]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/zil.c
4d714cefc758ed75b31c579756f593a37e5907c1
[mirror_zfs-debian.git] / module / zfs / zil.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27 /* Portions Copyright 2010 Robert Milkowski */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zap.h>
33 #include <sys/arc.h>
34 #include <sys/stat.h>
35 #include <sys/resource.h>
36 #include <sys/zil.h>
37 #include <sys/zil_impl.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/metaslab.h>
43 #include <sys/trace_zil.h>
44 #include <sys/abd.h>
45
46 /*
47 * The zfs intent log (ZIL) saves transaction records of system calls
48 * that change the file system in memory with enough information
49 * to be able to replay them. These are stored in memory until
50 * either the DMU transaction group (txg) commits them to the stable pool
51 * and they can be discarded, or they are flushed to the stable log
52 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
53 * requirement. In the event of a panic or power fail then those log
54 * records (transactions) are replayed.
55 *
56 * There is one ZIL per file system. Its on-disk (pool) format consists
57 * of 3 parts:
58 *
59 * - ZIL header
60 * - ZIL blocks
61 * - ZIL records
62 *
63 * A log record holds a system call transaction. Log blocks can
64 * hold many log records and the blocks are chained together.
65 * Each ZIL block contains a block pointer (blkptr_t) to the next
66 * ZIL block in the chain. The ZIL header points to the first
67 * block in the chain. Note there is not a fixed place in the pool
68 * to hold blocks. They are dynamically allocated and freed as
69 * needed from the blocks available. Figure X shows the ZIL structure:
70 */
71
72 /*
73 * See zil.h for more information about these fields.
74 */
75 zil_stats_t zil_stats = {
76 { "zil_commit_count", KSTAT_DATA_UINT64 },
77 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
78 { "zil_itx_count", KSTAT_DATA_UINT64 },
79 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
80 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
81 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
82 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
83 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
84 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
85 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
86 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
87 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
88 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
89 };
90
91 static kstat_t *zil_ksp;
92
93 /*
94 * Disable intent logging replay. This global ZIL switch affects all pools.
95 */
96 int zil_replay_disable = 0;
97
98 /*
99 * Tunable parameter for debugging or performance analysis. Setting
100 * zfs_nocacheflush will cause corruption on power loss if a volatile
101 * out-of-order write cache is enabled.
102 */
103 int zfs_nocacheflush = 0;
104
105 /*
106 * Limit SLOG write size per commit executed with synchronous priority.
107 * Any writes above that will be executed with lower (asynchronous) priority
108 * to limit potential SLOG device abuse by single active ZIL writer.
109 */
110 unsigned long zil_slog_bulk = 768 * 1024;
111
112 static kmem_cache_t *zil_lwb_cache;
113
114 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
115
116 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
117 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
118
119 static int
120 zil_bp_compare(const void *x1, const void *x2)
121 {
122 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
123 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
124
125 int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
126 if (likely(cmp))
127 return (cmp);
128
129 return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
130 }
131
132 static void
133 zil_bp_tree_init(zilog_t *zilog)
134 {
135 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
136 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
137 }
138
139 static void
140 zil_bp_tree_fini(zilog_t *zilog)
141 {
142 avl_tree_t *t = &zilog->zl_bp_tree;
143 zil_bp_node_t *zn;
144 void *cookie = NULL;
145
146 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
147 kmem_free(zn, sizeof (zil_bp_node_t));
148
149 avl_destroy(t);
150 }
151
152 int
153 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
154 {
155 avl_tree_t *t = &zilog->zl_bp_tree;
156 const dva_t *dva;
157 zil_bp_node_t *zn;
158 avl_index_t where;
159
160 if (BP_IS_EMBEDDED(bp))
161 return (0);
162
163 dva = BP_IDENTITY(bp);
164
165 if (avl_find(t, dva, &where) != NULL)
166 return (SET_ERROR(EEXIST));
167
168 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
169 zn->zn_dva = *dva;
170 avl_insert(t, zn, where);
171
172 return (0);
173 }
174
175 static zil_header_t *
176 zil_header_in_syncing_context(zilog_t *zilog)
177 {
178 return ((zil_header_t *)zilog->zl_header);
179 }
180
181 static void
182 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
183 {
184 zio_cksum_t *zc = &bp->blk_cksum;
185
186 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
187 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
188 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
189 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
190 }
191
192 /*
193 * Read a log block and make sure it's valid.
194 */
195 static int
196 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
197 char **end)
198 {
199 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
200 arc_flags_t aflags = ARC_FLAG_WAIT;
201 arc_buf_t *abuf = NULL;
202 zbookmark_phys_t zb;
203 int error;
204
205 if (zilog->zl_header->zh_claim_txg == 0)
206 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
207
208 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
209 zio_flags |= ZIO_FLAG_SPECULATIVE;
210
211 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
212 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
213
214 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
215 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
216
217 if (error == 0) {
218 zio_cksum_t cksum = bp->blk_cksum;
219
220 /*
221 * Validate the checksummed log block.
222 *
223 * Sequence numbers should be... sequential. The checksum
224 * verifier for the next block should be bp's checksum plus 1.
225 *
226 * Also check the log chain linkage and size used.
227 */
228 cksum.zc_word[ZIL_ZC_SEQ]++;
229
230 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
231 zil_chain_t *zilc = abuf->b_data;
232 char *lr = (char *)(zilc + 1);
233 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
234
235 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
236 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
237 error = SET_ERROR(ECKSUM);
238 } else {
239 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
240 bcopy(lr, dst, len);
241 *end = (char *)dst + len;
242 *nbp = zilc->zc_next_blk;
243 }
244 } else {
245 char *lr = abuf->b_data;
246 uint64_t size = BP_GET_LSIZE(bp);
247 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
248
249 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
250 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
251 (zilc->zc_nused > (size - sizeof (*zilc)))) {
252 error = SET_ERROR(ECKSUM);
253 } else {
254 ASSERT3U(zilc->zc_nused, <=,
255 SPA_OLD_MAXBLOCKSIZE);
256 bcopy(lr, dst, zilc->zc_nused);
257 *end = (char *)dst + zilc->zc_nused;
258 *nbp = zilc->zc_next_blk;
259 }
260 }
261
262 arc_buf_destroy(abuf, &abuf);
263 }
264
265 return (error);
266 }
267
268 /*
269 * Read a TX_WRITE log data block.
270 */
271 static int
272 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
273 {
274 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
275 const blkptr_t *bp = &lr->lr_blkptr;
276 arc_flags_t aflags = ARC_FLAG_WAIT;
277 arc_buf_t *abuf = NULL;
278 zbookmark_phys_t zb;
279 int error;
280
281 if (BP_IS_HOLE(bp)) {
282 if (wbuf != NULL)
283 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
284 return (0);
285 }
286
287 if (zilog->zl_header->zh_claim_txg == 0)
288 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
289
290 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
291 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
292
293 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
294 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
295
296 if (error == 0) {
297 if (wbuf != NULL)
298 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
299 arc_buf_destroy(abuf, &abuf);
300 }
301
302 return (error);
303 }
304
305 /*
306 * Parse the intent log, and call parse_func for each valid record within.
307 */
308 int
309 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
310 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
311 {
312 const zil_header_t *zh = zilog->zl_header;
313 boolean_t claimed = !!zh->zh_claim_txg;
314 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
315 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
316 uint64_t max_blk_seq = 0;
317 uint64_t max_lr_seq = 0;
318 uint64_t blk_count = 0;
319 uint64_t lr_count = 0;
320 blkptr_t blk, next_blk;
321 char *lrbuf, *lrp;
322 int error = 0;
323
324 bzero(&next_blk, sizeof (blkptr_t));
325
326 /*
327 * Old logs didn't record the maximum zh_claim_lr_seq.
328 */
329 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
330 claim_lr_seq = UINT64_MAX;
331
332 /*
333 * Starting at the block pointed to by zh_log we read the log chain.
334 * For each block in the chain we strongly check that block to
335 * ensure its validity. We stop when an invalid block is found.
336 * For each block pointer in the chain we call parse_blk_func().
337 * For each record in each valid block we call parse_lr_func().
338 * If the log has been claimed, stop if we encounter a sequence
339 * number greater than the highest claimed sequence number.
