]> git.proxmox.com Git - pve-docs.git/blame - local-zfs.adoc
zfs: fix typos
[pve-docs.git] / local-zfs.adoc
CommitLineData
0235c741 1[[chapter_zfs]]
9ee94323
DM
2ZFS on Linux
3------------
5f09af76
DM
4ifdef::wiki[]
5:pve-toplevel:
6endif::wiki[]
7
9ee94323
DM
8ZFS is a combined file system and logical volume manager designed by
9Sun Microsystems. Starting with {pve} 3.4, the native Linux
10kernel port of the ZFS file system is introduced as optional
5eba0743
FG
11file system and also as an additional selection for the root
12file system. There is no need for manually compile ZFS modules - all
9ee94323
DM
13packages are included.
14
5eba0743 15By using ZFS, its possible to achieve maximum enterprise features with
9ee94323
DM
16low budget hardware, but also high performance systems by leveraging
17SSD caching or even SSD only setups. ZFS can replace cost intense
18hardware raid cards by moderate CPU and memory load combined with easy
19management.
20
21.General ZFS advantages
22
23* Easy configuration and management with {pve} GUI and CLI.
24
25* Reliable
26
27* Protection against data corruption
28
5eba0743 29* Data compression on file system level
9ee94323
DM
30
31* Snapshots
32
33* Copy-on-write clone
34
35* Various raid levels: RAID0, RAID1, RAID10, RAIDZ-1, RAIDZ-2 and RAIDZ-3
36
37* Can use SSD for cache
38
39* Self healing
40
41* Continuous integrity checking
42
43* Designed for high storage capacities
44
45* Protection against data corruption
46
47* Asynchronous replication over network
48
49* Open Source
50
51* Encryption
52
53* ...
54
55
56Hardware
57~~~~~~~~
58
59ZFS depends heavily on memory, so you need at least 8GB to start. In
60practice, use as much you can get for your hardware/budget. To prevent
61data corruption, we recommend the use of high quality ECC RAM.
62
d48bdcf2 63If you use a dedicated cache and/or log disk, you should use an
9ee94323
DM
64enterprise class SSD (e.g. Intel SSD DC S3700 Series). This can
65increase the overall performance significantly.
66
5eba0743 67IMPORTANT: Do not use ZFS on top of hardware controller which has its
9ee94323
DM
68own cache management. ZFS needs to directly communicate with disks. An
69HBA adapter is the way to go, or something like LSI controller flashed
8c1189b6 70in ``IT'' mode.
9ee94323
DM
71
72If you are experimenting with an installation of {pve} inside a VM
8c1189b6 73(Nested Virtualization), don't use `virtio` for disks of that VM,
9ee94323 74since they are not supported by ZFS. Use IDE or SCSI instead (works
8c1189b6 75also with `virtio` SCSI controller type).
9ee94323
DM
76
77
5eba0743 78Installation as Root File System
9ee94323
DM
79~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
80
81When you install using the {pve} installer, you can choose ZFS for the
82root file system. You need to select the RAID type at installation
83time:
84
85[horizontal]
8c1189b6
FG
86RAID0:: Also called ``striping''. The capacity of such volume is the sum
87of the capacities of all disks. But RAID0 does not add any redundancy,
9ee94323
DM
88so the failure of a single drive makes the volume unusable.
89
8c1189b6 90RAID1:: Also called ``mirroring''. Data is written identically to all
9ee94323
DM
91disks. This mode requires at least 2 disks with the same size. The
92resulting capacity is that of a single disk.
93
94RAID10:: A combination of RAID0 and RAID1. Requires at least 4 disks.
95
96RAIDZ-1:: A variation on RAID-5, single parity. Requires at least 3 disks.
97
98RAIDZ-2:: A variation on RAID-5, double parity. Requires at least 4 disks.
99
100RAIDZ-3:: A variation on RAID-5, triple parity. Requires at least 5 disks.
