]> git.proxmox.com Git - qemu.git/blame - cpu-all.h
Add machine type aliases
[qemu.git] / cpu-all.h
CommitLineData
5a9fdfec
FB
1/*
2 * defines common to all virtual CPUs
5fafdf24 3 *
5a9fdfec
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
5a9fdfec
FB
18 */
19#ifndef CPU_ALL_H
20#define CPU_ALL_H
21
7d99a001 22#include "qemu-common.h"
1ad2134f 23#include "cpu-common.h"
0ac4bd56 24
5fafdf24
TS
25/* some important defines:
26 *
0ac4bd56
FB
27 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28 * memory accesses.
5fafdf24 29 *
0ac4bd56
FB
30 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31 * otherwise little endian.
5fafdf24 32 *
0ac4bd56 33 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
5fafdf24 34 *
0ac4bd56
FB
35 * TARGET_WORDS_BIGENDIAN : same for target cpu
36 */
37
939ef593 38#include "softfloat.h"
f193c797
FB
39
40#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41#define BSWAP_NEEDED
42#endif
43
44#ifdef BSWAP_NEEDED
45
46static inline uint16_t tswap16(uint16_t s)
47{
48 return bswap16(s);
49}
50
51static inline uint32_t tswap32(uint32_t s)
52{
53 return bswap32(s);
54}
55
56static inline uint64_t tswap64(uint64_t s)
57{
58 return bswap64(s);
59}
60
61static inline void tswap16s(uint16_t *s)
62{
63 *s = bswap16(*s);
64}
65
66static inline void tswap32s(uint32_t *s)
67{
68 *s = bswap32(*s);
69}
70
71static inline void tswap64s(uint64_t *s)
72{
73 *s = bswap64(*s);
74}
75
76#else
77
78static inline uint16_t tswap16(uint16_t s)
79{
80 return s;
81}
82
83static inline uint32_t tswap32(uint32_t s)
84{
85 return s;
86}
87
88static inline uint64_t tswap64(uint64_t s)
89{
90 return s;
91}
92
93static inline void tswap16s(uint16_t *s)
94{
95}
96
97static inline void tswap32s(uint32_t *s)
98{
99}
100
101static inline void tswap64s(uint64_t *s)
102{
103}
104
105#endif
106
107#if TARGET_LONG_SIZE == 4
108#define tswapl(s) tswap32(s)
109#define tswapls(s) tswap32s((uint32_t *)(s))
0a962c02 110#define bswaptls(s) bswap32s(s)
f193c797
FB
111#else
112#define tswapl(s) tswap64(s)
113#define tswapls(s) tswap64s((uint64_t *)(s))
0a962c02 114#define bswaptls(s) bswap64s(s)
f193c797
FB
115#endif
116
0ca9d380
AJ
117typedef union {
118 float32 f;
119 uint32_t l;
120} CPU_FloatU;
121
832ed0fa
FB
122/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123 endian ! */
0ac4bd56 124typedef union {
53cd6637 125 float64 d;
9d60cac0
FB
126#if defined(WORDS_BIGENDIAN) \
127 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
0ac4bd56 128 struct {
0ac4bd56 129 uint32_t upper;
832ed0fa 130 uint32_t lower;
0ac4bd56
FB
131 } l;
132#else
133 struct {
0ac4bd56 134 uint32_t lower;
832ed0fa 135 uint32_t upper;
0ac4bd56
FB
136 } l;
137#endif
138 uint64_t ll;
139} CPU_DoubleU;
140
1f587329
BS
141#ifdef TARGET_SPARC
142typedef union {
143 float128 q;
144#if defined(WORDS_BIGENDIAN) \
145 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
146 struct {
147 uint32_t upmost;
148 uint32_t upper;
149 uint32_t lower;
150 uint32_t lowest;
151 } l;
152 struct {
153 uint64_t upper;
154 uint64_t lower;
155 } ll;
156#else
157 struct {
158 uint32_t lowest;
159 uint32_t lower;
160 uint32_t upper;
161 uint32_t upmost;
162 } l;
163 struct {
164 uint64_t lower;
165 uint64_t upper;
166 } ll;
167#endif
168} CPU_QuadU;
169#endif
170
61382a50
FB
171/* CPU memory access without any memory or io remapping */
172
83d73968
FB
173/*
174 * the generic syntax for the memory accesses is:
175 *
176 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
177 *
178 * store: st{type}{size}{endian}_{access_type}(ptr, val)
179 *
180 * type is:
181 * (empty): integer access
182 * f : float access
5fafdf24 183 *
83d73968
FB
184 * sign is:
185 * (empty): for floats or 32 bit size
186 * u : unsigned
187 * s : signed
188 *
189 * size is:
190 * b: 8 bits
191 * w: 16 bits
192 * l: 32 bits
193 * q: 64 bits
5fafdf24 194 *
83d73968
FB
195 * endian is:
196 * (empty): target cpu endianness or 8 bit access
197 * r : reversed target cpu endianness (not implemented yet)
198 * be : big endian (not implemented yet)
199 * le : little endian (not implemented yet)
200 *
201 * access_type is:
202 * raw : host memory access
203 * user : user mode access using soft MMU
204 * kernel : kernel mode access using soft MMU
205 */
8bba3ea1 206static inline int ldub_p(const void *ptr)
5a9fdfec
FB
207{
208 return *(uint8_t *)ptr;
209}
210
8bba3ea1 211static inline int ldsb_p(const void *ptr)
5a9fdfec
FB
212{
213 return *(int8_t *)ptr;
214}
215
c27004ec 216static inline void stb_p(void *ptr, int v)
5a9fdfec
FB
217{
218 *(uint8_t *)ptr = v;
219}
220
221/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
222 kernel handles unaligned load/stores may give better results, but
223 it is a system wide setting : bad */
2df3b95d 224#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
5a9fdfec
FB
225
226/* conservative code for little endian unaligned accesses */
8bba3ea1 227static inline int lduw_le_p(const void *ptr)
5a9fdfec 228{
e58ffeb3 229#ifdef _ARCH_PPC
5a9fdfec
FB
230 int val;
231 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
232 return val;
233#else
e01fe6d5 234 const uint8_t *p = ptr;
5a9fdfec
FB
235 return p[0] | (p[1] << 8);
236#endif
237}
238
8bba3ea1 239static inline int ldsw_le_p(const void *ptr)
5a9fdfec 240{
e58ffeb3 241#ifdef _ARCH_PPC
5a9fdfec
FB
242 int val;
243 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
244 return (int16_t)val;
245#else
e01fe6d5 246 const uint8_t *p = ptr;
5a9fdfec
FB
247 return (int16_t)(p[0] | (p[1] << 8));
248#endif
249}
250
8bba3ea1 251static inline int ldl_le_p(const void *ptr)
5a9fdfec 252{
e58ffeb3 253#ifdef _ARCH_PPC
5a9fdfec
FB
254 int val;
255 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
256 return val;
257#else
e01fe6d5 258 const uint8_t *p = ptr;
5a9fdfec
FB
259 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
260#endif
261}
262
8bba3ea1 263static inline uint64_t ldq_le_p(const void *ptr)
5a9fdfec 264{
e01fe6d5 265 const uint8_t *p = ptr;
5a9fdfec 266 uint32_t v1, v2;
f0aca822
FB
267 v1 = ldl_le_p(p);
268 v2 = ldl_le_p(p + 4);
5a9fdfec
FB
269 return v1 | ((uint64_t)v2 << 32);
270}
271
2df3b95d 272static inline void stw_le_p(void *ptr, int v)
5a9fdfec 273{
e58ffeb3 274#ifdef _ARCH_PPC
5a9fdfec
FB
275 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
276#else
277 uint8_t *p = ptr;
278 p[0] = v;
279 p[1] = v >> 8;
280#endif
281}
282
2df3b95d 283static inline void stl_le_p(void *ptr, int v)
5a9fdfec 284{
e58ffeb3 285#ifdef _ARCH_PPC
5a9fdfec
FB
286 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
287#else
288 uint8_t *p = ptr;
289 p[0] = v;
290 p[1] = v >> 8;
291 p[2] = v >> 16;
292 p[3] = v >> 24;
293#endif
294}
295
2df3b95d 296static inline void stq_le_p(void *ptr, uint64_t v)
5a9fdfec
FB
297{
298 uint8_t *p = ptr;
f0aca822
FB
299 stl_le_p(p, (uint32_t)v);
300 stl_le_p(p + 4, v >> 32);
5a9fdfec
FB
301}
302
303/* float access */
304
8bba3ea1 305static inline float32 ldfl_le_p(const void *ptr)
5a9fdfec
FB
306{
307 union {
53cd6637 308 float32 f;
5a9fdfec
FB
309 uint32_t i;
310 } u;
2df3b95d 311 u.i = ldl_le_p(ptr);
5a9fdfec
FB
312 return u.f;
313}
314
2df3b95d 315static inline void stfl_le_p(void *ptr, float32 v)