340 */
341 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
342 zil_bp_tree_init(zilog);
343
344 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
345 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
346 int reclen;
347 char *end = NULL;
348
349 if (blk_seq > claim_blk_seq)
350 break;
351 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
352 break;
353 ASSERT3U(max_blk_seq, <, blk_seq);
354 max_blk_seq = blk_seq;
355 blk_count++;
356
357 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
358 break;
359
360 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
361 if (error != 0)
362 break;
363
364 for (lrp = lrbuf; lrp < end; lrp += reclen) {
365 lr_t *lr = (lr_t *)lrp;
366 reclen = lr->lrc_reclen;
367 ASSERT3U(reclen, >=, sizeof (lr_t));
368 if (lr->lrc_seq > claim_lr_seq)
369 goto done;
370 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
371 goto done;
372 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
373 max_lr_seq = lr->lrc_seq;
374 lr_count++;
375 }
376 }
377 done:
378 zilog->zl_parse_error = error;
379 zilog->zl_parse_blk_seq = max_blk_seq;
380 zilog->zl_parse_lr_seq = max_lr_seq;
381 zilog->zl_parse_blk_count = blk_count;
382 zilog->zl_parse_lr_count = lr_count;
383
384 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
385 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
386
387 zil_bp_tree_fini(zilog);
388 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
389
390 return (error);
391 }
392
393 static int
394 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
395 {
396 /*
397 * Claim log block if not already committed and not already claimed.
398 * If tx == NULL, just verify that the block is claimable.
399 */
400 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
401 zil_bp_tree_add(zilog, bp) != 0)
402 return (0);
403
404 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
405 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
406 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
407 }
408
409 static int
410 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
411 {
412 lr_write_t *lr = (lr_write_t *)lrc;
413 int error;
414
415 if (lrc->lrc_txtype != TX_WRITE)
416 return (0);
417
418 /*
419 * If the block is not readable, don't claim it. This can happen
420 * in normal operation when a log block is written to disk before
421 * some of the dmu_sync() blocks it points to. In this case, the
422 * transaction cannot have been committed to anyone (we would have
423 * waited for all writes to be stable first), so it is semantically
424 * correct to declare this the end of the log.
425 */
426 if (lr->lr_blkptr.blk_birth >= first_txg &&
427 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
428 return (error);
429 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
430 }
431
432 /* ARGSUSED */
433 static int
434 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
435 {
436 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
437
438 return (0);
439 }
440
441 static int
442 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
443 {
444 lr_write_t *lr = (lr_write_t *)lrc;
445 blkptr_t *bp = &lr->lr_blkptr;
446
447 /*
448 * If we previously claimed it, we need to free it.
449 */
450 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
451 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
452 !BP_IS_HOLE(bp))
453 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
454
455 return (0);
456 }
457
458 static lwb_t *
459 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
460 boolean_t fastwrite)
461 {
462 lwb_t *lwb;
463
464 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
465 lwb->lwb_zilog = zilog;
466 lwb->lwb_blk = *bp;
467 lwb->lwb_fastwrite = fastwrite;
468 lwb->lwb_slog = slog;
469 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
470 lwb->lwb_max_txg = txg;
471 lwb->lwb_zio = NULL;
472 lwb->lwb_tx = NULL;
473 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
474 lwb->lwb_nused = sizeof (zil_chain_t);
475 lwb->lwb_sz = BP_GET_LSIZE(bp);
476 } else {
477 lwb->lwb_nused = 0;
478 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
479 }
480
481 mutex_enter(&zilog->zl_lock);
482 list_insert_tail(&zilog->zl_lwb_list, lwb);
483 mutex_exit(&zilog->zl_lock);
484
485 return (lwb);
486 }
487
488 /*
489 * Called when we create in-memory log transactions so that we know
490 * to cleanup the itxs at the end of spa_sync().
491 */
492 void
493 zilog_dirty(zilog_t *zilog, uint64_t txg)
494 {
495 dsl_pool_t *dp = zilog->zl_dmu_pool;
496 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
497
498 if (ds->ds_is_snapshot)
499 panic("dirtying snapshot!");
500
501 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
502 /* up the hold count until we can be written out */
503 dmu_buf_add_ref(ds->ds_dbuf, zilog);
504 }
505 }
506
507 /*
508 * Determine if the zil is dirty in the specified txg. Callers wanting to
509 * ensure that the dirty state does not change must hold the itxg_lock for
510 * the specified txg. Holding the lock will ensure that the zil cannot be
511 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
512 * state.
513 */
514 boolean_t
515 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
516 {
517 dsl_pool_t *dp = zilog->zl_dmu_pool;
518
519 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
520 return (B_TRUE);
521 return (B_FALSE);
522 }
523
524 /*
525 * Determine if the zil is dirty. The zil is considered dirty if it has
526 * any pending itx records that have not been cleaned by zil_clean().
527 */
528 boolean_t
529 zilog_is_dirty(zilog_t *zilog)
530 {
531 dsl_pool_t *dp = zilog->zl_dmu_pool;
532 int t;
533
534 for (t = 0; t < TXG_SIZE; t++) {
535 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
536 return (B_TRUE);
537 }
538 return (B_FALSE);
539 }
540
541 /*
542 * Create an on-disk intent log.
543 */
544 static lwb_t *
545 zil_create(zilog_t *zilog)
546 {
547 const zil_header_t *zh = zilog->zl_header;
548 lwb_t *lwb = NULL;
549 uint64_t txg = 0;
550 dmu_tx_t *tx = NULL;
551 blkptr_t blk;
552 int error = 0;
553 boolean_t fastwrite = FALSE;
554 boolean_t slog = FALSE;
555
556 /*
557 * Wait for any previous destroy to complete.
558 */
559 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
560
561 ASSERT(zh->zh_claim_txg == 0);
562 ASSERT(zh->zh_replay_seq == 0);
563
564 blk = zh->zh_log;
565
566 /*
567 * Allocate an initial log block if:
568 * - there isn't one already
569 * - the existing block is the wrong endianness
570 */
571 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
572 tx = dmu_tx_create(zilog->zl_os);
573 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
574 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
575 txg = dmu_tx_get_txg(tx);
576
577 if (!BP_IS_HOLE(&blk)) {
578 zio_free_zil(zilog->zl_spa, txg, &blk);
579 BP_ZERO(&blk);
580 }
581
582 error = zio_alloc_zil(zilog->zl_spa, txg, &blk,
583 ZIL_MIN_BLKSZ, &slog);
584 fastwrite = TRUE;
585
586 if (error == 0)
587 zil_init_log_chain(zilog, &blk);
588 }
589
590 /*
591 * Allocate a log write buffer (lwb) for the first log block.
592 */
593 if (error == 0)
594 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
595
596 /*
597 * If we just allocated the first log block, commit our transaction
598 * and wait for zil_sync() to stuff the block poiner into zh_log.
599 * (zh is part of the MOS, so we cannot modify it in open context.)
600 */
601 if (tx != NULL) {
602 dmu_tx_commit(tx);
603 txg_wait_synced(zilog->zl_dmu_pool, txg);
604 }
605
606 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
607
608 return (lwb);
609 }
610
611 /*
612 * In one tx, free all log blocks and clear the log header.
613 * If keep_first is set, then we're replaying a log with no content.
614 * We want to keep the first block, however, so that the first
615 * synchronous transaction doesn't require a txg_wait_synced()
616 * in zil_create(). We don't need to txg_wait_synced() here either
617 * when keep_first is set, because both zil_create() and zil_destroy()
618 * will wait for any in-progress destroys to complete.
619 */
620 void
621 zil_destroy(zilog_t *zilog, boolean_t keep_first)
622 {
623 const zil_header_t *zh = zilog->zl_header;
624 lwb_t *lwb;
625 dmu_tx_t *tx;
626 uint64_t txg;
627
628 /*
629 * Wait for any previous destroy to complete.
630 */
631 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
632
633 zilog->zl_old_header = *zh; /* debugging aid */
634
635 if (BP_IS_HOLE(&zh->zh_log))
636 return;
637
638 tx = dmu_tx_create(zilog->zl_os);
639 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
640 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
641 txg = dmu_tx_get_txg(tx);
642
643 mutex_enter(&zilog->zl_lock);
644
645 ASSERT3U(zilog->zl_destroy_txg, <, txg);
646 zilog->zl_destroy_txg = txg;
647 zilog->zl_keep_first = keep_first;
648
649 if (!list_is_empty(&zilog->zl_lwb_list)) {
650 ASSERT(zh->zh_claim_txg == 0);
651 VERIFY(!keep_first);
652 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
653 ASSERT(lwb->lwb_zio == NULL);
654 if (lwb->lwb_fastwrite)
655 metaslab_fastwrite_unmark(zilog->zl_spa,
656 &lwb->lwb_blk);
657 list_remove(&zilog->zl_lwb_list, lwb);
658 if (lwb->lwb_buf != NULL)
659 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
660 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
661 kmem_cache_free(zil_lwb_cache, lwb);
662 }
663 } else if (!keep_first) {
664 zil_destroy_sync(zilog, tx);
665 }
666 mutex_exit(&zilog->zl_lock);
667
668 dmu_tx_commit(tx);
669 }
670
671 void
672 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
673 {
674 ASSERT(list_is_empty(&zilog->zl_lwb_list));
675 (void) zil_parse(zilog, zil_free_log_block,
676 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
677 }
678
679 int
680 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
681 {
682 dmu_tx_t *tx = txarg;
683 uint64_t first_txg = dmu_tx_get_txg(tx);
684 zilog_t *zilog;
685 zil_header_t *zh;
686 objset_t *os;
687 int error;
688
689 error = dmu_objset_own_obj(dp, ds->ds_object,
690 DMU_OST_ANY, B_FALSE, FTAG, &os);
691 if (error != 0) {
692 /*
693 * EBUSY indicates that the objset is inconsistent, in which
694 * case it can not have a ZIL.