101
102The installer automatically partitions the disks, creates a ZFS pool
8c1189b6
FG
103called `rpool`, and installs the root file system on the ZFS subvolume
104`rpool/ROOT/pve-1`.
9ee94323 105
8c1189b6 106Another subvolume called `rpool/data` is created to store VM
9ee94323 107images. In order to use that with the {pve} tools, the installer
8c1189b6 108creates the following configuration entry in `/etc/pve/storage.cfg`:
9ee94323
DM
109
110----
111zfspool: local-zfs
112 pool rpool/data
113 sparse
114 content images,rootdir
115----
116
117After installation, you can view your ZFS pool status using the
8c1189b6 118`zpool` command:
9ee94323
DM
119
120----
121# zpool status
122 pool: rpool
123 state: ONLINE
124 scan: none requested
125config:
126
127 NAME STATE READ WRITE CKSUM
128 rpool ONLINE 0 0 0
129 mirror-0 ONLINE 0 0 0
130 sda2 ONLINE 0 0 0
131 sdb2 ONLINE 0 0 0
132 mirror-1 ONLINE 0 0 0
133 sdc ONLINE 0 0 0
134 sdd ONLINE 0 0 0
135
136errors: No known data errors
137----
138
8c1189b6 139The `zfs` command is used configure and manage your ZFS file
9ee94323
DM
140systems. The following command lists all file systems after
141installation:
142
143----
144# zfs list
145NAME USED AVAIL REFER MOUNTPOINT
146rpool 4.94G 7.68T 96K /rpool
147rpool/ROOT 702M 7.68T 96K /rpool/ROOT
148rpool/ROOT/pve-1 702M 7.68T 702M /
149rpool/data 96K 7.68T 96K /rpool/data
150rpool/swap 4.25G 7.69T 64K -
151----
152
153
e4262cac
AL
154[[sysadmin_zfs_raid_considerations]]
155ZFS RAID Level Considerations
156~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
157
158There are a few factors to take into consideration when choosing the layout of
159a ZFS pool. The basic building block of a ZFS pool is the virtual device, or
160`vdev`. All vdevs in a pool are used equally and the data is striped among them
161(RAID0). Check the `zpool(8)` manpage for more details on vdevs.
162
163[[sysadmin_zfs_raid_performance]]
164Performance
165^^^^^^^^^^^
166
167Each `vdev` type has different performance behaviors. The two
168parameters of interest are the IOPS (Input/Output Operations per Second) and
169the bandwidth with which data can be written or read.
170
171A 'mirror' vdev (RAID1) will approximately behave like a single disk in regards
172to both parameters when writing data. When reading data if will behave like the
173number of disks in the mirror.
174
175A common situation is to have 4 disks. When setting it up as 2 mirror vdevs
176(RAID10) the pool will have the write characteristics as two single disks in
177regard of IOPS and bandwidth. For read operations it will resemble 4 single
178disks.
179
180A 'RAIDZ' of any redundancy level will approximately behave like a single disk
181in regard of IOPS with a lot of bandwidth. How much bandwidth depends on the
182size of the RAIDZ vdev and the redundancy level.
183
184For running VMs, IOPS is the more important metric in most situations.
185
186
187[[sysadmin_zfs_raid_size_space_usage_redundancy]]
188Size, Space usage and Redundancy
189^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
190
191While a pool made of 'mirror' vdevs will have the best performance
192characteristics, the usable space will be 50% of the disks available. Less if a
193mirror vdev consists of more than 2 disks, for example in a 3-way mirror. At
194least one healthy disk per mirror is needed for the pool to stay functional.
195
196The usable space of a 'RAIDZ' type vdev of N disks is roughly N-P, with P being
197the RAIDZ-level. The RAIDZ-level indicates how many arbitrary disks can fail
198without losing data. A special case is a 4 disk pool with RAIDZ2. In this
199situation it is usually better to use 2 mirror vdevs for the better performance
200as the usable space will be the same.
