]> git.proxmox.com Git - qemu.git/blame - alpha-dis.c
Don't leak VLANClientState on PCI hot remove
[qemu.git] / alpha-dis.c
CommitLineData
a993ba85
FB
1/* alpha-dis.c -- Disassemble Alpha AXP instructions
2 Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@tamu.edu>,
4 patterned after the PPC opcode handling written by Ian Lance Taylor.
5
6This file is part of GDB, GAS, and the GNU binutils.
7
8GDB, GAS, and the GNU binutils are free software; you can redistribute
9them and/or modify them under the terms of the GNU General Public
10License as published by the Free Software Foundation; either version
112, or (at your option) any later version.
12
13GDB, GAS, and the GNU binutils are distributed in the hope that they
14will be useful, but WITHOUT ANY WARRANTY; without even the implied
15warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
16the GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this file; see the file COPYING. If not, write to the Free
fad6cb1a
AJ
20Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
2102110-1301, USA. */
a993ba85
FB
22
23#include <stdio.h>
24#include "dis-asm.h"
25
a993ba85
FB
26/* The opcode table is an array of struct alpha_opcode. */
27
28struct alpha_opcode
29{
30 /* The opcode name. */
31 const char *name;
32
33 /* The opcode itself. Those bits which will be filled in with
34 operands are zeroes. */
35 unsigned opcode;
36
37 /* The opcode mask. This is used by the disassembler. This is a
38 mask containing ones indicating those bits which must match the
39 opcode field, and zeroes indicating those bits which need not
40 match (and are presumably filled in by operands). */
41 unsigned mask;
42
43 /* One bit flags for the opcode. These are primarily used to
44 indicate specific processors and environments support the
45 instructions. The defined values are listed below. */
46 unsigned flags;
47
48 /* An array of operand codes. Each code is an index into the
49 operand table. They appear in the order which the operands must
50 appear in assembly code, and are terminated by a zero. */
51 unsigned char operands[4];
52};
53
54/* The table itself is sorted by major opcode number, and is otherwise
55 in the order in which the disassembler should consider
56 instructions. */
57extern const struct alpha_opcode alpha_opcodes[];
58extern const unsigned alpha_num_opcodes;
59
60/* Values defined for the flags field of a struct alpha_opcode. */
61
62/* CPU Availability */
63#define AXP_OPCODE_BASE 0x0001 /* Base architecture -- all cpus. */
64#define AXP_OPCODE_EV4 0x0002 /* EV4 specific PALcode insns. */
65#define AXP_OPCODE_EV5 0x0004 /* EV5 specific PALcode insns. */
66#define AXP_OPCODE_EV6 0x0008 /* EV6 specific PALcode insns. */
67#define AXP_OPCODE_BWX 0x0100 /* Byte/word extension (amask bit 0). */
68#define AXP_OPCODE_CIX 0x0200 /* "Count" extension (amask bit 1). */
69#define AXP_OPCODE_MAX 0x0400 /* Multimedia extension (amask bit 8). */
70
71#define AXP_OPCODE_NOPAL (~(AXP_OPCODE_EV4|AXP_OPCODE_EV5|AXP_OPCODE_EV6))
72
73/* A macro to extract the major opcode from an instruction. */
74#define AXP_OP(i) (((i) >> 26) & 0x3F)
75
76/* The total number of major opcodes. */
77#define AXP_NOPS 0x40
78
79\f
80/* The operands table is an array of struct alpha_operand. */
81
82struct alpha_operand
83{
84 /* The number of bits in the operand. */
85 unsigned int bits : 5;
86
87 /* How far the operand is left shifted in the instruction. */
88 unsigned int shift : 5;
89
90 /* The default relocation type for this operand. */
91 signed int default_reloc : 16;
92
93 /* One bit syntax flags. */
94 unsigned int flags : 16;
95
96 /* Insertion function. This is used by the assembler. To insert an
97 operand value into an instruction, check this field.
98
99 If it is NULL, execute
100 i |= (op & ((1 << o->bits) - 1)) << o->shift;
101 (i is the instruction which we are filling in, o is a pointer to
102 this structure, and op is the opcode value; this assumes twos
103 complement arithmetic).
104
105 If this field is not NULL, then simply call it with the
106 instruction and the operand value. It will return the new value
107 of the instruction. If the ERRMSG argument is not NULL, then if
108 the operand value is illegal, *ERRMSG will be set to a warning
109 string (the operand will be inserted in any case). If the
110 operand value is legal, *ERRMSG will be unchanged (most operands
111 can accept any value). */
112 unsigned (*insert) PARAMS ((unsigned instruction, int op,
113 const char **errmsg));
114
115 /* Extraction function. This is used by the disassembler. To
116 extract this operand type from an instruction, check this field.
117
118 If it is NULL, compute
119 op = ((i) >> o->shift) & ((1 << o->bits) - 1);
120 if ((o->flags & AXP_OPERAND_SIGNED) != 0
121 && (op & (1 << (o->bits - 1))) != 0)
122 op -= 1 << o->bits;
123 (i is the instruction, o is a pointer to this structure, and op
124 is the result; this assumes twos complement arithmetic).
125
126 If this field is not NULL, then simply call it with the
127 instruction value. It will return the value of the operand. If
128 the INVALID argument is not NULL, *INVALID will be set to
129 non-zero if this operand type can not actually be extracted from
130 this operand (i.e., the instruction does not match). If the
131 operand is valid, *INVALID will not be changed. */
132 int (*extract) PARAMS ((unsigned instruction, int *invalid));
133};
134
135/* Elements in the table are retrieved by indexing with values from
136 the operands field of the alpha_opcodes table. */
137
138extern const struct alpha_operand alpha_operands[];
139extern const unsigned alpha_num_operands;
140
141/* Values defined for the flags field of a struct alpha_operand. */
142
143/* Mask for selecting the type for typecheck purposes */
144#define AXP_OPERAND_TYPECHECK_MASK \
145 (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA | AXP_OPERAND_IR | \
146 AXP_OPERAND_FPR | AXP_OPERAND_RELATIVE | AXP_OPERAND_SIGNED | \
147 AXP_OPERAND_UNSIGNED)
148
149/* This operand does not actually exist in the assembler input. This
150 is used to support extended mnemonics, for which two operands fields
151 are identical. The assembler should call the insert function with
152 any op value. The disassembler should call the extract function,
153 ignore the return value, and check the value placed in the invalid
154 argument. */
155#define AXP_OPERAND_FAKE 01
156
157/* The operand should be wrapped in parentheses rather than separated
158 from the previous by a comma. This is used for the load and store
159 instructions which want their operands to look like "Ra,disp(Rb)". */
160#define AXP_OPERAND_PARENS 02
161
162/* Used in combination with PARENS, this supresses the supression of
163 the comma. This is used for "jmp Ra,(Rb),hint". */
164#define AXP_OPERAND_COMMA 04
165
166/* This operand names an integer register. */
167#define AXP_OPERAND_IR 010
168
169/* This operand names a floating point register. */
170#define AXP_OPERAND_FPR 020
171
172/* This operand is a relative branch displacement. The disassembler
173 prints these symbolically if possible. */
174#define AXP_OPERAND_RELATIVE 040
175
176/* This operand takes signed values. */
177#define AXP_OPERAND_SIGNED 0100
178
179/* This operand takes unsigned values. This exists primarily so that
180 a flags value of 0 can be treated as end-of-arguments. */
181#define AXP_OPERAND_UNSIGNED 0200
182
183/* Supress overflow detection on this field. This is used for hints. */
184#define AXP_OPERAND_NOOVERFLOW 0400
185
186/* Mask for optional argument default value. */
187#define AXP_OPERAND_OPTIONAL_MASK 07000
188
189/* This operand defaults to zero. This is used for jump hints. */
190#define AXP_OPERAND_DEFAULT_ZERO 01000
191
192/* This operand should default to the first (real) operand and is used
193 in conjunction with AXP_OPERAND_OPTIONAL. This allows
194 "and $0,3,$0" to be written as "and $0,3", etc. I don't like
195 it, but it's what DEC does. */
196#define AXP_OPERAND_DEFAULT_FIRST 02000
197
198/* Similarly, this operand should default to the second (real) operand.
199 This allows "negl $0" instead of "negl $0,$0". */
200#define AXP_OPERAND_DEFAULT_SECOND 04000
201
202\f
203/* Register common names */
204
205#define AXP_REG_V0 0
206#define AXP_REG_T0 1
207#define AXP_REG_T1 2
208#define AXP_REG_T2 3
209#define AXP_REG_T3 4
210#define AXP_REG_T4 5
211#define AXP_REG_T5 6
212#define AXP_REG_T6 7
213#define AXP_REG_T7 8
214#define AXP_REG_S0 9
215#define AXP_REG_S1 10
216#define AXP_REG_S2 11
217#define AXP_REG_S3 12
218#define AXP_REG_S4 13
219#define AXP_REG_S5 14
220#define AXP_REG_FP 15
221#define AXP_REG_A0 16
222#define AXP_REG_A1 17
223#define AXP_REG_A2 18
224#define AXP_REG_A3 19
225#define AXP_REG_A4 20
226#define AXP_REG_A5 21
227#define AXP_REG_T8 22
228#define AXP_REG_T9 23
229#define AXP_REG_T10 24
230#define AXP_REG_T11 25
231#define AXP_REG_RA 26
232#define AXP_REG_PV 27
233#define AXP_REG_T12 27
234#define AXP_REG_AT 28
235#define AXP_REG_GP 29
236#define AXP_REG_SP 30
237#define AXP_REG_ZERO 31
238
239#define bfd_mach_alpha_ev4 0x10
240#define bfd_mach_alpha_ev5 0x20
241#define bfd_mach_alpha_ev6 0x30
242
243enum bfd_reloc_code_real {
244 BFD_RELOC_23_PCREL_S2,
245 BFD_RELOC_ALPHA_HINT
246};
247
a993ba85
FB
248/* This file holds the Alpha AXP opcode table. The opcode table includes
249 almost all of the extended instruction mnemonics. This permits the
250 disassembler to use them, and simplifies the assembler logic, at the
251 cost of increasing the table size. The table is strictly constant
252 data, so the compiler should be able to put it in the text segment.
253
254 This file also holds the operand table. All knowledge about inserting
255 and extracting operands from instructions is kept in this file.
256
257 The information for the base instruction set was compiled from the
258 _Alpha Architecture Handbook_, Digital Order Number EC-QD2KB-TE,
259 version 2.
260
261 The information for the post-ev5 architecture extensions BWX, CIX and
262 MAX came from version 3 of this same document, which is also available
263 on-line at http://ftp.digital.com/pub/Digital/info/semiconductor
264 /literature/alphahb2.pdf
265
266 The information for the EV4 PALcode instructions was compiled from
267 _DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware
268 Reference Manual_, Digital Order Number EC-Q9ZUA-TE, preliminary
269 revision dated June 1994.
