 * must do nothing and exit without error.
3603 */
3604 if (szp->z_id == tzp->z_id) {
3605 error = 0;
3606 goto out;
3607 }
3608 }
3609
3610 tx = dmu_tx_create(zfsvfs->z_os);
3611 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3612 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3613 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3614 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3615 if (sdzp != tdzp) {
3616 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3617 zfs_sa_upgrade_txholds(tx, tdzp);
3618 }
3619 if (tzp) {
3620 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3621 zfs_sa_upgrade_txholds(tx, tzp);
3622 }
3623
3624 zfs_sa_upgrade_txholds(tx, szp);
3625 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3626 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3627 if (error) {
3628 if (zl != NULL)
3629 zfs_rename_unlock(&zl);
3630 zfs_dirent_unlock(sdl);
3631 zfs_dirent_unlock(tdl);
3632
3633 if (sdzp == tdzp)
3634 rw_exit(&sdzp->z_name_lock);
3635
3636 if (error == ERESTART) {
3637 waited = B_TRUE;
3638 dmu_tx_wait(tx);
3639 dmu_tx_abort(tx);
3640 iput(ZTOI(szp));
3641 if (tzp)
3642 iput(ZTOI(tzp));
3643 goto top;
3644 }
3645 dmu_tx_abort(tx);
3646 iput(ZTOI(szp));
3647 if (tzp)
3648 iput(ZTOI(tzp));
3649 ZFS_EXIT(zfsvfs);
3650 return (error);
3651 }
3652
3653 if (tzp) /* Attempt to remove the existing target */
3654 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3655
3656 if (error == 0) {
3657 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3658 if (error == 0) {
3659 szp->z_pflags |= ZFS_AV_MODIFIED;
3660
3661 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3662 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3663 ASSERT0(error);
3664
3665 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3666 if (error == 0) {
3667 zfs_log_rename(zilog, tx, TX_RENAME |
3668 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3669 sdl->dl_name, tdzp, tdl->dl_name, szp);
3670 } else {
3671 /*
3672 * At this point, we have successfully created
3673 * the target name, but have failed to remove
3674 * the source name. Since the create was done
3675 * with the ZRENAMING flag, there are
3676 * complications; for one, the link count is
3677 * wrong. The easiest way to deal with this
3678 * is to remove the newly created target, and
3679 * return the original error. This must
3680 * succeed; fortunately, it is very unlikely to
3681 * fail, since we just created it.
3682 */
3683 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3684 ZRENAMING, NULL), ==, 0);
3685 }
3686 }
3687 }
3688
3689 dmu_tx_commit(tx);
3690 out:
3691 if (zl != NULL)
3692 zfs_rename_unlock(&zl);
3693
3694 zfs_dirent_unlock(sdl);
3695 zfs_dirent_unlock(tdl);
3696
3697 zfs_inode_update(sdzp);
3698 if (sdzp == tdzp)
3699 rw_exit(&sdzp->z_name_lock);
3700
3701 if (sdzp != tdzp)
3702 zfs_inode_update(tdzp);
3703
3704 zfs_inode_update(szp);
3705 iput(ZTOI(szp));
3706 if (tzp) {
3707 zfs_inode_update(tzp);
3708 iput(ZTOI(tzp));
3709 }
3710
3711 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3712 zil_commit(zilog, 0);
3713
3714 ZFS_EXIT(zfsvfs);
3715 return (error);
3716 }
3717
3718 /*
3719 * Insert the indicated symbolic reference entry into the directory.
3720 *
3721 * IN: dip - Directory to contain new symbolic link.
3722 * link - Name for new symlink entry.
3723 * vap - Attributes of new entry.
3724 * target - Target path of new symlink.
3725 *
3726 * cr - credentials of caller.
3727 * flags - case flags
3728 *
3729 * RETURN: 0 on success, error code on failure.
3730 *
3731 * Timestamps:
3732 * dip - ctime|mtime updated
3733 */
3734 /*ARGSUSED*/
3735 int
3736 zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link,
3737 struct inode **ipp, cred_t *cr, int flags)
3738 {
3739 znode_t *zp, *dzp = ITOZ(dip);
3740 zfs_dirlock_t *dl;
3741 dmu_tx_t *tx;
3742 zfsvfs_t *zfsvfs = ITOZSB(dip);
3743 zilog_t *zilog;
3744 uint64_t len = strlen(link);
3745 int error;
3746 int zflg = ZNEW;
3747 zfs_acl_ids_t acl_ids;
3748 boolean_t fuid_dirtied;
3749 uint64_t txtype = TX_SYMLINK;
3750 boolean_t waited = B_FALSE;
3751
3752 ASSERT(S_ISLNK(vap->va_mode));
3753
3754 if (name == NULL)
3755 return (SET_ERROR(EINVAL));
3756
3757 ZFS_ENTER(zfsvfs);
3758 ZFS_VERIFY_ZP(dzp);
3759 zilog = zfsvfs->z_log;
3760
3761 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3762 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3763 ZFS_EXIT(zfsvfs);
3764 return (SET_ERROR(EILSEQ));
3765 }
3766 if (flags & FIGNORECASE)
3767 zflg |= ZCILOOK;
3768
3769 if (len > MAXPATHLEN) {
3770 ZFS_EXIT(zfsvfs);
3771 return (SET_ERROR(ENAMETOOLONG));
3772 }
3773
3774 if ((error = zfs_acl_ids_create(dzp, 0,
3775 vap, cr, NULL, &acl_ids)) != 0) {
3776 ZFS_EXIT(zfsvfs);
3777 return (error);
3778 }
3779 top:
3780 *ipp = NULL;
3781
3782 /*
3783 * Attempt to lock directory; fail if entry already exists.