201
202Another important factor when using any RAIDZ level is how ZVOL datasets, which
203are used for VM disks, behave. For each data block the pool needs parity data
204which is at least the size of the minimum block size defined by the `ashift`
205value of the pool. With an ashift of 12 the block size of the pool is 4k. The
206default block size for a ZVOL is 8k. Therefore, in a RAIDZ2 each 8k block
207written will cause two additional 4k parity blocks to be written,
2088k + 4k + 4k = 16k. This is of course a simplified approach and the real
209situation will be slightly different with metadata, compression and such not
210being accounted for in this example.
211
212This behavior can be observed when checking the following properties of the
213ZVOL:
214
215 * `volsize`
216 * `refreservation` (if the pool is not thin provisioned)
217 * `used` (if the pool is thin provisioned and without snapshots present)
218
219----
220# zfs get volsize,refreservation,used <pool>/vm-<vmid>-disk-X
221----
222
223`volsize` is the size of the disk as it is presented to the VM, while
224`refreservation` shows the reserved space on the pool which includes the
225expected space needed for the parity data. If the pool is thin provisioned, the
226`refreservation` will be set to 0. Another way to observe the behavior is to
227compare the used disk space within the VM and the `used` property. Be aware
228that snapshots will skew the value.
229
230There are a few options to counter the increased use of space:
231
232* Increase the `volblocksize` to improve the data to parity ratio
233* Use 'mirror' vdevs instead of 'RAIDZ'
234* Use `ashift=9` (block size of 512 bytes)
235
236The `volblocksize` property can only be set when creating a ZVOL. The default
237value can be changed in the storage configuration. When doing this, the guest
238needs to be tuned accordingly and depending on the use case, the problem of
239write amplification if just moved from the ZFS layer up to the guest.
240
241Using `ashift=9` when creating the pool can lead to bad
242performance, depending on the disks underneath, and cannot be changed later on.
243
244Mirror vdevs (RAID1, RAID10) have favorable behavior for VM workloads. Use
f4abc68a 245them, unless your environment has specific needs and characteristics where
e4262cac
AL
246RAIDZ performance characteristics are acceptable.
247
248
9ee94323
DM
249Bootloader
250~~~~~~~~~~
251
1748211a
SI
252Depending on whether the system is booted in EFI or legacy BIOS mode the
253{pve} installer sets up either `grub` or `systemd-boot` as main bootloader.
69055103 254See the chapter on xref:sysboot[{pve} host bootladers] for details.
9ee94323
DM
255
256
257ZFS Administration
258~~~~~~~~~~~~~~~~~~
259
260This section gives you some usage examples for common tasks. ZFS
261itself is really powerful and provides many options. The main commands
8c1189b6
FG
262to manage ZFS are `zfs` and `zpool`. Both commands come with great
263manual pages, which can be read with:
9ee94323
DM
264
265----
266# man zpool
267# man zfs
268-----
269
42449bdf
TL
270[[sysadmin_zfs_create_new_zpool]]
271Create a new zpool
272^^^^^^^^^^^^^^^^^^
9ee94323 273
8c1189b6
FG
274To create a new pool, at least one disk is needed. The `ashift` should
275have the same sector-size (2 power of `ashift`) or larger as the
9ee94323
DM
276underlying disk.
