]> git.proxmox.com Git - pve-docs.git/blame - local-zfs.adoc
attrs: update cephdocs template to quincy
[pve-docs.git] / local-zfs.adoc
CommitLineData
0235c741 1[[chapter_zfs]]
9ee94323
DM
2ZFS on Linux
3------------
5f09af76
DM
4ifdef::wiki[]
5:pve-toplevel:
6endif::wiki[]
7
9ee94323
DM
8ZFS is a combined file system and logical volume manager designed by
9Sun Microsystems. Starting with {pve} 3.4, the native Linux
10kernel port of the ZFS file system is introduced as optional
5eba0743
FG
11file system and also as an additional selection for the root
12file system. There is no need for manually compile ZFS modules - all
9ee94323
DM
13packages are included.
14
5eba0743 15By using ZFS, its possible to achieve maximum enterprise features with
9ee94323
DM
16low budget hardware, but also high performance systems by leveraging
17SSD caching or even SSD only setups. ZFS can replace cost intense
18hardware raid cards by moderate CPU and memory load combined with easy
19management.
20
21.General ZFS advantages
22
23* Easy configuration and management with {pve} GUI and CLI.
24
25* Reliable
26
27* Protection against data corruption
28
5eba0743 29* Data compression on file system level
9ee94323
DM
30
31* Snapshots
32
33* Copy-on-write clone
34
447596fd
SH
35* Various raid levels: RAID0, RAID1, RAID10, RAIDZ-1, RAIDZ-2, RAIDZ-3,
36dRAID, dRAID2, dRAID3
9ee94323
DM
37
38* Can use SSD for cache
39
40* Self healing
41
42* Continuous integrity checking
43
44* Designed for high storage capacities
45
9ee94323
DM
46* Asynchronous replication over network
47
48* Open Source
49
50* Encryption
51
52* ...
53
54
55Hardware
56~~~~~~~~
57
58ZFS depends heavily on memory, so you need at least 8GB to start. In
60ed554f 59practice, use as much as you can get for your hardware/budget. To prevent
9ee94323
DM
60data corruption, we recommend the use of high quality ECC RAM.
61
d48bdcf2 62If you use a dedicated cache and/or log disk, you should use an
0d4a93dc 63enterprise class SSD. This can
9ee94323
DM
64increase the overall performance significantly.
65
60ed554f
DW
66IMPORTANT: Do not use ZFS on top of a hardware RAID controller which has its
67own cache management. ZFS needs to communicate directly with the disks. An
68HBA adapter or something like an LSI controller flashed in ``IT'' mode is more
69appropriate.
9ee94323
DM
70
71If you are experimenting with an installation of {pve} inside a VM
8c1189b6 72(Nested Virtualization), don't use `virtio` for disks of that VM,
60ed554f
DW
73as they are not supported by ZFS. Use IDE or SCSI instead (also works
74with the `virtio` SCSI controller type).
9ee94323
DM
75
76
5eba0743 77Installation as Root File System
9ee94323
DM
78~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
79
80When you install using the {pve} installer, you can choose ZFS for the
81root file system. You need to select the RAID type at installation
82time:
83
84[horizontal]
8c1189b6
FG
85RAID0:: Also called ``striping''. The capacity of such volume is the sum
86of the capacities of all disks. But RAID0 does not add any redundancy,
9ee94323
DM
87so the failure of a single drive makes the volume unusable.
88
8c1189b6 89RAID1:: Also called ``mirroring''. Data is written identically to all
9ee94323
DM
90disks. This mode requires at least 2 disks with the same size. The
91resulting capacity is that of a single disk.
92
93RAID10:: A combination of RAID0 and RAID1. Requires at least 4 disks.
94
95RAIDZ-1:: A variation on RAID-5, single parity. Requires at least 3 disks.
96
97RAIDZ-2:: A variation on RAID-5, double parity. Requires at least 4 disks.
98
99RAIDZ-3:: A variation on RAID-5, triple parity. Requires at least 5 disks.
100
101The installer automatically partitions the disks, creates a ZFS pool
8c1189b6
FG
102called `rpool`, and installs the root file system on the ZFS subvolume
103`rpool/ROOT/pve-1`.
