]> git.proxmox.com Git - qemu.git/blame - block/qcow2-cluster.c
vfio-pci: Fix multifunction=on
[qemu.git] / block / qcow2-cluster.c
CommitLineData
45aba42f
KW
1/*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include <zlib.h>
26
27#include "qemu-common.h"
737e150e 28#include "block/block_int.h"
45aba42f 29#include "block/qcow2.h"
3cce16f4 30#include "trace.h"
45aba42f 31
2cf7cfa1
KW
32int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33 bool exact_size)
45aba42f
KW
34{
35 BDRVQcowState *s = bs->opaque;
2cf7cfa1 36 int new_l1_size2, ret, i;
45aba42f 37 uint64_t *new_l1_table;
fda74f82 38 int64_t old_l1_table_offset, old_l1_size;
2cf7cfa1 39 int64_t new_l1_table_offset, new_l1_size;
45aba42f
KW
40 uint8_t data[12];
41
72893756 42 if (min_size <= s->l1_size)
45aba42f 43 return 0;
72893756
SH
44
45 if (exact_size) {
46 new_l1_size = min_size;
47 } else {
48 /* Bump size up to reduce the number of times we have to grow */
49 new_l1_size = s->l1_size;
50 if (new_l1_size == 0) {
51 new_l1_size = 1;
52 }
53 while (min_size > new_l1_size) {
54 new_l1_size = (new_l1_size * 3 + 1) / 2;
55 }
45aba42f 56 }
72893756 57
2cf7cfa1
KW
58 if (new_l1_size > INT_MAX) {
59 return -EFBIG;
60 }
61
45aba42f 62#ifdef DEBUG_ALLOC2
2cf7cfa1
KW
63 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
64 s->l1_size, new_l1_size);
45aba42f
KW
65#endif
66
67 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
7267c094 68 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
45aba42f
KW
69 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
70
71 /* write new table (align to cluster) */
66f82cee 72 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
ed6ccf0f 73 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
5d757b56 74 if (new_l1_table_offset < 0) {
7267c094 75 g_free(new_l1_table);
5d757b56
KW
76 return new_l1_table_offset;
77 }
29c1a730
KW
78
79 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
80 if (ret < 0) {
80fa3341 81 goto fail;
29c1a730 82 }
45aba42f 83
cf93980e
MR
84 /* the L1 position has not yet been updated, so these clusters must
85 * indeed be completely free */
231bb267
MR
86 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
87 new_l1_size2);
cf93980e
MR
88 if (ret < 0) {
89 goto fail;
90 }
91
66f82cee 92 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
45aba42f
KW
93 for(i = 0; i < s->l1_size; i++)
94 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
8b3b7206
KW
95 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
96 if (ret < 0)
45aba42f
KW
97 goto fail;
98 for(i = 0; i < s->l1_size; i++)
99 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
100
101 /* set new table */
66f82cee 102 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
45aba42f 103 cpu_to_be32w((uint32_t*)data, new_l1_size);
e4ef9f46 104 stq_be_p(data + 4, new_l1_table_offset);
8b3b7206
KW
105 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
106 if (ret < 0) {
45aba42f 107 goto fail;
fb8fa77c 108 }
7267c094 109 g_free(s->l1_table);
fda74f82 110 old_l1_table_offset = s->l1_table_offset;
45aba42f
KW
111 s->l1_table_offset = new_l1_table_offset;
112 s->l1_table = new_l1_table;
fda74f82 113 old_l1_size = s->l1_size;
45aba42f 114 s->l1_size = new_l1_size;
fda74f82
MR
115 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
116 QCOW2_DISCARD_OTHER);
45aba42f
KW
117 return 0;
118 fail:
7267c094 119 g_free(new_l1_table);
6cfcb9b8
KW
120 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
121 QCOW2_DISCARD_OTHER);
8b3b7206 122 return ret;
45aba42f
KW
123}
124
45aba42f
KW
125/*
126 * l2_load
127 *
128 * Loads a L2 table into memory. If the table is in the cache, the cache
129 * is used; otherwise the L2 table is loaded from the image file.
130 *
131 * Returns a pointer to the L2 table on success, or NULL if the read from
132 * the image file failed.
133 */
134
55c17e98
KW
135static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
136 uint64_t **l2_table)
45aba42f
KW
137{
138 BDRVQcowState *s = bs->opaque;
55c17e98 139 int ret;
45aba42f 140
29c1a730 141 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
45aba42f 142
29c1a730 143 return ret;
45aba42f
KW
144}
145
6583e3c7
KW
146/*
147 * Writes one sector of the L1 table to the disk (can't update single entries
148 * and we really don't want bdrv_pread to perform a read-modify-write)
149 */
150#define L1_ENTRIES_PER_SECTOR (512 / 8)
e23e400e 151int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
6583e3c7 152{
66f82cee 153 BDRVQcowState *s = bs->opaque;
6583e3c7
KW
154 uint64_t buf[L1_ENTRIES_PER_SECTOR];
155 int l1_start_index;
f7defcb6 156 int i, ret;
6583e3c7
KW
157
158 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
159 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
160 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
161 }
162
231bb267 163 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
cf93980e
MR
164 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
165 if (ret < 0) {
166 return ret;
167 }
168
66f82cee 169 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
8b3b7206 170 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
f7defcb6
KW
171 buf, sizeof(buf));
172 if (ret < 0) {
173 return ret;
6583e3c7
KW
174 }
175
176 return 0;
177}
178
45aba42f
KW
179/*
180 * l2_allocate
181 *
182 * Allocate a new l2 entry in the file. If l1_index points to an already
183 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
184 * table) copy the contents of the old L2 table into the newly allocated one.
185 * Otherwise the new table is initialized with zeros.