277
eaefe614
FE
278----
279# zpool create -f -o ashift=12 <pool> <device>
280----
9ee94323 281
e06707f2 282To activate compression (see section <<zfs_compression,Compression in ZFS>>):
9ee94323 283
eaefe614
FE
284----
285# zfs set compression=lz4 <pool>
286----
9ee94323 287
42449bdf
TL
288[[sysadmin_zfs_create_new_zpool_raid0]]
289Create a new pool with RAID-0
290^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323 291
dc2d00a0 292Minimum 1 disk
9ee94323 293
eaefe614
FE
294----
295# zpool create -f -o ashift=12 <pool> <device1> <device2>
296----
9ee94323 297
42449bdf
TL
298[[sysadmin_zfs_create_new_zpool_raid1]]
299Create a new pool with RAID-1
300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323 301
dc2d00a0 302Minimum 2 disks
9ee94323 303
eaefe614
FE
304----
305# zpool create -f -o ashift=12 <pool> mirror <device1> <device2>
306----
9ee94323 307
42449bdf
TL
308[[sysadmin_zfs_create_new_zpool_raid10]]
309Create a new pool with RAID-10
310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323 311
dc2d00a0 312Minimum 4 disks
9ee94323 313
eaefe614
FE
314----
315# zpool create -f -o ashift=12 <pool> mirror <device1> <device2> mirror <device3> <device4>
316----
9ee94323 317
42449bdf
TL
318[[sysadmin_zfs_create_new_zpool_raidz1]]
319Create a new pool with RAIDZ-1
320^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323 321
dc2d00a0 322Minimum 3 disks
9ee94323 323
eaefe614
FE
324----
325# zpool create -f -o ashift=12 <pool> raidz1 <device1> <device2> <device3>
326----
9ee94323 327
42449bdf
TL
328Create a new pool with RAIDZ-2
329^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323 330
dc2d00a0 331Minimum 4 disks
9ee94323 332
eaefe614
FE
333----
334# zpool create -f -o ashift=12 <pool> raidz2 <device1> <device2> <device3> <device4>
335----
9ee94323 336
42449bdf
TL
337[[sysadmin_zfs_create_new_zpool_with_cache]]
338Create a new pool with cache (L2ARC)
339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323
DM
340
341It is possible to use a dedicated cache drive partition to increase
342the performance (use SSD).
343
8c1189b6 344As `<device>` it is possible to use more devices, like it's shown in
9ee94323
DM
345"Create a new pool with RAID*".
346
eaefe614
FE
347----
348# zpool create -f -o ashift=12 <pool> <device> cache <cache_device>
349----
9ee94323 350
42449bdf
TL
351[[sysadmin_zfs_create_new_zpool_with_log]]
352Create a new pool with log (ZIL)
353^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323
DM
354
355It is possible to use a dedicated cache drive partition to increase
356the performance(SSD).
357
8c1189b6 358As `<device>` it is possible to use more devices, like it's shown in
9ee94323
DM
359"Create a new pool with RAID*".
360
eaefe614
FE
361----
362# zpool create -f -o ashift=12 <pool> <device> log <log_device>
363----
9ee94323 364
42449bdf
TL
365[[sysadmin_zfs_add_cache_and_log_dev]]
366Add cache and log to an existing pool
367^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323 368
5dfeeece 369If you have a pool without cache and log. First partition the SSD in
8c1189b6 3702 partition with `parted` or `gdisk`
9ee94323 371
e300cf7d 372IMPORTANT: Always use GPT partition tables.
9ee94323
DM
373
374The maximum size of a log device should be about half the size of
375physical memory, so this is usually quite small. The rest of the SSD
5eba0743 376can be used as cache.
9ee94323 377
eaefe614 378----
237007eb 379# zpool add -f <pool> log <device-part1> cache <device-part2>
eaefe614 380----
9ee94323 381
42449bdf
TL
382[[sysadmin_zfs_change_failed_dev]]
383Changing a failed device
384^^^^^^^^^^^^^^^^^^^^^^^^
9ee94323 385
eaefe614
FE
386----
387# zpool replace -f <pool> <old device> <new device>
388----
1748211a 389
11a6e022
AL
390.Changing a failed bootable device
391
392Depending on how {pve} was installed it is either using `grub` or `systemd-boot`
393as bootloader (see xref:sysboot[Host Bootloader]).
394
395The first steps of copying the partition table, reissuing GUIDs and replacing
396the ZFS partition are the same. To make the system bootable from the new disk,
397different steps are needed which depend on the bootloader in use.