9ee94323 104
8c1189b6 105Another subvolume called `rpool/data` is created to store VM
9ee94323 106images. In order to use that with the {pve} tools, the installer
8c1189b6 107creates the following configuration entry in `/etc/pve/storage.cfg`:
9ee94323
DM
108
109----
110zfspool: local-zfs
111 pool rpool/data
112 sparse
113 content images,rootdir
114----
115
116After installation, you can view your ZFS pool status using the
8c1189b6 117`zpool` command:
9ee94323
DM
118
119----
120# zpool status
121 pool: rpool
122 state: ONLINE
123 scan: none requested
124config:
125
126 NAME STATE READ WRITE CKSUM
127 rpool ONLINE 0 0 0
128 mirror-0 ONLINE 0 0 0
129 sda2 ONLINE 0 0 0
130 sdb2 ONLINE 0 0 0
131 mirror-1 ONLINE 0 0 0
132 sdc ONLINE 0 0 0
133 sdd ONLINE 0 0 0
134
135errors: No known data errors
136----
137
8c1189b6 138The `zfs` command is used configure and manage your ZFS file
9ee94323
DM
139systems. The following command lists all file systems after
140installation:
141
142----
143# zfs list
144NAME USED AVAIL REFER MOUNTPOINT
145rpool 4.94G 7.68T 96K /rpool
146rpool/ROOT 702M 7.68T 96K /rpool/ROOT
147rpool/ROOT/pve-1 702M 7.68T 702M /
148rpool/data 96K 7.68T 96K /rpool/data
149rpool/swap 4.25G 7.69T 64K -
150----
151
152
e4262cac
AL
153[[sysadmin_zfs_raid_considerations]]
154ZFS RAID Level Considerations
155~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
156
157There are a few factors to take into consideration when choosing the layout of
158a ZFS pool. The basic building block of a ZFS pool is the virtual device, or
159`vdev`. All vdevs in a pool are used equally and the data is striped among them
160(RAID0). Check the `zpool(8)` manpage for more details on vdevs.
161
162[[sysadmin_zfs_raid_performance]]
163Performance
164^^^^^^^^^^^
165
166Each `vdev` type has different performance behaviors. The two
167parameters of interest are the IOPS (Input/Output Operations per Second) and
168the bandwidth with which data can be written or read.
169
f1b7d1a3
MH
170A 'mirror' vdev (RAID1) will approximately behave like a single disk in regard
171to both parameters when writing data. When reading data the performance will
172scale linearly with the number of disks in the mirror.
e4262cac
AL
173
174A common situation is to have 4 disks. When setting it up as 2 mirror vdevs
175(RAID10) the pool will have the write characteristics as two single disks in
f1b7d1a3 176regard to IOPS and bandwidth. For read operations it will resemble 4 single
e4262cac
AL
177disks.
178
179A 'RAIDZ' of any redundancy level will approximately behave like a single disk
f1b7d1a3 180in regard to IOPS with a lot of bandwidth. How much bandwidth depends on the
e4262cac
AL
181size of the RAIDZ vdev and the redundancy level.
182
183For running VMs, IOPS is the more important metric in most situations.
184
185
186[[sysadmin_zfs_raid_size_space_usage_redundancy]]
187Size, Space usage and Redundancy
188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
189
190While a pool made of 'mirror' vdevs will have the best performance
191characteristics, the usable space will be 50% of the disks available. Less if a
192mirror vdev consists of more than 2 disks, for example in a 3-way mirror. At
193least one healthy disk per mirror is needed for the pool to stay functional.
194
195The usable space of a 'RAIDZ' type vdev of N disks is roughly N-P, with P being
196the RAIDZ-level. The RAIDZ-level indicates how many arbitrary disks can fail
197without losing data. A special case is a 4 disk pool with RAIDZ2. In this
198situation it is usually better to use 2 mirror vdevs for the better performance
199as the usable space will be the same.
200
201Another important factor when using any RAIDZ level is how ZVOL datasets, which
202are used for VM disks, behave. For each data block the pool needs parity data
203which is at least the size of the minimum block size defined by the `ashift`
204value of the pool. With an ashift of 12 the block size of the pool is 4k. The
205default block size for a ZVOL is 8k. Therefore, in a RAIDZ2 each 8k block
206written will cause two additional 4k parity blocks to be written,
2078k + 4k + 4k = 16k. This is of course a simplified approach and the real
208situation will be slightly different with metadata, compression and such not
209being accounted for in this example.