270
271 The information for the EV5 PALcode instructions was compiled from
272 _Alpha 21164 Microprocessor Hardware Reference Manual_, Digital
273 Order Number EC-QAEQB-TE, preliminary revision dated April 1995. */
274\f
275/* Local insertion and extraction functions */
276
277static unsigned insert_rba PARAMS((unsigned, int, const char **));
278static unsigned insert_rca PARAMS((unsigned, int, const char **));
279static unsigned insert_za PARAMS((unsigned, int, const char **));
280static unsigned insert_zb PARAMS((unsigned, int, const char **));
281static unsigned insert_zc PARAMS((unsigned, int, const char **));
282static unsigned insert_bdisp PARAMS((unsigned, int, const char **));
283static unsigned insert_jhint PARAMS((unsigned, int, const char **));
284static unsigned insert_ev6hwjhint PARAMS((unsigned, int, const char **));
285
286static int extract_rba PARAMS((unsigned, int *));
287static int extract_rca PARAMS((unsigned, int *));
288static int extract_za PARAMS((unsigned, int *));
289static int extract_zb PARAMS((unsigned, int *));
290static int extract_zc PARAMS((unsigned, int *));
291static int extract_bdisp PARAMS((unsigned, int *));
292static int extract_jhint PARAMS((unsigned, int *));
293static int extract_ev6hwjhint PARAMS((unsigned, int *));
294
295\f
296/* The operands table */
297
298const struct alpha_operand alpha_operands[] =
299{
300 /* The fields are bits, shift, insert, extract, flags */
301 /* The zero index is used to indicate end-of-list */
302#define UNUSED 0
303 { 0, 0, 0, 0, 0, 0 },
304
305 /* The plain integer register fields */
306#define RA (UNUSED + 1)
307 { 5, 21, 0, AXP_OPERAND_IR, 0, 0 },
308#define RB (RA + 1)
309 { 5, 16, 0, AXP_OPERAND_IR, 0, 0 },
310#define RC (RB + 1)
311 { 5, 0, 0, AXP_OPERAND_IR, 0, 0 },
312
313 /* The plain fp register fields */
314#define FA (RC + 1)
315 { 5, 21, 0, AXP_OPERAND_FPR, 0, 0 },
316#define FB (FA + 1)
317 { 5, 16, 0, AXP_OPERAND_FPR, 0, 0 },
318#define FC (FB + 1)
319 { 5, 0, 0, AXP_OPERAND_FPR, 0, 0 },
320
321 /* The integer registers when they are ZERO */
322#define ZA (FC + 1)
323 { 5, 21, 0, AXP_OPERAND_FAKE, insert_za, extract_za },
324#define ZB (ZA + 1)
325 { 5, 16, 0, AXP_OPERAND_FAKE, insert_zb, extract_zb },
326#define ZC (ZB + 1)
327 { 5, 0, 0, AXP_OPERAND_FAKE, insert_zc, extract_zc },
328
329 /* The RB field when it needs parentheses */
330#define PRB (ZC + 1)
331 { 5, 16, 0, AXP_OPERAND_IR|AXP_OPERAND_PARENS, 0, 0 },
332
333 /* The RB field when it needs parentheses _and_ a preceding comma */
334#define CPRB (PRB + 1)
335 { 5, 16, 0,
336 AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA, 0, 0 },
337
338 /* The RB field when it must be the same as the RA field */
339#define RBA (CPRB + 1)
340 { 5, 16, 0, AXP_OPERAND_FAKE, insert_rba, extract_rba },
341
342 /* The RC field when it must be the same as the RB field */
343#define RCA (RBA + 1)
344 { 5, 0, 0, AXP_OPERAND_FAKE, insert_rca, extract_rca },
345
346 /* The RC field when it can *default* to RA */
347#define DRC1 (RCA + 1)
348 { 5, 0, 0,
349 AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
350
351 /* The RC field when it can *default* to RB */
352#define DRC2 (DRC1 + 1)
353 { 5, 0, 0,
354 AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
355
356 /* The FC field when it can *default* to RA */
357#define DFC1 (DRC2 + 1)
358 { 5, 0, 0,
359 AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
360
361 /* The FC field when it can *default* to RB */
362#define DFC2 (DFC1 + 1)
363 { 5, 0, 0,
364 AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
365
366 /* The unsigned 8-bit literal of Operate format insns */
367#define LIT (DFC2 + 1)
368 { 8, 13, -LIT, AXP_OPERAND_UNSIGNED, 0, 0 },
369
370 /* The signed 16-bit displacement of Memory format insns. From here
371 we can't tell what relocation should be used, so don't use a default. */
372#define MDISP (LIT + 1)
373 { 16, 0, -MDISP, AXP_OPERAND_SIGNED, 0, 0 },
374
375 /* The signed "23-bit" aligned displacement of Branch format insns */
376#define BDISP (MDISP + 1)
5fafdf24 377 { 21, 0, BFD_RELOC_23_PCREL_S2,
a993ba85
FB
378 AXP_OPERAND_RELATIVE, insert_bdisp, extract_bdisp },
379
380 /* The 26-bit PALcode function */
381#define PALFN (BDISP + 1)
382 { 26, 0, -PALFN, AXP_OPERAND_UNSIGNED, 0, 0 },
383
384 /* The optional signed "16-bit" aligned displacement of the JMP/JSR hint */
385#define JMPHINT (PALFN + 1)
386 { 14, 0, BFD_RELOC_ALPHA_HINT,
387 AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
388 insert_jhint, extract_jhint },
389
390 /* The optional hint to RET/JSR_COROUTINE */
391#define RETHINT (JMPHINT + 1)
392 { 14, 0, -RETHINT,
393 AXP_OPERAND_UNSIGNED|AXP_OPERAND_DEFAULT_ZERO, 0, 0 },
394
395 /* The 12-bit displacement for the ev[46] hw_{ld,st} (pal1b/pal1f) insns */
396#define EV4HWDISP (RETHINT + 1)
397#define EV6HWDISP (EV4HWDISP)
398 { 12, 0, -EV4HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
399
400 /* The 5-bit index for the ev4 hw_m[ft]pr (pal19/pal1d) insns */
401#define EV4HWINDEX (EV4HWDISP + 1)
402 { 5, 0, -EV4HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
403
404 /* The 8-bit index for the oddly unqualified hw_m[tf]pr insns
405 that occur in DEC PALcode. */
406#define EV4EXTHWINDEX (EV4HWINDEX + 1)
407 { 8, 0, -EV4EXTHWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
408
409 /* The 10-bit displacement for the ev5 hw_{ld,st} (pal1b/pal1f) insns */
410#define EV5HWDISP (EV4EXTHWINDEX + 1)
411 { 10, 0, -EV5HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
412
413 /* The 16-bit index for the ev5 hw_m[ft]pr (pal19/pal1d) insns */
414#define EV5HWINDEX (EV5HWDISP + 1)
415 { 16, 0, -EV5HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
416
417 /* The 16-bit combined index/scoreboard mask for the ev6
418 hw_m[ft]pr (pal19/pal1d) insns */
419#define EV6HWINDEX (EV5HWINDEX + 1)
420 { 16, 0, -EV6HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
421
422 /* The 13-bit branch hint for the ev6 hw_jmp/jsr (pal1e) insn */
423#define EV6HWJMPHINT (EV6HWINDEX+ 1)
424 { 8, 0, -EV6HWJMPHINT,
425 AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
426 insert_ev6hwjhint, extract_ev6hwjhint }
427};
428
429const unsigned alpha_num_operands = sizeof(alpha_operands)/sizeof(*alpha_operands);
430
431/* The RB field when it is the same as the RA field in the same insn.
432 This operand is marked fake. The insertion function just copies
433 the RA field into the RB field, and the extraction function just
434 checks that the fields are the same. */
435
436/*ARGSUSED*/
437static unsigned
438insert_rba(insn, value, errmsg)
439 unsigned insn;
440 int value ATTRIBUTE_UNUSED;
441 const char **errmsg ATTRIBUTE_UNUSED;
442{
443 return insn | (((insn >> 21) & 0x1f) << 16);
444}
445
446static int
447extract_rba(insn, invalid)
448 unsigned insn;
449 int *invalid;
450{
451 if (invalid != (int *) NULL
452 && ((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
453 *invalid = 1;
454 return 0;
455}
456
457
458/* The same for the RC field */
459
460/*ARGSUSED*/
461static unsigned
462insert_rca(insn, value, errmsg)
463 unsigned insn;
464 int value ATTRIBUTE_UNUSED;
465 const char **errmsg ATTRIBUTE_UNUSED;
466{
467 return insn | ((insn >> 21) & 0x1f);
468}
469
470static int
471extract_rca(insn, invalid)
472 unsigned insn;
473 int *invalid;
474{
475 if (invalid != (int *) NULL
476 && ((insn >> 21) & 0x1f) != (insn & 0x1f))
477 *invalid = 1;
478 return 0;
479}
480
481
482/* Fake arguments in which the registers must be set to ZERO */
483
484/*ARGSUSED*/
485static unsigned
486insert_za(insn, value, errmsg)
487 unsigned insn;
488 int value ATTRIBUTE_UNUSED;
489 const char **errmsg ATTRIBUTE_UNUSED;
490{
491 return insn | (31 << 21);
492}
493
494static int
495extract_za(insn, invalid)
496 unsigned insn;
497 int *invalid;
498{
499 if (invalid != (int *) NULL && ((insn >> 21) & 0x1f) != 31)
500 *invalid = 1;
501 return 0;
502}
503
504/*ARGSUSED*/
505static unsigned
506insert_zb(insn, value, errmsg)
507 unsigned insn;
508 int value ATTRIBUTE_UNUSED;
509 const char **errmsg ATTRIBUTE_UNUSED;
510{
511 return insn | (31 << 16);
512}
513
514static int
515extract_zb(insn, invalid)
516 unsigned insn;
517 int *invalid;
518{
519 if (invalid != (int *) NULL && ((insn >> 16) & 0x1f) != 31)
520 *invalid = 1;
521 return 0;
522}
523
524/*ARGSUSED*/
525static unsigned
526insert_zc(insn, value, errmsg)
527 unsigned insn;
528 int value ATTRIBUTE_UNUSED;
529 const char **errmsg ATTRIBUTE_UNUSED;
530{
531 return insn | 31;
532}
533
534static int
535extract_zc(insn, invalid)
536 unsigned insn;
537 int *invalid;
538{
539 if (invalid != (int *) NULL && (insn & 0x1f) != 31)
540 *invalid = 1;
541 return 0;
542}
543
544
545/* The displacement field of a Branch format insn. */
546
547static unsigned
548insert_bdisp(insn, value, errmsg)
549 unsigned insn;
550 int value;
551 const char **errmsg;
552{
553 if (errmsg != (const char **)NULL && (value & 3))
554 *errmsg = _("branch operand unaligned");
555 return insn | ((value / 4) & 0x1FFFFF);
556}
557
558/*ARGSUSED*/
559static int
560extract_bdisp(insn, invalid)
561 unsigned insn;
562 int *invalid ATTRIBUTE_UNUSED;
563{
564 return 4 * (((insn & 0x1FFFFF) ^ 0x100000) - 0x100000);
565}
566
567
568/* The hint field of a JMP/JSR insn. */
569
570static unsigned
571insert_jhint(insn, value, errmsg)
572 unsigned insn;
573 int value;
574 const char **errmsg;
575{
576 if (errmsg != (const char **)NULL && (value & 3))
577 *errmsg = _("jump hint unaligned");
578 return insn | ((value / 4) & 0x3FFF);
579}
580
581/*ARGSUSED*/
582static int
583extract_jhint(insn, invalid)
584 unsigned insn;
585 int *invalid ATTRIBUTE_UNUSED;
586{
587 return 4 * (((insn & 0x3FFF) ^ 0x2000) - 0x2000);
588}
589
590/* The hint field of an EV6 HW_JMP/JSR insn. */
591
592static unsigned
593insert_ev6hwjhint(insn, value, errmsg)
594 unsigned insn;
595 int value;
596 const char **errmsg;
597{
598 if (errmsg != (const char **)NULL && (value & 3))
599 *errmsg = _("jump hint unaligned");
600 return insn | ((value / 4) & 0x1FFF);
601}
602
603/*ARGSUSED*/
604static int
605extract_ev6hwjhint(insn, invalid)
606 unsigned insn;
607 int *invalid ATTRIBUTE_UNUSED;
608{
609 return 4 * (((insn & 0x1FFF) ^ 0x1000) - 0x1000);
610}
611
612\f
613/* Macros used to form opcodes */
614
615/* The main opcode */
616#define OP(x) (((x) & 0x3F) << 26)
617#define OP_MASK 0xFC000000
618
619/* Branch format instructions */
620#define BRA_(oo) OP(oo)
621#define BRA_MASK OP_MASK
622#define BRA(oo) BRA_(oo), BRA_MASK
623
624/* Floating point format instructions */
625#define FP_(oo,fff) (OP(oo) | (((fff) & 0x7FF) << 5))
626#define FP_MASK (OP_MASK | 0xFFE0)
627#define FP(oo,fff) FP_(oo,fff), FP_MASK
628
629/* Memory format instructions */
630#define MEM_(oo) OP(oo)
631#define MEM_MASK OP_MASK
632#define MEM(oo) MEM_(oo), MEM_MASK
633
634/* Memory/Func Code format instructions */
635#define MFC_(oo,ffff) (OP(oo) | ((ffff) & 0xFFFF))
636#define MFC_MASK (OP_MASK | 0xFFFF)
637#define MFC(oo,ffff) MFC_(oo,ffff), MFC_MASK
638
639/* Memory/Branch format instructions */
640#define MBR_(oo,h) (OP(oo) | (((h) & 3) << 14))
641#define MBR_MASK (OP_MASK | 0xC000)
642#define MBR(oo,h) MBR_(oo,h), MBR_MASK
643
644/* Operate format instructions. The OPRL variant specifies a
645 literal second argument. */
646#define OPR_(oo,ff) (OP(oo) | (((ff) & 0x7F) << 5))
647#define OPRL_(oo,ff) (OPR_((oo),(ff)) | 0x1000)
648#define OPR_MASK (OP_MASK | 0x1FE0)
649#define OPR(oo,ff) OPR_(oo,ff), OPR_MASK
650#define OPRL(oo,ff) OPRL_(oo,ff), OPR_MASK
651
652/* Generic PALcode format instructions */
653#define PCD_(oo) OP(oo)
654#define PCD_MASK OP_MASK
655#define PCD(oo) PCD_(oo), PCD_MASK
656
657/* Specific PALcode instructions */
658#define SPCD_(oo,ffff) (OP(oo) | ((ffff) & 0x3FFFFFF))
659#define SPCD_MASK 0xFFFFFFFF
660#define SPCD(oo,ffff) SPCD_(oo,ffff), SPCD_MASK
661
662/* Hardware memory (hw_{ld,st}) instructions */
663#define EV4HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
664#define EV4HWMEM_MASK (OP_MASK | 0xF000)
665#define EV4HWMEM(oo,f) EV4HWMEM_(oo,f), EV4HWMEM_MASK
666
667#define EV5HWMEM_(oo,f) (OP(oo) | (((f) & 0x3F) << 10))
668#define EV5HWMEM_MASK (OP_MASK | 0xF800)
669#define EV5HWMEM(oo,f) EV5HWMEM_(oo,f), EV5HWMEM_MASK
670
671#define EV6HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
672#define EV6HWMEM_MASK (OP_MASK | 0xF000)
673#define EV6HWMEM(oo,f) EV6HWMEM_(oo,f), EV6HWMEM_MASK
674
675#define EV6HWMBR_(oo,h) (OP(oo) | (((h) & 7) << 13))
676#define EV6HWMBR_MASK (OP_MASK | 0xE000)
677#define EV6HWMBR(oo,h) EV6HWMBR_(oo,h), EV6HWMBR_MASK
678
679/* Abbreviations for instruction subsets. */
680#define BASE AXP_OPCODE_BASE
681#define EV4 AXP_OPCODE_EV4
682#define EV5 AXP_OPCODE_EV5
683#define EV6 AXP_OPCODE_EV6
684#define BWX AXP_OPCODE_BWX
685#define CIX AXP_OPCODE_CIX
686#define MAX AXP_OPCODE_MAX
687
688/* Common combinations of arguments */
689#define ARG_NONE { 0 }
690#define ARG_BRA { RA, BDISP }
691#define ARG_FBRA { FA, BDISP }
692#define ARG_FP { FA, FB, DFC1 }
693#define ARG_FPZ1 { ZA, FB, DFC1 }
694#define ARG_MEM { RA, MDISP, PRB }
695#define ARG_FMEM { FA, MDISP, PRB }
696#define ARG_OPR { RA, RB, DRC1 }
697#define ARG_OPRL { RA, LIT, DRC1 }
698#define ARG_OPRZ1 { ZA, RB, DRC1 }
699#define ARG_OPRLZ1 { ZA, LIT, RC }
700#define ARG_PCD { PALFN }
701#define ARG_EV4HWMEM { RA, EV4HWDISP, PRB }
702#define ARG_EV4HWMPR { RA, RBA, EV4HWINDEX }
703#define ARG_EV5HWMEM { RA, EV5HWDISP, PRB }
704#define ARG_EV6HWMEM { RA, EV6HWDISP, PRB }
705\f
706/* The opcode table.