1748211a 398
eaefe614
FE
399----
400# sgdisk <healthy bootable device> -R <new device>
401# sgdisk -G <new device>
402# zpool replace -f <pool> <old zfs partition> <new zfs partition>
11a6e022
AL
403----
404
44aee838 405NOTE: Use the `zpool status -v` command to monitor how far the resilvering
11a6e022
AL
406process of the new disk has progressed.
407
42449bdf 408.With `systemd-boot`:
11a6e022
AL
409
410----
eaefe614
FE
411# pve-efiboot-tool format <new disk's ESP>
412# pve-efiboot-tool init <new disk's ESP>
413----
0daaddbd
FG
414
415NOTE: `ESP` stands for EFI System Partition, which is setup as partition #2 on
416bootable disks setup by the {pve} installer since version 5.4. For details, see
417xref:sysboot_systemd_boot_setup[Setting up a new partition for use as synced ESP].
9ee94323 418
42449bdf 419.With `grub`:
11a6e022
AL
420
421----
422# grub-install <new disk>
423----
9ee94323
DM
424
425Activate E-Mail Notification
426~~~~~~~~~~~~~~~~~~~~~~~~~~~~
427
428ZFS comes with an event daemon, which monitors events generated by the
5eba0743 429ZFS kernel module. The daemon can also send emails on ZFS events like
5dfeeece 430pool errors. Newer ZFS packages ship the daemon in a separate package,
e280a948
DM
431and you can install it using `apt-get`:
432
433----
434# apt-get install zfs-zed
435----
9ee94323 436
8c1189b6
FG
437To activate the daemon it is necessary to edit `/etc/zfs/zed.d/zed.rc` with your
438favourite editor, and uncomment the `ZED_EMAIL_ADDR` setting:
9ee94323 439
083adc34 440--------
9ee94323 441ZED_EMAIL_ADDR="root"
083adc34 442--------
9ee94323 443
8c1189b6 444Please note {pve} forwards mails to `root` to the email address
9ee94323
DM
445configured for the root user.
446
8c1189b6 447IMPORTANT: The only setting that is required is `ZED_EMAIL_ADDR`. All
9ee94323
DM
448other settings are optional.
449
450
42449bdf 451[[sysadmin_zfs_limit_memory_usage]]
5eba0743 452Limit ZFS Memory Usage
9ee94323
DM
453~~~~~~~~~~~~~~~~~~~~~~
454
5eba0743 455It is good to use at most 50 percent (which is the default) of the
d362b7f4
DM
456system memory for ZFS ARC to prevent performance shortage of the
457host. Use your preferred editor to change the configuration in
8c1189b6 458`/etc/modprobe.d/zfs.conf` and insert:
9ee94323 459
5eba0743
FG
460--------
461options zfs zfs_arc_max=8589934592
462--------
9ee94323
DM
463
464This example setting limits the usage to 8GB.
465
466[IMPORTANT]
467====
5eba0743
FG
468If your root file system is ZFS you must update your initramfs every
469time this value changes:
9ee94323 470
eaefe614
FE
471----
472# update-initramfs -u
473----
9ee94323
DM
474====
475
476
dc74fc63 477[[zfs_swap]]
4128e7ff
TL
478SWAP on ZFS
479~~~~~~~~~~~
9ee94323 480
dc74fc63 481Swap-space created on a zvol may generate some troubles, like blocking the
9ee94323
DM
482server or generating a high IO load, often seen when starting a Backup
483to an external Storage.
484
485We strongly recommend to use enough memory, so that you normally do not
dc74fc63
SI
486run into low memory situations. Should you need or want to add swap, it is
487preferred to create a partition on a physical disk and use it as swapdevice.