186 *
187 */
188
c46e1167 189static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
45aba42f
KW
190{
191 BDRVQcowState *s = bs->opaque;
6583e3c7 192 uint64_t old_l2_offset;
8585afd8 193 uint64_t *l2_table = NULL;
f4f0d391 194 int64_t l2_offset;
c46e1167 195 int ret;
45aba42f
KW
196
197 old_l2_offset = s->l1_table[l1_index];
198
3cce16f4
KW
199 trace_qcow2_l2_allocate(bs, l1_index);
200
45aba42f
KW
201 /* allocate a new l2 entry */
202
ed6ccf0f 203 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
5d757b56 204 if (l2_offset < 0) {
be0b742e
MR
205 ret = l2_offset;
206 goto fail;
5d757b56 207 }
29c1a730
KW
208
209 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
210 if (ret < 0) {
211 goto fail;
212 }
45aba42f 213
45aba42f
KW
214 /* allocate a new entry in the l2 cache */
215
3cce16f4 216 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
29c1a730
KW
217 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
218 if (ret < 0) {
be0b742e 219 goto fail;
29c1a730
KW
220 }
221
222 l2_table = *table;
45aba42f 223
8e37f681 224 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
45aba42f
KW
225 /* if there was no old l2 table, clear the new table */
226 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
227 } else {
29c1a730
KW
228 uint64_t* old_table;
229
45aba42f 230 /* if there was an old l2 table, read it from the disk */
66f82cee 231 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
8e37f681
KW
232 ret = qcow2_cache_get(bs, s->l2_table_cache,
233 old_l2_offset & L1E_OFFSET_MASK,
29c1a730
KW
234 (void**) &old_table);
235 if (ret < 0) {
236 goto fail;
237 }
238
239 memcpy(l2_table, old_table, s->cluster_size);
240
241 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
c46e1167 242 if (ret < 0) {
175e1152 243 goto fail;
c46e1167 244 }
45aba42f 245 }
29c1a730 246
45aba42f 247 /* write the l2 table to the file */
66f82cee 248 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
29c1a730 249
3cce16f4 250 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
29c1a730
KW
251 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
252 ret = qcow2_cache_flush(bs, s->l2_table_cache);
c46e1167 253 if (ret < 0) {
175e1152
KW
254 goto fail;
255 }
256
257 /* update the L1 entry */
3cce16f4 258 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
175e1152 259 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
e23e400e 260 ret = qcow2_write_l1_entry(bs, l1_index);
175e1152
KW
261 if (ret < 0) {
262 goto fail;
c46e1167 263 }
45aba42f 264
c46e1167 265 *table = l2_table;
3cce16f4 266 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
c46e1167 267 return 0;
175e1152
KW
268
269fail:
3cce16f4 270 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
8585afd8
MR
271 if (l2_table != NULL) {
272 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
273 }
68dba0bf 274 s->l1_table[l1_index] = old_l2_offset;
e3b21ef9
MR
275 if (l2_offset > 0) {
276 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
277 QCOW2_DISCARD_ALWAYS);
278 }
175e1152 279 return ret;
45aba42f
KW
280}
281
2bfcc4a0
KW
282/*
283 * Checks how many clusters in a given L2 table are contiguous in the image
284 * file. As soon as one of the flags in the bitmask stop_flags changes compared
285 * to the first cluster, the search is stopped and the cluster is not counted
286 * as contiguous. (This allows it, for example, to stop at the first compressed
287 * cluster which may require a different handling)
288 */
45aba42f 289static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
61653008 290 uint64_t *l2_table, uint64_t stop_flags)
45aba42f
KW
291{
292 int i;
78a52ad5 293 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
15684a47
MR
294 uint64_t first_entry = be64_to_cpu(l2_table[0]);
295 uint64_t offset = first_entry & mask;
45aba42f
KW
296
297 if (!offset)
298 return 0;
299
15684a47
MR
300 assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED);
301
61653008 302 for (i = 0; i < nb_clusters; i++) {
2bfcc4a0
KW
303 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
304 if (offset + (uint64_t) i * cluster_size != l2_entry) {
45aba42f 305 break;
2bfcc4a0
KW
306 }
307 }
45aba42f 308
61653008 309 return i;
45aba42f
KW
310}
311
312static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
313{
2bfcc4a0
KW
314 int i;
315
316 for (i = 0; i < nb_clusters; i++) {
317 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
45aba42f 318
2bfcc4a0
KW
319 if (type != QCOW2_CLUSTER_UNALLOCATED) {
320 break;
321 }
322 }
45aba42f
KW
323
324 return i;
325}
326
327/* The crypt function is compatible with the linux cryptoloop
328 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
329 supported */
ed6ccf0f
KW
330void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
331 uint8_t *out_buf, const uint8_t *in_buf,
332 int nb_sectors, int enc,
333 const AES_KEY *key)
45aba42f
KW
334{
335 union {
336 uint64_t ll[2];
337 uint8_t b[16];
338 } ivec;
339 int i;
340
341 for(i = 0; i < nb_sectors; i++) {
342 ivec.ll[0] = cpu_to_le64(sector_num);
343 ivec.ll[1] = 0;
344 AES_cbc_encrypt(in_buf, out_buf, 512, key,
345 ivec.b, enc);
346 sector_num++;
347 in_buf += 512;
348 out_buf += 512;
349 }
350}
351
aef4acb6
SH
352static int coroutine_fn copy_sectors(BlockDriverState *bs,
353 uint64_t start_sect,
354 uint64_t cluster_offset,
355 int n_start, int n_end)
45aba42f
KW
356{
357 BDRVQcowState *s = bs->opaque;
aef4acb6
SH
358 QEMUIOVector qiov;
359 struct iovec iov;
45aba42f 360 int n, ret;
1b9f1491
KW
361
362 /*
363 * If this is the last cluster and it is only partially used, we must only
364 * copy until the end of the image, or bdrv_check_request will fail for the
365 * bdrv_read/write calls below.
366 */
367 if (start_sect + n_end > bs->total_sectors) {
368 n_end = bs->total_sectors - start_sect;
369 }
45aba42f
KW
370
371 n = n_end - n_start;
1b9f1491 372 if (n <= 0) {
45aba42f 373 return 0;
1b9f1491
KW
374 }
375
aef4acb6
SH
376 iov.iov_len = n * BDRV_SECTOR_SIZE;
377 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
378
379 qemu_iovec_init_external(&qiov, &iov, 1);
1b9f1491 380
66f82cee 381 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
aef4acb6
SH
382
383 /* Call .bdrv_co_readv() directly instead of using the public block-layer
384 * interface. This avoids double I/O throttling and request tracking,
385 * which can lead to deadlock when block layer copy-on-read is enabled.
386 */
387 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
1b9f1491
KW
388 if (ret < 0) {
389 goto out;
390 }
391
45aba42f 392 if (s->crypt_method) {
ed6ccf0f 393 qcow2_encrypt_sectors(s, start_sect + n_start,
aef4acb6 394 iov.iov_base, iov.iov_base, n, 1,
45aba42f
KW
395 &s->aes_encrypt_key);
396 }
1b9f1491 397
231bb267 398 ret = qcow2_pre_write_overlap_check(bs, 0,
cf93980e
MR
399 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
400 if (ret < 0) {
401 goto out;
402 }
403
66f82cee 404 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
aef4acb6 405 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
1b9f1491
KW
406 if (ret < 0) {
407 goto out;
408 }
409
410 ret = 0;
411out:
aef4acb6 412 qemu_vfree(iov.iov_base);
1b9f1491 413 return ret;
45aba42f
KW
414}
415
416
417/*
418 * get_cluster_offset
419 *
1c46efaa
KW
420 * For a given offset of the disk image, find the cluster offset in
421 * qcow2 file. The offset is stored in *cluster_offset.
45aba42f 422 *
d57237f2 423 * on entry, *num is the number of contiguous sectors we'd like to
45aba42f
KW
424 * access following offset.
425 *
d57237f2 426 * on exit, *num is the number of contiguous sectors we can read.
45aba42f 427 *
68d000a3
KW
428 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
429 * cases.