695 */
696 if (error != EBUSY) {
697 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
698 (unsigned long long)ds->ds_object, error);
699 }
700
701 return (0);
702 }
703
704 zilog = dmu_objset_zil(os);
705 zh = zil_header_in_syncing_context(zilog);
706
707 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
708 if (!BP_IS_HOLE(&zh->zh_log))
709 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
710 BP_ZERO(&zh->zh_log);
711 dsl_dataset_dirty(dmu_objset_ds(os), tx);
712 dmu_objset_disown(os, FTAG);
713 return (0);
714 }
715
716 /*
717 * Claim all log blocks if we haven't already done so, and remember
718 * the highest claimed sequence number. This ensures that if we can
719 * read only part of the log now (e.g. due to a missing device),
720 * but we can read the entire log later, we will not try to replay
721 * or destroy beyond the last block we successfully claimed.
722 */
723 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
724 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
725 (void) zil_parse(zilog, zil_claim_log_block,
726 zil_claim_log_record, tx, first_txg);
727 zh->zh_claim_txg = first_txg;
728 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
729 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
730 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
731 zh->zh_flags |= ZIL_REPLAY_NEEDED;
732 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
733 dsl_dataset_dirty(dmu_objset_ds(os), tx);
734 }
735
736 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
737 dmu_objset_disown(os, FTAG);
738 return (0);
739 }
740
741 /*
742 * Check the log by walking the log chain.
743 * Checksum errors are ok as they indicate the end of the chain.
744 * Any other error (no device or read failure) returns an error.
745 */
746 /* ARGSUSED */
747 int
748 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
749 {
750 zilog_t *zilog;
751 objset_t *os;
752 blkptr_t *bp;
753 int error;
754
755 ASSERT(tx == NULL);
756
757 error = dmu_objset_from_ds(ds, &os);
758 if (error != 0) {
759 cmn_err(CE_WARN, "can't open objset %llu, error %d",
760 (unsigned long long)ds->ds_object, error);
761 return (0);
762 }
763
764 zilog = dmu_objset_zil(os);
765 bp = (blkptr_t *)&zilog->zl_header->zh_log;
766
767 /*
768 * Check the first block and determine if it's on a log device
769 * which may have been removed or faulted prior to loading this
770 * pool. If so, there's no point in checking the rest of the log
771 * as its content should have already been synced to the pool.
772 */
773 if (!BP_IS_HOLE(bp)) {
774 vdev_t *vd;
775 boolean_t valid = B_TRUE;
776
777 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
778 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
779 if (vd->vdev_islog && vdev_is_dead(vd))
780 valid = vdev_log_state_valid(vd);
781 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
782
783 if (!valid)
784 return (0);
785 }
786
787 /*
788 * Because tx == NULL, zil_claim_log_block() will not actually claim
789 * any blocks, but just determine whether it is possible to do so.
790 * In addition to checking the log chain, zil_claim_log_block()
791 * will invoke zio_claim() with a done func of spa_claim_notify(),
792 * which will update spa_max_claim_txg. See spa_load() for details.
793 */
794 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
795 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
796
797 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
798 }
799
800 static int
801 zil_vdev_compare(const void *x1, const void *x2)
802 {
803 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
804 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
805
806 return (AVL_CMP(v1, v2));
807 }
808
809 void
810 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
811 {
812 avl_tree_t *t = &zilog->zl_vdev_tree;
813 avl_index_t where;
814 zil_vdev_node_t *zv, zvsearch;
815 int ndvas = BP_GET_NDVAS(bp);
816 int i;
817
818 if (zfs_nocacheflush)
819 return;
820
821 ASSERT(zilog->zl_writer);
822
823 /*
824 * Even though we're zl_writer, we still need a lock because the
825 * zl_get_data() callbacks may have dmu_sync() done callbacks
826 * that will run concurrently.
827 */
828 mutex_enter(&zilog->zl_vdev_lock);
829 for (i = 0; i < ndvas; i++) {
830 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
831 if (avl_find(t, &zvsearch, &where) == NULL) {
832 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
833 zv->zv_vdev = zvsearch.zv_vdev;
834 avl_insert(t, zv, where);
835 }
836 }
837 mutex_exit(&zilog->zl_vdev_lock);
838 }
839
840 static void
841 zil_flush_vdevs(zilog_t *zilog)
842 {
843 spa_t *spa = zilog->zl_spa;
844 avl_tree_t *t = &zilog->zl_vdev_tree;
845 void *cookie = NULL;
846 zil_vdev_node_t *zv;
847 zio_t *zio;
848
849 ASSERT(zilog->zl_writer);
850
851 /*
852 * We don't need zl_vdev_lock here because we're the zl_writer,
853 * and all zl_get_data() callbacks are done.
854 */
855 if (avl_numnodes(t) == 0)
856 return;
857
858 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
859
860 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
861
862 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
863 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
864 if (vd != NULL)
865 zio_flush(zio, vd);
866 kmem_free(zv, sizeof (*zv));
867 }
868
869 /*
870 * Wait for all the flushes to complete. Not all devices actually
871 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
872 */
873 (void) zio_wait(zio);
874
875 spa_config_exit(spa, SCL_STATE, FTAG);
876 }
877
878 /*
879 * Function called when a log block write completes
880 */
881 static void
882 zil_lwb_write_done(zio_t *zio)
883 {
884 lwb_t *lwb = zio->io_private;
885 zilog_t *zilog = lwb->lwb_zilog;
886 dmu_tx_t *tx = lwb->lwb_tx;
887
888 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
889 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
890 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
891 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
892 ASSERT(!BP_IS_GANG(zio->io_bp));
893 ASSERT(!BP_IS_HOLE(zio->io_bp));
894 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
895
896 /*
897 * Ensure the lwb buffer pointer is cleared before releasing
898 * the txg. If we have had an allocation failure and
899 * the txg is waiting to sync then we want want zil_sync()
900 * to remove the lwb so that it's not picked up as the next new
901 * one in zil_commit_writer(). zil_sync() will only remove
902 * the lwb if lwb_buf is null.
903 */
904 abd_put(zio->io_abd);
905 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
906 mutex_enter(&zilog->zl_lock);
907 lwb->lwb_zio = NULL;
908 lwb->lwb_fastwrite = FALSE;
909 lwb->lwb_buf = NULL;
910 lwb->lwb_tx = NULL;
911 mutex_exit(&zilog->zl_lock);
912
913 /*
914 * Now that we've written this log block, we have a stable pointer
915 * to the next block in the chain, so it's OK to let the txg in
916 * which we allocated the next block sync.
917 */
918 dmu_tx_commit(tx);
919 }
920
921 /*
922 * Initialize the io for a log block.
923 */
924 static void
925 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
926 {
927 zbookmark_phys_t zb;
928 zio_priority_t prio;
929
930 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
931 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
932 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
933
934 if (zilog->zl_root_zio == NULL) {
935 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
936 ZIO_FLAG_CANFAIL);
937 }
938
939 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
940 mutex_enter(&zilog->zl_lock);
941 if (lwb->lwb_zio == NULL) {
942 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
943 BP_GET_LSIZE(&lwb->lwb_blk));
944 if (!lwb->lwb_fastwrite) {
945 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
946 lwb->lwb_fastwrite = 1;
947 }
948 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
949 prio = ZIO_PRIORITY_SYNC_WRITE;
950 else
951 prio = ZIO_PRIORITY_ASYNC_WRITE;
952 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
953 0, &lwb->lwb_blk, lwb_abd, BP_GET_LSIZE(&lwb->lwb_blk),
954 zil_lwb_write_done, lwb, prio,
955 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
956 ZIO_FLAG_FASTWRITE, &zb);
957 }
958 mutex_exit(&zilog->zl_lock);
959 }
960
961 /*
962 * Define a limited set of intent log block sizes.
963 *
964 * These must be a multiple of 4KB. Note only the amount used (again
965 * aligned to 4KB) actually gets written. However, we can't always just
966 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
967 */
968 uint64_t zil_block_buckets[] = {
969 4096, /* non TX_WRITE */
970 8192+4096, /* data base */
971 32*1024 + 4096, /* NFS writes */
972 UINT64_MAX
973 };
974
975 /*
976 * Start a log block write and advance to the next log block.