488You can leave some space free for this purpose in the advanced options of the
489installer. Additionally, you can lower the
8c1189b6 490``swappiness'' value. A good value for servers is 10:
9ee94323 491
eaefe614
FE
492----
493# sysctl -w vm.swappiness=10
494----
9ee94323 495
8c1189b6 496To make the swappiness persistent, open `/etc/sysctl.conf` with
9ee94323
DM
497an editor of your choice and add the following line:
498
083adc34
FG
499--------
500vm.swappiness = 10
501--------
9ee94323 502
8c1189b6 503.Linux kernel `swappiness` parameter values
9ee94323
DM
504[width="100%",cols="<m,2d",options="header"]
505|===========================================================
506| Value | Strategy
507| vm.swappiness = 0 | The kernel will swap only to avoid
508an 'out of memory' condition
509| vm.swappiness = 1 | Minimum amount of swapping without
510disabling it entirely.
511| vm.swappiness = 10 | This value is sometimes recommended to
512improve performance when sufficient memory exists in a system.
513| vm.swappiness = 60 | The default value.
514| vm.swappiness = 100 | The kernel will swap aggressively.
515|===========================================================
cca0540e
FG
516
517[[zfs_encryption]]
4128e7ff
TL
518Encrypted ZFS Datasets
519~~~~~~~~~~~~~~~~~~~~~~
cca0540e
FG
520
521ZFS on Linux version 0.8.0 introduced support for native encryption of
522datasets. After an upgrade from previous ZFS on Linux versions, the encryption
229426eb 523feature can be enabled per pool:
cca0540e
FG
524
525----
526# zpool get feature@encryption tank
527NAME PROPERTY VALUE SOURCE
528tank feature@encryption disabled local
529
530# zpool set feature@encryption=enabled
531
532# zpool get feature@encryption tank
533NAME PROPERTY VALUE SOURCE
534tank feature@encryption enabled local
535----
536
537WARNING: There is currently no support for booting from pools with encrypted
538datasets using Grub, and only limited support for automatically unlocking
539encrypted datasets on boot. Older versions of ZFS without encryption support
540will not be able to decrypt stored data.
541
542NOTE: It is recommended to either unlock storage datasets manually after
543booting, or to write a custom unit to pass the key material needed for
544unlocking on boot to `zfs load-key`.
545
546WARNING: Establish and test a backup procedure before enabling encryption of
5dfeeece 547production data. If the associated key material/passphrase/keyfile has been
cca0540e
FG
548lost, accessing the encrypted data is no longer possible.
549
550Encryption needs to be setup when creating datasets/zvols, and is inherited by
551default to child datasets. For example, to create an encrypted dataset
552`tank/encrypted_data` and configure it as storage in {pve}, run the following
553commands:
554
555----
556# zfs create -o encryption=on -o keyformat=passphrase tank/encrypted_data
557Enter passphrase:
558Re-enter passphrase:
559
560# pvesm add zfspool encrypted_zfs -pool tank/encrypted_data
561----
562
563All guest volumes/disks create on this storage will be encrypted with the
564shared key material of the parent dataset.
565
566To actually use the storage, the associated key material needs to be loaded
7353437b 567and the dataset needs to be mounted. This can be done in one step with:
cca0540e
FG
568
569----
7353437b 570# zfs mount -l tank/encrypted_data
cca0540e
FG
571Enter passphrase for 'tank/encrypted_data':
572----
573
574It is also possible to use a (random) keyfile instead of prompting for a
575passphrase by setting the `keylocation` and `keyformat` properties, either at
229426eb 576creation time or with `zfs change-key` on existing datasets:
cca0540e
FG
577
578----
579# dd if=/dev/urandom of=/path/to/keyfile bs=32 count=1
580
581# zfs change-key -o keyformat=raw -o keylocation=file:///path/to/keyfile tank/encrypted_data
582----
583
584WARNING: When using a keyfile, special care needs to be taken to secure the
585keyfile against unauthorized access or accidental loss. Without the keyfile, it
586is not possible to access the plaintext data!