45aba42f 430 */
1c46efaa
KW
431int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
432 int *num, uint64_t *cluster_offset)
45aba42f
KW
433{
434 BDRVQcowState *s = bs->opaque;
2cf7cfa1
KW
435 unsigned int l2_index;
436 uint64_t l1_index, l2_offset, *l2_table;
45aba42f 437 int l1_bits, c;
80ee15a6
KW
438 unsigned int index_in_cluster, nb_clusters;
439 uint64_t nb_available, nb_needed;
55c17e98 440 int ret;
45aba42f
KW
441
442 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
443 nb_needed = *num + index_in_cluster;
444
445 l1_bits = s->l2_bits + s->cluster_bits;
446
447 /* compute how many bytes there are between the offset and
448 * the end of the l1 entry
449 */
450
80ee15a6 451 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
45aba42f
KW
452
453 /* compute the number of available sectors */
454
455 nb_available = (nb_available >> 9) + index_in_cluster;
456
457 if (nb_needed > nb_available) {
458 nb_needed = nb_available;
459 }
460
1c46efaa 461 *cluster_offset = 0;
45aba42f
KW
462
463 /* seek the the l2 offset in the l1 table */
464
465 l1_index = offset >> l1_bits;
68d000a3
KW
466 if (l1_index >= s->l1_size) {
467 ret = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 468 goto out;
68d000a3 469 }
45aba42f 470
68d000a3
KW
471 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
472 if (!l2_offset) {
473 ret = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 474 goto out;
68d000a3 475 }
45aba42f
KW
476
477 /* load the l2 table in memory */
478
55c17e98
KW
479 ret = l2_load(bs, l2_offset, &l2_table);
480 if (ret < 0) {
481 return ret;
1c46efaa 482 }
45aba42f
KW
483
484 /* find the cluster offset for the given disk offset */
485
486 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
1c46efaa 487 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
45aba42f
KW
488 nb_clusters = size_to_clusters(s, nb_needed << 9);
489
68d000a3
KW
490 ret = qcow2_get_cluster_type(*cluster_offset);
491 switch (ret) {
492 case QCOW2_CLUSTER_COMPRESSED:
493 /* Compressed clusters can only be processed one by one */
494 c = 1;
495 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
496 break;
6377af48 497 case QCOW2_CLUSTER_ZERO:
381b487d
PB
498 if (s->qcow_version < 3) {
499 return -EIO;
500 }
6377af48 501 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
61653008 502 &l2_table[l2_index], QCOW_OFLAG_ZERO);
6377af48
KW
503 *cluster_offset = 0;
504 break;
68d000a3 505 case QCOW2_CLUSTER_UNALLOCATED:
45aba42f
KW
506 /* how many empty clusters ? */
507 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
68d000a3
KW
508 *cluster_offset = 0;
509 break;
510 case QCOW2_CLUSTER_NORMAL:
45aba42f
KW
511 /* how many allocated clusters ? */
512 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
61653008 513 &l2_table[l2_index], QCOW_OFLAG_ZERO);
68d000a3
KW
514 *cluster_offset &= L2E_OFFSET_MASK;
515 break;
1417d7e4
KW
516 default:
517 abort();
45aba42f
KW
518 }
519
29c1a730
KW
520 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
521
68d000a3
KW
522 nb_available = (c * s->cluster_sectors);
523
45aba42f
KW
524out:
525 if (nb_available > nb_needed)
526 nb_available = nb_needed;
527
528 *num = nb_available - index_in_cluster;
529
68d000a3 530 return ret;
45aba42f
KW
531}
532
533/*
534 * get_cluster_table
535 *
536 * for a given disk offset, load (and allocate if needed)
537 * the l2 table.
538 *
539 * the l2 table offset in the qcow2 file and the cluster index
540 * in the l2 table are given to the caller.
541 *
1e3e8f1a 542 * Returns 0 on success, -errno in failure case
45aba42f 543 */
45aba42f
KW
544static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
545 uint64_t **new_l2_table,
45aba42f
KW
546 int *new_l2_index)
547{
548 BDRVQcowState *s = bs->opaque;
2cf7cfa1
KW
549 unsigned int l2_index;
550 uint64_t l1_index, l2_offset;
c46e1167 551 uint64_t *l2_table = NULL;
80ee15a6 552 int ret;
45aba42f
KW
553
554 /* seek the the l2 offset in the l1 table */
555
556 l1_index = offset >> (s->l2_bits + s->cluster_bits);
557 if (l1_index >= s->l1_size) {
72893756 558 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
1e3e8f1a
KW
559 if (ret < 0) {
560 return ret;
561 }
45aba42f 562 }
8e37f681 563
2cf7cfa1 564 assert(l1_index < s->l1_size);
8e37f681 565 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
45aba42f
KW
566
567 /* seek the l2 table of the given l2 offset */
568
8e37f681 569 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
45aba42f 570 /* load the l2 table in memory */
55c17e98
KW
571 ret = l2_load(bs, l2_offset, &l2_table);
572 if (ret < 0) {
573 return ret;
1e3e8f1a 574 }
45aba42f 575 } else {
16fde5f2 576 /* First allocate a new L2 table (and do COW if needed) */
c46e1167
KW
577 ret = l2_allocate(bs, l1_index, &l2_table);
578 if (ret < 0) {
579 return ret;
1e3e8f1a 580 }
16fde5f2
KW
581
582 /* Then decrease the refcount of the old table */
583 if (l2_offset) {
6cfcb9b8
KW
584 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
585 QCOW2_DISCARD_OTHER);
16fde5f2 586 }
45aba42f
KW
587 }
588
589 /* find the cluster offset for the given disk offset */
590
591 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
592
593 *new_l2_table = l2_table;
45aba42f
KW
594 *new_l2_index = l2_index;
595
1e3e8f1a 596 return 0;
45aba42f
KW
597}
598
599/*
600 * alloc_compressed_cluster_offset
601 *
602 * For a given offset of the disk image, return cluster offset in
603 * qcow2 file.
604 *
605 * If the offset is not found, allocate a new compressed cluster.
606 *
607 * Return the cluster offset if successful,
608 * Return 0, otherwise.
609 *
610 */
611
ed6ccf0f
KW
612uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
613 uint64_t offset,
614 int compressed_size)
45aba42f
KW
615{
616 BDRVQcowState *s = bs->opaque;
617 int l2_index, ret;
3948d1d4 618 uint64_t *l2_table;
f4f0d391 619 int64_t cluster_offset;
45aba42f
KW
620 int nb_csectors;
621
3948d1d4 622 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1e3e8f1a 623 if (ret < 0) {
45aba42f 624 return 0;
1e3e8f1a 625 }
45aba42f 626
b0b6862e
KW
627 /* Compression can't overwrite anything. Fail if the cluster was already
628 * allocated. */
45aba42f 629 cluster_offset = be64_to_cpu(l2_table[l2_index]);
b0b6862e 630 if (cluster_offset & L2E_OFFSET_MASK) {
8f1efd00
KW
631 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
632 return 0;
633 }
45aba42f 634
ed6ccf0f 635 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
5d757b56 636 if (cluster_offset < 0) {
29c1a730 637 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
5d757b56
KW
638 return 0;
639 }
640
45aba42f
KW
641 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
642 (cluster_offset >> 9);
643
644 cluster_offset |= QCOW_OFLAG_COMPRESSED |
645 ((uint64_t)nb_csectors << s->csize_shift);
646
647 /* update L2 table */
648
649 /* compressed clusters never have the copied flag */
650
66f82cee 651 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
29c1a730 652 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
45aba42f 653 l2_table[l2_index] = cpu_to_be64(cluster_offset);
29c1a730 654 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
79a31189 655 if (ret < 0) {
29c1a730 656 return 0;
4c1612d9
KW
657 }
658
29c1a730 659 return cluster_offset;
4c1612d9
KW
660}
661
593fb83c
KW
662static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
663{
664 BDRVQcowState *s = bs->opaque;
665 int ret;
666
667 if (r->nb_sectors == 0) {
668 return 0;
669 }
670
671 qemu_co_mutex_unlock(&s->lock);
672 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
673 r->offset / BDRV_SECTOR_SIZE,
674 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
675 qemu_co_mutex_lock(&s->lock);
676
677 if (ret < 0) {
678 return ret;
679 }
680
681 /*
682 * Before we update the L2 table to actually point to the new cluster, we
683 * need to be sure that the refcounts have been increased and COW was
684 * handled.