977 * Calls are serialized.
978 */
979 static lwb_t *
980 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
981 {
982 lwb_t *nlwb = NULL;
983 zil_chain_t *zilc;
984 spa_t *spa = zilog->zl_spa;
985 blkptr_t *bp;
986 dmu_tx_t *tx;
987 uint64_t txg;
988 uint64_t zil_blksz, wsz;
989 int i, error;
990 boolean_t slog;
991
992 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
993 zilc = (zil_chain_t *)lwb->lwb_buf;
994 bp = &zilc->zc_next_blk;
995 } else {
996 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
997 bp = &zilc->zc_next_blk;
998 }
999
1000 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1001
1002 /*
1003 * Allocate the next block and save its address in this block
1004 * before writing it in order to establish the log chain.
1005 * Note that if the allocation of nlwb synced before we wrote
1006 * the block that points at it (lwb), we'd leak it if we crashed.
1007 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1008 * We dirty the dataset to ensure that zil_sync() will be called
1009 * to clean up in the event of allocation failure or I/O failure.
1010 */
1011 tx = dmu_tx_create(zilog->zl_os);
1012 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
1013 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1014 txg = dmu_tx_get_txg(tx);
1015
1016 lwb->lwb_tx = tx;
1017
1018 /*
1019 * Log blocks are pre-allocated. Here we select the size of the next
1020 * block, based on size used in the last block.
1021 * - first find the smallest bucket that will fit the block from a
1022 * limited set of block sizes. This is because it's faster to write
1023 * blocks allocated from the same metaslab as they are adjacent or
1024 * close.
1025 * - next find the maximum from the new suggested size and an array of
1026 * previous sizes. This lessens a picket fence effect of wrongly
1027 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1028 * requests.
1029 *
1030 * Note we only write what is used, but we can't just allocate
1031 * the maximum block size because we can exhaust the available
1032 * pool log space.
1033 */
1034 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1035 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1036 continue;
1037 zil_blksz = zil_block_buckets[i];
1038 if (zil_blksz == UINT64_MAX)
1039 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1040 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1041 for (i = 0; i < ZIL_PREV_BLKS; i++)
1042 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1043 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1044
1045 BP_ZERO(bp);
1046 error = zio_alloc_zil(spa, txg, bp, zil_blksz, &slog);
1047 if (slog) {
1048 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1049 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1050 } else {
1051 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1052 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1053 }
1054 if (error == 0) {
1055 ASSERT3U(bp->blk_birth, ==, txg);
1056 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1057 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1058
1059 /*
1060 * Allocate a new log write buffer (lwb).
1061 */
1062 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1063
1064 /* Record the block for later vdev flushing */
1065 zil_add_block(zilog, &lwb->lwb_blk);
1066 }
1067
1068 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1069 /* For Slim ZIL only write what is used. */
1070 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1071 ASSERT3U(wsz, <=, lwb->lwb_sz);
1072 zio_shrink(lwb->lwb_zio, wsz);
1073
1074 } else {
1075 wsz = lwb->lwb_sz;
1076 }
1077
1078 zilc->zc_pad = 0;
1079 zilc->zc_nused = lwb->lwb_nused;
1080 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1081
1082 /*
1083 * clear unused data for security
1084 */
1085 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1086
1087 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1088
1089 /*
1090 * If there was an allocation failure then nlwb will be null which
1091 * forces a txg_wait_synced().
1092 */
1093 return (nlwb);
1094 }
1095
1096 static lwb_t *
1097 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1098 {
1099 lr_t *lrcb, *lrc;
1100 lr_write_t *lrwb, *lrw;
1101 char *lr_buf;
1102 uint64_t dlen, dnow, lwb_sp, reclen, txg;
1103
1104 if (lwb == NULL)
1105 return (NULL);
1106
1107 ASSERT(lwb->lwb_buf != NULL);
1108
1109 lrc = &itx->itx_lr; /* Common log record inside itx. */
1110 lrw = (lr_write_t *)lrc; /* Write log record inside itx. */
1111 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1112 dlen = P2ROUNDUP_TYPED(
1113 lrw->lr_length, sizeof (uint64_t), uint64_t);
1114 } else {
1115 dlen = 0;
1116 }
1117 reclen = lrc->lrc_reclen;
1118 zilog->zl_cur_used += (reclen + dlen);
1119 txg = lrc->lrc_txg;
1120
1121 zil_lwb_write_init(zilog, lwb);
1122
1123 cont:
1124 /*
1125 * If this record won't fit in the current log block, start a new one.
1126 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1127 */
1128 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1129 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1130 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1131 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1132 lwb = zil_lwb_write_start(zilog, lwb);
1133 if (lwb == NULL)
1134 return (NULL);
1135 zil_lwb_write_init(zilog, lwb);
1136 ASSERT(LWB_EMPTY(lwb));
1137 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1138 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1139 }
1140
1141 dnow = MIN(dlen, lwb_sp - reclen);
1142 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1143 bcopy(lrc, lr_buf, reclen);
1144 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1145 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1146
1147 ZIL_STAT_BUMP(zil_itx_count);
1148
1149 /*
1150 * If it's a write, fetch the data or get its blkptr as appropriate.
1151 */
1152 if (lrc->lrc_txtype == TX_WRITE) {
1153 if (txg > spa_freeze_txg(zilog->zl_spa))
1154 txg_wait_synced(zilog->zl_dmu_pool, txg);
1155 if (itx->itx_wr_state == WR_COPIED) {
1156 ZIL_STAT_BUMP(zil_itx_copied_count);
1157 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1158 } else {
1159 char *dbuf;
1160 int error;
1161
1162 if (itx->itx_wr_state == WR_NEED_COPY) {
1163 dbuf = lr_buf + reclen;
1164 lrcb->lrc_reclen += dnow;
1165 if (lrwb->lr_length > dnow)
1166 lrwb->lr_length = dnow;
1167 lrw->lr_offset += dnow;
1168 lrw->lr_length -= dnow;
1169 ZIL_STAT_BUMP(zil_itx_needcopy_count);
1170 ZIL_STAT_INCR(zil_itx_needcopy_bytes,
1171 lrw->lr_length);
1172 } else {
1173 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1174 dbuf = NULL;
1175 ZIL_STAT_BUMP(zil_itx_indirect_count);
1176 ZIL_STAT_INCR(zil_itx_indirect_bytes,
1177 lrw->lr_length);
1178 }
1179 error = zilog->zl_get_data(
1180 itx->itx_private, lrwb, dbuf, lwb->lwb_zio);
1181 if (error == EIO) {
1182 txg_wait_synced(zilog->zl_dmu_pool, txg);
1183 return (lwb);
1184 }
1185 if (error != 0) {
1186 ASSERT(error == ENOENT || error == EEXIST ||
1187 error == EALREADY);
1188 return (lwb);
1189 }
1190 }
1191 }
1192
1193 /*
1194 * We're actually making an entry, so update lrc_seq to be the
1195 * log record sequence number. Note that this is generally not
1196 * equal to the itx sequence number because not all transactions
1197 * are synchronous, and sometimes spa_sync() gets there first.
1198 */
1199 lrcb->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1200 lwb->lwb_nused += reclen + dnow;
1201 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1202 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1203 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1204
1205 dlen -= dnow;
1206 if (dlen > 0) {
1207 zilog->zl_cur_used += reclen;
1208 goto cont;
1209 }
1210
1211 return (lwb);
1212 }
1213
1214 itx_t *
1215 zil_itx_create(uint64_t txtype, size_t lrsize)
1216 {
1217 size_t itxsize;
1218 itx_t *itx;
1219
1220 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1221 itxsize = offsetof(itx_t, itx_lr) + lrsize;
1222
1223 itx = zio_data_buf_alloc(itxsize);
1224 itx->itx_lr.lrc_txtype = txtype;
1225 itx->itx_lr.lrc_reclen = lrsize;
1226 itx->itx_lr.lrc_seq = 0; /* defensive */
1227 itx->itx_sync = B_TRUE; /* default is synchronous */
1228 itx->itx_callback = NULL;
1229 itx->itx_callback_data = NULL;
1230 itx->itx_size = itxsize;
1231
1232 return (itx);
1233 }
1234
1235 void
1236 zil_itx_destroy(itx_t *itx)
1237 {
1238 zio_data_buf_free(itx, itx->itx_size);
1239 }
1240
1241 /*
1242 * Free up the sync and async itxs. The itxs_t has already been detached
1243 * so no locks are needed.