3784 */
3785 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3786 if (error) {
3787 zfs_acl_ids_free(&acl_ids);
3788 ZFS_EXIT(zfsvfs);
3789 return (error);
3790 }
3791
3792 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3793 zfs_acl_ids_free(&acl_ids);
3794 zfs_dirent_unlock(dl);
3795 ZFS_EXIT(zfsvfs);
3796 return (error);
3797 }
3798
3799 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3800 zfs_acl_ids_free(&acl_ids);
3801 zfs_dirent_unlock(dl);
3802 ZFS_EXIT(zfsvfs);
3803 return (SET_ERROR(EDQUOT));
3804 }
3805 tx = dmu_tx_create(zfsvfs->z_os);
3806 fuid_dirtied = zfsvfs->z_fuid_dirty;
3807 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3808 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3809 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3810 ZFS_SA_BASE_ATTR_SIZE + len);
3811 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3812 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3813 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3814 acl_ids.z_aclp->z_acl_bytes);
3815 }
3816 if (fuid_dirtied)
3817 zfs_fuid_txhold(zfsvfs, tx);
3818 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3819 if (error) {
3820 zfs_dirent_unlock(dl);
3821 if (error == ERESTART) {
3822 waited = B_TRUE;
3823 dmu_tx_wait(tx);
3824 dmu_tx_abort(tx);
3825 goto top;
3826 }
3827 zfs_acl_ids_free(&acl_ids);
3828 dmu_tx_abort(tx);
3829 ZFS_EXIT(zfsvfs);
3830 return (error);
3831 }
3832
3833 /*
3834 * Create a new object for the symlink.
3835 * for version 4 ZPL datsets the symlink will be an SA attribute
3836 */
3837 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3838
3839 if (fuid_dirtied)
3840 zfs_fuid_sync(zfsvfs, tx);
3841
3842 mutex_enter(&zp->z_lock);
3843 if (zp->z_is_sa)
3844 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3845 link, len, tx);
3846 else
3847 zfs_sa_symlink(zp, link, len, tx);
3848 mutex_exit(&zp->z_lock);
3849
3850 zp->z_size = len;
3851 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3852 &zp->z_size, sizeof (zp->z_size), tx);
3853 /*
3854 * Insert the new object into the directory.
3855 */
3856 (void) zfs_link_create(dl, zp, tx, ZNEW);
3857
3858 if (flags & FIGNORECASE)
3859 txtype |= TX_CI;
3860 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3861
3862 zfs_inode_update(dzp);
3863 zfs_inode_update(zp);
3864
3865 zfs_acl_ids_free(&acl_ids);
3866
3867 dmu_tx_commit(tx);
3868
3869 zfs_dirent_unlock(dl);
3870
3871 *ipp = ZTOI(zp);
3872
3873 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3874 zil_commit(zilog, 0);
3875
3876 ZFS_EXIT(zfsvfs);
3877 return (error);
3878 }
3879
3880 /*
3881 * Return, in the buffer contained in the provided uio structure,
3882 * the symbolic path referred to by ip.
3883 *
3884 * IN: ip - inode of symbolic link
3885 * uio - structure to contain the link path.
3886 * cr - credentials of caller.
3887 *
3888 * RETURN: 0 if success
3889 * error code if failure
3890 *
3891 * Timestamps:
3892 * ip - atime updated
3893 */
3894 /* ARGSUSED */
3895 int
3896 zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr)
3897 {
3898 znode_t *zp = ITOZ(ip);
3899 zfsvfs_t *zfsvfs = ITOZSB(ip);
3900 int error;
3901
3902 ZFS_ENTER(zfsvfs);
3903 ZFS_VERIFY_ZP(zp);
3904
3905 mutex_enter(&zp->z_lock);
3906 if (zp->z_is_sa)
3907 error = sa_lookup_uio(zp->z_sa_hdl,
3908 SA_ZPL_SYMLINK(zfsvfs), uio);
3909 else
3910 error = zfs_sa_readlink(zp, uio);
3911 mutex_exit(&zp->z_lock);
3912
3913 ZFS_EXIT(zfsvfs);
3914 return (error);
3915 }
3916
3917 /*
3918 * Insert a new entry into directory tdip referencing sip.
3919 *
3920 * IN: tdip - Directory to contain new entry.
3921 * sip - inode of new entry.
3922 * name - name of new entry.
3923 * cr - credentials of caller.
3924 *
3925 * RETURN: 0 if success
3926 * error code if failure
3927 *
3928 * Timestamps:
3929 * tdip - ctime|mtime updated
3930 * sip - ctime updated
3931 */
3932 /* ARGSUSED */
3933 int
3934 zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr,
3935 int flags)
3936 {
3937 znode_t *dzp = ITOZ(tdip);
3938 znode_t *tzp, *szp;
3939 zfsvfs_t *zfsvfs = ITOZSB(tdip);
3940 zilog_t *zilog;
3941 zfs_dirlock_t *dl;
3942 dmu_tx_t *tx;
3943 int error;
3944 int zf = ZNEW;
3945 uint64_t parent;
3946 uid_t owner;
3947 boolean_t waited = B_FALSE;
3948 boolean_t is_tmpfile = 0;
3949 uint64_t txg;
3950 #ifdef HAVE_TMPFILE
3951 is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3952 #endif
3953 ASSERT(S_ISDIR(tdip->i_mode));
3954
3955 if (name == NULL)
3956 return (SET_ERROR(EINVAL));
3957
3958 ZFS_ENTER(zfsvfs);
3959 ZFS_VERIFY_ZP(dzp);
3960 zilog = zfsvfs->z_log;
3961
3962 /*
3963 * POSIX dictates that we return EPERM here.
