]> git.proxmox.com Git - pve-docs.git/blame_incremental - local-zfs.adoc
storage: fixup PBS wiki link
[pve-docs.git] / local-zfs.adoc
... / ...
CommitLineData
1[[chapter_zfs]]
2ZFS on Linux
3------------
4ifdef::wiki[]
5:pve-toplevel:
6endif::wiki[]
7
8ZFS is a combined file system and logical volume manager designed by
9Sun Microsystems. Starting with {pve} 3.4, the native Linux
10kernel port of the ZFS file system is introduced as optional
11file system and also as an additional selection for the root
12file system. There is no need for manually compile ZFS modules - all
13packages are included.
14
15By using ZFS, its possible to achieve maximum enterprise features with
16low budget hardware, but also high performance systems by leveraging
17SSD caching or even SSD only setups. ZFS can replace cost intense
18hardware raid cards by moderate CPU and memory load combined with easy
19management.
20
21.General ZFS advantages
22
23* Easy configuration and management with {pve} GUI and CLI.
24
25* Reliable
26
27* Protection against data corruption
28
29* Data compression on file system level
30
31* Snapshots
32
33* Copy-on-write clone
34
35* Various raid levels: RAID0, RAID1, RAID10, RAIDZ-1, RAIDZ-2 and RAIDZ-3
36
37* Can use SSD for cache
38
39* Self healing
40
41* Continuous integrity checking
42
43* Designed for high storage capacities
44
45* Protection against data corruption
46
47* Asynchronous replication over network
48
49* Open Source
50
51* Encryption
52
53* ...
54
55
56Hardware
57~~~~~~~~
58
59ZFS depends heavily on memory, so you need at least 8GB to start. In
60practice, use as much you can get for your hardware/budget. To prevent
61data corruption, we recommend the use of high quality ECC RAM.
62
63If you use a dedicated cache and/or log disk, you should use an
64enterprise class SSD (e.g. Intel SSD DC S3700 Series). This can
65increase the overall performance significantly.
66
67IMPORTANT: Do not use ZFS on top of hardware controller which has its
68own cache management. ZFS needs to directly communicate with disks. An
69HBA adapter is the way to go, or something like LSI controller flashed
70in ``IT'' mode.
71
72If you are experimenting with an installation of {pve} inside a VM
73(Nested Virtualization), don't use `virtio` for disks of that VM,
74since they are not supported by ZFS. Use IDE or SCSI instead (works
75also with `virtio` SCSI controller type).
76
77
78Installation as Root File System
79~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
80
81When you install using the {pve} installer, you can choose ZFS for the
82root file system. You need to select the RAID type at installation
83time:
84
85[horizontal]
86RAID0:: Also called ``striping''. The capacity of such volume is the sum
87of the capacities of all disks. But RAID0 does not add any redundancy,
88so the failure of a single drive makes the volume unusable.
89
90RAID1:: Also called ``mirroring''. Data is written identically to all
91disks. This mode requires at least 2 disks with the same size. The
92resulting capacity is that of a single disk.
93
94RAID10:: A combination of RAID0 and RAID1. Requires at least 4 disks.
95
96RAIDZ-1:: A variation on RAID-5, single parity. Requires at least 3 disks.
97
98RAIDZ-2:: A variation on RAID-5, double parity. Requires at least 4 disks.
99
100RAIDZ-3:: A variation on RAID-5, triple parity. Requires at least 5 disks.
101
102The installer automatically partitions the disks, creates a ZFS pool
103called `rpool`, and installs the root file system on the ZFS subvolume
104`rpool/ROOT/pve-1`.
105
106Another subvolume called `rpool/data` is created to store VM
107images. In order to use that with the {pve} tools, the installer
108creates the following configuration entry in `/etc/pve/storage.cfg`:
109
110----
111zfspool: local-zfs
112 pool rpool/data
113 sparse
114 content images,rootdir
115----
116
117After installation, you can view your ZFS pool status using the
118`zpool` command:
119
120----
121# zpool status
122 pool: rpool
123 state: ONLINE
124 scan: none requested
125config:
126
127 NAME STATE READ WRITE CKSUM
128 rpool ONLINE 0 0 0
129 mirror-0 ONLINE 0 0 0
130 sda2 ONLINE 0 0 0
131 sdb2 ONLINE 0 0 0
132 mirror-1 ONLINE 0 0 0
133 sdc ONLINE 0 0 0
134 sdd ONLINE 0 0 0
135
136errors: No known data errors
137----
138
139The `zfs` command is used configure and manage your ZFS file
140systems. The following command lists all file systems after
141installation:
142
143----
144# zfs list
145NAME USED AVAIL REFER MOUNTPOINT
146rpool 4.94G 7.68T 96K /rpool
147rpool/ROOT 702M 7.68T 96K /rpool/ROOT
148rpool/ROOT/pve-1 702M 7.68T 702M /
149rpool/data 96K 7.68T 96K /rpool/data
150rpool/swap 4.25G 7.69T 64K -
151----
152
153
154Bootloader
155~~~~~~~~~~
156
157Depending on whether the system is booted in EFI or legacy BIOS mode the
158{pve} installer sets up either `grub` or `systemd-boot` as main bootloader.