210
211This behavior can be observed when checking the following properties of the
212ZVOL:
213
214 * `volsize`
215 * `refreservation` (if the pool is not thin provisioned)
216 * `used` (if the pool is thin provisioned and without snapshots present)
217
218----
219# zfs get volsize,refreservation,used <pool>/vm-<vmid>-disk-X
220----
221
222`volsize` is the size of the disk as it is presented to the VM, while
223`refreservation` shows the reserved space on the pool which includes the
224expected space needed for the parity data. If the pool is thin provisioned, the
225`refreservation` will be set to 0. Another way to observe the behavior is to
226compare the used disk space within the VM and the `used` property. Be aware
227that snapshots will skew the value.
228
229There are a few options to counter the increased use of space:
230
231* Increase the `volblocksize` to improve the data to parity ratio
232* Use 'mirror' vdevs instead of 'RAIDZ'
233* Use `ashift=9` (block size of 512 bytes)
234
235The `volblocksize` property can only be set when creating a ZVOL. The default
236value can be changed in the storage configuration. When doing this, the guest
237needs to be tuned accordingly and depending on the use case, the problem of
b2444770 238write amplification is just moved from the ZFS layer up to the guest.
e4262cac
AL
239
240Using `ashift=9` when creating the pool can lead to bad
241performance, depending on the disks underneath, and cannot be changed later on.
242
243Mirror vdevs (RAID1, RAID10) have favorable behavior for VM workloads. Use
f4abc68a 244them, unless your environment has specific needs and characteristics where
e4262cac
AL
245RAIDZ performance characteristics are acceptable.
246
247
447596fd
SH
248ZFS dRAID
249~~~~~~~~~
250
251In a ZFS dRAID (declustered RAID) the hot spare drive(s) participate in the RAID.
252Their spare capacity is reserved and used for rebuilding when one drive fails.
253This provides, depending on the configuration, faster rebuilding compared to a
254RAIDZ in case of drive failure. More information can be found in the official
255OpenZFS documentation. footnote:[OpenZFS dRAID
256https://openzfs.github.io/openzfs-docs/Basic%20Concepts/dRAID%20Howto.html]
257
258NOTE: dRAID is intended for more than 10-15 disks in a dRAID. A RAIDZ
259setup should be better for a lower amount of disks in most use cases.
260
261NOTE: The GUI requires one more disk than the minimum (i.e. dRAID1 needs 3). It
262expects that a spare disk is added as well.
263
264 * `dRAID1` or `dRAID`: requires at least 2 disks, one can fail before data is
265lost
266 * `dRAID2`: requires at least 3 disks, two can fail before data is lost
267 * `dRAID3`: requires at least 4 disks, three can fail before data is lost
268
269
270Additional information can be found on the manual page:
271
272----
273# man zpoolconcepts
274----
275
276Spares and Data
277^^^^^^^^^^^^^^^
278The number of `spares` tells the system how many disks it should keep ready in
279case of a disk failure. The default value is 0 `spares`. Without spares,
280rebuilding won't get any speed benefits.
281
282`data` defines the number of devices in a redundancy group. The default value is
2838. Except when `disks - parity - spares` equal something less than 8, the lower
284number is used. In general, a smaller number of `data` devices leads to higher
285IOPS, better compression ratios and faster resilvering, but defining fewer data
286devices reduces the available storage capacity of the pool.
287
288
9ee94323
DM
289Bootloader
290~~~~~~~~~~
291
cb04e768
SI
292{pve} uses xref:sysboot_proxmox_boot_tool[`proxmox-boot-tool`] to manage the
293bootloader configuration.
3a433e9b 294See the chapter on xref:sysboot[{pve} host bootloaders] for details.