3964 * Better choices include ENOTSUP or EISDIR.
3965 */
3966 if (S_ISDIR(sip->i_mode)) {
3967 ZFS_EXIT(zfsvfs);
3968 return (SET_ERROR(EPERM));
3969 }
3970
3971 szp = ITOZ(sip);
3972 ZFS_VERIFY_ZP(szp);
3973
3974 /*
3975 * We check i_sb because snapshots and the ctldir must have different
3976 * super blocks.
3977 */
3978 if (sip->i_sb != tdip->i_sb || zfsctl_is_node(sip)) {
3979 ZFS_EXIT(zfsvfs);
3980 return (SET_ERROR(EXDEV));
3981 }
3982
3983 /* Prevent links to .zfs/shares files */
3984
3985 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3986 &parent, sizeof (uint64_t))) != 0) {
3987 ZFS_EXIT(zfsvfs);
3988 return (error);
3989 }
3990 if (parent == zfsvfs->z_shares_dir) {
3991 ZFS_EXIT(zfsvfs);
3992 return (SET_ERROR(EPERM));
3993 }
3994
3995 if (zfsvfs->z_utf8 && u8_validate(name,
3996 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3997 ZFS_EXIT(zfsvfs);
3998 return (SET_ERROR(EILSEQ));
3999 }
4000 if (flags & FIGNORECASE)
4001 zf |= ZCILOOK;
4002
4003 /*
4004 * We do not support links between attributes and non-attributes
4005 * because of the potential security risk of creating links
4006 * into "normal" file space in order to circumvent restrictions
4007 * imposed in attribute space.
4008 */
4009 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4010 ZFS_EXIT(zfsvfs);
4011 return (SET_ERROR(EINVAL));
4012 }
4013
4014 owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
4015 cr, ZFS_OWNER);
4016 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4017 ZFS_EXIT(zfsvfs);
4018 return (SET_ERROR(EPERM));
4019 }
4020
4021 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
4022 ZFS_EXIT(zfsvfs);
4023 return (error);
4024 }
4025
4026 top:
4027 /*
4028 * Attempt to lock directory; fail if entry already exists.
4029 */
4030 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4031 if (error) {
4032 ZFS_EXIT(zfsvfs);
4033 return (error);
4034 }
4035
4036 tx = dmu_tx_create(zfsvfs->z_os);
4037 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4038 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4039 if (is_tmpfile)
4040 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
4041
4042 zfs_sa_upgrade_txholds(tx, szp);
4043 zfs_sa_upgrade_txholds(tx, dzp);
4044 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4045 if (error) {
4046 zfs_dirent_unlock(dl);
4047 if (error == ERESTART) {
4048 waited = B_TRUE;
4049 dmu_tx_wait(tx);
4050 dmu_tx_abort(tx);
4051 goto top;
4052 }
4053 dmu_tx_abort(tx);
4054 ZFS_EXIT(zfsvfs);
4055 return (error);
4056 }
4057 /* unmark z_unlinked so zfs_link_create will not reject */
4058 if (is_tmpfile)
4059 szp->z_unlinked = 0;
4060 error = zfs_link_create(dl, szp, tx, 0);
4061
4062 if (error == 0) {
4063 uint64_t txtype = TX_LINK;
4064 /*
4065 * tmpfile is created to be in z_unlinkedobj, so remove it.
4066 * Also, we don't log in ZIL, be cause all previous file
4067 * operation on the tmpfile are ignored by ZIL. Instead we
4068 * always wait for txg to sync to make sure all previous
4069 * operation are sync safe.
4070 */
4071 if (is_tmpfile) {
4072 VERIFY(zap_remove_int(zfsvfs->z_os,
4073 zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
4074 } else {
4075 if (flags & FIGNORECASE)
4076 txtype |= TX_CI;
4077 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4078 }
4079 } else if (is_tmpfile) {
4080 /* restore z_unlinked since when linking failed */
4081 szp->z_unlinked = 1;
4082 }
4083 txg = dmu_tx_get_txg(tx);
4084 dmu_tx_commit(tx);
4085
4086 zfs_dirent_unlock(dl);
4087
4088 if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4089 zil_commit(zilog, 0);
4090
4091 if (is_tmpfile)
4092 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
4093
4094 zfs_inode_update(dzp);
4095 zfs_inode_update(szp);
4096 ZFS_EXIT(zfsvfs);
4097 return (error);
4098 }
4099
4100 static void
4101 zfs_putpage_commit_cb(void *arg)
4102 {
4103 struct page *pp = arg;
4104
4105 ClearPageError(pp);
4106 end_page_writeback(pp);
4107 }
4108
4109 /*
4110 * Push a page out to disk, once the page is on stable storage the
4111 * registered commit callback will be run as notification of completion.
4112 *
4113 * IN: ip - page mapped for inode.