685 */
686 qcow2_cache_depends_on_flush(s->l2_table_cache);
687
688 return 0;
689}
690
148da7ea 691int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
45aba42f
KW
692{
693 BDRVQcowState *s = bs->opaque;
694 int i, j = 0, l2_index, ret;
593fb83c 695 uint64_t *old_cluster, *l2_table;
250196f1 696 uint64_t cluster_offset = m->alloc_offset;
45aba42f 697
3cce16f4 698 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
f50f88b9 699 assert(m->nb_clusters > 0);
45aba42f 700
7267c094 701 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
45aba42f
KW
702
703 /* copy content of unmodified sectors */
593fb83c
KW
704 ret = perform_cow(bs, m, &m->cow_start);
705 if (ret < 0) {
706 goto err;
45aba42f
KW
707 }
708
593fb83c
KW
709 ret = perform_cow(bs, m, &m->cow_end);
710 if (ret < 0) {
711 goto err;
29c1a730
KW
712 }
713
593fb83c 714 /* Update L2 table. */
74c4510a 715 if (s->use_lazy_refcounts) {
280d3735
KW
716 qcow2_mark_dirty(bs);
717 }
bfe8043e
SH
718 if (qcow2_need_accurate_refcounts(s)) {
719 qcow2_cache_set_dependency(bs, s->l2_table_cache,
720 s->refcount_block_cache);
721 }
280d3735 722
3948d1d4 723 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
1e3e8f1a 724 if (ret < 0) {
45aba42f 725 goto err;
1e3e8f1a 726 }
29c1a730 727 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
45aba42f 728
c01dbccb 729 assert(l2_index + m->nb_clusters <= s->l2_size);
45aba42f
KW
730 for (i = 0; i < m->nb_clusters; i++) {
731 /* if two concurrent writes happen to the same unallocated cluster
732 * each write allocates separate cluster and writes data concurrently.
733 * The first one to complete updates l2 table with pointer to its
734 * cluster the second one has to do RMW (which is done above by
735 * copy_sectors()), update l2 table with its cluster pointer and free
736 * old cluster. This is what this loop does */
737 if(l2_table[l2_index + i] != 0)
738 old_cluster[j++] = l2_table[l2_index + i];
739
740 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
741 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
742 }
743
9f8e668e 744
29c1a730 745 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
c835d00f 746 if (ret < 0) {
45aba42f 747 goto err;
4c1612d9 748 }
45aba42f 749
7ec5e6a4
KW
750 /*
751 * If this was a COW, we need to decrease the refcount of the old cluster.
752 * Also flush bs->file to get the right order for L2 and refcount update.
6cfcb9b8
KW
753 *
754 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
755 * clusters), the next write will reuse them anyway.
7ec5e6a4
KW
756 */
757 if (j != 0) {
7ec5e6a4 758 for (i = 0; i < j; i++) {
6cfcb9b8
KW
759 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
760 QCOW2_DISCARD_NEVER);
7ec5e6a4
KW
761 }
762 }
45aba42f
KW
763
764 ret = 0;
765err:
7267c094 766 g_free(old_cluster);
45aba42f
KW
767 return ret;
768 }
769
bf319ece
KW
770/*
771 * Returns the number of contiguous clusters that can be used for an allocating
772 * write, but require COW to be performed (this includes yet unallocated space,
773 * which must copy from the backing file)
774 */
775static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
776 uint64_t *l2_table, int l2_index)
777{
143550a8 778 int i;
bf319ece 779
143550a8
KW
780 for (i = 0; i < nb_clusters; i++) {
781 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
782 int cluster_type = qcow2_get_cluster_type(l2_entry);
783
784 switch(cluster_type) {
785 case QCOW2_CLUSTER_NORMAL:
786 if (l2_entry & QCOW_OFLAG_COPIED) {
787 goto out;
788 }
bf319ece 789 break;
143550a8
KW
790 case QCOW2_CLUSTER_UNALLOCATED:
791 case QCOW2_CLUSTER_COMPRESSED:
6377af48 792 case QCOW2_CLUSTER_ZERO:
bf319ece 793 break;
143550a8
KW
794 default:
795 abort();
796 }
bf319ece
KW
797 }
798
143550a8 799out:
bf319ece
KW
800 assert(i <= nb_clusters);
801 return i;
802}
803
250196f1 804/*
226c3c26
KW
805 * Check if there already is an AIO write request in flight which allocates
806 * the same cluster. In this case we need to wait until the previous
807 * request has completed and updated the L2 table accordingly.
65eb2e35
KW
808 *
809 * Returns:
810 * 0 if there was no dependency. *cur_bytes indicates the number of
811 * bytes from guest_offset that can be read before the next
812 * dependency must be processed (or the request is complete)
813 *
814 * -EAGAIN if we had to wait for another request, previously gathered
815 * information on cluster allocation may be invalid now. The caller
816 * must start over anyway, so consider *cur_bytes undefined.
250196f1 817 */
226c3c26 818static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
ecdd5333 819 uint64_t *cur_bytes, QCowL2Meta **m)
250196f1
KW
820{
821 BDRVQcowState *s = bs->opaque;
250196f1 822 QCowL2Meta *old_alloc;
65eb2e35 823 uint64_t bytes = *cur_bytes;
250196f1 824
250196f1
KW
825 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
826
65eb2e35
KW
827 uint64_t start = guest_offset;
828 uint64_t end = start + bytes;
829 uint64_t old_start = l2meta_cow_start(old_alloc);
830 uint64_t old_end = l2meta_cow_end(old_alloc);
250196f1 831
d9d74f41 832 if (end <= old_start || start >= old_end) {
250196f1
KW
833 /* No intersection */
834 } else {
835 if (start < old_start) {
836 /* Stop at the start of a running allocation */
65eb2e35 837 bytes = old_start - start;
250196f1 838 } else {
65eb2e35 839 bytes = 0;
250196f1
KW
840 }
841
ecdd5333
KW
842 /* Stop if already an l2meta exists. After yielding, it wouldn't
843 * be valid any more, so we'd have to clean up the old L2Metas
844 * and deal with requests depending on them before starting to
845 * gather new ones. Not worth the trouble. */
846 if (bytes == 0 && *m) {
847 *cur_bytes = 0;
848 return 0;
849 }
850
65eb2e35 851 if (bytes == 0) {
250196f1
KW
852 /* Wait for the dependency to complete. We need to recheck
853 * the free/allocated clusters when we continue. */
854 qemu_co_mutex_unlock(&s->lock);
855 qemu_co_queue_wait(&old_alloc->dependent_requests);
856 qemu_co_mutex_lock(&s->lock);
857 return -EAGAIN;
858 }
859 }
860 }
861
65eb2e35
KW
862 /* Make sure that existing clusters and new allocations are only used up to
863 * the next dependency if we shortened the request above */
864 *cur_bytes = bytes;
250196f1 865
226c3c26
KW
866 return 0;
867}
868
0af729ec
KW
869/*
870 * Checks how many already allocated clusters that don't require a copy on
871 * write there are at the given guest_offset (up to *bytes). If
872 * *host_offset is not zero, only physically contiguous clusters beginning at
873 * this host offset are counted.
874 *
411d62b0
KW
875 * Note that guest_offset may not be cluster aligned. In this case, the
876 * returned *host_offset points to exact byte referenced by guest_offset and
877 * therefore isn't cluster aligned as well.
0af729ec
KW
878 *
879 * Returns:
880 * 0: if no allocated clusters are available at the given offset.
881 * *bytes is normally unchanged. It is set to 0 if the cluster
882 * is allocated and doesn't need COW, but doesn't have the right
883 * physical offset.
884 *
885 * 1: if allocated clusters that don't require a COW are available at
886 * the requested offset. *bytes may have decreased and describes
887 * the length of the area that can be written to.