9ee94323
DM
295
296
297ZFS Administration
298~~~~~~~~~~~~~~~~~~
299
300This section gives you some usage examples for common tasks. ZFS
301itself is really powerful and provides many options. The main commands
8c1189b6
FG
302to manage ZFS are `zfs` and `zpool`. Both commands come with great
303manual pages, which can be read with:
9ee94323
DM
304
305----
306# man zpool
307# man zfs
308-----
309
42449bdf
TL
310[[sysadmin_zfs_create_new_zpool]]
311Create a new zpool
312^^^^^^^^^^^^^^^^^^
9ee94323 313
25b89d16
TL
314To create a new pool, at least one disk is needed. The `ashift` should have the
315same sector-size (2 power of `ashift`) or larger as the underlying disk.
9ee94323 316
eaefe614
FE
317----
318# zpool create -f -o ashift=12 <pool> <device>
319----
9ee94323 320
25b89d16
TL
321[TIP]
322====
323Pool names must adhere to the following rules:
324
325* begin with a letter (a-z or A-Z)
326* contain only alphanumeric, `-`, `_`, `.`, `:` or ` ` (space) characters
327* must *not begin* with one of `mirror`, `raidz`, `draid` or `spare`
328* must not be `log`
329====
330
e06707f2 331To activate compression (see section <<zfs_compression,Compression in ZFS>>):
9ee94323 332
eaefe614
FE
333----
334# zfs set compression=lz4 <pool>
335----
9ee94323 336
42449bdf
TL
337[[sysadmin_zfs_create_new_zpool_raid0]]
338Create a new pool with RAID-0
339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323 340
dc2d00a0 341Minimum 1 disk
9ee94323 342
eaefe614
FE
343----
344# zpool create -f -o ashift=12 <pool> <device1> <device2>
345----
9ee94323 346
42449bdf
TL
347[[sysadmin_zfs_create_new_zpool_raid1]]
348Create a new pool with RAID-1
349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323 350
dc2d00a0 351Minimum 2 disks
9ee94323 352
eaefe614
FE
353----
354# zpool create -f -o ashift=12 <pool> mirror <device1> <device2>
355----
9ee94323 356
42449bdf
TL
357[[sysadmin_zfs_create_new_zpool_raid10]]
358Create a new pool with RAID-10
359^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323 360
dc2d00a0 361Minimum 4 disks
9ee94323 362
eaefe614
FE
363----
364# zpool create -f -o ashift=12 <pool> mirror <device1> <device2> mirror <device3> <device4>
365----
9ee94323 366
42449bdf
TL
367[[sysadmin_zfs_create_new_zpool_raidz1]]
368Create a new pool with RAIDZ-1
369^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323 370
dc2d00a0 371Minimum 3 disks
9ee94323 372
eaefe614
FE
373----
374# zpool create -f -o ashift=12 <pool> raidz1 <device1> <device2> <device3>
375----
9ee94323 376
42449bdf
TL
377Create a new pool with RAIDZ-2
378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323 379
dc2d00a0 380Minimum 4 disks
9ee94323 381
eaefe614
FE
382----
383# zpool create -f -o ashift=12 <pool> raidz2 <device1> <device2> <device3> <device4>
384----
9ee94323 385
42449bdf
TL
386[[sysadmin_zfs_create_new_zpool_with_cache]]
387Create a new pool with cache (L2ARC)
388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323
DM
389
390It is possible to use a dedicated cache drive partition to increase
391the performance (use SSD).
392
8c1189b6 393As `<device>` it is possible to use more devices, like it's shown in
9ee94323
DM
394"Create a new pool with RAID*".
395
eaefe614
FE
396----
397# zpool create -f -o ashift=12 <pool> <device> cache <cache_device>
398----
9ee94323 399
42449bdf
TL
400[[sysadmin_zfs_create_new_zpool_with_log]]
401Create a new pool with log (ZIL)
402^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323
DM
403
404It is possible to use a dedicated cache drive partition to increase
405the performance(SSD).
406
8c1189b6 407As `<device>` it is possible to use more devices, like it's shown in
9ee94323
DM
408"Create a new pool with RAID*".
409
eaefe614
FE
410----
411# zpool create -f -o ashift=12 <pool> <device> log <log_device>
412----
9ee94323 413
42449bdf
TL
414[[sysadmin_zfs_add_cache_and_log_dev]]
415Add cache and log to an existing pool
416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323 417
b2444770
MH
418If you have a pool without cache and log, first create 2 partitions on the SSD
419with `parted` or `gdisk`.