1244 */
1245 static void
1246 zil_itxg_clean(itxs_t *itxs)
1247 {
1248 itx_t *itx;
1249 list_t *list;
1250 avl_tree_t *t;
1251 void *cookie;
1252 itx_async_node_t *ian;
1253
1254 list = &itxs->i_sync_list;
1255 while ((itx = list_head(list)) != NULL) {
1256 if (itx->itx_callback != NULL)
1257 itx->itx_callback(itx->itx_callback_data);
1258 list_remove(list, itx);
1259 zil_itx_destroy(itx);
1260 }
1261
1262 cookie = NULL;
1263 t = &itxs->i_async_tree;
1264 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1265 list = &ian->ia_list;
1266 while ((itx = list_head(list)) != NULL) {
1267 if (itx->itx_callback != NULL)
1268 itx->itx_callback(itx->itx_callback_data);
1269 list_remove(list, itx);
1270 zil_itx_destroy(itx);
1271 }
1272 list_destroy(list);
1273 kmem_free(ian, sizeof (itx_async_node_t));
1274 }
1275 avl_destroy(t);
1276
1277 kmem_free(itxs, sizeof (itxs_t));
1278 }
1279
1280 static int
1281 zil_aitx_compare(const void *x1, const void *x2)
1282 {
1283 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1284 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1285
1286 return (AVL_CMP(o1, o2));
1287 }
1288
1289 /*
1290 * Remove all async itx with the given oid.
1291 */
1292 static void
1293 zil_remove_async(zilog_t *zilog, uint64_t oid)
1294 {
1295 uint64_t otxg, txg;
1296 itx_async_node_t *ian;
1297 avl_tree_t *t;
1298 avl_index_t where;
1299 list_t clean_list;
1300 itx_t *itx;
1301
1302 ASSERT(oid != 0);
1303 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1304
1305 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1306 otxg = ZILTEST_TXG;
1307 else
1308 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1309
1310 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1311 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1312
1313 mutex_enter(&itxg->itxg_lock);
1314 if (itxg->itxg_txg != txg) {
1315 mutex_exit(&itxg->itxg_lock);
1316 continue;
1317 }
1318
1319 /*
1320 * Locate the object node and append its list.
1321 */
1322 t = &itxg->itxg_itxs->i_async_tree;
1323 ian = avl_find(t, &oid, &where);
1324 if (ian != NULL)
1325 list_move_tail(&clean_list, &ian->ia_list);
1326 mutex_exit(&itxg->itxg_lock);
1327 }
1328 while ((itx = list_head(&clean_list)) != NULL) {
1329 if (itx->itx_callback != NULL)
1330 itx->itx_callback(itx->itx_callback_data);
1331 list_remove(&clean_list, itx);
1332 zil_itx_destroy(itx);
1333 }
1334 list_destroy(&clean_list);
1335 }
1336
1337 void
1338 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1339 {
1340 uint64_t txg;
1341 itxg_t *itxg;
1342 itxs_t *itxs, *clean = NULL;
1343
1344 /*
1345 * Object ids can be re-instantiated in the next txg so
1346 * remove any async transactions to avoid future leaks.
1347 * This can happen if a fsync occurs on the re-instantiated
1348 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1349 * the new file data and flushes a write record for the old object.
1350 */
1351 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1352 zil_remove_async(zilog, itx->itx_oid);
1353
1354 /*
1355 * Ensure the data of a renamed file is committed before the rename.
1356 */
1357 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1358 zil_async_to_sync(zilog, itx->itx_oid);
1359
1360 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1361 txg = ZILTEST_TXG;
1362 else
1363 txg = dmu_tx_get_txg(tx);
1364
1365 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1366 mutex_enter(&itxg->itxg_lock);
1367 itxs = itxg->itxg_itxs;
1368 if (itxg->itxg_txg != txg) {
1369 if (itxs != NULL) {
1370 /*
1371 * The zil_clean callback hasn't got around to cleaning
1372 * this itxg. Save the itxs for release below.
1373 * This should be rare.
1374 */
1375 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1376 "txg %llu", itxg->itxg_txg);
1377 clean = itxg->itxg_itxs;
1378 }
1379 itxg->itxg_txg = txg;
1380 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
1381 KM_SLEEP);
1382
1383 list_create(&itxs->i_sync_list, sizeof (itx_t),
1384 offsetof(itx_t, itx_node));
1385 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1386 sizeof (itx_async_node_t),
1387 offsetof(itx_async_node_t, ia_node));
1388 }
1389 if (itx->itx_sync) {
1390 list_insert_tail(&itxs->i_sync_list, itx);
1391 } else {
1392 avl_tree_t *t = &itxs->i_async_tree;
1393 uint64_t foid =
1394 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
1395 itx_async_node_t *ian;
1396 avl_index_t where;
1397
1398 ian = avl_find(t, &foid, &where);
1399 if (ian == NULL) {
1400 ian = kmem_alloc(sizeof (itx_async_node_t),
1401 KM_SLEEP);
1402 list_create(&ian->ia_list, sizeof (itx_t),
1403 offsetof(itx_t, itx_node));
1404 ian->ia_foid = foid;
1405 avl_insert(t, ian, where);
1406 }
1407 list_insert_tail(&ian->ia_list, itx);
1408 }
1409
1410 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1411 zilog_dirty(zilog, txg);
1412 mutex_exit(&itxg->itxg_lock);
1413
1414 /* Release the old itxs now we've dropped the lock */
1415 if (clean != NULL)
1416 zil_itxg_clean(clean);
1417 }
1418
1419 /*
1420 * If there are any in-memory intent log transactions which have now been
1421 * synced then start up a taskq to free them. We should only do this after we
1422 * have written out the uberblocks (i.e. txg has been comitted) so that
1423 * don't inadvertently clean out in-memory log records that would be required
1424 * by zil_commit().
1425 */
1426 void
1427 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1428 {
1429 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1430 itxs_t *clean_me;
1431
1432 mutex_enter(&itxg->itxg_lock);
1433 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1434 mutex_exit(&itxg->itxg_lock);
1435 return;
1436 }
1437 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1438 ASSERT(itxg->itxg_txg != 0);
1439 ASSERT(zilog->zl_clean_taskq != NULL);
1440 clean_me = itxg->itxg_itxs;
1441 itxg->itxg_itxs = NULL;
1442 itxg->itxg_txg = 0;
1443 mutex_exit(&itxg->itxg_lock);
1444 /*
1445 * Preferably start a task queue to free up the old itxs but
1446 * if taskq_dispatch can't allocate resources to do that then
1447 * free it in-line. This should be rare. Note, using TQ_SLEEP
1448 * created a bad performance problem.
1449 */
1450 if (taskq_dispatch(zilog->zl_clean_taskq,
1451 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1452 zil_itxg_clean(clean_me);
1453 }
1454
1455 /*
1456 * Get the list of itxs to commit into zl_itx_commit_list.
1457 */
1458 static void
1459 zil_get_commit_list(zilog_t *zilog)
1460 {
1461 uint64_t otxg, txg;
1462 list_t *commit_list = &zilog->zl_itx_commit_list;
1463
1464 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1465 otxg = ZILTEST_TXG;
1466 else
1467 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1468
1469 /*
1470 * This is inherently racy, since there is nothing to prevent
1471 * the last synced txg from changing. That's okay since we'll
1472 * only commit things in the future.
1473 */
1474 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1475 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1476
1477 mutex_enter(&itxg->itxg_lock);
1478 if (itxg->itxg_txg != txg) {
1479 mutex_exit(&itxg->itxg_lock);
1480 continue;
1481 }
1482
1483 /*
1484 * If we're adding itx records to the zl_itx_commit_list,
1485 * then the zil better be dirty in this "txg". We can assert
1486 * that here since we're holding the itxg_lock which will
1487 * prevent spa_sync from cleaning it. Once we add the itxs
1488 * to the zl_itx_commit_list we must commit it to disk even
1489 * if it's unnecessary (i.e. the txg was synced).
1490 */
1491 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1492 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1493 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1494
1495 mutex_exit(&itxg->itxg_lock);
1496 }
1497 }
1498
1499 /*
1500 * Move the async itxs for a specified object to commit into sync lists.
1501 */
1502 static void
1503 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1504 {
1505 uint64_t otxg, txg;
1506 itx_async_node_t *ian;
1507 avl_tree_t *t;
1508 avl_index_t where;
1509
1510 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1511 otxg = ZILTEST_TXG;
1512 else
1513 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1514
1515 /*
1516 * This is inherently racy, since there is nothing to prevent
1517 * the last synced txg from changing.
1518 */
1519 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1520 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1521
1522 mutex_enter(&itxg->itxg_lock);
1523 if (itxg->itxg_txg != txg) {
1524 mutex_exit(&itxg->itxg_lock);
1525 continue;
1526 }
1527
1528 /*
1529 * If a foid is specified then find that node and append its
1530 * list. Otherwise walk the tree appending all the lists
1531 * to the sync list. We add to the end rather than the
1532 * beginning to ensure the create has happened.