4114 * pp - page to push (page is locked)
4115 * wbc - writeback control data
4116 *
4117 * RETURN: 0 if success
4118 * error code if failure
4119 *
4120 * Timestamps:
4121 * ip - ctime|mtime updated
4122 */
4123 /* ARGSUSED */
4124 int
4125 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
4126 {
4127 znode_t *zp = ITOZ(ip);
4128 zfsvfs_t *zfsvfs = ITOZSB(ip);
4129 loff_t offset;
4130 loff_t pgoff;
4131 unsigned int pglen;
4132 rl_t *rl;
4133 dmu_tx_t *tx;
4134 caddr_t va;
4135 int err = 0;
4136 uint64_t mtime[2], ctime[2];
4137 sa_bulk_attr_t bulk[3];
4138 int cnt = 0;
4139 struct address_space *mapping;
4140
4141 ZFS_ENTER(zfsvfs);
4142 ZFS_VERIFY_ZP(zp);
4143
4144 ASSERT(PageLocked(pp));
4145
4146 pgoff = page_offset(pp); /* Page byte-offset in file */
4147 offset = i_size_read(ip); /* File length in bytes */
4148 pglen = MIN(PAGE_SIZE, /* Page length in bytes */
4149 P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
4150
4151 /* Page is beyond end of file */
4152 if (pgoff >= offset) {
4153 unlock_page(pp);
4154 ZFS_EXIT(zfsvfs);
4155 return (0);
4156 }
4157
4158 /* Truncate page length to end of file */
4159 if (pgoff + pglen > offset)
4160 pglen = offset - pgoff;
4161
4162 #if 0
4163 /*
4164 * FIXME: Allow mmap writes past its quota. The correct fix
4165 * is to register a page_mkwrite() handler to count the page
4166 * against its quota when it is about to be dirtied.
4167 */
4168 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4169 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4170 err = EDQUOT;
4171 }
4172 #endif
4173
4174 /*
4175 * The ordering here is critical and must adhere to the following
4176 * rules in order to avoid deadlocking in either zfs_read() or
4177 * zfs_free_range() due to a lock inversion.
4178 *
4179 * 1) The page must be unlocked prior to acquiring the range lock.
4180 * This is critical because zfs_read() calls find_lock_page()
4181 * which may block on the page lock while holding the range lock.
4182 *
4183 * 2) Before setting or clearing write back on a page the range lock
4184 * must be held in order to prevent a lock inversion with the
4185 * zfs_free_range() function.
4186 *
4187 * This presents a problem because upon entering this function the
4188 * page lock is already held. To safely acquire the range lock the
4189 * page lock must be dropped. This creates a window where another
4190 * process could truncate, invalidate, dirty, or write out the page.
4191 *
4192 * Therefore, after successfully reacquiring the range and page locks
4193 * the current page state is checked. In the common case everything
4194 * will be as is expected and it can be written out. However, if
4195 * the page state has changed it must be handled accordingly.
4196 */
4197 mapping = pp->mapping;
4198 redirty_page_for_writepage(wbc, pp);
4199 unlock_page(pp);
4200
4201 rl = zfs_range_lock(&zp->z_range_lock, pgoff, pglen, RL_WRITER);
4202 lock_page(pp);
4203
4204 /* Page mapping changed or it was no longer dirty, we're done */
4205 if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
4206 unlock_page(pp);
4207 zfs_range_unlock(rl);
4208 ZFS_EXIT(zfsvfs);
4209 return (0);
4210 }
4211
4212 /* Another process started write block if required */
4213 if (PageWriteback(pp)) {
4214 unlock_page(pp);
4215 zfs_range_unlock(rl);
4216
4217 if (wbc->sync_mode != WB_SYNC_NONE)
4218 wait_on_page_writeback(pp);
4219
4220 ZFS_EXIT(zfsvfs);
4221 return (0);
4222 }
4223
4224 /* Clear the dirty flag the required locks are held */
4225 if (!clear_page_dirty_for_io(pp)) {
4226 unlock_page(pp);
4227 zfs_range_unlock(rl);
4228 ZFS_EXIT(zfsvfs);
4229 return (0);
4230 }
4231
4232 /*
4233 * Counterpart for redirty_page_for_writepage() above. This page
4234 * was in fact not skipped and should not be counted as if it were.
4235 */
4236 wbc->pages_skipped--;
4237 set_page_writeback(pp);
4238 unlock_page(pp);
4239
4240 tx = dmu_tx_create(zfsvfs->z_os);
4241 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
4242 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4243 zfs_sa_upgrade_txholds(tx, zp);
4244
4245 err = dmu_tx_assign(tx, TXG_NOWAIT);
4246 if (err != 0) {
4247 if (err == ERESTART)
4248 dmu_tx_wait(tx);
4249
4250 dmu_tx_abort(tx);
4251 __set_page_dirty_nobuffers(pp);
4252 ClearPageError(pp);
4253 end_page_writeback(pp);
4254 zfs_range_unlock(rl);
4255 ZFS_EXIT(zfsvfs);
4256 return (err);
4257 }
4258
4259 va = kmap(pp);
4260 ASSERT3U(pglen, <=, PAGE_SIZE);
4261 dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
4262 kunmap(pp);
4263
4264 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
4265 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
4266 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
4267 &zp->z_pflags, 8);
4268
4269 /* Preserve the mtime and ctime provided by the inode */
4270 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4271 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4272 zp->z_atime_dirty = 0;
4273 zp->z_seq++;
4274
4275 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4276
4277 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
4278 zfs_putpage_commit_cb, pp);
4279 dmu_tx_commit(tx);
4280
4281 zfs_range_unlock(rl);
4282
4283 if (wbc->sync_mode != WB_SYNC_NONE) {
4284 /*
4285 * Note that this is rarely called under writepages(), because
4286 * writepages() normally handles the entire commit for
4287 * performance reasons.