159See the chapter on xref:sysboot[{pve} host bootladers] for details.
160
161
162ZFS Administration
163~~~~~~~~~~~~~~~~~~
164
165This section gives you some usage examples for common tasks. ZFS
166itself is really powerful and provides many options. The main commands
167to manage ZFS are `zfs` and `zpool`. Both commands come with great
168manual pages, which can be read with:
169
170----
171# man zpool
172# man zfs
173-----
174
175[[sysadmin_zfs_create_new_zpool]]
176Create a new zpool
177^^^^^^^^^^^^^^^^^^
178
179To create a new pool, at least one disk is needed. The `ashift` should
180have the same sector-size (2 power of `ashift`) or larger as the
181underlying disk.
182
183----
184# zpool create -f -o ashift=12 <pool> <device>
185----
186
187To activate compression (see section <<zfs_compression,Compression in ZFS>>):
188
189----
190# zfs set compression=lz4 <pool>
191----
192
193[[sysadmin_zfs_create_new_zpool_raid0]]
194Create a new pool with RAID-0
195^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
196
197Minimum 1 disk
198
199----
200# zpool create -f -o ashift=12 <pool> <device1> <device2>
201----
202
203[[sysadmin_zfs_create_new_zpool_raid1]]
204Create a new pool with RAID-1
205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
206
207Minimum 2 disks
208
209----
210# zpool create -f -o ashift=12 <pool> mirror <device1> <device2>
211----
212
213[[sysadmin_zfs_create_new_zpool_raid10]]
214Create a new pool with RAID-10
215^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
216
217Minimum 4 disks
218
219----
220# zpool create -f -o ashift=12 <pool> mirror <device1> <device2> mirror <device3> <device4>
221----
222
223[[sysadmin_zfs_create_new_zpool_raidz1]]
224Create a new pool with RAIDZ-1
225^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
226
227Minimum 3 disks
228
229----
230# zpool create -f -o ashift=12 <pool> raidz1 <device1> <device2> <device3>
231----
232
233Create a new pool with RAIDZ-2
234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
235
236Minimum 4 disks
237
238----
239# zpool create -f -o ashift=12 <pool> raidz2 <device1> <device2> <device3> <device4>
240----
241
242[[sysadmin_zfs_create_new_zpool_with_cache]]
243Create a new pool with cache (L2ARC)
244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
245
246It is possible to use a dedicated cache drive partition to increase
247the performance (use SSD).
248
249As `<device>` it is possible to use more devices, like it's shown in
250"Create a new pool with RAID*".
251
252----
253# zpool create -f -o ashift=12 <pool> <device> cache <cache_device>
254----
255
256[[sysadmin_zfs_create_new_zpool_with_log]]
257Create a new pool with log (ZIL)
258^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
259
260It is possible to use a dedicated cache drive partition to increase
261the performance(SSD).
262
263As `<device>` it is possible to use more devices, like it's shown in
264"Create a new pool with RAID*".
265
266----
267# zpool create -f -o ashift=12 <pool> <device> log <log_device>
268----
269
270[[sysadmin_zfs_add_cache_and_log_dev]]
271Add cache and log to an existing pool
272^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
273
274If you have a pool without cache and log. First partition the SSD in
2752 partition with `parted` or `gdisk`
276
277IMPORTANT: Always use GPT partition tables.
278
279The maximum size of a log device should be about half the size of
280physical memory, so this is usually quite small. The rest of the SSD
281can be used as cache.
282
283----
284# zpool add -f <pool> log <device-part1> cache <device-part2>
285----
286
287[[sysadmin_zfs_change_failed_dev]]
288Changing a failed device
289^^^^^^^^^^^^^^^^^^^^^^^^
290
291----
292# zpool replace -f <pool> <old device> <new device>
293----
294
295.Changing a failed bootable device
296
297Depending on how {pve} was installed it is either using `grub` or `systemd-boot`
298as bootloader (see xref:sysboot[Host Bootloader]).
299
300The first steps of copying the partition table, reissuing GUIDs and replacing
301the ZFS partition are the same. To make the system bootable from the new disk,
302different steps are needed which depend on the bootloader in use.
303
304----
305# sgdisk <healthy bootable device> -R <new device>
306# sgdisk -G <new device>
307# zpool replace -f <pool> <old zfs partition> <new zfs partition>
308----
309
310NOTE: Use the `zpool status -v` command to monitor how far the resivlering
311process of the new disk has progressed.