707
708 The format of the opcode table is:
709
710 NAME OPCODE MASK { OPERANDS }
711
712 NAME is the name of the instruction.
713
714 OPCODE is the instruction opcode.
715
716 MASK is the opcode mask; this is used to tell the disassembler
717 which bits in the actual opcode must match OPCODE.
718
719 OPERANDS is the list of operands.
720
721 The preceding macros merge the text of the OPCODE and MASK fields.
722
723 The disassembler reads the table in order and prints the first
724 instruction which matches, so this table is sorted to put more
725 specific instructions before more general instructions.
726
727 Otherwise, it is sorted by major opcode and minor function code.
728
729 There are three classes of not-really-instructions in this table:
730
731 ALIAS is another name for another instruction. Some of
732 these come from the Architecture Handbook, some
733 come from the original gas opcode tables. In all
734 cases, the functionality of the opcode is unchanged.
735
736 PSEUDO a stylized code form endorsed by Chapter A.4 of the
737 Architecture Handbook.
738
739 EXTRA a stylized code form found in the original gas tables.
740
741 And two annotations:
742
743 EV56 BUT opcodes that are officially introduced as of the ev56,
744 but with defined results on previous implementations.
745
746 EV56 UNA opcodes that were introduced as of the ev56 with
747 presumably undefined results on previous implementations
748 that were not assigned to a particular extension.
749*/
750
751const struct alpha_opcode alpha_opcodes[] = {
752 { "halt", SPCD(0x00,0x0000), BASE, ARG_NONE },
753 { "draina", SPCD(0x00,0x0002), BASE, ARG_NONE },
754 { "bpt", SPCD(0x00,0x0080), BASE, ARG_NONE },
755 { "bugchk", SPCD(0x00,0x0081), BASE, ARG_NONE },
756 { "callsys", SPCD(0x00,0x0083), BASE, ARG_NONE },
757 { "chmk", SPCD(0x00,0x0083), BASE, ARG_NONE },
758 { "imb", SPCD(0x00,0x0086), BASE, ARG_NONE },
759 { "rduniq", SPCD(0x00,0x009e), BASE, ARG_NONE },
760 { "wruniq", SPCD(0x00,0x009f), BASE, ARG_NONE },
761 { "gentrap", SPCD(0x00,0x00aa), BASE, ARG_NONE },
762 { "call_pal", PCD(0x00), BASE, ARG_PCD },
763 { "pal", PCD(0x00), BASE, ARG_PCD }, /* alias */
764
765 { "lda", MEM(0x08), BASE, { RA, MDISP, ZB } }, /* pseudo */
766 { "lda", MEM(0x08), BASE, ARG_MEM },
767 { "ldah", MEM(0x09), BASE, { RA, MDISP, ZB } }, /* pseudo */
768 { "ldah", MEM(0x09), BASE, ARG_MEM },
769 { "ldbu", MEM(0x0A), BWX, ARG_MEM },
770 { "unop", MEM_(0x0B) | (30 << 16),
771 MEM_MASK, BASE, { ZA } }, /* pseudo */
772 { "ldq_u", MEM(0x0B), BASE, ARG_MEM },
773 { "ldwu", MEM(0x0C), BWX, ARG_MEM },
774 { "stw", MEM(0x0D), BWX, ARG_MEM },
775 { "stb", MEM(0x0E), BWX, ARG_MEM },
776 { "stq_u", MEM(0x0F), BASE, ARG_MEM },
777
778 { "sextl", OPR(0x10,0x00), BASE, ARG_OPRZ1 }, /* pseudo */
779 { "sextl", OPRL(0x10,0x00), BASE, ARG_OPRLZ1 }, /* pseudo */
780 { "addl", OPR(0x10,0x00), BASE, ARG_OPR },
781 { "addl", OPRL(0x10,0x00), BASE, ARG_OPRL },
782 { "s4addl", OPR(0x10,0x02), BASE, ARG_OPR },
783 { "s4addl", OPRL(0x10,0x02), BASE, ARG_OPRL },
784 { "negl", OPR(0x10,0x09), BASE, ARG_OPRZ1 }, /* pseudo */
785 { "negl", OPRL(0x10,0x09), BASE, ARG_OPRLZ1 }, /* pseudo */
786 { "subl", OPR(0x10,0x09), BASE, ARG_OPR },
787 { "subl", OPRL(0x10,0x09), BASE, ARG_OPRL },
788 { "s4subl", OPR(0x10,0x0B), BASE, ARG_OPR },
789 { "s4subl", OPRL(0x10,0x0B), BASE, ARG_OPRL },
790 { "cmpbge", OPR(0x10,0x0F), BASE, ARG_OPR },
791 { "cmpbge", OPRL(0x10,0x0F), BASE, ARG_OPRL },
792 { "s8addl", OPR(0x10,0x12), BASE, ARG_OPR },
793 { "s8addl", OPRL(0x10,0x12), BASE, ARG_OPRL },
794 { "s8subl", OPR(0x10,0x1B), BASE, ARG_OPR },
795 { "s8subl", OPRL(0x10,0x1B), BASE, ARG_OPRL },
796 { "cmpult", OPR(0x10,0x1D), BASE, ARG_OPR },
797 { "cmpult", OPRL(0x10,0x1D), BASE, ARG_OPRL },
798 { "addq", OPR(0x10,0x20), BASE, ARG_OPR },
799 { "addq", OPRL(0x10,0x20), BASE, ARG_OPRL },
800 { "s4addq", OPR(0x10,0x22), BASE, ARG_OPR },
801 { "s4addq", OPRL(0x10,0x22), BASE, ARG_OPRL },
802 { "negq", OPR(0x10,0x29), BASE, ARG_OPRZ1 }, /* pseudo */
803 { "negq", OPRL(0x10,0x29), BASE, ARG_OPRLZ1 }, /* pseudo */
804 { "subq", OPR(0x10,0x29), BASE, ARG_OPR },
805 { "subq", OPRL(0x10,0x29), BASE, ARG_OPRL },
806 { "s4subq", OPR(0x10,0x2B), BASE, ARG_OPR },
807 { "s4subq", OPRL(0x10,0x2B), BASE, ARG_OPRL },
808 { "cmpeq", OPR(0x10,0x2D), BASE, ARG_OPR },
809 { "cmpeq", OPRL(0x10,0x2D), BASE, ARG_OPRL },
810 { "s8addq", OPR(0x10,0x32), BASE, ARG_OPR },
811 { "s8addq", OPRL(0x10,0x32), BASE, ARG_OPRL },
812 { "s8subq", OPR(0x10,0x3B), BASE, ARG_OPR },
813 { "s8subq", OPRL(0x10,0x3B), BASE, ARG_OPRL },
814 { "cmpule", OPR(0x10,0x3D), BASE, ARG_OPR },
815 { "cmpule", OPRL(0x10,0x3D), BASE, ARG_OPRL },
816 { "addl/v", OPR(0x10,0x40), BASE, ARG_OPR },
817 { "addl/v", OPRL(0x10,0x40), BASE, ARG_OPRL },
818 { "negl/v", OPR(0x10,0x49), BASE, ARG_OPRZ1 }, /* pseudo */
819 { "negl/v", OPRL(0x10,0x49), BASE, ARG_OPRLZ1 }, /* pseudo */
820 { "subl/v", OPR(0x10,0x49), BASE, ARG_OPR },
821 { "subl/v", OPRL(0x10,0x49), BASE, ARG_OPRL },
822 { "cmplt", OPR(0x10,0x4D), BASE, ARG_OPR },
823 { "cmplt", OPRL(0x10,0x4D), BASE, ARG_OPRL },
824 { "addq/v", OPR(0x10,0x60), BASE, ARG_OPR },
825 { "addq/v", OPRL(0x10,0x60), BASE, ARG_OPRL },
826 { "negq/v", OPR(0x10,0x69), BASE, ARG_OPRZ1 }, /* pseudo */
827 { "negq/v", OPRL(0x10,0x69), BASE, ARG_OPRLZ1 }, /* pseudo */
828 { "subq/v", OPR(0x10,0x69), BASE, ARG_OPR },
829 { "subq/v", OPRL(0x10,0x69), BASE, ARG_OPRL },
830 { "cmple", OPR(0x10,0x6D), BASE, ARG_OPR },
831 { "cmple", OPRL(0x10,0x6D), BASE, ARG_OPRL },
832
833 { "and", OPR(0x11,0x00), BASE, ARG_OPR },
834 { "and", OPRL(0x11,0x00), BASE, ARG_OPRL },
835 { "andnot", OPR(0x11,0x08), BASE, ARG_OPR }, /* alias */
836 { "andnot", OPRL(0x11,0x08), BASE, ARG_OPRL }, /* alias */
837 { "bic", OPR(0x11,0x08), BASE, ARG_OPR },
838 { "bic", OPRL(0x11,0x08), BASE, ARG_OPRL },
839 { "cmovlbs", OPR(0x11,0x14), BASE, ARG_OPR },
840 { "cmovlbs", OPRL(0x11,0x14), BASE, ARG_OPRL },
841 { "cmovlbc", OPR(0x11,0x16), BASE, ARG_OPR },
842 { "cmovlbc", OPRL(0x11,0x16), BASE, ARG_OPRL },
843 { "nop", OPR(0x11,0x20), BASE, { ZA, ZB, ZC } }, /* pseudo */
844 { "clr", OPR(0x11,0x20), BASE, { ZA, ZB, RC } }, /* pseudo */
845 { "mov", OPR(0x11,0x20), BASE, { ZA, RB, RC } }, /* pseudo */
846 { "mov", OPR(0x11,0x20), BASE, { RA, RBA, RC } }, /* pseudo */
847 { "mov", OPRL(0x11,0x20), BASE, { ZA, LIT, RC } }, /* pseudo */
848 { "or", OPR(0x11,0x20), BASE, ARG_OPR }, /* alias */
849 { "or", OPRL(0x11,0x20), BASE, ARG_OPRL }, /* alias */
850 { "bis", OPR(0x11,0x20), BASE, ARG_OPR },
851 { "bis", OPRL(0x11,0x20), BASE, ARG_OPRL },
852 { "cmoveq", OPR(0x11,0x24), BASE, ARG_OPR },
853 { "cmoveq", OPRL(0x11,0x24), BASE, ARG_OPRL },
854 { "cmovne", OPR(0x11,0x26), BASE, ARG_OPR },
855 { "cmovne", OPRL(0x11,0x26), BASE, ARG_OPRL },
856 { "not", OPR(0x11,0x28), BASE, ARG_OPRZ1 }, /* pseudo */
857 { "not", OPRL(0x11,0x28), BASE, ARG_OPRLZ1 }, /* pseudo */
858 { "ornot", OPR(0x11,0x28), BASE, ARG_OPR },
859 { "ornot", OPRL(0x11,0x28), BASE, ARG_OPRL },
860 { "xor", OPR(0x11,0x40), BASE, ARG_OPR },
861 { "xor", OPRL(0x11,0x40), BASE, ARG_OPRL },
862 { "cmovlt", OPR(0x11,0x44), BASE, ARG_OPR },
863 { "cmovlt", OPRL(0x11,0x44), BASE, ARG_OPRL },
864 { "cmovge", OPR(0x11,0x46), BASE, ARG_OPR },
865 { "cmovge", OPRL(0x11,0x46), BASE, ARG_OPRL },
866 { "eqv", OPR(0x11,0x48), BASE, ARG_OPR },
867 { "eqv", OPRL(0x11,0x48), BASE, ARG_OPRL },
868 { "xornot", OPR(0x11,0x48), BASE, ARG_OPR }, /* alias */
869 { "xornot", OPRL(0x11,0x48), BASE, ARG_OPRL }, /* alias */
870 { "amask", OPR(0x11,0x61), BASE, ARG_OPRZ1 }, /* ev56 but */
871 { "amask", OPRL(0x11,0x61), BASE, ARG_OPRLZ1 }, /* ev56 but */
872 { "cmovle", OPR(0x11,0x64), BASE, ARG_OPR },
873 { "cmovle", OPRL(0x11,0x64), BASE, ARG_OPRL },
874 { "cmovgt", OPR(0x11,0x66), BASE, ARG_OPR },
875 { "cmovgt", OPRL(0x11,0x66), BASE, ARG_OPRL },
876 { "implver", OPRL_(0x11,0x6C)|(31<<21)|(1<<13),
877 0xFFFFFFE0, BASE, { RC } }, /* ev56 but */
878
879 { "mskbl", OPR(0x12,0x02), BASE, ARG_OPR },
880 { "mskbl", OPRL(0x12,0x02), BASE, ARG_OPRL },
881 { "extbl", OPR(0x12,0x06), BASE, ARG_OPR },
882 { "extbl", OPRL(0x12,0x06), BASE, ARG_OPRL },
883 { "insbl", OPR(0x12,0x0B), BASE, ARG_OPR },
884 { "insbl", OPRL(0x12,0x0B), BASE, ARG_OPRL },
885 { "mskwl", OPR(0x12,0x12), BASE, ARG_OPR },
886 { "mskwl", OPRL(0x12,0x12), BASE, ARG_OPRL },
887 { "extwl", OPR(0x12,0x16), BASE, ARG_OPR },
888 { "extwl", OPRL(0x12,0x16), BASE, ARG_OPRL },
889 { "inswl", OPR(0x12,0x1B), BASE, ARG_OPR },
890 { "inswl", OPRL(0x12,0x1B), BASE, ARG_OPRL },
891 { "mskll", OPR(0x12,0x22), BASE, ARG_OPR },
892 { "mskll", OPRL(0x12,0x22), BASE, ARG_OPRL },
893 { "extll", OPR(0x12,0x26), BASE, ARG_OPR },
894 { "extll", OPRL(0x12,0x26), BASE, ARG_OPRL },
895 { "insll", OPR(0x12,0x2B), BASE, ARG_OPR },
896 { "insll", OPRL(0x12,0x2B), BASE, ARG_OPRL },
897 { "zap", OPR(0x12,0x30), BASE, ARG_OPR },
898 { "zap", OPRL(0x12,0x30), BASE, ARG_OPRL },
899 { "zapnot", OPR(0x12,0x31), BASE, ARG_OPR },
900 { "zapnot", OPRL(0x12,0x31), BASE, ARG_OPRL },
901 { "mskql", OPR(0x12,0x32), BASE, ARG_OPR },
902 { "mskql", OPRL(0x12,0x32), BASE, ARG_OPRL },
903 { "srl", OPR(0x12,0x34), BASE, ARG_OPR },
904 { "srl", OPRL(0x12,0x34), BASE, ARG_OPRL },
905 { "extql", OPR(0x12,0x36), BASE, ARG_OPR },
906 { "extql", OPRL(0x12,0x36), BASE, ARG_OPRL },
907 { "sll", OPR(0x12,0x39), BASE, ARG_OPR },
908 { "sll", OPRL(0x12,0x39), BASE, ARG_OPRL },
909 { "insql", OPR(0x12,0x3B), BASE, ARG_OPR },
910 { "insql", OPRL(0x12,0x3B), BASE, ARG_OPRL },
911 { "sra", OPR(0x12,0x3C), BASE, ARG_OPR },
912 { "sra", OPRL(0x12,0x3C), BASE, ARG_OPRL },
913 { "mskwh", OPR(0x12,0x52), BASE, ARG_OPR },
914 { "mskwh", OPRL(0x12,0x52), BASE, ARG_OPRL },
915 { "inswh", OPR(0x12,0x57), BASE, ARG_OPR },
916 { "inswh", OPRL(0x12,0x57), BASE, ARG_OPRL },
917 { "extwh", OPR(0x12,0x5A), BASE, ARG_OPR },
918 { "extwh", OPRL(0x12,0x5A), BASE, ARG_OPRL },
919 { "msklh", OPR(0x12,0x62), BASE, ARG_OPR },
920 { "msklh", OPRL(0x12,0x62), BASE, ARG_OPRL },
921 { "inslh", OPR(0x12,0x67), BASE, ARG_OPR },
922 { "inslh", OPRL(0x12,0x67), BASE, ARG_OPRL },
923 { "extlh", OPR(0x12,0x6A), BASE, ARG_OPR },
924 { "extlh", OPRL(0x12,0x6A), BASE, ARG_OPRL },
925 { "mskqh", OPR(0x12,0x72), BASE, ARG_OPR },
926 { "mskqh", OPRL(0x12,0x72), BASE, ARG_OPRL },
927 { "insqh", OPR(0x12,0x77), BASE, ARG_OPR },
928 { "insqh", OPRL(0x12,0x77), BASE, ARG_OPRL },
929 { "extqh", OPR(0x12,0x7A), BASE, ARG_OPR },
930 { "extqh", OPRL(0x12,0x7A), BASE, ARG_OPRL },
931
932 { "mull", OPR(0x13,0x00), BASE, ARG_OPR },
933 { "mull", OPRL(0x13,0x00), BASE, ARG_OPRL },
934 { "mulq", OPR(0x13,0x20), BASE, ARG_OPR },
935 { "mulq", OPRL(0x13,0x20), BASE, ARG_OPRL },
936 { "umulh", OPR(0x13,0x30), BASE, ARG_OPR },
937 { "umulh", OPRL(0x13,0x30), BASE, ARG_OPRL },
938 { "mull/v", OPR(0x13,0x40), BASE, ARG_OPR },
939 { "mull/v", OPRL(0x13,0x40), BASE, ARG_OPRL },
940 { "mulq/v", OPR(0x13,0x60), BASE, ARG_OPR },
941 { "mulq/v", OPRL(0x13,0x60), BASE, ARG_OPRL },
942
943 { "itofs", FP(0x14,0x004), CIX, { RA, ZB, FC } },