4288 */
4289 zil_commit(zfsvfs->z_log, zp->z_id);
4290 }
4291
4292 ZFS_EXIT(zfsvfs);
4293 return (err);
4294 }
4295
4296 /*
4297 * Update the system attributes when the inode has been dirtied. For the
4298 * moment we only update the mode, atime, mtime, and ctime.
4299 */
4300 int
4301 zfs_dirty_inode(struct inode *ip, int flags)
4302 {
4303 znode_t *zp = ITOZ(ip);
4304 zfsvfs_t *zfsvfs = ITOZSB(ip);
4305 dmu_tx_t *tx;
4306 uint64_t mode, atime[2], mtime[2], ctime[2];
4307 sa_bulk_attr_t bulk[4];
4308 int error = 0;
4309 int cnt = 0;
4310
4311 if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
4312 return (0);
4313
4314 ZFS_ENTER(zfsvfs);
4315 ZFS_VERIFY_ZP(zp);
4316
4317 #ifdef I_DIRTY_TIME
4318 /*
4319 * This is the lazytime semantic indroduced in Linux 4.0
4320 * This flag will only be called from update_time when lazytime is set.
4321 * (Note, I_DIRTY_SYNC will also set if not lazytime)
4322 * Fortunately mtime and ctime are managed within ZFS itself, so we
4323 * only need to dirty atime.
4324 */
4325 if (flags == I_DIRTY_TIME) {
4326 zp->z_atime_dirty = 1;
4327 goto out;
4328 }
4329 #endif
4330
4331 tx = dmu_tx_create(zfsvfs->z_os);
4332
4333 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4334 zfs_sa_upgrade_txholds(tx, zp);
4335
4336 error = dmu_tx_assign(tx, TXG_WAIT);
4337 if (error) {
4338 dmu_tx_abort(tx);
4339 goto out;
4340 }
4341
4342 mutex_enter(&zp->z_lock);
4343 zp->z_atime_dirty = 0;
4344
4345 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
4346 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
4347 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
4348 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
4349
4350 /* Preserve the mode, mtime and ctime provided by the inode */
4351 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4352 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4353 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4354 mode = ip->i_mode;
4355
4356 zp->z_mode = mode;
4357
4358 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4359 mutex_exit(&zp->z_lock);
4360
4361 dmu_tx_commit(tx);
4362 out:
4363 ZFS_EXIT(zfsvfs);
4364 return (error);
4365 }
4366
4367 /*ARGSUSED*/
4368 void
4369 zfs_inactive(struct inode *ip)
4370 {
4371 znode_t *zp = ITOZ(ip);
4372 zfsvfs_t *zfsvfs = ITOZSB(ip);
4373 uint64_t atime[2];
4374 int error;
4375 int need_unlock = 0;
4376
4377 /* Only read lock if we haven't already write locked, e.g. rollback */
4378 if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
4379 need_unlock = 1;
4380 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4381 }
4382 if (zp->z_sa_hdl == NULL) {
4383 if (need_unlock)
4384 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4385 return;
4386 }
4387
4388 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4389 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4390
4391 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4392 zfs_sa_upgrade_txholds(tx, zp);
4393 error = dmu_tx_assign(tx, TXG_WAIT);
4394 if (error) {
4395 dmu_tx_abort(tx);
4396 } else {
4397 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4398 mutex_enter(&zp->z_lock);
4399 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4400 (void *)&atime, sizeof (atime), tx);
4401 zp->z_atime_dirty = 0;
4402 mutex_exit(&zp->z_lock);
4403 dmu_tx_commit(tx);
4404 }
4405 }
4406
4407 zfs_zinactive(zp);
4408 if (need_unlock)
4409 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4410 }
4411
4412 /*
4413 * Bounds-check the seek operation.
4414 *
4415 * IN: ip - inode seeking within
4416 * ooff - old file offset
4417 * noffp - pointer to new file offset
4418 * ct - caller context
4419 *
4420 * RETURN: 0 if success
4421 * EINVAL if new offset invalid
4422 */
4423 /* ARGSUSED */
4424 int
4425 zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp)
4426 {
4427 if (S_ISDIR(ip->i_mode))
4428 return (0);
4429 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4430 }
4431
4432 /*
4433 * Fill pages with data from the disk.
4434 */
4435 static int
4436 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
4437 {
4438 znode_t *zp = ITOZ(ip);
4439 zfsvfs_t *zfsvfs = ITOZSB(ip);
4440 objset_t *os;
4441 struct page *cur_pp;
4442 u_offset_t io_off, total;
4443 size_t io_len;
4444 loff_t i_size;
4445 unsigned page_idx;
4446 int err;
4447
4448 os = zfsvfs->z_os;
4449 io_len = nr_pages << PAGE_SHIFT;
4450 i_size = i_size_read(ip);
4451 io_off = page_offset(pl[0]);
4452
4453 if (io_off + io_len > i_size)
4454 io_len = i_size - io_off;
4455
4456 /*
4457 * Iterate over list of pages and read each page individually.