587
588A guest volume created underneath an encrypted dataset will have its
589`encryptionroot` property set accordingly. The key material only needs to be
590loaded once per encryptionroot to be available to all encrypted datasets
591underneath it.
592
593See the `encryptionroot`, `encryption`, `keylocation`, `keyformat` and
594`keystatus` properties, the `zfs load-key`, `zfs unload-key` and `zfs
595change-key` commands and the `Encryption` section from `man zfs` for more
596details and advanced usage.
68029ec8
FE
597
598
e06707f2
FE
599[[zfs_compression]]
600Compression in ZFS
601~~~~~~~~~~~~~~~~~~
602
603When compression is enabled on a dataset, ZFS tries to compress all *new*
604blocks before writing them and decompresses them on reading. Already
605existing data will not be compressed retroactively.
606
607You can enable compression with:
608
609----
610# zfs set compression=<algorithm> <dataset>
611----
612
613We recommend using the `lz4` algorithm, because it adds very little CPU
614overhead. Other algorithms like `lzjb` and `gzip-N`, where `N` is an
615integer from `1` (fastest) to `9` (best compression ratio), are also
616available. Depending on the algorithm and how compressible the data is,
617having compression enabled can even increase I/O performance.
618
619You can disable compression at any time with:
620
621----
622# zfs set compression=off <dataset>
623----
624
625Again, only new blocks will be affected by this change.
626
627
42449bdf 628[[sysadmin_zfs_special_device]]
68029ec8
FE
629ZFS Special Device
630~~~~~~~~~~~~~~~~~~
631
632Since version 0.8.0 ZFS supports `special` devices. A `special` device in a
633pool is used to store metadata, deduplication tables, and optionally small
634file blocks.
635
636A `special` device can improve the speed of a pool consisting of slow spinning
51e544b6
TL
637hard disks with a lot of metadata changes. For example workloads that involve
638creating, updating or deleting a large number of files will benefit from the
639presence of a `special` device. ZFS datasets can also be configured to store
640whole small files on the `special` device which can further improve the
641performance. Use fast SSDs for the `special` device.
68029ec8
FE
642
643IMPORTANT: The redundancy of the `special` device should match the one of the
644pool, since the `special` device is a point of failure for the whole pool.
645
646WARNING: Adding a `special` device to a pool cannot be undone!
647
648.Create a pool with `special` device and RAID-1:
649
eaefe614
FE
650----
651# zpool create -f -o ashift=12 <pool> mirror <device1> <device2> special mirror <device3> <device4>
652----
68029ec8
FE
653
654.Add a `special` device to an existing pool with RAID-1:
655
eaefe614
FE
656----
657# zpool add <pool> special mirror <device1> <device2>
658----
68029ec8
FE
659
660ZFS datasets expose the `special_small_blocks=<size>` property. `size` can be
661`0` to disable storing small file blocks on the `special` device or a power of
662two in the range between `512B` to `128K`. After setting the property new file
663blocks smaller than `size` will be allocated on the `special` device.
664
665IMPORTANT: If the value for `special_small_blocks` is greater than or equal to
51e544b6
TL
666the `recordsize` (default `128K`) of the dataset, *all* data will be written to
667the `special` device, so be careful!
68029ec8
FE
668
669Setting the `special_small_blocks` property on a pool will change the default
670value of that property for all child ZFS datasets (for example all containers
671in the pool will opt in for small file blocks).
672
51e544b6 673.Opt in for all file smaller than 4K-blocks pool-wide:
68029ec8 674
eaefe614
FE
675----
676# zfs set special_small_blocks=4K <pool>
677----
68029ec8
FE
678
679.Opt in for small file blocks for a single dataset:
680
eaefe614
FE
681----
682# zfs set special_small_blocks=4K <pool>/<filesystem>
683----
68029ec8
FE
684
685.Opt out from small file blocks for a single dataset:
686
eaefe614
FE
687----
688# zfs set special_small_blocks=0 <pool>/<filesystem>
689----