944 { "sqrtf/c", FP(0x14,0x00A), CIX, ARG_FPZ1 },
945 { "sqrts/c", FP(0x14,0x00B), CIX, ARG_FPZ1 },
946 { "itoff", FP(0x14,0x014), CIX, { RA, ZB, FC } },
947 { "itoft", FP(0x14,0x024), CIX, { RA, ZB, FC } },
948 { "sqrtg/c", FP(0x14,0x02A), CIX, ARG_FPZ1 },
949 { "sqrtt/c", FP(0x14,0x02B), CIX, ARG_FPZ1 },
950 { "sqrts/m", FP(0x14,0x04B), CIX, ARG_FPZ1 },
951 { "sqrtt/m", FP(0x14,0x06B), CIX, ARG_FPZ1 },
952 { "sqrtf", FP(0x14,0x08A), CIX, ARG_FPZ1 },
953 { "sqrts", FP(0x14,0x08B), CIX, ARG_FPZ1 },
954 { "sqrtg", FP(0x14,0x0AA), CIX, ARG_FPZ1 },
955 { "sqrtt", FP(0x14,0x0AB), CIX, ARG_FPZ1 },
956 { "sqrts/d", FP(0x14,0x0CB), CIX, ARG_FPZ1 },
957 { "sqrtt/d", FP(0x14,0x0EB), CIX, ARG_FPZ1 },
958 { "sqrtf/uc", FP(0x14,0x10A), CIX, ARG_FPZ1 },
959 { "sqrts/uc", FP(0x14,0x10B), CIX, ARG_FPZ1 },
960 { "sqrtg/uc", FP(0x14,0x12A), CIX, ARG_FPZ1 },
961 { "sqrtt/uc", FP(0x14,0x12B), CIX, ARG_FPZ1 },
962 { "sqrts/um", FP(0x14,0x14B), CIX, ARG_FPZ1 },
963 { "sqrtt/um", FP(0x14,0x16B), CIX, ARG_FPZ1 },
964 { "sqrtf/u", FP(0x14,0x18A), CIX, ARG_FPZ1 },
965 { "sqrts/u", FP(0x14,0x18B), CIX, ARG_FPZ1 },
966 { "sqrtg/u", FP(0x14,0x1AA), CIX, ARG_FPZ1 },
967 { "sqrtt/u", FP(0x14,0x1AB), CIX, ARG_FPZ1 },
968 { "sqrts/ud", FP(0x14,0x1CB), CIX, ARG_FPZ1 },
969 { "sqrtt/ud", FP(0x14,0x1EB), CIX, ARG_FPZ1 },
970 { "sqrtf/sc", FP(0x14,0x40A), CIX, ARG_FPZ1 },
971 { "sqrtg/sc", FP(0x14,0x42A), CIX, ARG_FPZ1 },
972 { "sqrtf/s", FP(0x14,0x48A), CIX, ARG_FPZ1 },
973 { "sqrtg/s", FP(0x14,0x4AA), CIX, ARG_FPZ1 },
974 { "sqrtf/suc", FP(0x14,0x50A), CIX, ARG_FPZ1 },
975 { "sqrts/suc", FP(0x14,0x50B), CIX, ARG_FPZ1 },
976 { "sqrtg/suc", FP(0x14,0x52A), CIX, ARG_FPZ1 },
977 { "sqrtt/suc", FP(0x14,0x52B), CIX, ARG_FPZ1 },
978 { "sqrts/sum", FP(0x14,0x54B), CIX, ARG_FPZ1 },
979 { "sqrtt/sum", FP(0x14,0x56B), CIX, ARG_FPZ1 },
980 { "sqrtf/su", FP(0x14,0x58A), CIX, ARG_FPZ1 },
981 { "sqrts/su", FP(0x14,0x58B), CIX, ARG_FPZ1 },
982 { "sqrtg/su", FP(0x14,0x5AA), CIX, ARG_FPZ1 },
983 { "sqrtt/su", FP(0x14,0x5AB), CIX, ARG_FPZ1 },
984 { "sqrts/sud", FP(0x14,0x5CB), CIX, ARG_FPZ1 },
985 { "sqrtt/sud", FP(0x14,0x5EB), CIX, ARG_FPZ1 },
986 { "sqrts/suic", FP(0x14,0x70B), CIX, ARG_FPZ1 },
987 { "sqrtt/suic", FP(0x14,0x72B), CIX, ARG_FPZ1 },
988 { "sqrts/suim", FP(0x14,0x74B), CIX, ARG_FPZ1 },
989 { "sqrtt/suim", FP(0x14,0x76B), CIX, ARG_FPZ1 },
990 { "sqrts/sui", FP(0x14,0x78B), CIX, ARG_FPZ1 },
991 { "sqrtt/sui", FP(0x14,0x7AB), CIX, ARG_FPZ1 },
992 { "sqrts/suid", FP(0x14,0x7CB), CIX, ARG_FPZ1 },
993 { "sqrtt/suid", FP(0x14,0x7EB), CIX, ARG_FPZ1 },
994
995 { "addf/c", FP(0x15,0x000), BASE, ARG_FP },
996 { "subf/c", FP(0x15,0x001), BASE, ARG_FP },
997 { "mulf/c", FP(0x15,0x002), BASE, ARG_FP },
998 { "divf/c", FP(0x15,0x003), BASE, ARG_FP },
999 { "cvtdg/c", FP(0x15,0x01E), BASE, ARG_FPZ1 },
1000 { "addg/c", FP(0x15,0x020), BASE, ARG_FP },
1001 { "subg/c", FP(0x15,0x021), BASE, ARG_FP },
1002 { "mulg/c", FP(0x15,0x022), BASE, ARG_FP },
1003 { "divg/c", FP(0x15,0x023), BASE, ARG_FP },
1004 { "cvtgf/c", FP(0x15,0x02C), BASE, ARG_FPZ1 },
1005 { "cvtgd/c", FP(0x15,0x02D), BASE, ARG_FPZ1 },
1006 { "cvtgq/c", FP(0x15,0x02F), BASE, ARG_FPZ1 },
1007 { "cvtqf/c", FP(0x15,0x03C), BASE, ARG_FPZ1 },
1008 { "cvtqg/c", FP(0x15,0x03E), BASE, ARG_FPZ1 },
1009 { "addf", FP(0x15,0x080), BASE, ARG_FP },
1010 { "negf", FP(0x15,0x081), BASE, ARG_FPZ1 }, /* pseudo */
1011 { "subf", FP(0x15,0x081), BASE, ARG_FP },
1012 { "mulf", FP(0x15,0x082), BASE, ARG_FP },
1013 { "divf", FP(0x15,0x083), BASE, ARG_FP },
1014 { "cvtdg", FP(0x15,0x09E), BASE, ARG_FPZ1 },
1015 { "addg", FP(0x15,0x0A0), BASE, ARG_FP },
1016 { "negg", FP(0x15,0x0A1), BASE, ARG_FPZ1 }, /* pseudo */
1017 { "subg", FP(0x15,0x0A1), BASE, ARG_FP },
1018 { "mulg", FP(0x15,0x0A2), BASE, ARG_FP },
1019 { "divg", FP(0x15,0x0A3), BASE, ARG_FP },
1020 { "cmpgeq", FP(0x15,0x0A5), BASE, ARG_FP },
1021 { "cmpglt", FP(0x15,0x0A6), BASE, ARG_FP },
1022 { "cmpgle", FP(0x15,0x0A7), BASE, ARG_FP },
1023 { "cvtgf", FP(0x15,0x0AC), BASE, ARG_FPZ1 },
1024 { "cvtgd", FP(0x15,0x0AD), BASE, ARG_FPZ1 },
1025 { "cvtgq", FP(0x15,0x0AF), BASE, ARG_FPZ1 },
1026 { "cvtqf", FP(0x15,0x0BC), BASE, ARG_FPZ1 },
1027 { "cvtqg", FP(0x15,0x0BE), BASE, ARG_FPZ1 },
1028 { "addf/uc", FP(0x15,0x100), BASE, ARG_FP },
1029 { "subf/uc", FP(0x15,0x101), BASE, ARG_FP },
1030 { "mulf/uc", FP(0x15,0x102), BASE, ARG_FP },
1031 { "divf/uc", FP(0x15,0x103), BASE, ARG_FP },
1032 { "cvtdg/uc", FP(0x15,0x11E), BASE, ARG_FPZ1 },
1033 { "addg/uc", FP(0x15,0x120), BASE, ARG_FP },
1034 { "subg/uc", FP(0x15,0x121), BASE, ARG_FP },
1035 { "mulg/uc", FP(0x15,0x122), BASE, ARG_FP },
1036 { "divg/uc", FP(0x15,0x123), BASE, ARG_FP },
1037 { "cvtgf/uc", FP(0x15,0x12C), BASE, ARG_FPZ1 },
1038 { "cvtgd/uc", FP(0x15,0x12D), BASE, ARG_FPZ1 },
1039 { "cvtgq/vc", FP(0x15,0x12F), BASE, ARG_FPZ1 },
1040 { "addf/u", FP(0x15,0x180), BASE, ARG_FP },
1041 { "subf/u", FP(0x15,0x181), BASE, ARG_FP },
1042 { "mulf/u", FP(0x15,0x182), BASE, ARG_FP },
1043 { "divf/u", FP(0x15,0x183), BASE, ARG_FP },
1044 { "cvtdg/u", FP(0x15,0x19E), BASE, ARG_FPZ1 },
1045 { "addg/u", FP(0x15,0x1A0), BASE, ARG_FP },
1046 { "subg/u", FP(0x15,0x1A1), BASE, ARG_FP },
1047 { "mulg/u", FP(0x15,0x1A2), BASE, ARG_FP },
1048 { "divg/u", FP(0x15,0x1A3), BASE, ARG_FP },
1049 { "cvtgf/u", FP(0x15,0x1AC), BASE, ARG_FPZ1 },
1050 { "cvtgd/u", FP(0x15,0x1AD), BASE, ARG_FPZ1 },
1051 { "cvtgq/v", FP(0x15,0x1AF), BASE, ARG_FPZ1 },
1052 { "addf/sc", FP(0x15,0x400), BASE, ARG_FP },
1053 { "subf/sc", FP(0x15,0x401), BASE, ARG_FP },
1054 { "mulf/sc", FP(0x15,0x402), BASE, ARG_FP },
1055 { "divf/sc", FP(0x15,0x403), BASE, ARG_FP },
1056 { "cvtdg/sc", FP(0x15,0x41E), BASE, ARG_FPZ1 },
1057 { "addg/sc", FP(0x15,0x420), BASE, ARG_FP },
1058 { "subg/sc", FP(0x15,0x421), BASE, ARG_FP },
1059 { "mulg/sc", FP(0x15,0x422), BASE, ARG_FP },
1060 { "divg/sc", FP(0x15,0x423), BASE, ARG_FP },
1061 { "cvtgf/sc", FP(0x15,0x42C), BASE, ARG_FPZ1 },
1062 { "cvtgd/sc", FP(0x15,0x42D), BASE, ARG_FPZ1 },
1063 { "cvtgq/sc", FP(0x15,0x42F), BASE, ARG_FPZ1 },
1064 { "addf/s", FP(0x15,0x480), BASE, ARG_FP },
1065 { "negf/s", FP(0x15,0x481), BASE, ARG_FPZ1 }, /* pseudo */
1066 { "subf/s", FP(0x15,0x481), BASE, ARG_FP },
1067 { "mulf/s", FP(0x15,0x482), BASE, ARG_FP },
1068 { "divf/s", FP(0x15,0x483), BASE, ARG_FP },
1069 { "cvtdg/s", FP(0x15,0x49E), BASE, ARG_FPZ1 },
1070 { "addg/s", FP(0x15,0x4A0), BASE, ARG_FP },
1071 { "negg/s", FP(0x15,0x4A1), BASE, ARG_FPZ1 }, /* pseudo */
1072 { "subg/s", FP(0x15,0x4A1), BASE, ARG_FP },
1073 { "mulg/s", FP(0x15,0x4A2), BASE, ARG_FP },
1074 { "divg/s", FP(0x15,0x4A3), BASE, ARG_FP },
1075 { "cmpgeq/s", FP(0x15,0x4A5), BASE, ARG_FP },
1076 { "cmpglt/s", FP(0x15,0x4A6), BASE, ARG_FP },
1077 { "cmpgle/s", FP(0x15,0x4A7), BASE, ARG_FP },
1078 { "cvtgf/s", FP(0x15,0x4AC), BASE, ARG_FPZ1 },
1079 { "cvtgd/s", FP(0x15,0x4AD), BASE, ARG_FPZ1 },
1080 { "cvtgq/s", FP(0x15,0x4AF), BASE, ARG_FPZ1 },
1081 { "addf/suc", FP(0x15,0x500), BASE, ARG_FP },
1082 { "subf/suc", FP(0x15,0x501), BASE, ARG_FP },
1083 { "mulf/suc", FP(0x15,0x502), BASE, ARG_FP },
1084 { "divf/suc", FP(0x15,0x503), BASE, ARG_FP },
1085 { "cvtdg/suc", FP(0x15,0x51E), BASE, ARG_FPZ1 },
1086 { "addg/suc", FP(0x15,0x520), BASE, ARG_FP },
1087 { "subg/suc", FP(0x15,0x521), BASE, ARG_FP },
1088 { "mulg/suc", FP(0x15,0x522), BASE, ARG_FP },
1089 { "divg/suc", FP(0x15,0x523), BASE, ARG_FP },
1090 { "cvtgf/suc", FP(0x15,0x52C), BASE, ARG_FPZ1 },
1091 { "cvtgd/suc", FP(0x15,0x52D), BASE, ARG_FPZ1 },
1092 { "cvtgq/svc", FP(0x15,0x52F), BASE, ARG_FPZ1 },
1093 { "addf/su", FP(0x15,0x580), BASE, ARG_FP },
1094 { "subf/su", FP(0x15,0x581), BASE, ARG_FP },
1095 { "mulf/su", FP(0x15,0x582), BASE, ARG_FP },
1096 { "divf/su", FP(0x15,0x583), BASE, ARG_FP },
1097 { "cvtdg/su", FP(0x15,0x59E), BASE, ARG_FPZ1 },
1098 { "addg/su", FP(0x15,0x5A0), BASE, ARG_FP },
1099 { "subg/su", FP(0x15,0x5A1), BASE, ARG_FP },
1100 { "mulg/su", FP(0x15,0x5A2), BASE, ARG_FP },
1101 { "divg/su", FP(0x15,0x5A3), BASE, ARG_FP },
1102 { "cvtgf/su", FP(0x15,0x5AC), BASE, ARG_FPZ1 },
1103 { "cvtgd/su", FP(0x15,0x5AD), BASE, ARG_FPZ1 },
1104 { "cvtgq/sv", FP(0x15,0x5AF), BASE, ARG_FPZ1 },
1105
1106 { "adds/c", FP(0x16,0x000), BASE, ARG_FP },
1107 { "subs/c", FP(0x16,0x001), BASE, ARG_FP },
1108 { "muls/c", FP(0x16,0x002), BASE, ARG_FP },
1109 { "divs/c", FP(0x16,0x003), BASE, ARG_FP },
1110 { "addt/c", FP(0x16,0x020), BASE, ARG_FP },
1111 { "subt/c", FP(0x16,0x021), BASE, ARG_FP },
1112 { "mult/c", FP(0x16,0x022), BASE, ARG_FP },
1113 { "divt/c", FP(0x16,0x023), BASE, ARG_FP },
1114 { "cvtts/c", FP(0x16,0x02C), BASE, ARG_FPZ1 },
1115 { "cvttq/c", FP(0x16,0x02F), BASE, ARG_FPZ1 },
1116 { "cvtqs/c", FP(0x16,0x03C), BASE, ARG_FPZ1 },
1117 { "cvtqt/c", FP(0x16,0x03E), BASE, ARG_FPZ1 },
1118 { "adds/m", FP(0x16,0x040), BASE, ARG_FP },
1119 { "subs/m", FP(0x16,0x041), BASE, ARG_FP },
1120 { "muls/m", FP(0x16,0x042), BASE, ARG_FP },
1121 { "divs/m", FP(0x16,0x043), BASE, ARG_FP },
1122 { "addt/m", FP(0x16,0x060), BASE, ARG_FP },
1123 { "subt/m", FP(0x16,0x061), BASE, ARG_FP },
1124 { "mult/m", FP(0x16,0x062), BASE, ARG_FP },
1125 { "divt/m", FP(0x16,0x063), BASE, ARG_FP },
1126 { "cvtts/m", FP(0x16,0x06C), BASE, ARG_FPZ1 },
1127 { "cvttq/m", FP(0x16,0x06F), BASE, ARG_FPZ1 },
1128 { "cvtqs/m", FP(0x16,0x07C), BASE, ARG_FPZ1 },
1129 { "cvtqt/m", FP(0x16,0x07E), BASE, ARG_FPZ1 },
1130 { "adds", FP(0x16,0x080), BASE, ARG_FP },
1131 { "negs", FP(0x16,0x081), BASE, ARG_FPZ1 }, /* pseudo */
1132 { "subs", FP(0x16,0x081), BASE, ARG_FP },
1133 { "muls", FP(0x16,0x082), BASE, ARG_FP },
1134 { "divs", FP(0x16,0x083), BASE, ARG_FP },
1135 { "addt", FP(0x16,0x0A0), BASE, ARG_FP },
1136 { "negt", FP(0x16,0x0A1), BASE, ARG_FPZ1 }, /* pseudo */
1137 { "subt", FP(0x16,0x0A1), BASE, ARG_FP },
1138 { "mult", FP(0x16,0x0A2), BASE, ARG_FP },
1139 { "divt", FP(0x16,0x0A3), BASE, ARG_FP },
1140 { "cmptun", FP(0x16,0x0A4), BASE, ARG_FP },
1141 { "cmpteq", FP(0x16,0x0A5), BASE, ARG_FP },
1142 { "cmptlt", FP(0x16,0x0A6), BASE, ARG_FP },
1143 { "cmptle", FP(0x16,0x0A7), BASE, ARG_FP },
1144 { "cvtts", FP(0x16,0x0AC), BASE, ARG_FPZ1 },
1145 { "cvttq", FP(0x16,0x0AF), BASE, ARG_FPZ1 },
1146 { "cvtqs", FP(0x16,0x0BC), BASE, ARG_FPZ1 },
1147 { "cvtqt", FP(0x16,0x0BE), BASE, ARG_FPZ1 },
1148 { "adds/d", FP(0x16,0x0C0), BASE, ARG_FP },
1149 { "subs/d", FP(0x16,0x0C1), BASE, ARG_FP },
1150 { "muls/d", FP(0x16,0x0C2), BASE, ARG_FP },
1151 { "divs/d", FP(0x16,0x0C3), BASE, ARG_FP },
1152 { "addt/d", FP(0x16,0x0E0), BASE, ARG_FP },
1153 { "subt/d", FP(0x16,0x0E1), BASE, ARG_FP },
1154 { "mult/d", FP(0x16,0x0E2), BASE, ARG_FP },
1155 { "divt/d", FP(0x16,0x0E3), BASE, ARG_FP },
1156 { "cvtts/d", FP(0x16,0x0EC), BASE, ARG_FPZ1 },
1157 { "cvttq/d", FP(0x16,0x0EF), BASE, ARG_FPZ1 },
1158 { "cvtqs/d", FP(0x16,0x0FC), BASE, ARG_FPZ1 },
1159 { "cvtqt/d", FP(0x16,0x0FE), BASE, ARG_FPZ1 },
1160 { "adds/uc", FP(0x16,0x100), BASE, ARG_FP },
1161 { "subs/uc", FP(0x16,0x101), BASE, ARG_FP },
1162 { "muls/uc", FP(0x16,0x102), BASE, ARG_FP },
1163 { "divs/uc", FP(0x16,0x103), BASE, ARG_FP },