9ee94323 420
e300cf7d 421IMPORTANT: Always use GPT partition tables.
9ee94323
DM
422
423The maximum size of a log device should be about half the size of
424physical memory, so this is usually quite small. The rest of the SSD
5eba0743 425can be used as cache.
9ee94323 426
eaefe614 427----
237007eb 428# zpool add -f <pool> log <device-part1> cache <device-part2>
eaefe614 429----
9ee94323 430
42449bdf
TL
431[[sysadmin_zfs_change_failed_dev]]
432Changing a failed device
433^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323 434
eaefe614
FE
435----
436# zpool replace -f <pool> <old device> <new device>
437----
1748211a 438
11a6e022
AL
439.Changing a failed bootable device
440
69c2b2e5
SI
441Depending on how {pve} was installed it is either using `systemd-boot` or `grub`
442through `proxmox-boot-tool`
cb04e768
SI
443footnote:[Systems installed with {pve} 6.4 or later, EFI systems installed with
444{pve} 5.4 or later] or plain `grub` as bootloader (see
445xref:sysboot[Host Bootloader]). You can check by running:
446
447----
448# proxmox-boot-tool status
449----
11a6e022
AL
450
451The first steps of copying the partition table, reissuing GUIDs and replacing
452the ZFS partition are the same. To make the system bootable from the new disk,
453different steps are needed which depend on the bootloader in use.
1748211a 454
eaefe614
FE
455----
456# sgdisk <healthy bootable device> -R <new device>
457# sgdisk -G <new device>
458# zpool replace -f <pool> <old zfs partition> <new zfs partition>
11a6e022
AL
459----
460
44aee838 461NOTE: Use the `zpool status -v` command to monitor how far the resilvering
11a6e022
AL
462process of the new disk has progressed.
463
cb04e768 464.With `proxmox-boot-tool`:
11a6e022
AL
465
466----
cb04e768
SI
467# proxmox-boot-tool format <new disk's ESP>
468# proxmox-boot-tool init <new disk's ESP>
eaefe614 469----
0daaddbd
FG
470
471NOTE: `ESP` stands for EFI System Partition, which is setup as partition #2 on
472bootable disks setup by the {pve} installer since version 5.4. For details, see
cb04e768 473xref:sysboot_proxmox_boot_setup[Setting up a new partition for use as synced ESP].
9ee94323 474
69c2b2e5 475.With plain `grub`:
11a6e022
AL
476
477----
478# grub-install <new disk>
479----
69c2b2e5
SI
480NOTE: plain `grub` is only used on systems installed with {pve} 6.3 or earlier,
481which have not been manually migrated to using `proxmox-boot-tool` yet.
482
9ee94323 483
aa425868
FE
484Configure E-Mail Notification
485~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9ee94323 486
aa425868
FE
487ZFS comes with an event daemon `ZED`, which monitors events generated by the ZFS
488kernel module. The daemon can also send emails on ZFS events like pool errors.
489Newer ZFS packages ship the daemon in a separate `zfs-zed` package, which should
490already be installed by default in {pve}.
e280a948 491
aa425868
FE
492You can configure the daemon via the file `/etc/zfs/zed.d/zed.rc` with your
493favorite editor. The required setting for email notification is
494`ZED_EMAIL_ADDR`, which is set to `root` by default.
9ee94323 495
083adc34 496--------
9ee94323 497ZED_EMAIL_ADDR="root"
083adc34 498--------
9ee94323 499
8c1189b6 500Please note {pve} forwards mails to `root` to the email address
9ee94323
DM
501configured for the root user.
502
9ee94323 503
42449bdf 504[[sysadmin_zfs_limit_memory_usage]]
5eba0743 505Limit ZFS Memory Usage
9ee94323
DM
506~~~~~~~~~~~~~~~~~~~~~~
507
9060abb9
TL
508ZFS uses '50 %' of the host memory for the **A**daptive **R**eplacement
509**C**ache (ARC) by default. Allocating enough memory for the ARC is crucial for
510IO performance, so reduce it with caution. As a general rule of thumb, allocate
511at least +2 GiB Base + 1 GiB/TiB-Storage+. For example, if you have a pool with
512+8 TiB+ of available storage space then you should use +10 GiB+ of memory for
513the ARC.