888 *
889 * -errno: in error cases
0af729ec
KW
890 */
891static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
c53ede9f 892 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
0af729ec
KW
893{
894 BDRVQcowState *s = bs->opaque;
895 int l2_index;
896 uint64_t cluster_offset;
897 uint64_t *l2_table;
acb0467f 898 unsigned int nb_clusters;
c53ede9f 899 unsigned int keep_clusters;
0af729ec
KW
900 int ret, pret;
901
902 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
903 *bytes);
0af729ec 904
411d62b0
KW
905 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
906 == offset_into_cluster(s, *host_offset));
907
acb0467f
KW
908 /*
909 * Calculate the number of clusters to look for. We stop at L2 table
910 * boundaries to keep things simple.
911 */
912 nb_clusters =
913 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
914
915 l2_index = offset_to_l2_index(s, guest_offset);
916 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
917
0af729ec
KW
918 /* Find L2 entry for the first involved cluster */
919 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
920 if (ret < 0) {
921 return ret;
922 }
923
924 cluster_offset = be64_to_cpu(l2_table[l2_index]);
925
926 /* Check how many clusters are already allocated and don't need COW */
927 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
928 && (cluster_offset & QCOW_OFLAG_COPIED))
929 {
e62daaf6
KW
930 /* If a specific host_offset is required, check it */
931 bool offset_matches =
932 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
933
934 if (*host_offset != 0 && !offset_matches) {
935 *bytes = 0;
936 ret = 0;
937 goto out;
938 }
939
0af729ec 940 /* We keep all QCOW_OFLAG_COPIED clusters */
c53ede9f 941 keep_clusters =
acb0467f 942 count_contiguous_clusters(nb_clusters, s->cluster_size,
61653008 943 &l2_table[l2_index],
0af729ec 944 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
c53ede9f
KW
945 assert(keep_clusters <= nb_clusters);
946
947 *bytes = MIN(*bytes,
948 keep_clusters * s->cluster_size
949 - offset_into_cluster(s, guest_offset));
0af729ec
KW
950
951 ret = 1;
952 } else {
0af729ec
KW
953 ret = 0;
954 }
955
0af729ec 956 /* Cleanup */
e62daaf6 957out:
0af729ec
KW
958 pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
959 if (pret < 0) {
960 return pret;
961 }
962
e62daaf6
KW
963 /* Only return a host offset if we actually made progress. Otherwise we
964 * would make requirements for handle_alloc() that it can't fulfill */
965 if (ret) {
411d62b0
KW
966 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
967 + offset_into_cluster(s, guest_offset);
e62daaf6
KW
968 }
969
0af729ec
KW
970 return ret;
971}
972
226c3c26
KW
973/*
974 * Allocates new clusters for the given guest_offset.
975 *
976 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
977 * contain the number of clusters that have been allocated and are contiguous
978 * in the image file.
979 *
980 * If *host_offset is non-zero, it specifies the offset in the image file at
981 * which the new clusters must start. *nb_clusters can be 0 on return in this
982 * case if the cluster at host_offset is already in use. If *host_offset is
983 * zero, the clusters can be allocated anywhere in the image file.
984 *
985 * *host_offset is updated to contain the offset into the image file at which
986 * the first allocated cluster starts.
987 *
988 * Return 0 on success and -errno in error cases. -EAGAIN means that the
989 * function has been waiting for another request and the allocation must be
990 * restarted, but the whole request should not be failed.
991 */
992static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
993 uint64_t *host_offset, unsigned int *nb_clusters)
994{
995 BDRVQcowState *s = bs->opaque;
226c3c26
KW
996
997 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
998 *host_offset, *nb_clusters);
999
250196f1
KW
1000 /* Allocate new clusters */
1001 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1002 if (*host_offset == 0) {
df021791
KW
1003 int64_t cluster_offset =
1004 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1005 if (cluster_offset < 0) {
1006 return cluster_offset;
1007 }
1008 *host_offset = cluster_offset;
1009 return 0;
250196f1 1010 } else {
17a71e58 1011 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
df021791
KW
1012 if (ret < 0) {
1013 return ret;
1014 }
1015 *nb_clusters = ret;
1016 return 0;
250196f1 1017 }
250196f1
KW
1018}
1019
10f0ed8b
KW
1020/*
1021 * Allocates new clusters for an area that either is yet unallocated or needs a
1022 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1023 * the new allocation can match the specified host offset.
1024 *
411d62b0
KW
1025 * Note that guest_offset may not be cluster aligned. In this case, the
1026 * returned *host_offset points to exact byte referenced by guest_offset and
1027 * therefore isn't cluster aligned as well.
10f0ed8b
KW
1028 *
1029 * Returns:
1030 * 0: if no clusters could be allocated. *bytes is set to 0,
1031 * *host_offset is left unchanged.
1032 *
1033 * 1: if new clusters were allocated. *bytes may be decreased if the
1034 * new allocation doesn't cover all of the requested area.
1035 * *host_offset is updated to contain the host offset of the first
1036 * newly allocated cluster.
1037 *
1038 * -errno: in error cases
10f0ed8b
KW
1039 */
1040static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
c37f4cd7 1041 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
10f0ed8b
KW
1042{
1043 BDRVQcowState *s = bs->opaque;
1044 int l2_index;
1045 uint64_t *l2_table;
1046 uint64_t entry;
f5bc6350 1047 unsigned int nb_clusters;
10f0ed8b
KW
1048 int ret;
1049
10f0ed8b 1050 uint64_t alloc_cluster_offset;
10f0ed8b
KW
1051
1052 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1053 *bytes);
1054 assert(*bytes > 0);
1055
f5bc6350
KW
1056 /*
1057 * Calculate the number of clusters to look for. We stop at L2 table
1058 * boundaries to keep things simple.
1059 */
c37f4cd7
KW
1060 nb_clusters =
1061 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1062
f5bc6350 1063 l2_index = offset_to_l2_index(s, guest_offset);
c37f4cd7 1064 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
f5bc6350 1065
10f0ed8b
KW
1066 /* Find L2 entry for the first involved cluster */
1067 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1068 if (ret < 0) {
1069 return ret;
1070 }
1071
3b8e2e26 1072 entry = be64_to_cpu(l2_table[l2_index]);
10f0ed8b
KW
1073
1074 /* For the moment, overwrite compressed clusters one by one */
1075 if (entry & QCOW_OFLAG_COMPRESSED) {
1076 nb_clusters = 1;
1077 } else {
3b8e2e26 1078 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
10f0ed8b
KW
1079 }
1080
ecdd5333
KW
1081 /* This function is only called when there were no non-COW clusters, so if
1082 * we can't find any unallocated or COW clusters either, something is
1083 * wrong with our code. */
1084 assert(nb_clusters > 0);
1085
10f0ed8b
KW
1086 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1087 if (ret < 0) {
1088 return ret;
1089 }
1090
10f0ed8b 1091 /* Allocate, if necessary at a given offset in the image file */
411d62b0 1092 alloc_cluster_offset = start_of_cluster(s, *host_offset);
83baa9a4 1093 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
10f0ed8b
KW
1094 &nb_clusters);
1095 if (ret < 0) {
1096 goto fail;
1097 }
1098
83baa9a4
KW
1099 /* Can't extend contiguous allocation */
1100 if (nb_clusters == 0) {
10f0ed8b
KW
1101 *bytes = 0;
1102 return 0;
1103 }
1104
83baa9a4
KW
1105 /*
1106 * Save info needed for meta data update.