4458 */
4459 page_idx = 0;
4460 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4461 caddr_t va;
4462
4463 cur_pp = pl[page_idx++];
4464 va = kmap(cur_pp);
4465 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4466 DMU_READ_PREFETCH);
4467 kunmap(cur_pp);
4468 if (err) {
4469 /* convert checksum errors into IO errors */
4470 if (err == ECKSUM)
4471 err = SET_ERROR(EIO);
4472 return (err);
4473 }
4474 }
4475
4476 return (0);
4477 }
4478
4479 /*
4480 * Uses zfs_fillpage to read data from the file and fill the pages.
4481 *
4482 * IN: ip - inode of file to get data from.
4483 * pl - list of pages to read
4484 * nr_pages - number of pages to read
4485 *
4486 * RETURN: 0 on success, error code on failure.
4487 *
4488 * Timestamps:
4489 * vp - atime updated
4490 */
4491 /* ARGSUSED */
4492 int
4493 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
4494 {
4495 znode_t *zp = ITOZ(ip);
4496 zfsvfs_t *zfsvfs = ITOZSB(ip);
4497 int err;
4498
4499 if (pl == NULL)
4500 return (0);
4501
4502 ZFS_ENTER(zfsvfs);
4503 ZFS_VERIFY_ZP(zp);
4504
4505 err = zfs_fillpage(ip, pl, nr_pages);
4506
4507 ZFS_EXIT(zfsvfs);
4508 return (err);
4509 }
4510
4511 /*
4512 * Check ZFS specific permissions to memory map a section of a file.
4513 *
4514 * IN: ip - inode of the file to mmap
4515 * off - file offset
4516 * addrp - start address in memory region
4517 * len - length of memory region
4518 * vm_flags- address flags
4519 *
4520 * RETURN: 0 if success
4521 * error code if failure
4522 */
4523 /*ARGSUSED*/
4524 int
4525 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4526 unsigned long vm_flags)
4527 {
4528 znode_t *zp = ITOZ(ip);
4529 zfsvfs_t *zfsvfs = ITOZSB(ip);
4530
4531 ZFS_ENTER(zfsvfs);
4532 ZFS_VERIFY_ZP(zp);
4533
4534 if ((vm_flags & VM_WRITE) && (zp->z_pflags &
4535 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4536 ZFS_EXIT(zfsvfs);
4537 return (SET_ERROR(EPERM));
4538 }
4539
4540 if ((vm_flags & (VM_READ | VM_EXEC)) &&
4541 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4542 ZFS_EXIT(zfsvfs);
4543 return (SET_ERROR(EACCES));
4544 }
4545
4546 if (off < 0 || len > MAXOFFSET_T - off) {
4547 ZFS_EXIT(zfsvfs);
4548 return (SET_ERROR(ENXIO));
4549 }
4550
4551 ZFS_EXIT(zfsvfs);
4552 return (0);
4553 }
4554
4555 /*
4556 * convoff - converts the given data (start, whence) to the
4557 * given whence.
4558 */
4559 int
4560 convoff(struct inode *ip, flock64_t *lckdat, int whence, offset_t offset)
4561 {
4562 vattr_t vap;
4563 int error;
4564
4565 if ((lckdat->l_whence == 2) || (whence == 2)) {
4566 if ((error = zfs_getattr(ip, &vap, 0, CRED())))
4567 return (error);
4568 }
4569
4570 switch (lckdat->l_whence) {
4571 case 1:
4572 lckdat->l_start += offset;
4573 break;
4574 case 2:
4575 lckdat->l_start += vap.va_size;
4576 /* FALLTHRU */
4577 case 0:
4578 break;
4579 default:
4580 return (SET_ERROR(EINVAL));
4581 }
4582
4583 if (lckdat->l_start < 0)
4584 return (SET_ERROR(EINVAL));
4585
4586 switch (whence) {
4587 case 1:
4588 lckdat->l_start -= offset;
4589 break;
4590 case 2:
4591 lckdat->l_start -= vap.va_size;
4592 /* FALLTHRU */
4593 case 0:
4594 break;
4595 default:
4596 return (SET_ERROR(EINVAL));
4597 }
4598
4599 lckdat->l_whence = (short)whence;
4600 return (0);
4601 }
4602
4603 /*
4604 * Free or allocate space in a file. Currently, this function only
4605 * supports the `F_FREESP' command. However, this command is somewhat
4606 * misnamed, as its functionality includes the ability to allocate as
4607 * well as free space.
4608 *
4609 * IN: ip - inode of file to free data in.
4610 * cmd - action to take (only F_FREESP supported).
4611 * bfp - section of file to free/alloc.
4612 * flag - current file open mode flags.
4613 * offset - current file offset.
4614 * cr - credentials of caller [UNUSED].
4615 *
4616 * RETURN: 0 on success, error code on failure.
4617 *
4618 * Timestamps:
4619 * ip - ctime|mtime updated
4620 */
4621 /* ARGSUSED */
4622 int
4623 zfs_space(struct inode *ip, int cmd, flock64_t *bfp, int flag,
4624 offset_t offset, cred_t *cr)
4625 {
4626 znode_t *zp = ITOZ(ip);
4627 zfsvfs_t *zfsvfs = ITOZSB(ip);
4628 uint64_t off, len;
4629 int error;
4630
4631 ZFS_ENTER(zfsvfs);
4632 ZFS_VERIFY_ZP(zp);
4633
4634 if (cmd != F_FREESP) {
4635 ZFS_EXIT(zfsvfs);
4636 return (SET_ERROR(EINVAL));
4637 }
4638
4639 /*
4640 * Callers might not be able to detect properly that we are read-only,
4641 * so check it explicitly here.