514
515You can change the ARC usage limit for the current boot (a reboot resets this
516change again) by writing to the +zfs_arc_max+ module parameter directly:
517
518----
519 echo "$[10 * 1024*1024*1024]" >/sys/module/zfs/parameters/zfs_arc_max
520----
521
522To *permanently change* the ARC limits, add the following line to
523`/etc/modprobe.d/zfs.conf`:
9ee94323 524
5eba0743
FG
525--------
526options zfs zfs_arc_max=8589934592
527--------
9ee94323 528
9060abb9 529This example setting limits the usage to 8 GiB ('8 * 2^30^').
9ee94323 530
beed14f8
FG
531IMPORTANT: In case your desired +zfs_arc_max+ value is lower than or equal to
532+zfs_arc_min+ (which defaults to 1/32 of the system memory), +zfs_arc_max+ will
533be ignored unless you also set +zfs_arc_min+ to at most +zfs_arc_max - 1+.
534
535----
536echo "$[8 * 1024*1024*1024 - 1]" >/sys/module/zfs/parameters/zfs_arc_min
537echo "$[8 * 1024*1024*1024]" >/sys/module/zfs/parameters/zfs_arc_max
538----
539
540This example setting (temporarily) limits the usage to 8 GiB ('8 * 2^30^') on
541systems with more than 256 GiB of total memory, where simply setting
542+zfs_arc_max+ alone would not work.
543
9ee94323
DM
544[IMPORTANT]
545====
9060abb9 546If your root file system is ZFS, you must update your initramfs every
5eba0743 547time this value changes:
9ee94323 548
eaefe614 549----
abdfbbbb 550# update-initramfs -u -k all
eaefe614 551----
9060abb9
TL
552
553You *must reboot* to activate these changes.
9ee94323
DM
554====
555
556
dc74fc63 557[[zfs_swap]]
4128e7ff
TL
558SWAP on ZFS
559~~~~~~~~~~~
9ee94323 560
dc74fc63 561Swap-space created on a zvol may generate some troubles, like blocking the
9ee94323
DM
562server or generating a high IO load, often seen when starting a Backup
563to an external Storage.
564
565We strongly recommend to use enough memory, so that you normally do not
dc74fc63 566run into low memory situations. Should you need or want to add swap, it is
3a433e9b 567preferred to create a partition on a physical disk and use it as a swap device.
dc74fc63
SI
568You can leave some space free for this purpose in the advanced options of the
569installer. Additionally, you can lower the
8c1189b6 570``swappiness'' value. A good value for servers is 10:
9ee94323 571
eaefe614
FE
572----
573# sysctl -w vm.swappiness=10
574----
9ee94323 575
8c1189b6 576To make the swappiness persistent, open `/etc/sysctl.conf` with
9ee94323
DM
577an editor of your choice and add the following line:
578
083adc34
FG
579--------
580vm.swappiness = 10
581--------
9ee94323 582
8c1189b6 583.Linux kernel `swappiness` parameter values
9ee94323
DM
584[width="100%",cols="<m,2d",options="header"]
585|===========================================================
586| Value | Strategy
587| vm.swappiness = 0 | The kernel will swap only to avoid
588an 'out of memory' condition
589| vm.swappiness = 1 | Minimum amount of swapping without
590disabling it entirely.
591| vm.swappiness = 10 | This value is sometimes recommended to
592improve performance when sufficient memory exists in a system.
593| vm.swappiness = 60 | The default value.
594| vm.swappiness = 100 | The kernel will swap aggressively.
595|===========================================================
cca0540e
FG
596
597[[zfs_encryption]]
4128e7ff
TL
598Encrypted ZFS Datasets
599~~~~~~~~~~~~~~~~~~~~~~
cca0540e 600
500e5ab3
ML
601WARNING: Native ZFS encryption in {pve} is experimental. Known limitations and
602issues include Replication with encrypted datasets
603footnote:[https://bugzilla.proxmox.com/show_bug.cgi?id=2350],
604as well as checksum errors when using Snapshots or ZVOLs.