1107 *
1108 * requested_sectors: Number of sectors from the start of the first
1109 * newly allocated cluster to the end of the (possibly shortened
1110 * before) write request.
1111 *
1112 * avail_sectors: Number of sectors from the start of the first
1113 * newly allocated to the end of the last newly allocated cluster.
1114 *
1115 * nb_sectors: The number of sectors from the start of the first
1116 * newly allocated cluster to the end of the area that the write
1117 * request actually writes to (excluding COW at the end)
1118 */
1119 int requested_sectors =
1120 (*bytes + offset_into_cluster(s, guest_offset))
1121 >> BDRV_SECTOR_BITS;
1122 int avail_sectors = nb_clusters
1123 << (s->cluster_bits - BDRV_SECTOR_BITS);
1124 int alloc_n_start = offset_into_cluster(s, guest_offset)
1125 >> BDRV_SECTOR_BITS;
1126 int nb_sectors = MIN(requested_sectors, avail_sectors);
88c6588c 1127 QCowL2Meta *old_m = *m;
83baa9a4 1128
83baa9a4
KW
1129 *m = g_malloc0(sizeof(**m));
1130
1131 **m = (QCowL2Meta) {
88c6588c
KW
1132 .next = old_m,
1133
411d62b0 1134 .alloc_offset = alloc_cluster_offset,
83baa9a4
KW
1135 .offset = start_of_cluster(s, guest_offset),
1136 .nb_clusters = nb_clusters,
1137 .nb_available = nb_sectors,
1138
1139 .cow_start = {
1140 .offset = 0,
1141 .nb_sectors = alloc_n_start,
1142 },
1143 .cow_end = {
1144 .offset = nb_sectors * BDRV_SECTOR_SIZE,
1145 .nb_sectors = avail_sectors - nb_sectors,
1146 },
1147 };
1148 qemu_co_queue_init(&(*m)->dependent_requests);
1149 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1150
411d62b0 1151 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
83baa9a4
KW
1152 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1153 - offset_into_cluster(s, guest_offset));
1154 assert(*bytes != 0);
1155
10f0ed8b
KW
1156 return 1;
1157
1158fail:
1159 if (*m && (*m)->nb_clusters > 0) {
1160 QLIST_REMOVE(*m, next_in_flight);
1161 }
1162 return ret;
1163}
1164
45aba42f
KW
1165/*
1166 * alloc_cluster_offset
1167 *
250196f1
KW
1168 * For a given offset on the virtual disk, find the cluster offset in qcow2
1169 * file. If the offset is not found, allocate a new cluster.
45aba42f 1170 *
250196f1 1171 * If the cluster was already allocated, m->nb_clusters is set to 0 and
a7912369 1172 * other fields in m are meaningless.
148da7ea
KW
1173 *
1174 * If the cluster is newly allocated, m->nb_clusters is set to the number of
68d100e9
KW
1175 * contiguous clusters that have been allocated. In this case, the other
1176 * fields of m are valid and contain information about the first allocated
1177 * cluster.
45aba42f 1178 *
68d100e9
KW
1179 * If the request conflicts with another write request in flight, the coroutine
1180 * is queued and will be reentered when the dependency has completed.
148da7ea
KW
1181 *
1182 * Return 0 on success and -errno in error cases
45aba42f 1183 */
f4f0d391 1184int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
f50f88b9 1185 int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m)
45aba42f
KW
1186{
1187 BDRVQcowState *s = bs->opaque;
710c2496 1188 uint64_t start, remaining;
250196f1 1189 uint64_t cluster_offset;
65eb2e35 1190 uint64_t cur_bytes;
710c2496 1191 int ret;
45aba42f 1192
3cce16f4
KW
1193 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
1194 n_start, n_end);
1195
710c2496
KW
1196 assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset));
1197 offset = start_of_cluster(s, offset);
1198
72424114 1199again:
710c2496
KW
1200 start = offset + (n_start << BDRV_SECTOR_BITS);
1201 remaining = (n_end - n_start) << BDRV_SECTOR_BITS;
0af729ec
KW
1202 cluster_offset = 0;
1203 *host_offset = 0;
ecdd5333
KW
1204 cur_bytes = 0;
1205 *m = NULL;
0af729ec 1206
2c3b32d2 1207 while (true) {
ecdd5333
KW
1208
1209 if (!*host_offset) {
1210 *host_offset = start_of_cluster(s, cluster_offset);
1211 }
1212
1213 assert(remaining >= cur_bytes);
1214
1215 start += cur_bytes;
1216 remaining -= cur_bytes;
1217 cluster_offset += cur_bytes;
1218
1219 if (remaining == 0) {
1220 break;
1221 }
1222
1223 cur_bytes = remaining;
1224
2c3b32d2
KW
1225 /*
1226 * Now start gathering as many contiguous clusters as possible:
1227 *
1228 * 1. Check for overlaps with in-flight allocations
1229 *
1230 * a) Overlap not in the first cluster -> shorten this request and
1231 * let the caller handle the rest in its next loop iteration.
1232 *
1233 * b) Real overlaps of two requests. Yield and restart the search
1234 * for contiguous clusters (the situation could have changed
1235 * while we were sleeping)
1236 *
1237 * c) TODO: Request starts in the same cluster as the in-flight
1238 * allocation ends. Shorten the COW of the in-fight allocation,
1239 * set cluster_offset to write to the same cluster and set up
1240 * the right synchronisation between the in-flight request and
1241 * the new one.
1242 */
ecdd5333 1243 ret = handle_dependencies(bs, start, &cur_bytes, m);
2c3b32d2 1244 if (ret == -EAGAIN) {
ecdd5333
KW
1245 /* Currently handle_dependencies() doesn't yield if we already had
1246 * an allocation. If it did, we would have to clean up the L2Meta
1247 * structs before starting over. */
1248 assert(*m == NULL);
2c3b32d2
KW
1249 goto again;
1250 } else if (ret < 0) {
1251 return ret;
ecdd5333
KW
1252 } else if (cur_bytes == 0) {
1253 break;
2c3b32d2
KW
1254 } else {
1255 /* handle_dependencies() may have decreased cur_bytes (shortened
1256 * the allocations below) so that the next dependency is processed
1257 * correctly during the next loop iteration. */
0af729ec 1258 }
710c2496 1259
2c3b32d2
KW
1260 /*
1261 * 2. Count contiguous COPIED clusters.
1262 */
1263 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1264 if (ret < 0) {
1265 return ret;
1266 } else if (ret) {
ecdd5333 1267 continue;
2c3b32d2
KW
1268 } else if (cur_bytes == 0) {
1269 break;
1270 }
060bee89 1271
2c3b32d2
KW
1272 /*
1273 * 3. If the request still hasn't completed, allocate new clusters,
1274 * considering any cluster_offset of steps 1c or 2.