312
313.With `systemd-boot`:
314
315----
316# pve-efiboot-tool format <new disk's ESP>
317# pve-efiboot-tool init <new disk's ESP>
318----
319
320NOTE: `ESP` stands for EFI System Partition, which is setup as partition #2 on
321bootable disks setup by the {pve} installer since version 5.4. For details, see
322xref:sysboot_systemd_boot_setup[Setting up a new partition for use as synced ESP].
323
324.With `grub`:
325
326----
327# grub-install <new disk>
328----
329
330Activate E-Mail Notification
331~~~~~~~~~~~~~~~~~~~~~~~~~~~~
332
333ZFS comes with an event daemon, which monitors events generated by the
334ZFS kernel module. The daemon can also send emails on ZFS events like
335pool errors. Newer ZFS packages ship the daemon in a separate package,
336and you can install it using `apt-get`:
337
338----
339# apt-get install zfs-zed
340----
341
342To activate the daemon it is necessary to edit `/etc/zfs/zed.d/zed.rc` with your
343favourite editor, and uncomment the `ZED_EMAIL_ADDR` setting:
344
345--------
346ZED_EMAIL_ADDR="root"
347--------
348
349Please note {pve} forwards mails to `root` to the email address
350configured for the root user.
351
352IMPORTANT: The only setting that is required is `ZED_EMAIL_ADDR`. All
353other settings are optional.
354
355
356[[sysadmin_zfs_limit_memory_usage]]
357Limit ZFS Memory Usage
358~~~~~~~~~~~~~~~~~~~~~~
359
360It is good to use at most 50 percent (which is the default) of the
361system memory for ZFS ARC to prevent performance shortage of the
362host. Use your preferred editor to change the configuration in
363`/etc/modprobe.d/zfs.conf` and insert:
364
365--------
366options zfs zfs_arc_max=8589934592
367--------
368
369This example setting limits the usage to 8GB.
370
371[IMPORTANT]
372====
373If your root file system is ZFS you must update your initramfs every
374time this value changes:
375
376----
377# update-initramfs -u
378----
379====
380
381
382[[zfs_swap]]
383SWAP on ZFS
384~~~~~~~~~~~
385
386Swap-space created on a zvol may generate some troubles, like blocking the
387server or generating a high IO load, often seen when starting a Backup
388to an external Storage.
389
390We strongly recommend to use enough memory, so that you normally do not
391run into low memory situations. Should you need or want to add swap, it is
392preferred to create a partition on a physical disk and use it as swapdevice.
393You can leave some space free for this purpose in the advanced options of the
394installer. Additionally, you can lower the
395``swappiness'' value. A good value for servers is 10:
396
397----
398# sysctl -w vm.swappiness=10
399----
400
401To make the swappiness persistent, open `/etc/sysctl.conf` with
402an editor of your choice and add the following line:
403
404--------
405vm.swappiness = 10
406--------
407
408.Linux kernel `swappiness` parameter values
409[width="100%",cols="<m,2d",options="header"]
410|===========================================================
411| Value | Strategy
412| vm.swappiness = 0 | The kernel will swap only to avoid
413an 'out of memory' condition
414| vm.swappiness = 1 | Minimum amount of swapping without
415disabling it entirely.
416| vm.swappiness = 10 | This value is sometimes recommended to
417improve performance when sufficient memory exists in a system.
418| vm.swappiness = 60 | The default value.
419| vm.swappiness = 100 | The kernel will swap aggressively.
420|===========================================================
421
422[[zfs_encryption]]
423Encrypted ZFS Datasets
424~~~~~~~~~~~~~~~~~~~~~~
425
426ZFS on Linux version 0.8.0 introduced support for native encryption of
427datasets. After an upgrade from previous ZFS on Linux versions, the encryption
428feature can be enabled per pool:
429
430----
431# zpool get feature@encryption tank
432NAME PROPERTY VALUE SOURCE
433tank feature@encryption disabled local
434
435# zpool set feature@encryption=enabled
436
437# zpool get feature@encryption tank
438NAME PROPERTY VALUE SOURCE
439tank feature@encryption enabled local
440----
441
442WARNING: There is currently no support for booting from pools with encrypted
443datasets using Grub, and only limited support for automatically unlocking
444encrypted datasets on boot. Older versions of ZFS without encryption support
445will not be able to decrypt stored data.
446
447NOTE: It is recommended to either unlock storage datasets manually after
448booting, or to write a custom unit to pass the key material needed for
449unlocking on boot to `zfs load-key`.
450
451WARNING: Establish and test a backup procedure before enabling encryption of
452production data. If the associated key material/passphrase/keyfile has been
453lost, accessing the encrypted data is no longer possible.