605footnote:[https://github.com/openzfs/zfs/issues/11688]
606
cca0540e
FG
607ZFS on Linux version 0.8.0 introduced support for native encryption of
608datasets. After an upgrade from previous ZFS on Linux versions, the encryption
229426eb 609feature can be enabled per pool:
cca0540e
FG
610
611----
612# zpool get feature@encryption tank
613NAME PROPERTY VALUE SOURCE
614tank feature@encryption disabled local
615
616# zpool set feature@encryption=enabled
617
618# zpool get feature@encryption tank
619NAME PROPERTY VALUE SOURCE
620tank feature@encryption enabled local
621----
622
623WARNING: There is currently no support for booting from pools with encrypted
624datasets using Grub, and only limited support for automatically unlocking
625encrypted datasets on boot. Older versions of ZFS without encryption support
626will not be able to decrypt stored data.
627
628NOTE: It is recommended to either unlock storage datasets manually after
629booting, or to write a custom unit to pass the key material needed for
630unlocking on boot to `zfs load-key`.
631
632WARNING: Establish and test a backup procedure before enabling encryption of
5dfeeece 633production data. If the associated key material/passphrase/keyfile has been
cca0540e
FG
634lost, accessing the encrypted data is no longer possible.
635
636Encryption needs to be setup when creating datasets/zvols, and is inherited by
637default to child datasets. For example, to create an encrypted dataset
638`tank/encrypted_data` and configure it as storage in {pve}, run the following
639commands:
640
641----
642# zfs create -o encryption=on -o keyformat=passphrase tank/encrypted_data
643Enter passphrase:
644Re-enter passphrase:
645
646# pvesm add zfspool encrypted_zfs -pool tank/encrypted_data
647----
648
649All guest volumes/disks create on this storage will be encrypted with the
650shared key material of the parent dataset.
651
652To actually use the storage, the associated key material needs to be loaded
7353437b 653and the dataset needs to be mounted. This can be done in one step with:
cca0540e
FG
654
655----
7353437b 656# zfs mount -l tank/encrypted_data
cca0540e
FG
657Enter passphrase for 'tank/encrypted_data':
658----
659
660It is also possible to use a (random) keyfile instead of prompting for a
661passphrase by setting the `keylocation` and `keyformat` properties, either at
229426eb 662creation time or with `zfs change-key` on existing datasets:
cca0540e
FG
663
664----
665# dd if=/dev/urandom of=/path/to/keyfile bs=32 count=1
666
667# zfs change-key -o keyformat=raw -o keylocation=file:///path/to/keyfile tank/encrypted_data
668----
669
670WARNING: When using a keyfile, special care needs to be taken to secure the
671keyfile against unauthorized access or accidental loss. Without the keyfile, it
672is not possible to access the plaintext data!
673
674A guest volume created underneath an encrypted dataset will have its
675`encryptionroot` property set accordingly. The key material only needs to be
676loaded once per encryptionroot to be available to all encrypted datasets
677underneath it.
678
679See the `encryptionroot`, `encryption`, `keylocation`, `keyformat` and
680`keystatus` properties, the `zfs load-key`, `zfs unload-key` and `zfs
681change-key` commands and the `Encryption` section from `man zfs` for more
682details and advanced usage.
68029ec8
FE
683
684
e06707f2
FE
685[[zfs_compression]]
686Compression in ZFS
687~~~~~~~~~~~~~~~~~~
688
689When compression is enabled on a dataset, ZFS tries to compress all *new*
690blocks before writing them and decompresses them on reading. Already
691existing data will not be compressed retroactively.
692
693You can enable compression with:
694
695----
696# zfs set compression=<algorithm> <dataset>
697----
698
699We recommend using the `lz4` algorithm, because it adds very little CPU
700overhead. Other algorithms like `lzjb` and `gzip-N`, where `N` is an
701integer from `1` (fastest) to `9` (best compression ratio), are also
702available. Depending on the algorithm and how compressible the data is,
703having compression enabled can even increase I/O performance.
704
705You can disable compression at any time with:
706
707----
708# zfs set compression=off <dataset>
709----
710
711Again, only new blocks will be affected by this change.