1164 { "addt/uc", FP(0x16,0x120), BASE, ARG_FP },
1165 { "subt/uc", FP(0x16,0x121), BASE, ARG_FP },
1166 { "mult/uc", FP(0x16,0x122), BASE, ARG_FP },
1167 { "divt/uc", FP(0x16,0x123), BASE, ARG_FP },
1168 { "cvtts/uc", FP(0x16,0x12C), BASE, ARG_FPZ1 },
1169 { "cvttq/vc", FP(0x16,0x12F), BASE, ARG_FPZ1 },
1170 { "adds/um", FP(0x16,0x140), BASE, ARG_FP },
1171 { "subs/um", FP(0x16,0x141), BASE, ARG_FP },
1172 { "muls/um", FP(0x16,0x142), BASE, ARG_FP },
1173 { "divs/um", FP(0x16,0x143), BASE, ARG_FP },
1174 { "addt/um", FP(0x16,0x160), BASE, ARG_FP },
1175 { "subt/um", FP(0x16,0x161), BASE, ARG_FP },
1176 { "mult/um", FP(0x16,0x162), BASE, ARG_FP },
1177 { "divt/um", FP(0x16,0x163), BASE, ARG_FP },
1178 { "cvtts/um", FP(0x16,0x16C), BASE, ARG_FPZ1 },
1179 { "cvttq/vm", FP(0x16,0x16F), BASE, ARG_FPZ1 },
1180 { "adds/u", FP(0x16,0x180), BASE, ARG_FP },
1181 { "subs/u", FP(0x16,0x181), BASE, ARG_FP },
1182 { "muls/u", FP(0x16,0x182), BASE, ARG_FP },
1183 { "divs/u", FP(0x16,0x183), BASE, ARG_FP },
1184 { "addt/u", FP(0x16,0x1A0), BASE, ARG_FP },
1185 { "subt/u", FP(0x16,0x1A1), BASE, ARG_FP },
1186 { "mult/u", FP(0x16,0x1A2), BASE, ARG_FP },
1187 { "divt/u", FP(0x16,0x1A3), BASE, ARG_FP },
1188 { "cvtts/u", FP(0x16,0x1AC), BASE, ARG_FPZ1 },
1189 { "cvttq/v", FP(0x16,0x1AF), BASE, ARG_FPZ1 },
1190 { "adds/ud", FP(0x16,0x1C0), BASE, ARG_FP },
1191 { "subs/ud", FP(0x16,0x1C1), BASE, ARG_FP },
1192 { "muls/ud", FP(0x16,0x1C2), BASE, ARG_FP },
1193 { "divs/ud", FP(0x16,0x1C3), BASE, ARG_FP },
1194 { "addt/ud", FP(0x16,0x1E0), BASE, ARG_FP },
1195 { "subt/ud", FP(0x16,0x1E1), BASE, ARG_FP },
1196 { "mult/ud", FP(0x16,0x1E2), BASE, ARG_FP },
1197 { "divt/ud", FP(0x16,0x1E3), BASE, ARG_FP },
1198 { "cvtts/ud", FP(0x16,0x1EC), BASE, ARG_FPZ1 },
1199 { "cvttq/vd", FP(0x16,0x1EF), BASE, ARG_FPZ1 },
1200 { "cvtst", FP(0x16,0x2AC), BASE, ARG_FPZ1 },
1201 { "adds/suc", FP(0x16,0x500), BASE, ARG_FP },
1202 { "subs/suc", FP(0x16,0x501), BASE, ARG_FP },
1203 { "muls/suc", FP(0x16,0x502), BASE, ARG_FP },
1204 { "divs/suc", FP(0x16,0x503), BASE, ARG_FP },
1205 { "addt/suc", FP(0x16,0x520), BASE, ARG_FP },
1206 { "subt/suc", FP(0x16,0x521), BASE, ARG_FP },
1207 { "mult/suc", FP(0x16,0x522), BASE, ARG_FP },
1208 { "divt/suc", FP(0x16,0x523), BASE, ARG_FP },
1209 { "cvtts/suc", FP(0x16,0x52C), BASE, ARG_FPZ1 },
1210 { "cvttq/svc", FP(0x16,0x52F), BASE, ARG_FPZ1 },
1211 { "adds/sum", FP(0x16,0x540), BASE, ARG_FP },
1212 { "subs/sum", FP(0x16,0x541), BASE, ARG_FP },
1213 { "muls/sum", FP(0x16,0x542), BASE, ARG_FP },
1214 { "divs/sum", FP(0x16,0x543), BASE, ARG_FP },
1215 { "addt/sum", FP(0x16,0x560), BASE, ARG_FP },
1216 { "subt/sum", FP(0x16,0x561), BASE, ARG_FP },
1217 { "mult/sum", FP(0x16,0x562), BASE, ARG_FP },
1218 { "divt/sum", FP(0x16,0x563), BASE, ARG_FP },
1219 { "cvtts/sum", FP(0x16,0x56C), BASE, ARG_FPZ1 },
1220 { "cvttq/svm", FP(0x16,0x56F), BASE, ARG_FPZ1 },
1221 { "adds/su", FP(0x16,0x580), BASE, ARG_FP },
1222 { "negs/su", FP(0x16,0x581), BASE, ARG_FPZ1 }, /* pseudo */
1223 { "subs/su", FP(0x16,0x581), BASE, ARG_FP },
1224 { "muls/su", FP(0x16,0x582), BASE, ARG_FP },
1225 { "divs/su", FP(0x16,0x583), BASE, ARG_FP },
1226 { "addt/su", FP(0x16,0x5A0), BASE, ARG_FP },
1227 { "negt/su", FP(0x16,0x5A1), BASE, ARG_FPZ1 }, /* pseudo */
1228 { "subt/su", FP(0x16,0x5A1), BASE, ARG_FP },
1229 { "mult/su", FP(0x16,0x5A2), BASE, ARG_FP },
1230 { "divt/su", FP(0x16,0x5A3), BASE, ARG_FP },
1231 { "cmptun/su", FP(0x16,0x5A4), BASE, ARG_FP },
1232 { "cmpteq/su", FP(0x16,0x5A5), BASE, ARG_FP },
1233 { "cmptlt/su", FP(0x16,0x5A6), BASE, ARG_FP },
1234 { "cmptle/su", FP(0x16,0x5A7), BASE, ARG_FP },
1235 { "cvtts/su", FP(0x16,0x5AC), BASE, ARG_FPZ1 },
1236 { "cvttq/sv", FP(0x16,0x5AF), BASE, ARG_FPZ1 },
1237 { "adds/sud", FP(0x16,0x5C0), BASE, ARG_FP },
1238 { "subs/sud", FP(0x16,0x5C1), BASE, ARG_FP },
1239 { "muls/sud", FP(0x16,0x5C2), BASE, ARG_FP },
1240 { "divs/sud", FP(0x16,0x5C3), BASE, ARG_FP },
1241 { "addt/sud", FP(0x16,0x5E0), BASE, ARG_FP },
1242 { "subt/sud", FP(0x16,0x5E1), BASE, ARG_FP },
1243 { "mult/sud", FP(0x16,0x5E2), BASE, ARG_FP },
1244 { "divt/sud", FP(0x16,0x5E3), BASE, ARG_FP },
1245 { "cvtts/sud", FP(0x16,0x5EC), BASE, ARG_FPZ1 },
1246 { "cvttq/svd", FP(0x16,0x5EF), BASE, ARG_FPZ1 },
1247 { "cvtst/s", FP(0x16,0x6AC), BASE, ARG_FPZ1 },
1248 { "adds/suic", FP(0x16,0x700), BASE, ARG_FP },
1249 { "subs/suic", FP(0x16,0x701), BASE, ARG_FP },
1250 { "muls/suic", FP(0x16,0x702), BASE, ARG_FP },
1251 { "divs/suic", FP(0x16,0x703), BASE, ARG_FP },
1252 { "addt/suic", FP(0x16,0x720), BASE, ARG_FP },
1253 { "subt/suic", FP(0x16,0x721), BASE, ARG_FP },
1254 { "mult/suic", FP(0x16,0x722), BASE, ARG_FP },
1255 { "divt/suic", FP(0x16,0x723), BASE, ARG_FP },
1256 { "cvtts/suic", FP(0x16,0x72C), BASE, ARG_FPZ1 },
1257 { "cvttq/svic", FP(0x16,0x72F), BASE, ARG_FPZ1 },
1258 { "cvtqs/suic", FP(0x16,0x73C), BASE, ARG_FPZ1 },
1259 { "cvtqt/suic", FP(0x16,0x73E), BASE, ARG_FPZ1 },
1260 { "adds/suim", FP(0x16,0x740), BASE, ARG_FP },
1261 { "subs/suim", FP(0x16,0x741), BASE, ARG_FP },
1262 { "muls/suim", FP(0x16,0x742), BASE, ARG_FP },
1263 { "divs/suim", FP(0x16,0x743), BASE, ARG_FP },
1264 { "addt/suim", FP(0x16,0x760), BASE, ARG_FP },
1265 { "subt/suim", FP(0x16,0x761), BASE, ARG_FP },
1266 { "mult/suim", FP(0x16,0x762), BASE, ARG_FP },
1267 { "divt/suim", FP(0x16,0x763), BASE, ARG_FP },
1268 { "cvtts/suim", FP(0x16,0x76C), BASE, ARG_FPZ1 },
1269 { "cvttq/svim", FP(0x16,0x76F), BASE, ARG_FPZ1 },
1270 { "cvtqs/suim", FP(0x16,0x77C), BASE, ARG_FPZ1 },
1271 { "cvtqt/suim", FP(0x16,0x77E), BASE, ARG_FPZ1 },
1272 { "adds/sui", FP(0x16,0x780), BASE, ARG_FP },
1273 { "negs/sui", FP(0x16,0x781), BASE, ARG_FPZ1 }, /* pseudo */
1274 { "subs/sui", FP(0x16,0x781), BASE, ARG_FP },
1275 { "muls/sui", FP(0x16,0x782), BASE, ARG_FP },
1276 { "divs/sui", FP(0x16,0x783), BASE, ARG_FP },
1277 { "addt/sui", FP(0x16,0x7A0), BASE, ARG_FP },
1278 { "negt/sui", FP(0x16,0x7A1), BASE, ARG_FPZ1 }, /* pseudo */
1279 { "subt/sui", FP(0x16,0x7A1), BASE, ARG_FP },
1280 { "mult/sui", FP(0x16,0x7A2), BASE, ARG_FP },
1281 { "divt/sui", FP(0x16,0x7A3), BASE, ARG_FP },
1282 { "cvtts/sui", FP(0x16,0x7AC), BASE, ARG_FPZ1 },
1283 { "cvttq/svi", FP(0x16,0x7AF), BASE, ARG_FPZ1 },
1284 { "cvtqs/sui", FP(0x16,0x7BC), BASE, ARG_FPZ1 },
1285 { "cvtqt/sui", FP(0x16,0x7BE), BASE, ARG_FPZ1 },
1286 { "adds/suid", FP(0x16,0x7C0), BASE, ARG_FP },
1287 { "subs/suid", FP(0x16,0x7C1), BASE, ARG_FP },
1288 { "muls/suid", FP(0x16,0x7C2), BASE, ARG_FP },
1289 { "divs/suid", FP(0x16,0x7C3), BASE, ARG_FP },
1290 { "addt/suid", FP(0x16,0x7E0), BASE, ARG_FP },
1291 { "subt/suid", FP(0x16,0x7E1), BASE, ARG_FP },
1292 { "mult/suid", FP(0x16,0x7E2), BASE, ARG_FP },
1293 { "divt/suid", FP(0x16,0x7E3), BASE, ARG_FP },
1294 { "cvtts/suid", FP(0x16,0x7EC), BASE, ARG_FPZ1 },
1295 { "cvttq/svid", FP(0x16,0x7EF), BASE, ARG_FPZ1 },
1296 { "cvtqs/suid", FP(0x16,0x7FC), BASE, ARG_FPZ1 },
1297 { "cvtqt/suid", FP(0x16,0x7FE), BASE, ARG_FPZ1 },
1298
1299 { "cvtlq", FP(0x17,0x010), BASE, ARG_FPZ1 },
1300 { "fnop", FP(0x17,0x020), BASE, { ZA, ZB, ZC } }, /* pseudo */
1301 { "fclr", FP(0x17,0x020), BASE, { ZA, ZB, FC } }, /* pseudo */
1302 { "fabs", FP(0x17,0x020), BASE, ARG_FPZ1 }, /* pseudo */
1303 { "fmov", FP(0x17,0x020), BASE, { FA, RBA, FC } }, /* pseudo */
1304 { "cpys", FP(0x17,0x020), BASE, ARG_FP },
1305 { "fneg", FP(0x17,0x021), BASE, { FA, RBA, FC } }, /* pseudo */
1306 { "cpysn", FP(0x17,0x021), BASE, ARG_FP },
1307 { "cpyse", FP(0x17,0x022), BASE, ARG_FP },
1308 { "mt_fpcr", FP(0x17,0x024), BASE, { FA, RBA, RCA } },
1309 { "mf_fpcr", FP(0x17,0x025), BASE, { FA, RBA, RCA } },
1310 { "fcmoveq", FP(0x17,0x02A), BASE, ARG_FP },
1311 { "fcmovne", FP(0x17,0x02B), BASE, ARG_FP },
1312 { "fcmovlt", FP(0x17,0x02C), BASE, ARG_FP },
1313 { "fcmovge", FP(0x17,0x02D), BASE, ARG_FP },
1314 { "fcmovle", FP(0x17,0x02E), BASE, ARG_FP },
1315 { "fcmovgt", FP(0x17,0x02F), BASE, ARG_FP },
1316 { "cvtql", FP(0x17,0x030), BASE, ARG_FPZ1 },
1317 { "cvtql/v", FP(0x17,0x130), BASE, ARG_FPZ1 },
1318 { "cvtql/sv", FP(0x17,0x530), BASE, ARG_FPZ1 },
1319
1320 { "trapb", MFC(0x18,0x0000), BASE, ARG_NONE },
1321 { "draint", MFC(0x18,0x0000), BASE, ARG_NONE }, /* alias */
1322 { "excb", MFC(0x18,0x0400), BASE, ARG_NONE },
1323 { "mb", MFC(0x18,0x4000), BASE, ARG_NONE },
1324 { "wmb", MFC(0x18,0x4400), BASE, ARG_NONE },
1325 { "fetch", MFC(0x18,0x8000), BASE, { ZA, PRB } },
1326 { "fetch_m", MFC(0x18,0xA000), BASE, { ZA, PRB } },
1327 { "rpcc", MFC(0x18,0xC000), BASE, { RA } },
1328 { "rc", MFC(0x18,0xE000), BASE, { RA } },
1329 { "ecb", MFC(0x18,0xE800), BASE, { ZA, PRB } }, /* ev56 una */
1330 { "rs", MFC(0x18,0xF000), BASE, { RA } },
1331 { "wh64", MFC(0x18,0xF800), BASE, { ZA, PRB } }, /* ev56 una */
1332 { "wh64en", MFC(0x18,0xFC00), BASE, { ZA, PRB } }, /* ev7 una */
1333
1334 { "hw_mfpr", OPR(0x19,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1335 { "hw_mfpr", OP(0x19), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1336 { "hw_mfpr", OP(0x19), OP_MASK, EV6, { RA, ZB, EV6HWINDEX } },
1337 { "hw_mfpr/i", OPR(0x19,0x01), EV4, ARG_EV4HWMPR },
1338 { "hw_mfpr/a", OPR(0x19,0x02), EV4, ARG_EV4HWMPR },
1339 { "hw_mfpr/ai", OPR(0x19,0x03), EV4, ARG_EV4HWMPR },
1340 { "hw_mfpr/p", OPR(0x19,0x04), EV4, ARG_EV4HWMPR },
1341 { "hw_mfpr/pi", OPR(0x19,0x05), EV4, ARG_EV4HWMPR },
1342 { "hw_mfpr/pa", OPR(0x19,0x06), EV4, ARG_EV4HWMPR },
1343 { "hw_mfpr/pai", OPR(0x19,0x07), EV4, ARG_EV4HWMPR },
1344 { "pal19", PCD(0x19), BASE, ARG_PCD },
1345
1346 { "jmp", MBR_(0x1A,0), MBR_MASK | 0x3FFF, /* pseudo */
1347 BASE, { ZA, CPRB } },
1348 { "jmp", MBR(0x1A,0), BASE, { RA, CPRB, JMPHINT } },
1349 { "jsr", MBR(0x1A,1), BASE, { RA, CPRB, JMPHINT } },
1350 { "ret", MBR_(0x1A,2) | (31 << 21) | (26 << 16) | 1,/* pseudo */
1351 0xFFFFFFFF, BASE, { 0 } },
1352 { "ret", MBR(0x1A,2), BASE, { RA, CPRB, RETHINT } },
1353 { "jcr", MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } }, /* alias */
1354 { "jsr_coroutine", MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } },
1355
1356 { "hw_ldl", EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1357 { "hw_ldl", EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1358 { "hw_ldl", EV6HWMEM(0x1B,0x8), EV6, ARG_EV6HWMEM },
1359 { "hw_ldl/a", EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1360 { "hw_ldl/a", EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1361 { "hw_ldl/a", EV6HWMEM(0x1B,0xC), EV6, ARG_EV6HWMEM },
1362 { "hw_ldl/al", EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1363 { "hw_ldl/ar", EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1364 { "hw_ldl/av", EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1365 { "hw_ldl/avl", EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1366 { "hw_ldl/aw", EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1367 { "hw_ldl/awl", EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1368 { "hw_ldl/awv", EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1369 { "hw_ldl/awvl", EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1370 { "hw_ldl/l", EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1371 { "hw_ldl/p", EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1372 { "hw_ldl/p", EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1373 { "hw_ldl/p", EV6HWMEM(0x1B,0x0), EV6, ARG_EV6HWMEM },