4642 */
4643 if (zfs_is_readonly(zfsvfs)) {
4644 ZFS_EXIT(zfsvfs);
4645 return (SET_ERROR(EROFS));
4646 }
4647
4648 if ((error = convoff(ip, bfp, 0, offset))) {
4649 ZFS_EXIT(zfsvfs);
4650 return (error);
4651 }
4652
4653 if (bfp->l_len < 0) {
4654 ZFS_EXIT(zfsvfs);
4655 return (SET_ERROR(EINVAL));
4656 }
4657
4658 /*
4659 * Permissions aren't checked on Solaris because on this OS
4660 * zfs_space() can only be called with an opened file handle.
4661 * On Linux we can get here through truncate_range() which
4662 * operates directly on inodes, so we need to check access rights.
4663 */
4664 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
4665 ZFS_EXIT(zfsvfs);
4666 return (error);
4667 }
4668
4669 off = bfp->l_start;
4670 len = bfp->l_len; /* 0 means from off to end of file */
4671
4672 error = zfs_freesp(zp, off, len, flag, TRUE);
4673
4674 ZFS_EXIT(zfsvfs);
4675 return (error);
4676 }
4677
4678 /*ARGSUSED*/
4679 int
4680 zfs_fid(struct inode *ip, fid_t *fidp)
4681 {
4682 znode_t *zp = ITOZ(ip);
4683 zfsvfs_t *zfsvfs = ITOZSB(ip);
4684 uint32_t gen;
4685 uint64_t gen64;
4686 uint64_t object = zp->z_id;
4687 zfid_short_t *zfid;
4688 int size, i, error;
4689
4690 ZFS_ENTER(zfsvfs);
4691 ZFS_VERIFY_ZP(zp);
4692
4693 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4694 &gen64, sizeof (uint64_t))) != 0) {
4695 ZFS_EXIT(zfsvfs);
4696 return (error);
4697 }
4698
4699 gen = (uint32_t)gen64;
4700
4701 size = SHORT_FID_LEN;
4702
4703 zfid = (zfid_short_t *)fidp;
4704
4705 zfid->zf_len = size;
4706
4707 for (i = 0; i < sizeof (zfid->zf_object); i++)
4708 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4709
4710 /* Must have a non-zero generation number to distinguish from .zfs */
4711 if (gen == 0)
4712 gen = 1;
4713 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4714 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4715
4716 ZFS_EXIT(zfsvfs);
4717 return (0);
4718 }
4719
4720 /*ARGSUSED*/
4721 int
4722 zfs_getsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
4723 {
4724 znode_t *zp = ITOZ(ip);
4725 zfsvfs_t *zfsvfs = ITOZSB(ip);
4726 int error;
4727 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4728
4729 ZFS_ENTER(zfsvfs);
4730 ZFS_VERIFY_ZP(zp);
4731 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4732 ZFS_EXIT(zfsvfs);
4733
4734 return (error);
4735 }
4736
4737 /*ARGSUSED*/
4738 int
4739 zfs_setsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
4740 {
4741 znode_t *zp = ITOZ(ip);
4742 zfsvfs_t *zfsvfs = ITOZSB(ip);
4743 int error;
4744 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4745 zilog_t *zilog = zfsvfs->z_log;
4746
4747 ZFS_ENTER(zfsvfs);
4748 ZFS_VERIFY_ZP(zp);
4749
4750 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4751
4752 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4753 zil_commit(zilog, 0);
4754
4755 ZFS_EXIT(zfsvfs);
4756 return (error);
4757 }
4758
4759 #ifdef HAVE_UIO_ZEROCOPY
4760 /*
4761 * Tunable, both must be a power of 2.
4762 *
4763 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4764 * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4765 * an arcbuf for a partial block read
4766 */
4767 int zcr_blksz_min = (1 << 10); /* 1K */
4768 int zcr_blksz_max = (1 << 17); /* 128K */
4769
4770 /*ARGSUSED*/
4771 static int
4772 zfs_reqzcbuf(struct inode *ip, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr)
4773 {
4774 znode_t *zp = ITOZ(ip);
4775 zfsvfs_t *zfsvfs = ITOZSB(ip);
4776 int max_blksz = zfsvfs->z_max_blksz;
4777 uio_t *uio = &xuio->xu_uio;
4778 ssize_t size = uio->uio_resid;
4779 offset_t offset = uio->uio_loffset;
4780 int blksz;
4781 int fullblk, i;
4782 arc_buf_t *abuf;
4783 ssize_t maxsize;
4784 int preamble, postamble;
4785
4786 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4787 return (SET_ERROR(EINVAL));
4788
4789 ZFS_ENTER(zfsvfs);
4790 ZFS_VERIFY_ZP(zp);
4791 switch (ioflag) {
4792 case UIO_WRITE:
4793 /*
4794 * Loan out an arc_buf for write if write size is bigger than
4795 * max_blksz, and the file's block size is also max_blksz.
4796 */
4797 blksz = max_blksz;
4798 if (size < blksz || zp->z_blksz != blksz) {
4799 ZFS_EXIT(zfsvfs);
4800 return (SET_ERROR(EINVAL));
4801 }
4802 /*
4803 * Caller requests buffers for write before knowing where the
4804 * write offset might be (e.g. NFS TCP write).