1275 */
1276 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1277 if (ret < 0) {
1278 return ret;
1279 } else if (ret) {
ecdd5333 1280 continue;
2c3b32d2
KW
1281 } else {
1282 assert(cur_bytes == 0);
1283 break;
1284 }
f5bc6350 1285 }
10f0ed8b 1286
710c2496
KW
1287 *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS);
1288 assert(*num > 0);
1289 assert(*host_offset != 0);
45aba42f 1290
148da7ea 1291 return 0;
45aba42f
KW
1292}
1293
1294static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1295 const uint8_t *buf, int buf_size)
1296{
1297 z_stream strm1, *strm = &strm1;
1298 int ret, out_len;
1299
1300 memset(strm, 0, sizeof(*strm));
1301
1302 strm->next_in = (uint8_t *)buf;
1303 strm->avail_in = buf_size;
1304 strm->next_out = out_buf;
1305 strm->avail_out = out_buf_size;
1306
1307 ret = inflateInit2(strm, -12);
1308 if (ret != Z_OK)
1309 return -1;
1310 ret = inflate(strm, Z_FINISH);
1311 out_len = strm->next_out - out_buf;
1312 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1313 out_len != out_buf_size) {
1314 inflateEnd(strm);
1315 return -1;
1316 }
1317 inflateEnd(strm);
1318 return 0;
1319}
1320
66f82cee 1321int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
45aba42f 1322{
66f82cee 1323 BDRVQcowState *s = bs->opaque;
45aba42f
KW
1324 int ret, csize, nb_csectors, sector_offset;
1325 uint64_t coffset;
1326
1327 coffset = cluster_offset & s->cluster_offset_mask;
1328 if (s->cluster_cache_offset != coffset) {
1329 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1330 sector_offset = coffset & 511;
1331 csize = nb_csectors * 512 - sector_offset;
66f82cee
KW
1332 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1333 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
45aba42f 1334 if (ret < 0) {
8af36488 1335 return ret;
45aba42f
KW
1336 }
1337 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1338 s->cluster_data + sector_offset, csize) < 0) {
8af36488 1339 return -EIO;
45aba42f
KW
1340 }
1341 s->cluster_cache_offset = coffset;
1342 }
1343 return 0;
1344}
5ea929e3
KW
1345
1346/*
1347 * This discards as many clusters of nb_clusters as possible at once (i.e.
1348 * all clusters in the same L2 table) and returns the number of discarded
1349 * clusters.
1350 */
1351static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
670df5e3 1352 unsigned int nb_clusters, enum qcow2_discard_type type)
5ea929e3
KW
1353{
1354 BDRVQcowState *s = bs->opaque;
3948d1d4 1355 uint64_t *l2_table;
5ea929e3
KW
1356 int l2_index;
1357 int ret;
1358 int i;
1359
3948d1d4 1360 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
5ea929e3
KW
1361 if (ret < 0) {
1362 return ret;
1363 }
1364
1365 /* Limit nb_clusters to one L2 table */
1366 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1367
1368 for (i = 0; i < nb_clusters; i++) {
1369 uint64_t old_offset;
1370
1371 old_offset = be64_to_cpu(l2_table[l2_index + i]);
8e37f681 1372 if ((old_offset & L2E_OFFSET_MASK) == 0) {
5ea929e3
KW
1373 continue;
1374 }
1375
1376 /* First remove L2 entries */
1377 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1378 l2_table[l2_index + i] = cpu_to_be64(0);
1379
1380 /* Then decrease the refcount */
670df5e3 1381 qcow2_free_any_clusters(bs, old_offset, 1, type);
5ea929e3
KW
1382 }
1383
1384 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1385 if (ret < 0) {
1386 return ret;
1387 }
1388
1389 return nb_clusters;
1390}
1391
1392int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
670df5e3 1393 int nb_sectors, enum qcow2_discard_type type)
5ea929e3
KW
1394{
1395 BDRVQcowState *s = bs->opaque;
1396 uint64_t end_offset;
1397 unsigned int nb_clusters;
1398 int ret;
1399
1400 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1401
1402 /* Round start up and end down */
1403 offset = align_offset(offset, s->cluster_size);
1404 end_offset &= ~(s->cluster_size - 1);
1405
1406 if (offset > end_offset) {
1407 return 0;
1408 }
1409
1410 nb_clusters = size_to_clusters(s, end_offset - offset);
1411
0b919fae
KW
1412 s->cache_discards = true;
1413
5ea929e3
KW
1414 /* Each L2 table is handled by its own loop iteration */
1415 while (nb_clusters > 0) {
670df5e3 1416 ret = discard_single_l2(bs, offset, nb_clusters, type);
5ea929e3 1417 if (ret < 0) {
0b919fae 1418 goto fail;
5ea929e3
KW
1419 }
1420
1421 nb_clusters -= ret;
1422 offset += (ret * s->cluster_size);
1423 }
1424
0b919fae
KW
1425 ret = 0;
1426fail:
1427 s->cache_discards = false;
1428 qcow2_process_discards(bs, ret);
1429
1430 return ret;
5ea929e3 1431}
621f0589
KW
1432
1433/*
1434 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1435 * all clusters in the same L2 table) and returns the number of zeroed
1436 * clusters.
1437 */
1438static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1439 unsigned int nb_clusters)
1440{
1441 BDRVQcowState *s = bs->opaque;
1442 uint64_t *l2_table;
1443 int l2_index;
1444 int ret;
1445 int i;
1446
1447 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1448 if (ret < 0) {
1449 return ret;
1450 }
1451
1452 /* Limit nb_clusters to one L2 table */
1453 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1454
1455 for (i = 0; i < nb_clusters; i++) {
1456 uint64_t old_offset;
1457
1458 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1459
1460 /* Update L2 entries */
1461 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1462 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1463 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
6cfcb9b8 1464 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
621f0589
KW
1465 } else {
1466 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1467 }
1468 }
1469
1470 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1471 if (ret < 0) {
1472 return ret;
1473 }
1474
1475 return nb_clusters;
1476}
1477
1478int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1479{
1480 BDRVQcowState *s = bs->opaque;
1481 unsigned int nb_clusters;
1482 int ret;
1483
1484 /* The zero flag is only supported by version 3 and newer */
1485 if (s->qcow_version < 3) {
1486 return -ENOTSUP;
1487 }
1488
1489 /* Each L2 table is handled by its own loop iteration */
1490 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1491
0b919fae
KW
1492 s->cache_discards = true;
1493
621f0589
KW
1494 while (nb_clusters > 0) {
1495 ret = zero_single_l2(bs, offset, nb_clusters);
1496 if (ret < 0) {
0b919fae 1497 goto fail;
621f0589
KW
1498 }
1499
1500 nb_clusters -= ret;
1501 offset += (ret * s->cluster_size);
1502 }
1503
0b919fae
KW
1504 ret = 0;
1505fail:
1506 s->cache_discards = false;
1507 qcow2_process_discards(bs, ret);
1508
1509 return ret;
621f0589 1510}
32b6444d
MR
1511
1512/*
1513 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1514 * non-backed non-pre-allocated zero clusters).
1515 *
1516 * expanded_clusters is a bitmap where every bit corresponds to one cluster in
1517 * the image file; a bit gets set if the corresponding cluster has been used for
1518 * zero expansion (i.e., has been filled with zeroes and is referenced from an
1519 * L2 table). nb_clusters contains the total cluster count of the image file,
1520 * i.e., the number of bits in expanded_clusters.