712
713
42449bdf 714[[sysadmin_zfs_special_device]]
68029ec8
FE
715ZFS Special Device
716~~~~~~~~~~~~~~~~~~
717
718Since version 0.8.0 ZFS supports `special` devices. A `special` device in a
719pool is used to store metadata, deduplication tables, and optionally small
720file blocks.
721
722A `special` device can improve the speed of a pool consisting of slow spinning
51e544b6
TL
723hard disks with a lot of metadata changes. For example workloads that involve
724creating, updating or deleting a large number of files will benefit from the
725presence of a `special` device. ZFS datasets can also be configured to store
726whole small files on the `special` device which can further improve the
727performance. Use fast SSDs for the `special` device.
68029ec8
FE
728
729IMPORTANT: The redundancy of the `special` device should match the one of the
730pool, since the `special` device is a point of failure for the whole pool.
731
732WARNING: Adding a `special` device to a pool cannot be undone!
733
734.Create a pool with `special` device and RAID-1:
735
eaefe614
FE
736----
737# zpool create -f -o ashift=12 <pool> mirror <device1> <device2> special mirror <device3> <device4>
738----
68029ec8
FE
739
740.Add a `special` device to an existing pool with RAID-1:
741
eaefe614
FE
742----
743# zpool add <pool> special mirror <device1> <device2>
744----
68029ec8
FE
745
746ZFS datasets expose the `special_small_blocks=<size>` property. `size` can be
747`0` to disable storing small file blocks on the `special` device or a power of
9deec2e2 748two in the range between `512B` to `1M`. After setting the property new file
68029ec8
FE
749blocks smaller than `size` will be allocated on the `special` device.
750
751IMPORTANT: If the value for `special_small_blocks` is greater than or equal to
51e544b6
TL
752the `recordsize` (default `128K`) of the dataset, *all* data will be written to
753the `special` device, so be careful!
68029ec8
FE
754
755Setting the `special_small_blocks` property on a pool will change the default
756value of that property for all child ZFS datasets (for example all containers
757in the pool will opt in for small file blocks).
758
51e544b6 759.Opt in for all file smaller than 4K-blocks pool-wide:
68029ec8 760
eaefe614
FE
761----
762# zfs set special_small_blocks=4K <pool>
763----
68029ec8
FE
764
765.Opt in for small file blocks for a single dataset:
766
eaefe614
FE
767----
768# zfs set special_small_blocks=4K <pool>/<filesystem>
769----
68029ec8
FE
770
771.Opt out from small file blocks for a single dataset:
772
eaefe614
FE
773----
774# zfs set special_small_blocks=0 <pool>/<filesystem>
775----
18d0d68e
SI
776
777[[sysadmin_zfs_features]]
778ZFS Pool Features
779~~~~~~~~~~~~~~~~~
780
781Changes to the on-disk format in ZFS are only made between major version changes
782and are specified through *features*. All features, as well as the general
783mechanism are well documented in the `zpool-features(5)` manpage.
784
785Since enabling new features can render a pool not importable by an older version
786of ZFS, this needs to be done actively by the administrator, by running
787`zpool upgrade` on the pool (see the `zpool-upgrade(8)` manpage).
788
789Unless you need to use one of the new features, there is no upside to enabling
790them.
791
792In fact, there are some downsides to enabling new features:
793
794* A system with root on ZFS, that still boots using `grub` will become
795 unbootable if a new feature is active on the rpool, due to the incompatible
796 implementation of ZFS in grub.
797* The system will not be able to import any upgraded pool when booted with an
798 older kernel, which still ships with the old ZFS modules.
799* Booting an older {pve} ISO to repair a non-booting system will likewise not
800 work.
801
27adc096
TL
802IMPORTANT: Do *not* upgrade your rpool if your system is still booted with
803`grub`, as this will render your system unbootable. This includes systems
804installed before {pve} 5.4, and systems booting with legacy BIOS boot (see
18d0d68e
SI
805xref:sysboot_determine_bootloader_used[how to determine the bootloader]).
806
27adc096 807.Enable new features for a ZFS pool:
18d0d68e
SI
808----
809# zpool upgrade <pool>
810----