1533 */
1534 t = &itxg->itxg_itxs->i_async_tree;
1535 if (foid != 0) {
1536 ian = avl_find(t, &foid, &where);
1537 if (ian != NULL) {
1538 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1539 &ian->ia_list);
1540 }
1541 } else {
1542 void *cookie = NULL;
1543
1544 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1545 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1546 &ian->ia_list);
1547 list_destroy(&ian->ia_list);
1548 kmem_free(ian, sizeof (itx_async_node_t));
1549 }
1550 }
1551 mutex_exit(&itxg->itxg_lock);
1552 }
1553 }
1554
1555 static void
1556 zil_commit_writer(zilog_t *zilog)
1557 {
1558 uint64_t txg;
1559 itx_t *itx;
1560 lwb_t *lwb;
1561 spa_t *spa = zilog->zl_spa;
1562 int error = 0;
1563
1564 ASSERT(zilog->zl_root_zio == NULL);
1565
1566 mutex_exit(&zilog->zl_lock);
1567
1568 zil_get_commit_list(zilog);
1569
1570 /*
1571 * Return if there's nothing to commit before we dirty the fs by
1572 * calling zil_create().
1573 */
1574 if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1575 mutex_enter(&zilog->zl_lock);
1576 return;
1577 }
1578
1579 if (zilog->zl_suspend) {
1580 lwb = NULL;
1581 } else {
1582 lwb = list_tail(&zilog->zl_lwb_list);
1583 if (lwb == NULL)
1584 lwb = zil_create(zilog);
1585 }
1586
1587 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1588 for (itx = list_head(&zilog->zl_itx_commit_list); itx != NULL;
1589 itx = list_next(&zilog->zl_itx_commit_list, itx)) {
1590 txg = itx->itx_lr.lrc_txg;
1591 ASSERT3U(txg, !=, 0);
1592
1593 /*
1594 * This is inherently racy and may result in us writing
1595 * out a log block for a txg that was just synced. This is
1596 * ok since we'll end cleaning up that log block the next
1597 * time we call zil_sync().
1598 */
1599 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1600 lwb = zil_lwb_commit(zilog, itx, lwb);
1601 }
1602 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1603
1604 /* write the last block out */
1605 if (lwb != NULL && lwb->lwb_zio != NULL)
1606 lwb = zil_lwb_write_start(zilog, lwb);
1607
1608 zilog->zl_cur_used = 0;
1609
1610 /*
1611 * Wait if necessary for the log blocks to be on stable storage.
1612 */
1613 if (zilog->zl_root_zio) {
1614 error = zio_wait(zilog->zl_root_zio);
1615 zilog->zl_root_zio = NULL;
1616 zil_flush_vdevs(zilog);
1617 }
1618
1619 if (error || lwb == NULL)
1620 txg_wait_synced(zilog->zl_dmu_pool, 0);
1621
1622 while ((itx = list_head(&zilog->zl_itx_commit_list))) {
1623 txg = itx->itx_lr.lrc_txg;
1624 ASSERT(txg);
1625
1626 if (itx->itx_callback != NULL)
1627 itx->itx_callback(itx->itx_callback_data);
1628 list_remove(&zilog->zl_itx_commit_list, itx);
1629 zil_itx_destroy(itx);
1630 }
1631
1632 mutex_enter(&zilog->zl_lock);
1633
1634 /*
1635 * Remember the highest committed log sequence number for ztest.
1636 * We only update this value when all the log writes succeeded,
1637 * because ztest wants to ASSERT that it got the whole log chain.
1638 */
1639 if (error == 0 && lwb != NULL)
1640 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1641 }
1642
1643 /*
1644 * Commit zfs transactions to stable storage.
1645 * If foid is 0 push out all transactions, otherwise push only those
1646 * for that object or might reference that object.
1647 *
1648 * itxs are committed in batches. In a heavily stressed zil there will be
1649 * a commit writer thread who is writing out a bunch of itxs to the log
1650 * for a set of committing threads (cthreads) in the same batch as the writer.
1651 * Those cthreads are all waiting on the same cv for that batch.
1652 *
1653 * There will also be a different and growing batch of threads that are
1654 * waiting to commit (qthreads). When the committing batch completes
1655 * a transition occurs such that the cthreads exit and the qthreads become
1656 * cthreads. One of the new cthreads becomes the writer thread for the
1657 * batch. Any new threads arriving become new qthreads.
1658 *
1659 * Only 2 condition variables are needed and there's no transition
1660 * between the two cvs needed. They just flip-flop between qthreads
1661 * and cthreads.
1662 *
1663 * Using this scheme we can efficiently wakeup up only those threads
1664 * that have been committed.
1665 */
1666 void
1667 zil_commit(zilog_t *zilog, uint64_t foid)
1668 {
1669 uint64_t mybatch;
1670
1671 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1672 return;
1673
1674 ZIL_STAT_BUMP(zil_commit_count);
1675
1676 /* move the async itxs for the foid to the sync queues */
1677 zil_async_to_sync(zilog, foid);
1678
1679 mutex_enter(&zilog->zl_lock);
1680 mybatch = zilog->zl_next_batch;
1681 while (zilog->zl_writer) {
1682 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1683 if (mybatch <= zilog->zl_com_batch) {
1684 mutex_exit(&zilog->zl_lock);
1685 return;
1686 }
1687 }
1688
1689 zilog->zl_next_batch++;
1690 zilog->zl_writer = B_TRUE;
1691 ZIL_STAT_BUMP(zil_commit_writer_count);
1692 zil_commit_writer(zilog);
1693 zilog->zl_com_batch = mybatch;
1694 zilog->zl_writer = B_FALSE;
1695
1696 /* wake up one thread to become the next writer */
1697 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1698
1699 /* wake up all threads waiting for this batch to be committed */
1700 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1701
1702 mutex_exit(&zilog->zl_lock);
1703 }
1704
1705 /*
1706 * Called in syncing context to free committed log blocks and update log header.
1707 */
1708 void
1709 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1710 {
1711 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1712 uint64_t txg = dmu_tx_get_txg(tx);
1713 spa_t *spa = zilog->zl_spa;
1714 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1715 lwb_t *lwb;
1716
1717 /*
1718 * We don't zero out zl_destroy_txg, so make sure we don't try
1719 * to destroy it twice.
1720 */
1721 if (spa_sync_pass(spa) != 1)
1722 return;
1723
1724 mutex_enter(&zilog->zl_lock);
1725
1726 ASSERT(zilog->zl_stop_sync == 0);
1727
1728 if (*replayed_seq != 0) {
1729 ASSERT(zh->zh_replay_seq < *replayed_seq);
1730 zh->zh_replay_seq = *replayed_seq;
1731 *replayed_seq = 0;
1732 }
1733
1734 if (zilog->zl_destroy_txg == txg) {
1735 blkptr_t blk = zh->zh_log;
1736
1737 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1738
1739 bzero(zh, sizeof (zil_header_t));
1740 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1741
1742 if (zilog->zl_keep_first) {
1743 /*
1744 * If this block was part of log chain that couldn't
1745 * be claimed because a device was missing during
1746 * zil_claim(), but that device later returns,
1747 * then this block could erroneously appear valid.
1748 * To guard against this, assign a new GUID to the new
1749 * log chain so it doesn't matter what blk points to.
1750 */
1751 zil_init_log_chain(zilog, &blk);
1752 zh->zh_log = blk;
1753 }
1754 }
1755
1756 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1757 zh->zh_log = lwb->lwb_blk;
1758 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1759 break;
1760
1761 ASSERT(lwb->lwb_zio == NULL);
1762
1763 list_remove(&zilog->zl_lwb_list, lwb);
1764 zio_free_zil(spa, txg, &lwb->lwb_blk);
1765 kmem_cache_free(zil_lwb_cache, lwb);
1766
1767 /*
1768 * If we don't have anything left in the lwb list then
1769 * we've had an allocation failure and we need to zero
1770 * out the zil_header blkptr so that we don't end
1771 * up freeing the same block twice.
1772 */
1773 if (list_head(&zilog->zl_lwb_list) == NULL)
1774 BP_ZERO(&zh->zh_log);
1775 }
1776
1777 /*
1778 * Remove fastwrite on any blocks that have been pre-allocated for
1779 * the next commit. This prevents fastwrite counter pollution by
1780 * unused, long-lived LWBs.