1374 { "hw_ldl/pa", EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1375 { "hw_ldl/pa", EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1376 { "hw_ldl/pal", EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1377 { "hw_ldl/par", EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1378 { "hw_ldl/pav", EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1379 { "hw_ldl/pavl", EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1380 { "hw_ldl/paw", EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1381 { "hw_ldl/pawl", EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1382 { "hw_ldl/pawv", EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1383 { "hw_ldl/pawvl", EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1384 { "hw_ldl/pl", EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1385 { "hw_ldl/pr", EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1386 { "hw_ldl/pv", EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1387 { "hw_ldl/pvl", EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1388 { "hw_ldl/pw", EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1389 { "hw_ldl/pwl", EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1390 { "hw_ldl/pwv", EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1391 { "hw_ldl/pwvl", EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1392 { "hw_ldl/r", EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1393 { "hw_ldl/v", EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1394 { "hw_ldl/v", EV6HWMEM(0x1B,0x4), EV6, ARG_EV6HWMEM },
1395 { "hw_ldl/vl", EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1396 { "hw_ldl/w", EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1397 { "hw_ldl/w", EV6HWMEM(0x1B,0xA), EV6, ARG_EV6HWMEM },
1398 { "hw_ldl/wa", EV6HWMEM(0x1B,0xE), EV6, ARG_EV6HWMEM },
1399 { "hw_ldl/wl", EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1400 { "hw_ldl/wv", EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1401 { "hw_ldl/wvl", EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1402 { "hw_ldl_l", EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1403 { "hw_ldl_l/a", EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1404 { "hw_ldl_l/av", EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1405 { "hw_ldl_l/aw", EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1406 { "hw_ldl_l/awv", EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1407 { "hw_ldl_l/p", EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1408 { "hw_ldl_l/p", EV6HWMEM(0x1B,0x2), EV6, ARG_EV6HWMEM },
1409 { "hw_ldl_l/pa", EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1410 { "hw_ldl_l/pav", EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1411 { "hw_ldl_l/paw", EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1412 { "hw_ldl_l/pawv", EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1413 { "hw_ldl_l/pv", EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1414 { "hw_ldl_l/pw", EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1415 { "hw_ldl_l/pwv", EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1416 { "hw_ldl_l/v", EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1417 { "hw_ldl_l/w", EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1418 { "hw_ldl_l/wv", EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1419 { "hw_ldq", EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1420 { "hw_ldq", EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1421 { "hw_ldq", EV6HWMEM(0x1B,0x9), EV6, ARG_EV6HWMEM },
1422 { "hw_ldq/a", EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1423 { "hw_ldq/a", EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1424 { "hw_ldq/a", EV6HWMEM(0x1B,0xD), EV6, ARG_EV6HWMEM },
1425 { "hw_ldq/al", EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1426 { "hw_ldq/ar", EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1427 { "hw_ldq/av", EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1428 { "hw_ldq/avl", EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1429 { "hw_ldq/aw", EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1430 { "hw_ldq/awl", EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1431 { "hw_ldq/awv", EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1432 { "hw_ldq/awvl", EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1433 { "hw_ldq/l", EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1434 { "hw_ldq/p", EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1435 { "hw_ldq/p", EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1436 { "hw_ldq/p", EV6HWMEM(0x1B,0x1), EV6, ARG_EV6HWMEM },
1437 { "hw_ldq/pa", EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1438 { "hw_ldq/pa", EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1439 { "hw_ldq/pal", EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1440 { "hw_ldq/par", EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1441 { "hw_ldq/pav", EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1442 { "hw_ldq/pavl", EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1443 { "hw_ldq/paw", EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1444 { "hw_ldq/pawl", EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1445 { "hw_ldq/pawv", EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1446 { "hw_ldq/pawvl", EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1447 { "hw_ldq/pl", EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1448 { "hw_ldq/pr", EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1449 { "hw_ldq/pv", EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1450 { "hw_ldq/pvl", EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1451 { "hw_ldq/pw", EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1452 { "hw_ldq/pwl", EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1453 { "hw_ldq/pwv", EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1454 { "hw_ldq/pwvl", EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1455 { "hw_ldq/r", EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1456 { "hw_ldq/v", EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1457 { "hw_ldq/v", EV6HWMEM(0x1B,0x5), EV6, ARG_EV6HWMEM },
1458 { "hw_ldq/vl", EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1459 { "hw_ldq/w", EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1460 { "hw_ldq/w", EV6HWMEM(0x1B,0xB), EV6, ARG_EV6HWMEM },
1461 { "hw_ldq/wa", EV6HWMEM(0x1B,0xF), EV6, ARG_EV6HWMEM },
1462 { "hw_ldq/wl", EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1463 { "hw_ldq/wv", EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1464 { "hw_ldq/wvl", EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1465 { "hw_ldq_l", EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1466 { "hw_ldq_l/a", EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1467 { "hw_ldq_l/av", EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1468 { "hw_ldq_l/aw", EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1469 { "hw_ldq_l/awv", EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1470 { "hw_ldq_l/p", EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1471 { "hw_ldq_l/p", EV6HWMEM(0x1B,0x3), EV6, ARG_EV6HWMEM },
1472 { "hw_ldq_l/pa", EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1473 { "hw_ldq_l/pav", EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1474 { "hw_ldq_l/paw", EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1475 { "hw_ldq_l/pawv", EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1476 { "hw_ldq_l/pv", EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1477 { "hw_ldq_l/pw", EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1478 { "hw_ldq_l/pwv", EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1479 { "hw_ldq_l/v", EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1480 { "hw_ldq_l/w", EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1481 { "hw_ldq_l/wv", EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1482 { "hw_ld", EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1483 { "hw_ld", EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1484 { "hw_ld/a", EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1485 { "hw_ld/a", EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1486 { "hw_ld/al", EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1487 { "hw_ld/aq", EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1488 { "hw_ld/aq", EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1489 { "hw_ld/aql", EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1490 { "hw_ld/aqv", EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1491 { "hw_ld/aqvl", EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1492 { "hw_ld/ar", EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1493 { "hw_ld/arq", EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1494 { "hw_ld/av", EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1495 { "hw_ld/avl", EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1496 { "hw_ld/aw", EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1497 { "hw_ld/awl", EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1498 { "hw_ld/awq", EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1499 { "hw_ld/awql", EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1500 { "hw_ld/awqv", EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1501 { "hw_ld/awqvl", EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1502 { "hw_ld/awv", EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1503 { "hw_ld/awvl", EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1504 { "hw_ld/l", EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1505 { "hw_ld/p", EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1506 { "hw_ld/p", EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1507 { "hw_ld/pa", EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1508 { "hw_ld/pa", EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1509 { "hw_ld/pal", EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1510 { "hw_ld/paq", EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1511 { "hw_ld/paq", EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1512 { "hw_ld/paql", EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1513 { "hw_ld/paqv", EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1514 { "hw_ld/paqvl", EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1515 { "hw_ld/par", EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1516 { "hw_ld/parq", EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1517 { "hw_ld/pav", EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1518 { "hw_ld/pavl", EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1519 { "hw_ld/paw", EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1520 { "hw_ld/pawl", EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1521 { "hw_ld/pawq", EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1522 { "hw_ld/pawql", EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1523 { "hw_ld/pawqv", EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1524 { "hw_ld/pawqvl", EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1525 { "hw_ld/pawv", EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1526 { "hw_ld/pawvl", EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1527 { "hw_ld/pl", EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1528 { "hw_ld/pq", EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1529 { "hw_ld/pq", EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1530 { "hw_ld/pql", EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1531 { "hw_ld/pqv", EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1532 { "hw_ld/pqvl", EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1533 { "hw_ld/pr", EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1534 { "hw_ld/prq", EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1535 { "hw_ld/pv", EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1536 { "hw_ld/pvl", EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1537 { "hw_ld/pw", EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1538 { "hw_ld/pwl", EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1539 { "hw_ld/pwq", EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1540 { "hw_ld/pwql", EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1541 { "hw_ld/pwqv", EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1542 { "hw_ld/pwqvl", EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1543 { "hw_ld/pwv", EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1544 { "hw_ld/pwvl", EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1545 { "hw_ld/q", EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1546 { "hw_ld/q", EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1547 { "hw_ld/ql", EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1548 { "hw_ld/qv", EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1549 { "hw_ld/qvl", EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1550 { "hw_ld/r", EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1551 { "hw_ld/rq", EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1552 { "hw_ld/v", EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1553 { "hw_ld/vl", EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1554 { "hw_ld/w", EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1555 { "hw_ld/wl", EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1556 { "hw_ld/wq", EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1557 { "hw_ld/wql", EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1558 { "hw_ld/wqv", EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1559 { "hw_ld/wqvl", EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1560 { "hw_ld/wv", EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1561 { "hw_ld/wvl", EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1562 { "pal1b", PCD(0x1B), BASE, ARG_PCD },
1563
1564 { "sextb", OPR(0x1C, 0x00), BWX, ARG_OPRZ1 },
1565 { "sextw", OPR(0x1C, 0x01), BWX, ARG_OPRZ1 },
1566 { "ctpop", OPR(0x1C, 0x30), CIX, ARG_OPRZ1 },
1567 { "perr", OPR(0x1C, 0x31), MAX, ARG_OPR },
1568 { "ctlz", OPR(0x1C, 0x32), CIX, ARG_OPRZ1 },
1569 { "cttz", OPR(0x1C, 0x33), CIX, ARG_OPRZ1 },
1570 { "unpkbw", OPR(0x1C, 0x34), MAX, ARG_OPRZ1 },
1571 { "unpkbl", OPR(0x1C, 0x35), MAX, ARG_OPRZ1 },
1572 { "pkwb", OPR(0x1C, 0x36), MAX, ARG_OPRZ1 },
1573 { "pklb", OPR(0x1C, 0x37), MAX, ARG_OPRZ1 },
1574 { "minsb8", OPR(0x1C, 0x38), MAX, ARG_OPR },
1575 { "minsb8", OPRL(0x1C, 0x38), MAX, ARG_OPRL },
1576 { "minsw4", OPR(0x1C, 0x39), MAX, ARG_OPR },
1577 { "minsw4", OPRL(0x1C, 0x39), MAX, ARG_OPRL },
1578 { "minub8", OPR(0x1C, 0x3A), MAX, ARG_OPR },
1579 { "minub8", OPRL(0x1C, 0x3A), MAX, ARG_OPRL },
1580 { "minuw4", OPR(0x1C, 0x3B), MAX, ARG_OPR },
1581 { "minuw4", OPRL(0x1C, 0x3B), MAX, ARG_OPRL },
1582 { "maxub8", OPR(0x1C, 0x3C), MAX, ARG_OPR },
1583 { "maxub8", OPRL(0x1C, 0x3C), MAX, ARG_OPRL },
1584 { "maxuw4", OPR(0x1C, 0x3D), MAX, ARG_OPR },
1585 { "maxuw4", OPRL(0x1C, 0x3D), MAX, ARG_OPRL },
1586 { "maxsb8", OPR(0x1C, 0x3E), MAX, ARG_OPR },
1587 { "maxsb8", OPRL(0x1C, 0x3E), MAX, ARG_OPRL },
1588 { "maxsw4", OPR(0x1C, 0x3F), MAX, ARG_OPR },
1589 { "maxsw4", OPRL(0x1C, 0x3F), MAX, ARG_OPRL },
1590 { "ftoit", FP(0x1C, 0x70), CIX, { FA, ZB, RC } },
1591 { "ftois", FP(0x1C, 0x78), CIX, { FA, ZB, RC } },
1592
1593 { "hw_mtpr", OPR(0x1D,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1594 { "hw_mtpr", OP(0x1D), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1595 { "hw_mtpr", OP(0x1D), OP_MASK, EV6, { ZA, RB, EV6HWINDEX } },
1596 { "hw_mtpr/i", OPR(0x1D,0x01), EV4, ARG_EV4HWMPR },
1597 { "hw_mtpr/a", OPR(0x1D,0x02), EV4, ARG_EV4HWMPR },
1598 { "hw_mtpr/ai", OPR(0x1D,0x03), EV4, ARG_EV4HWMPR },
1599 { "hw_mtpr/p", OPR(0x1D,0x04), EV4, ARG_EV4HWMPR },
1600 { "hw_mtpr/pi", OPR(0x1D,0x05), EV4, ARG_EV4HWMPR },
1601 { "hw_mtpr/pa", OPR(0x1D,0x06), EV4, ARG_EV4HWMPR },
1602 { "hw_mtpr/pai", OPR(0x1D,0x07), EV4, ARG_EV4HWMPR },
1603 { "pal1d", PCD(0x1D), BASE, ARG_PCD },
1604
1605 { "hw_rei", SPCD(0x1E,0x3FF8000), EV4|EV5, ARG_NONE },
1606 { "hw_rei_stall", SPCD(0x1E,0x3FFC000), EV5, ARG_NONE },
1607 { "hw_jmp", EV6HWMBR(0x1E,0x0), EV6, { ZA, PRB, EV6HWJMPHINT } },
1608 { "hw_jsr", EV6HWMBR(0x1E,0x2), EV6, { ZA, PRB, EV6HWJMPHINT } },
1609 { "hw_ret", EV6HWMBR(0x1E,0x4), EV6, { ZA, PRB } },
1610 { "hw_jcr", EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } },
1611 { "hw_coroutine", EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } }, /* alias */
1612 { "hw_jmp/stall", EV6HWMBR(0x1E,0x1), EV6, { ZA, PRB, EV6HWJMPHINT } },
1613 { "hw_jsr/stall", EV6HWMBR(0x1E,0x3), EV6, { ZA, PRB, EV6HWJMPHINT } },
1614 { "hw_ret/stall", EV6HWMBR(0x1E,0x5), EV6, { ZA, PRB } },
1615 { "hw_jcr/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } },
1616 { "hw_coroutine/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } }, /* alias */
1617 { "pal1e", PCD(0x1E), BASE, ARG_PCD },
1618
1619 { "hw_stl", EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1620 { "hw_stl", EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1621 { "hw_stl", EV6HWMEM(0x1F,0x4), EV6, ARG_EV6HWMEM }, /* ??? 8 */
1622 { "hw_stl/a", EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1623 { "hw_stl/a", EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1624 { "hw_stl/a", EV6HWMEM(0x1F,0xC), EV6, ARG_EV6HWMEM },
1625 { "hw_stl/ac", EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1626 { "hw_stl/ar", EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1627 { "hw_stl/av", EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1628 { "hw_stl/avc", EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1629 { "hw_stl/c", EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1630 { "hw_stl/p", EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1631 { "hw_stl/p", EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1632 { "hw_stl/p", EV6HWMEM(0x1F,0x0), EV6, ARG_EV6HWMEM },
1633 { "hw_stl/pa", EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1634 { "hw_stl/pa", EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1635 { "hw_stl/pac", EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1636 { "hw_stl/pav", EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1637 { "hw_stl/pavc", EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1638 { "hw_stl/pc", EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1639 { "hw_stl/pr", EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1640 { "hw_stl/pv", EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1641 { "hw_stl/pvc", EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1642 { "hw_stl/r", EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1643 { "hw_stl/v", EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1644 { "hw_stl/vc", EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1645 { "hw_stl_c", EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1646 { "hw_stl_c/a", EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1647 { "hw_stl_c/av", EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1648 { "hw_stl_c/p", EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1649 { "hw_stl_c/p", EV6HWMEM(0x1F,0x2), EV6, ARG_EV6HWMEM },
1650 { "hw_stl_c/pa", EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1651 { "hw_stl_c/pav", EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1652 { "hw_stl_c/pv", EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1653 { "hw_stl_c/v", EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1654 { "hw_stq", EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1655 { "hw_stq", EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1656 { "hw_stq", EV6HWMEM(0x1F,0x5), EV6, ARG_EV6HWMEM }, /* ??? 9 */
1657 { "hw_stq/a", EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1658 { "hw_stq/a", EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1659 { "hw_stq/a", EV6HWMEM(0x1F,0xD), EV6, ARG_EV6HWMEM },
1660 { "hw_stq/ac", EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1661 { "hw_stq/ar", EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1662 { "hw_stq/av", EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1663 { "hw_stq/avc", EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1664 { "hw_stq/c", EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1665 { "hw_stq/p", EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1666 { "hw_stq/p", EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1667 { "hw_stq/p", EV6HWMEM(0x1F,0x1), EV6, ARG_EV6HWMEM },
1668 { "hw_stq/pa", EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1669 { "hw_stq/pa", EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1670 { "hw_stq/pac", EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1671 { "hw_stq/par", EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1672 { "hw_stq/par", EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1673 { "hw_stq/pav", EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1674 { "hw_stq/pavc", EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1675 { "hw_stq/pc", EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1676 { "hw_stq/pr", EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1677 { "hw_stq/pv", EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1678 { "hw_stq/pvc", EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1679 { "hw_stq/r", EV4HWMEM(0x1F,0x3), EV4, ARG_EV4HWMEM },
1680 { "hw_stq/v", EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1681 { "hw_stq/vc", EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1682 { "hw_stq_c", EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1683 { "hw_stq_c/a", EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1684 { "hw_stq_c/av", EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1685 { "hw_stq_c/p", EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1686 { "hw_stq_c/p", EV6HWMEM(0x1F,0x3), EV6, ARG_EV6HWMEM },