454
455Encryption needs to be setup when creating datasets/zvols, and is inherited by
456default to child datasets. For example, to create an encrypted dataset
457`tank/encrypted_data` and configure it as storage in {pve}, run the following
458commands:
459
460----
461# zfs create -o encryption=on -o keyformat=passphrase tank/encrypted_data
462Enter passphrase:
463Re-enter passphrase:
464
465# pvesm add zfspool encrypted_zfs -pool tank/encrypted_data
466----
467
468All guest volumes/disks create on this storage will be encrypted with the
469shared key material of the parent dataset.
470
471To actually use the storage, the associated key material needs to be loaded
472with `zfs load-key`:
473
474----
475# zfs load-key tank/encrypted_data
476Enter passphrase for 'tank/encrypted_data':
477----
478
479It is also possible to use a (random) keyfile instead of prompting for a
480passphrase by setting the `keylocation` and `keyformat` properties, either at
481creation time or with `zfs change-key` on existing datasets:
482
483----
484# dd if=/dev/urandom of=/path/to/keyfile bs=32 count=1
485
486# zfs change-key -o keyformat=raw -o keylocation=file:///path/to/keyfile tank/encrypted_data
487----
488
489WARNING: When using a keyfile, special care needs to be taken to secure the
490keyfile against unauthorized access or accidental loss. Without the keyfile, it
491is not possible to access the plaintext data!
492
493A guest volume created underneath an encrypted dataset will have its
494`encryptionroot` property set accordingly. The key material only needs to be
495loaded once per encryptionroot to be available to all encrypted datasets
496underneath it.
497
498See the `encryptionroot`, `encryption`, `keylocation`, `keyformat` and
499`keystatus` properties, the `zfs load-key`, `zfs unload-key` and `zfs
500change-key` commands and the `Encryption` section from `man zfs` for more
501details and advanced usage.
502
503
504[[zfs_compression]]
505Compression in ZFS
506~~~~~~~~~~~~~~~~~~
507
508When compression is enabled on a dataset, ZFS tries to compress all *new*
509blocks before writing them and decompresses them on reading. Already
510existing data will not be compressed retroactively.
511
512You can enable compression with:
513
514----
515# zfs set compression=<algorithm> <dataset>
516----
517
518We recommend using the `lz4` algorithm, because it adds very little CPU
519overhead. Other algorithms like `lzjb` and `gzip-N`, where `N` is an
520integer from `1` (fastest) to `9` (best compression ratio), are also
521available. Depending on the algorithm and how compressible the data is,
522having compression enabled can even increase I/O performance.
523
524You can disable compression at any time with:
525
526----
527# zfs set compression=off <dataset>
528----
529
530Again, only new blocks will be affected by this change.
531
532
533[[sysadmin_zfs_special_device]]
534ZFS Special Device
535~~~~~~~~~~~~~~~~~~
536
537Since version 0.8.0 ZFS supports `special` devices. A `special` device in a
538pool is used to store metadata, deduplication tables, and optionally small
539file blocks.
540
541A `special` device can improve the speed of a pool consisting of slow spinning
542hard disks with a lot of metadata changes. For example workloads that involve
543creating, updating or deleting a large number of files will benefit from the
544presence of a `special` device. ZFS datasets can also be configured to store
545whole small files on the `special` device which can further improve the
546performance. Use fast SSDs for the `special` device.
547
548IMPORTANT: The redundancy of the `special` device should match the one of the
549pool, since the `special` device is a point of failure for the whole pool.
550
551WARNING: Adding a `special` device to a pool cannot be undone!
552
553.Create a pool with `special` device and RAID-1:
554
555----
556# zpool create -f -o ashift=12 <pool> mirror <device1> <device2> special mirror <device3> <device4>
557----
558
559.Add a `special` device to an existing pool with RAID-1:
560
561----
562# zpool add <pool> special mirror <device1> <device2>
563----
564
565ZFS datasets expose the `special_small_blocks=<size>` property. `size` can be
566`0` to disable storing small file blocks on the `special` device or a power of
567two in the range between `512B` to `128K`. After setting the property new file
568blocks smaller than `size` will be allocated on the `special` device.
569
570IMPORTANT: If the value for `special_small_blocks` is greater than or equal to
571the `recordsize` (default `128K`) of the dataset, *all* data will be written to
572the `special` device, so be careful!
573
574Setting the `special_small_blocks` property on a pool will change the default
575value of that property for all child ZFS datasets (for example all containers
576in the pool will opt in for small file blocks).
577
578.Opt in for all file smaller than 4K-blocks pool-wide:
579
580----
581# zfs set special_small_blocks=4K <pool>
582----
583
584.Opt in for small file blocks for a single dataset:
585
586----
587# zfs set special_small_blocks=4K <pool>/<filesystem>
588----
589
590.Opt out from small file blocks for a single dataset:
591
592----
593# zfs set special_small_blocks=0 <pool>/<filesystem>
594----