1781 */
1782 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
1783 if (lwb->lwb_fastwrite && !lwb->lwb_zio) {
1784 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1785 lwb->lwb_fastwrite = 0;
1786 }
1787 }
1788
1789 mutex_exit(&zilog->zl_lock);
1790 }
1791
1792 void
1793 zil_init(void)
1794 {
1795 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1796 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1797
1798 zil_ksp = kstat_create("zfs", 0, "zil", "misc",
1799 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
1800 KSTAT_FLAG_VIRTUAL);
1801
1802 if (zil_ksp != NULL) {
1803 zil_ksp->ks_data = &zil_stats;
1804 kstat_install(zil_ksp);
1805 }
1806 }
1807
1808 void
1809 zil_fini(void)
1810 {
1811 kmem_cache_destroy(zil_lwb_cache);
1812
1813 if (zil_ksp != NULL) {
1814 kstat_delete(zil_ksp);
1815 zil_ksp = NULL;
1816 }
1817 }
1818
1819 void
1820 zil_set_sync(zilog_t *zilog, uint64_t sync)
1821 {
1822 zilog->zl_sync = sync;
1823 }
1824
1825 void
1826 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1827 {
1828 zilog->zl_logbias = logbias;
1829 }
1830
1831 zilog_t *
1832 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1833 {
1834 zilog_t *zilog;
1835 int i;
1836
1837 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1838
1839 zilog->zl_header = zh_phys;
1840 zilog->zl_os = os;
1841 zilog->zl_spa = dmu_objset_spa(os);
1842 zilog->zl_dmu_pool = dmu_objset_pool(os);
1843 zilog->zl_destroy_txg = TXG_INITIAL - 1;
1844 zilog->zl_logbias = dmu_objset_logbias(os);
1845 zilog->zl_sync = dmu_objset_syncprop(os);
1846 zilog->zl_next_batch = 1;
1847
1848 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1849
1850 for (i = 0; i < TXG_SIZE; i++) {
1851 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1852 MUTEX_DEFAULT, NULL);
1853 }
1854
1855 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1856 offsetof(lwb_t, lwb_node));
1857
1858 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1859 offsetof(itx_t, itx_node));
1860
1861 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1862
1863 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1864 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1865
1866 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1867 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1868 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1869 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1870
1871 return (zilog);
1872 }
1873
1874 void
1875 zil_free(zilog_t *zilog)
1876 {
1877 int i;
1878
1879 zilog->zl_stop_sync = 1;
1880
1881 ASSERT0(zilog->zl_suspend);
1882 ASSERT0(zilog->zl_suspending);
1883
1884 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1885 list_destroy(&zilog->zl_lwb_list);
1886
1887 avl_destroy(&zilog->zl_vdev_tree);
1888 mutex_destroy(&zilog->zl_vdev_lock);
1889
1890 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1891 list_destroy(&zilog->zl_itx_commit_list);
1892
1893 for (i = 0; i < TXG_SIZE; i++) {
1894 /*
1895 * It's possible for an itx to be generated that doesn't dirty
1896 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1897 * callback to remove the entry. We remove those here.
1898 *
1899 * Also free up the ziltest itxs.
1900 */
1901 if (zilog->zl_itxg[i].itxg_itxs)
1902 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1903 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1904 }
1905
1906 mutex_destroy(&zilog->zl_lock);
1907
1908 cv_destroy(&zilog->zl_cv_writer);
1909 cv_destroy(&zilog->zl_cv_suspend);
1910 cv_destroy(&zilog->zl_cv_batch[0]);
1911 cv_destroy(&zilog->zl_cv_batch[1]);
1912
1913 kmem_free(zilog, sizeof (zilog_t));
1914 }
1915
1916 /*
1917 * Open an intent log.
1918 */
1919 zilog_t *
1920 zil_open(objset_t *os, zil_get_data_t *get_data)
1921 {
1922 zilog_t *zilog = dmu_objset_zil(os);
1923
1924 ASSERT(zilog->zl_clean_taskq == NULL);
1925 ASSERT(zilog->zl_get_data == NULL);
1926 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1927
1928 zilog->zl_get_data = get_data;
1929 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, defclsyspri,
1930 2, 2, TASKQ_PREPOPULATE);
1931
1932 return (zilog);
1933 }
1934
1935 /*
1936 * Close an intent log.
1937 */
1938 void
1939 zil_close(zilog_t *zilog)
1940 {
1941 lwb_t *lwb;
1942 uint64_t txg = 0;
1943
1944 zil_commit(zilog, 0); /* commit all itx */
1945
1946 /*
1947 * The lwb_max_txg for the stubby lwb will reflect the last activity
1948 * for the zil. After a txg_wait_synced() on the txg we know all the
1949 * callbacks have occurred that may clean the zil. Only then can we
1950 * destroy the zl_clean_taskq.
1951 */
1952 mutex_enter(&zilog->zl_lock);
1953 lwb = list_tail(&zilog->zl_lwb_list);
1954 if (lwb != NULL)
1955 txg = lwb->lwb_max_txg;
1956 mutex_exit(&zilog->zl_lock);
1957 if (txg)
1958 txg_wait_synced(zilog->zl_dmu_pool, txg);
1959
1960 if (zilog_is_dirty(zilog))
1961 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
1962 if (txg < spa_freeze_txg(zilog->zl_spa))
1963 VERIFY(!zilog_is_dirty(zilog));
1964
1965 taskq_destroy(zilog->zl_clean_taskq);
1966 zilog->zl_clean_taskq = NULL;
1967 zilog->zl_get_data = NULL;
1968
1969 /*
1970 * We should have only one LWB left on the list; remove it now.
1971 */
1972 mutex_enter(&zilog->zl_lock);
1973 lwb = list_head(&zilog->zl_lwb_list);
1974 if (lwb != NULL) {
1975 ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1976 ASSERT(lwb->lwb_zio == NULL);
1977 if (lwb->lwb_fastwrite)
1978 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1979 list_remove(&zilog->zl_lwb_list, lwb);
1980 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1981 kmem_cache_free(zil_lwb_cache, lwb);
1982 }
1983 mutex_exit(&zilog->zl_lock);
1984 }
1985
1986 static char *suspend_tag = "zil suspending";
1987
1988 /*
1989 * Suspend an intent log. While in suspended mode, we still honor
1990 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1991 * On old version pools, we suspend the log briefly when taking a
1992 * snapshot so that it will have an empty intent log.
1993 *
1994 * Long holds are not really intended to be used the way we do here --
1995 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
1996 * could fail. Therefore we take pains to only put a long hold if it is
1997 * actually necessary. Fortunately, it will only be necessary if the
1998 * objset is currently mounted (or the ZVOL equivalent). In that case it
1999 * will already have a long hold, so we are not really making things any worse.
2000 *
2001 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
2002 * zvol_state_t), and use their mechanism to prevent their hold from being
2003 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
2004 * very little gain.
2005 *
2006 * if cookiep == NULL, this does both the suspend & resume.
2007 * Otherwise, it returns with the dataset "long held", and the cookie
2008 * should be passed into zil_resume().
2009 */
2010 int
2011 zil_suspend(const char *osname, void **cookiep)
2012 {
2013 objset_t *os;
2014 zilog_t *zilog;
2015 const zil_header_t *zh;
2016 int error;
2017
2018 error = dmu_objset_hold(osname, suspend_tag, &os);
2019 if (error != 0)
2020 return (error);
2021 zilog = dmu_objset_zil(os);
2022
2023 mutex_enter(&zilog->zl_lock);
2024 zh = zilog->zl_header;
2025
2026 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
2027 mutex_exit(&zilog->zl_lock);
2028 dmu_objset_rele(os, suspend_tag);
2029 return (SET_ERROR(EBUSY));
2030 }
2031
2032 /*
2033 * Don't put a long hold in the cases where we can avoid it. This
2034 * is when there is no cookie so we are doing a suspend & resume
2035 * (i.e. called from zil_vdev_offline()), and there's nothing to do
2036 * for the suspend because it's already suspended, or there's no ZIL.
2037 */
2038 if (cookiep == NULL && !zilog->zl_suspending &&
2039 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
2040 mutex_exit(&zilog->zl_lock);
2041 dmu_objset_rele(os, suspend_tag);
2042 return (0);
2043 }
2044
2045 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
2046 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
2047
2048 zilog->zl_suspend++;
2049
2050 if (zilog->zl_suspend > 1) {
2051 /*
2052 * Someone else is already suspending it.
2053 * Just wait for them to finish.
2054 */
2055
2056 while (zilog->zl_suspending)
2057 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
2058 mutex_exit(&zilog->zl_lock);
2059
2060 if (cookiep == NULL)
2061 zil_resume(os);
2062 else
2063 *cookiep = os;
2064 return (0);
2065 }
2066
2067 /*
2068 * If there is no pointer to an on-disk block, this ZIL must not
2069 * be active (e.g. filesystem not mounted), so there's nothing
2070 * to clean up.