4805 */
4806 if (offset == -1) {
4807 preamble = 0;
4808 } else {
4809 preamble = P2PHASE(offset, blksz);
4810 if (preamble) {
4811 preamble = blksz - preamble;
4812 size -= preamble;
4813 }
4814 }
4815
4816 postamble = P2PHASE(size, blksz);
4817 size -= postamble;
4818
4819 fullblk = size / blksz;
4820 (void) dmu_xuio_init(xuio,
4821 (preamble != 0) + fullblk + (postamble != 0));
4822
4823 /*
4824 * Have to fix iov base/len for partial buffers. They
4825 * currently represent full arc_buf's.
4826 */
4827 if (preamble) {
4828 /* data begins in the middle of the arc_buf */
4829 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4830 blksz);
4831 ASSERT(abuf);
4832 (void) dmu_xuio_add(xuio, abuf,
4833 blksz - preamble, preamble);
4834 }
4835
4836 for (i = 0; i < fullblk; i++) {
4837 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4838 blksz);
4839 ASSERT(abuf);
4840 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
4841 }
4842
4843 if (postamble) {
4844 /* data ends in the middle of the arc_buf */
4845 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4846 blksz);
4847 ASSERT(abuf);
4848 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
4849 }
4850 break;
4851 case UIO_READ:
4852 /*
4853 * Loan out an arc_buf for read if the read size is larger than
4854 * the current file block size. Block alignment is not
4855 * considered. Partial arc_buf will be loaned out for read.
4856 */
4857 blksz = zp->z_blksz;
4858 if (blksz < zcr_blksz_min)
4859 blksz = zcr_blksz_min;
4860 if (blksz > zcr_blksz_max)
4861 blksz = zcr_blksz_max;
4862 /* avoid potential complexity of dealing with it */
4863 if (blksz > max_blksz) {
4864 ZFS_EXIT(zfsvfs);
4865 return (SET_ERROR(EINVAL));
4866 }
4867
4868 maxsize = zp->z_size - uio->uio_loffset;
4869 if (size > maxsize)
4870 size = maxsize;
4871
4872 if (size < blksz) {
4873 ZFS_EXIT(zfsvfs);
4874 return (SET_ERROR(EINVAL));
4875 }
4876 break;
4877 default:
4878 ZFS_EXIT(zfsvfs);
4879 return (SET_ERROR(EINVAL));
4880 }
4881
4882 uio->uio_extflg = UIO_XUIO;
4883 XUIO_XUZC_RW(xuio) = ioflag;
4884 ZFS_EXIT(zfsvfs);
4885 return (0);
4886 }
4887
4888 /*ARGSUSED*/
4889 static int
4890 zfs_retzcbuf(struct inode *ip, xuio_t *xuio, cred_t *cr)
4891 {
4892 int i;
4893 arc_buf_t *abuf;
4894 int ioflag = XUIO_XUZC_RW(xuio);
4895
4896 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
4897
4898 i = dmu_xuio_cnt(xuio);
4899 while (i-- > 0) {
4900 abuf = dmu_xuio_arcbuf(xuio, i);
4901 /*
4902 * if abuf == NULL, it must be a write buffer
4903 * that has been returned in zfs_write().
4904 */
4905 if (abuf)
4906 dmu_return_arcbuf(abuf);
4907 ASSERT(abuf || ioflag == UIO_WRITE);
4908 }
4909
4910 dmu_xuio_fini(xuio);
4911 return (0);
4912 }
4913 #endif /* HAVE_UIO_ZEROCOPY */
4914
4915 #if defined(_KERNEL) && defined(HAVE_SPL)
4916 EXPORT_SYMBOL(zfs_open);
4917 EXPORT_SYMBOL(zfs_close);
4918 EXPORT_SYMBOL(zfs_read);
4919 EXPORT_SYMBOL(zfs_write);
4920 EXPORT_SYMBOL(zfs_access);
4921 EXPORT_SYMBOL(zfs_lookup);
4922 EXPORT_SYMBOL(zfs_create);
4923 EXPORT_SYMBOL(zfs_tmpfile);
4924 EXPORT_SYMBOL(zfs_remove);
4925 EXPORT_SYMBOL(zfs_mkdir);
4926 EXPORT_SYMBOL(zfs_rmdir);
4927 EXPORT_SYMBOL(zfs_readdir);
4928 EXPORT_SYMBOL(zfs_fsync);
4929 EXPORT_SYMBOL(zfs_getattr);
4930 EXPORT_SYMBOL(zfs_getattr_fast);
4931 EXPORT_SYMBOL(zfs_setattr);
4932 EXPORT_SYMBOL(zfs_rename);
4933 EXPORT_SYMBOL(zfs_symlink);
4934 EXPORT_SYMBOL(zfs_readlink);
4935 EXPORT_SYMBOL(zfs_link);
4936 EXPORT_SYMBOL(zfs_inactive);
4937 EXPORT_SYMBOL(zfs_space);
4938 EXPORT_SYMBOL(zfs_fid);
4939 EXPORT_SYMBOL(zfs_getsecattr);
4940 EXPORT_SYMBOL(zfs_setsecattr);
4941 EXPORT_SYMBOL(zfs_getpage);
4942 EXPORT_SYMBOL(zfs_putpage);
4943 EXPORT_SYMBOL(zfs_dirty_inode);
4944 EXPORT_SYMBOL(zfs_map);
4945
4946 /* CSTYLED */
4947 module_param(zfs_delete_blocks, ulong, 0644);
4948 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4949 module_param(zfs_read_chunk_size, long, 0644);
4950 MODULE_PARM_DESC(zfs_read_chunk_size, "Bytes to read per chunk");
4951 #endif