1687 { "hw_stq_c/pa", EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1688 { "hw_stq_c/pav", EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1689 { "hw_stq_c/pv", EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1690 { "hw_stq_c/v", EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1691 { "hw_st", EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1692 { "hw_st", EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1693 { "hw_st/a", EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1694 { "hw_st/a", EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1695 { "hw_st/ac", EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1696 { "hw_st/aq", EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1697 { "hw_st/aq", EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1698 { "hw_st/aqc", EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1699 { "hw_st/aqv", EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1700 { "hw_st/aqvc", EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1701 { "hw_st/ar", EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1702 { "hw_st/arq", EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1703 { "hw_st/av", EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1704 { "hw_st/avc", EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1705 { "hw_st/c", EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1706 { "hw_st/p", EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1707 { "hw_st/p", EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1708 { "hw_st/pa", EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1709 { "hw_st/pa", EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1710 { "hw_st/pac", EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1711 { "hw_st/paq", EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1712 { "hw_st/paq", EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1713 { "hw_st/paqc", EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1714 { "hw_st/paqv", EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1715 { "hw_st/paqvc", EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1716 { "hw_st/par", EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1717 { "hw_st/parq", EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1718 { "hw_st/pav", EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1719 { "hw_st/pavc", EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1720 { "hw_st/pc", EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1721 { "hw_st/pq", EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1722 { "hw_st/pq", EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1723 { "hw_st/pqc", EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1724 { "hw_st/pqv", EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1725 { "hw_st/pqvc", EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1726 { "hw_st/pr", EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1727 { "hw_st/prq", EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1728 { "hw_st/pv", EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1729 { "hw_st/pvc", EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1730 { "hw_st/q", EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1731 { "hw_st/q", EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1732 { "hw_st/qc", EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1733 { "hw_st/qv", EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1734 { "hw_st/qvc", EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1735 { "hw_st/r", EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1736 { "hw_st/v", EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1737 { "hw_st/vc", EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1738 { "pal1f", PCD(0x1F), BASE, ARG_PCD },
1739
1740 { "ldf", MEM(0x20), BASE, ARG_FMEM },
1741 { "ldg", MEM(0x21), BASE, ARG_FMEM },
1742 { "lds", MEM(0x22), BASE, ARG_FMEM },
1743 { "ldt", MEM(0x23), BASE, ARG_FMEM },
1744 { "stf", MEM(0x24), BASE, ARG_FMEM },
1745 { "stg", MEM(0x25), BASE, ARG_FMEM },
1746 { "sts", MEM(0x26), BASE, ARG_FMEM },
1747 { "stt", MEM(0x27), BASE, ARG_FMEM },
1748
1749 { "ldl", MEM(0x28), BASE, ARG_MEM },
1750 { "ldq", MEM(0x29), BASE, ARG_MEM },
1751 { "ldl_l", MEM(0x2A), BASE, ARG_MEM },
1752 { "ldq_l", MEM(0x2B), BASE, ARG_MEM },
1753 { "stl", MEM(0x2C), BASE, ARG_MEM },
1754 { "stq", MEM(0x2D), BASE, ARG_MEM },
1755 { "stl_c", MEM(0x2E), BASE, ARG_MEM },
1756 { "stq_c", MEM(0x2F), BASE, ARG_MEM },
1757
1758 { "br", BRA(0x30), BASE, { ZA, BDISP } }, /* pseudo */
1759 { "br", BRA(0x30), BASE, ARG_BRA },
1760 { "fbeq", BRA(0x31), BASE, ARG_FBRA },
1761 { "fblt", BRA(0x32), BASE, ARG_FBRA },
1762 { "fble", BRA(0x33), BASE, ARG_FBRA },
1763 { "bsr", BRA(0x34), BASE, ARG_BRA },
1764 { "fbne", BRA(0x35), BASE, ARG_FBRA },
1765 { "fbge", BRA(0x36), BASE, ARG_FBRA },
1766 { "fbgt", BRA(0x37), BASE, ARG_FBRA },
1767 { "blbc", BRA(0x38), BASE, ARG_BRA },
1768 { "beq", BRA(0x39), BASE, ARG_BRA },
1769 { "blt", BRA(0x3A), BASE, ARG_BRA },
1770 { "ble", BRA(0x3B), BASE, ARG_BRA },
1771 { "blbs", BRA(0x3C), BASE, ARG_BRA },
1772 { "bne", BRA(0x3D), BASE, ARG_BRA },
1773 { "bge", BRA(0x3E), BASE, ARG_BRA },
1774 { "bgt", BRA(0x3F), BASE, ARG_BRA },
1775};
1776
1777const unsigned alpha_num_opcodes = sizeof(alpha_opcodes)/sizeof(*alpha_opcodes);
1778
1779/* OSF register names. */
1780
1781static const char * const osf_regnames[64] = {
1782 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
1783 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
1784 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
1785 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
1786 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
1787 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
1788 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
1789 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"
1790};
1791
1792/* VMS register names. */
1793
1794static const char * const vms_regnames[64] = {
1795 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7",
1796 "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
1797 "R16", "R17", "R18", "R19", "R20", "R21", "R22", "R23",
1798 "R24", "AI", "RA", "PV", "AT", "FP", "SP", "RZ",
1799 "F0", "F1", "F2", "F3", "F4", "F5", "F6", "F7",
1800 "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15",
1801 "F16", "F17", "F18", "F19", "F20", "F21", "F22", "F23",
1802 "F24", "F25", "F26", "F27", "F28", "F29", "F30", "FZ"
1803};
1804
1805/* Disassemble Alpha instructions. */
1806
1807int
1808print_insn_alpha (memaddr, info)
1809 bfd_vma memaddr;
1810 struct disassemble_info *info;
1811{
1812 static const struct alpha_opcode *opcode_index[AXP_NOPS+1];
1813 const char * const * regnames;
1814 const struct alpha_opcode *opcode, *opcode_end;
1815 const unsigned char *opindex;
1816 unsigned insn, op, isa_mask;
1817 int need_comma;
1818
1819 /* Initialize the majorop table the first time through */
1820 if (!opcode_index[0])
1821 {
1822 opcode = alpha_opcodes;
1823 opcode_end = opcode + alpha_num_opcodes;
1824
1825 for (op = 0; op < AXP_NOPS; ++op)
1826 {
1827 opcode_index[op] = opcode;
1828 while (opcode < opcode_end && op == AXP_OP (opcode->opcode))
1829 ++opcode;
1830 }
1831 opcode_index[op] = opcode;
1832 }
1833
1834 if (info->flavour == bfd_target_evax_flavour)
1835 regnames = vms_regnames;
1836 else
1837 regnames = osf_regnames;
1838
1839 isa_mask = AXP_OPCODE_NOPAL;
1840 switch (info->mach)
1841 {
1842 case bfd_mach_alpha_ev4:
1843 isa_mask |= AXP_OPCODE_EV4;
1844 break;
1845 case bfd_mach_alpha_ev5:
1846 isa_mask |= AXP_OPCODE_EV5;
1847 break;
1848 case bfd_mach_alpha_ev6:
1849 isa_mask |= AXP_OPCODE_EV6;
1850 break;
1851 }
1852
1853 /* Read the insn into a host word */
1854 {
1855 bfd_byte buffer[4];
1856 int status = (*info->read_memory_func) (memaddr, buffer, 4, info);
1857 if (status != 0)
1858 {
1859 (*info->memory_error_func) (status, memaddr, info);
1860 return -1;
1861 }
1862 insn = bfd_getl32 (buffer);
1863 }
1864
1865 /* Get the major opcode of the instruction. */
1866 op = AXP_OP (insn);
1867
1868 /* Find the first match in the opcode table. */
1869 opcode_end = opcode_index[op + 1];
1870 for (opcode = opcode_index[op]; opcode < opcode_end; ++opcode)
1871 {
1872 if ((insn ^ opcode->opcode) & opcode->mask)
1873 continue;
1874
1875 if (!(opcode->flags & isa_mask))
1876 continue;
1877
1878 /* Make two passes over the operands. First see if any of them
1879 have extraction functions, and, if they do, make sure the
1880 instruction is valid. */
1881 {
1882 int invalid = 0;
1883 for (opindex = opcode->operands; *opindex != 0; opindex++)
1884 {
1885 const struct alpha_operand *operand = alpha_operands + *opindex;
1886 if (operand->extract)
1887 (*operand->extract) (insn, &invalid);
1888 }
1889 if (invalid)
1890 continue;
1891 }
1892
1893 /* The instruction is valid. */
1894 goto found;
1895 }
1896
1897 /* No instruction found */
1898 (*info->fprintf_func) (info->stream, ".long %#08x", insn);
1899
1900 return 4;
1901
1902found:
1903 (*info->fprintf_func) (info->stream, "%s", opcode->name);
1904 if (opcode->operands[0] != 0)
1905 (*info->fprintf_func) (info->stream, "\t");
1906
1907 /* Now extract and print the operands. */
1908 need_comma = 0;
1909 for (opindex = opcode->operands; *opindex != 0; opindex++)
1910 {
1911 const struct alpha_operand *operand = alpha_operands + *opindex;
1912 int value;
1913
1914 /* Operands that are marked FAKE are simply ignored. We
1915 already made sure that the extract function considered
1916 the instruction to be valid. */
1917 if ((operand->flags & AXP_OPERAND_FAKE) != 0)
1918 continue;
1919
1920 /* Extract the value from the instruction. */
1921 if (operand->extract)
1922 value = (*operand->extract) (insn, (int *) NULL);
1923 else
1924 {
1925 value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
1926 if (operand->flags & AXP_OPERAND_SIGNED)
1927 {
1928 int signbit = 1 << (operand->bits - 1);
1929 value = (value ^ signbit) - signbit;
1930 }
1931 }
1932
1933 if (need_comma &&
1934 ((operand->flags & (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA))
1935 != AXP_OPERAND_PARENS))
1936 {
1937 (*info->fprintf_func) (info->stream, ",");
1938 }
1939 if (operand->flags & AXP_OPERAND_PARENS)
1940 (*info->fprintf_func) (info->stream, "(");
1941
1942 /* Print the operand as directed by the flags. */
1943 if (operand->flags & AXP_OPERAND_IR)
1944 (*info->fprintf_func) (info->stream, "%s", regnames[value]);
1945 else if (operand->flags & AXP_OPERAND_FPR)
1946 (*info->fprintf_func) (info->stream, "%s", regnames[value + 32]);
1947 else if (operand->flags & AXP_OPERAND_RELATIVE)
1948 (*info->print_address_func) (memaddr + 4 + value, info);
1949 else if (operand->flags & AXP_OPERAND_SIGNED)
1950 (*info->fprintf_func) (info->stream, "%d", value);
1951 else
1952 (*info->fprintf_func) (info->stream, "%#x", value);
1953
1954 if (operand->flags & AXP_OPERAND_PARENS)
1955 (*info->fprintf_func) (info->stream, ")");
1956 need_comma = 1;
1957 }
1958
1959 return 4;
1960}