2071 */
2072 if (BP_IS_HOLE(&zh->zh_log)) {
2073 ASSERT(cookiep != NULL); /* fast path already handled */
2074
2075 *cookiep = os;
2076 mutex_exit(&zilog->zl_lock);
2077 return (0);
2078 }
2079
2080 zilog->zl_suspending = B_TRUE;
2081 mutex_exit(&zilog->zl_lock);
2082
2083 zil_commit(zilog, 0);
2084
2085 zil_destroy(zilog, B_FALSE);
2086
2087 mutex_enter(&zilog->zl_lock);
2088 zilog->zl_suspending = B_FALSE;
2089 cv_broadcast(&zilog->zl_cv_suspend);
2090 mutex_exit(&zilog->zl_lock);
2091
2092 if (cookiep == NULL)
2093 zil_resume(os);
2094 else
2095 *cookiep = os;
2096 return (0);
2097 }
2098
2099 void
2100 zil_resume(void *cookie)
2101 {
2102 objset_t *os = cookie;
2103 zilog_t *zilog = dmu_objset_zil(os);
2104
2105 mutex_enter(&zilog->zl_lock);
2106 ASSERT(zilog->zl_suspend != 0);
2107 zilog->zl_suspend--;
2108 mutex_exit(&zilog->zl_lock);
2109 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2110 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2111 }
2112
2113 typedef struct zil_replay_arg {
2114 zil_replay_func_t *zr_replay;
2115 void *zr_arg;
2116 boolean_t zr_byteswap;
2117 char *zr_lr;
2118 } zil_replay_arg_t;
2119
2120 static int
2121 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2122 {
2123 char name[ZFS_MAX_DATASET_NAME_LEN];
2124
2125 zilog->zl_replaying_seq--; /* didn't actually replay this one */
2126
2127 dmu_objset_name(zilog->zl_os, name);
2128
2129 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2130 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2131 (u_longlong_t)lr->lrc_seq,
2132 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2133 (lr->lrc_txtype & TX_CI) ? "CI" : "");
2134
2135 return (error);
2136 }
2137
2138 static int
2139 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2140 {
2141 zil_replay_arg_t *zr = zra;
2142 const zil_header_t *zh = zilog->zl_header;
2143 uint64_t reclen = lr->lrc_reclen;
2144 uint64_t txtype = lr->lrc_txtype;
2145 int error = 0;
2146
2147 zilog->zl_replaying_seq = lr->lrc_seq;
2148
2149 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
2150 return (0);
2151
2152 if (lr->lrc_txg < claim_txg) /* already committed */
2153 return (0);
2154
2155 /* Strip case-insensitive bit, still present in log record */
2156 txtype &= ~TX_CI;
2157
2158 if (txtype == 0 || txtype >= TX_MAX_TYPE)
2159 return (zil_replay_error(zilog, lr, EINVAL));
2160
2161 /*
2162 * If this record type can be logged out of order, the object
2163 * (lr_foid) may no longer exist. That's legitimate, not an error.
2164 */
2165 if (TX_OOO(txtype)) {
2166 error = dmu_object_info(zilog->zl_os,
2167 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
2168 if (error == ENOENT || error == EEXIST)
2169 return (0);
2170 }
2171
2172 /*
2173 * Make a copy of the data so we can revise and extend it.
2174 */
2175 bcopy(lr, zr->zr_lr, reclen);
2176
2177 /*
2178 * If this is a TX_WRITE with a blkptr, suck in the data.
2179 */
2180 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2181 error = zil_read_log_data(zilog, (lr_write_t *)lr,
2182 zr->zr_lr + reclen);
2183 if (error != 0)
2184 return (zil_replay_error(zilog, lr, error));
2185 }
2186
2187 /*
2188 * The log block containing this lr may have been byteswapped
2189 * so that we can easily examine common fields like lrc_txtype.
2190 * However, the log is a mix of different record types, and only the
2191 * replay vectors know how to byteswap their records. Therefore, if
2192 * the lr was byteswapped, undo it before invoking the replay vector.
2193 */
2194 if (zr->zr_byteswap)
2195 byteswap_uint64_array(zr->zr_lr, reclen);
2196
2197 /*
2198 * We must now do two things atomically: replay this log record,
2199 * and update the log header sequence number to reflect the fact that
2200 * we did so. At the end of each replay function the sequence number
2201 * is updated if we are in replay mode.
2202 */
2203 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2204 if (error != 0) {
2205 /*
2206 * The DMU's dnode layer doesn't see removes until the txg
2207 * commits, so a subsequent claim can spuriously fail with
2208 * EEXIST. So if we receive any error we try syncing out
2209 * any removes then retry the transaction. Note that we
2210 * specify B_FALSE for byteswap now, so we don't do it twice.
2211 */
2212 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2213 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2214 if (error != 0)
2215 return (zil_replay_error(zilog, lr, error));
2216 }
2217 return (0);
2218 }
2219
2220 /* ARGSUSED */
2221 static int
2222 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2223 {
2224 zilog->zl_replay_blks++;
2225
2226 return (0);
2227 }
2228
2229 /*
2230 * If this dataset has a non-empty intent log, replay it and destroy it.
2231 */
2232 void
2233 zil_replay(objset_t *os, void *arg, zil_replay_func_t replay_func[TX_MAX_TYPE])
2234 {
2235 zilog_t *zilog = dmu_objset_zil(os);
2236 const zil_header_t *zh = zilog->zl_header;
2237 zil_replay_arg_t zr;
2238
2239 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2240 zil_destroy(zilog, B_TRUE);
2241 return;
2242 }
2243
2244 zr.zr_replay = replay_func;
2245 zr.zr_arg = arg;
2246 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2247 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2248
2249 /*
2250 * Wait for in-progress removes to sync before starting replay.
2251 */
2252 txg_wait_synced(zilog->zl_dmu_pool, 0);
2253
2254 zilog->zl_replay = B_TRUE;
2255 zilog->zl_replay_time = ddi_get_lbolt();
2256 ASSERT(zilog->zl_replay_blks == 0);
2257 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2258 zh->zh_claim_txg);
2259 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2260
2261 zil_destroy(zilog, B_FALSE);
2262 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2263 zilog->zl_replay = B_FALSE;
2264 }
2265
2266 boolean_t
2267 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2268 {
2269 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2270 return (B_TRUE);
2271
2272 if (zilog->zl_replay) {
2273 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2274 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2275 zilog->zl_replaying_seq;
2276 return (B_TRUE);
2277 }
2278
2279 return (B_FALSE);
2280 }
2281
2282 /* ARGSUSED */
2283 int
2284 zil_vdev_offline(const char *osname, void *arg)
2285 {
2286 int error;
2287
2288 error = zil_suspend(osname, NULL);
2289 if (error != 0)
2290 return (SET_ERROR(EEXIST));
2291 return (0);
2292 }
2293
2294 #if defined(_KERNEL) && defined(HAVE_SPL)
2295 EXPORT_SYMBOL(zil_alloc);
2296 EXPORT_SYMBOL(zil_free);
2297 EXPORT_SYMBOL(zil_open);
2298 EXPORT_SYMBOL(zil_close);
2299 EXPORT_SYMBOL(zil_replay);
2300 EXPORT_SYMBOL(zil_replaying);
2301 EXPORT_SYMBOL(zil_destroy);
2302 EXPORT_SYMBOL(zil_destroy_sync);
2303 EXPORT_SYMBOL(zil_itx_create);
2304 EXPORT_SYMBOL(zil_itx_destroy);
2305 EXPORT_SYMBOL(zil_itx_assign);
2306 EXPORT_SYMBOL(zil_commit);
2307 EXPORT_SYMBOL(zil_vdev_offline);
2308 EXPORT_SYMBOL(zil_claim);
2309 EXPORT_SYMBOL(zil_check_log_chain);
2310 EXPORT_SYMBOL(zil_sync);
2311 EXPORT_SYMBOL(zil_clean);
2312 EXPORT_SYMBOL(zil_suspend);
2313 EXPORT_SYMBOL(zil_resume);
2314 EXPORT_SYMBOL(zil_add_block);
2315 EXPORT_SYMBOL(zil_bp_tree_add);
2316 EXPORT_SYMBOL(zil_set_sync);
2317 EXPORT_SYMBOL(zil_set_logbias);
2318
2319 /* BEGIN CSTYLED */
2320 module_param(zil_replay_disable, int, 0644);
2321 MODULE_PARM_DESC(zil_replay_disable, "Disable intent logging replay");
2322
2323 module_param(zfs_nocacheflush, int, 0644);
2324 MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
2325
2326 module_param(zil_slog_bulk, ulong, 0644);
2327 MODULE_PARM_DESC(zil_slog_bulk, "Limit in bytes slog sync writes per commit");
2328 /* END CSTYLED */
2329 #endif