1521 */
1522static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
e390cf5a
MR
1523 int l1_size, uint8_t **expanded_clusters,
1524 uint64_t *nb_clusters)
32b6444d
MR
1525{
1526 BDRVQcowState *s = bs->opaque;
1527 bool is_active_l1 = (l1_table == s->l1_table);
1528 uint64_t *l2_table = NULL;
1529 int ret;
1530 int i, j;
1531
1532 if (!is_active_l1) {
1533 /* inactive L2 tables require a buffer to be stored in when loading
1534 * them from disk */
1535 l2_table = qemu_blockalign(bs, s->cluster_size);
1536 }
1537
1538 for (i = 0; i < l1_size; i++) {
1539 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1540 bool l2_dirty = false;
1541
1542 if (!l2_offset) {
1543 /* unallocated */
1544 continue;
1545 }
1546
1547 if (is_active_l1) {
1548 /* get active L2 tables from cache */
1549 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1550 (void **)&l2_table);
1551 } else {
1552 /* load inactive L2 tables from disk */
1553 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1554 (void *)l2_table, s->cluster_sectors);
1555 }
1556 if (ret < 0) {
1557 goto fail;
1558 }
1559
1560 for (j = 0; j < s->l2_size; j++) {
1561 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1562 int64_t offset = l2_entry & L2E_OFFSET_MASK, cluster_index;
1563 int cluster_type = qcow2_get_cluster_type(l2_entry);
320c7066 1564 bool preallocated = offset != 0;
32b6444d
MR
1565
1566 if (cluster_type == QCOW2_CLUSTER_NORMAL) {
1567 cluster_index = offset >> s->cluster_bits;
e390cf5a
MR
1568 assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1569 if ((*expanded_clusters)[cluster_index / 8] &
32b6444d
MR
1570 (1 << (cluster_index % 8))) {
1571 /* Probably a shared L2 table; this cluster was a zero
1572 * cluster which has been expanded, its refcount
1573 * therefore most likely requires an update. */
1574 ret = qcow2_update_cluster_refcount(bs, cluster_index, 1,
1575 QCOW2_DISCARD_NEVER);
1576 if (ret < 0) {
1577 goto fail;
1578 }
1579 /* Since we just increased the refcount, the COPIED flag may
1580 * no longer be set. */
1581 l2_table[j] = cpu_to_be64(l2_entry & ~QCOW_OFLAG_COPIED);
1582 l2_dirty = true;
1583 }
1584 continue;
1585 }
1586 else if (qcow2_get_cluster_type(l2_entry) != QCOW2_CLUSTER_ZERO) {
1587 continue;
1588 }
1589
320c7066 1590 if (!preallocated) {
32b6444d
MR
1591 if (!bs->backing_hd) {
1592 /* not backed; therefore we can simply deallocate the
1593 * cluster */
1594 l2_table[j] = 0;
1595 l2_dirty = true;
1596 continue;
1597 }
1598
1599 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1600 if (offset < 0) {
1601 ret = offset;
1602 goto fail;
1603 }
1604 }
1605
231bb267 1606 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
32b6444d 1607 if (ret < 0) {
320c7066
MR
1608 if (!preallocated) {
1609 qcow2_free_clusters(bs, offset, s->cluster_size,
1610 QCOW2_DISCARD_ALWAYS);
1611 }
32b6444d
MR
1612 goto fail;
1613 }
1614
1615 ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE,
1616 s->cluster_sectors);
1617 if (ret < 0) {
320c7066
MR
1618 if (!preallocated) {
1619 qcow2_free_clusters(bs, offset, s->cluster_size,
1620 QCOW2_DISCARD_ALWAYS);
1621 }
32b6444d
MR
1622 goto fail;
1623 }
1624
1625 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1626 l2_dirty = true;
1627
1628 cluster_index = offset >> s->cluster_bits;
e390cf5a
MR
1629
1630 if (cluster_index >= *nb_clusters) {
1631 uint64_t old_bitmap_size = (*nb_clusters + 7) / 8;
1632 uint64_t new_bitmap_size;
1633 /* The offset may lie beyond the old end of the underlying image
1634 * file for growable files only */
1635 assert(bs->file->growable);
1636 *nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1637 BDRV_SECTOR_SIZE);
1638 new_bitmap_size = (*nb_clusters + 7) / 8;
1639 *expanded_clusters = g_realloc(*expanded_clusters,
1640 new_bitmap_size);
1641 /* clear the newly allocated space */
1642 memset(&(*expanded_clusters)[old_bitmap_size], 0,
1643 new_bitmap_size - old_bitmap_size);
1644 }
1645
1646 assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1647 (*expanded_clusters)[cluster_index / 8] |= 1 << (cluster_index % 8);
32b6444d
MR
1648 }
1649
1650 if (is_active_l1) {
1651 if (l2_dirty) {
1652 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1653 qcow2_cache_depends_on_flush(s->l2_table_cache);
1654 }
1655 ret = qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1656 if (ret < 0) {
1657 l2_table = NULL;
1658 goto fail;
1659 }
1660 } else {
1661 if (l2_dirty) {
231bb267
MR
1662 ret = qcow2_pre_write_overlap_check(bs,
1663 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
32b6444d
MR
1664 s->cluster_size);
1665 if (ret < 0) {
1666 goto fail;
1667 }
1668
1669 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1670 (void *)l2_table, s->cluster_sectors);
1671 if (ret < 0) {
1672 goto fail;
1673 }
1674 }
1675 }
1676 }
1677
1678 ret = 0;
1679
1680fail:
1681 if (l2_table) {
1682 if (!is_active_l1) {
1683 qemu_vfree(l2_table);
1684 } else {
1685 if (ret < 0) {
1686 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1687 } else {
1688 ret = qcow2_cache_put(bs, s->l2_table_cache,
1689 (void **)&l2_table);
1690 }
1691 }
1692 }
1693 return ret;
1694}
1695
1696/*
1697 * For backed images, expands all zero clusters on the image. For non-backed
1698 * images, deallocates all non-pre-allocated zero clusters (and claims the
1699 * allocation for pre-allocated ones). This is important for downgrading to a
1700 * qcow2 version which doesn't yet support metadata zero clusters.
1701 */
1702int qcow2_expand_zero_clusters(BlockDriverState *bs)
1703{
1704 BDRVQcowState *s = bs->opaque;
1705 uint64_t *l1_table = NULL;
32b6444d
MR
1706 uint64_t nb_clusters;
1707 uint8_t *expanded_clusters;
1708 int ret;
1709 int i, j;
1710
e390cf5a
MR
1711 nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1712 BDRV_SECTOR_SIZE);
32b6444d
MR
1713 expanded_clusters = g_malloc0((nb_clusters + 7) / 8);
1714
1715 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
e390cf5a 1716 &expanded_clusters, &nb_clusters);
32b6444d
MR
1717 if (ret < 0) {
1718 goto fail;
1719 }
1720
1721 /* Inactive L1 tables may point to active L2 tables - therefore it is
1722 * necessary to flush the L2 table cache before trying to access the L2
1723 * tables pointed to by inactive L1 entries (else we might try to expand
1724 * zero clusters that have already been expanded); furthermore, it is also
1725 * necessary to empty the L2 table cache, since it may contain tables which
1726 * are now going to be modified directly on disk, bypassing the cache.
1727 * qcow2_cache_empty() does both for us. */
1728 ret = qcow2_cache_empty(bs, s->l2_table_cache);
1729 if (ret < 0) {
1730 goto fail;
1731 }
1732
1733 for (i = 0; i < s->nb_snapshots; i++) {
1734 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
1735 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
1736
1737 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1738
1739 ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset /
1740 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors);
1741 if (ret < 0) {
1742 goto fail;
1743 }
1744
1745 for (j = 0; j < s->snapshots[i].l1_size; j++) {
1746 be64_to_cpus(&l1_table[j]);
1747 }
1748
1749 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
e390cf5a 1750 &expanded_clusters, &nb_clusters);
32b6444d
MR
1751 if (ret < 0) {
1752 goto fail;
1753 }
1754 }
1755
1756 ret = 0;
1757
1758fail:
1759 g_free(expanded_clusters);
1760 g_free(l1_table);
1761 return ret;
1762}