5a9fdfec
FB
316{
317 union {
53cd6637 318 float32 f;
5a9fdfec
FB
319 uint32_t i;
320 } u;
321 u.f = v;
2df3b95d 322 stl_le_p(ptr, u.i);
5a9fdfec
FB
323}
324
8bba3ea1 325static inline float64 ldfq_le_p(const void *ptr)
5a9fdfec 326{
0ac4bd56 327 CPU_DoubleU u;
2df3b95d
FB
328 u.l.lower = ldl_le_p(ptr);
329 u.l.upper = ldl_le_p(ptr + 4);
5a9fdfec
FB
330 return u.d;
331}
332
2df3b95d 333static inline void stfq_le_p(void *ptr, float64 v)
5a9fdfec 334{
0ac4bd56 335 CPU_DoubleU u;
5a9fdfec 336 u.d = v;
2df3b95d
FB
337 stl_le_p(ptr, u.l.lower);
338 stl_le_p(ptr + 4, u.l.upper);
5a9fdfec
FB
339}
340
2df3b95d
FB
341#else
342
8bba3ea1 343static inline int lduw_le_p(const void *ptr)
2df3b95d
FB
344{
345 return *(uint16_t *)ptr;
346}
347
8bba3ea1 348static inline int ldsw_le_p(const void *ptr)
2df3b95d
FB
349{
350 return *(int16_t *)ptr;
351}
93ac68bc 352
8bba3ea1 353static inline int ldl_le_p(const void *ptr)
2df3b95d
FB
354{
355 return *(uint32_t *)ptr;
356}
357
8bba3ea1 358static inline uint64_t ldq_le_p(const void *ptr)
2df3b95d
FB
359{
360 return *(uint64_t *)ptr;
361}
362
363static inline void stw_le_p(void *ptr, int v)
364{
365 *(uint16_t *)ptr = v;
366}
367
368static inline void stl_le_p(void *ptr, int v)
369{
370 *(uint32_t *)ptr = v;
371}
372
373static inline void stq_le_p(void *ptr, uint64_t v)
374{
375 *(uint64_t *)ptr = v;
376}
377
378/* float access */
379
8bba3ea1 380static inline float32 ldfl_le_p(const void *ptr)
2df3b95d
FB
381{
382 return *(float32 *)ptr;
383}
384
8bba3ea1 385static inline float64 ldfq_le_p(const void *ptr)
2df3b95d
FB
386{
387 return *(float64 *)ptr;
388}
389
390static inline void stfl_le_p(void *ptr, float32 v)
391{
392 *(float32 *)ptr = v;
393}
394
395static inline void stfq_le_p(void *ptr, float64 v)
396{
397 *(float64 *)ptr = v;
398}
399#endif
400
401#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
402
8bba3ea1 403static inline int lduw_be_p(const void *ptr)
93ac68bc 404{
83d73968
FB
405#if defined(__i386__)
406 int val;
407 asm volatile ("movzwl %1, %0\n"
408 "xchgb %b0, %h0\n"
409 : "=q" (val)
410 : "m" (*(uint16_t *)ptr));
411 return val;
412#else
e01fe6d5 413 const uint8_t *b = ptr;
83d73968
FB
414 return ((b[0] << 8) | b[1]);
415#endif
93ac68bc
FB
416}
417
8bba3ea1 418static inline int ldsw_be_p(const void *ptr)
93ac68bc 419{
83d73968
FB
420#if defined(__i386__)
421 int val;
422 asm volatile ("movzwl %1, %0\n"
423 "xchgb %b0, %h0\n"
424 : "=q" (val)
425 : "m" (*(uint16_t *)ptr));
426 return (int16_t)val;
427#else
e01fe6d5 428 const uint8_t *b = ptr;
83d73968
FB
429 return (int16_t)((b[0] << 8) | b[1]);
430#endif
93ac68bc
FB
431}
432
8bba3ea1 433static inline int ldl_be_p(const void *ptr)
93ac68bc 434{
4f2ac237 435#if defined(__i386__) || defined(__x86_64__)
83d73968
FB
436 int val;
437 asm volatile ("movl %1, %0\n"
438 "bswap %0\n"
439 : "=r" (val)
440 : "m" (*(uint32_t *)ptr));
441 return val;
442#else
e01fe6d5 443 const uint8_t *b = ptr;
83d73968
FB
444 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
445#endif
93ac68bc
FB
446}
447
8bba3ea1 448static inline uint64_t ldq_be_p(const void *ptr)
93ac68bc
FB
449{
450 uint32_t a,b;
2df3b95d 451 a = ldl_be_p(ptr);
4d7a0880 452 b = ldl_be_p((uint8_t *)ptr + 4);
93ac68bc
FB
453 return (((uint64_t)a<<32)|b);
454}
455
2df3b95d 456static inline void stw_be_p(void *ptr, int v)
93ac68bc 457{
83d73968
FB
458#if defined(__i386__)
459 asm volatile ("xchgb %b0, %h0\n"
460 "movw %w0, %1\n"
461 : "=q" (v)
462 : "m" (*(uint16_t *)ptr), "0" (v));
463#else
93ac68bc
FB
464 uint8_t *d = (uint8_t *) ptr;
465 d[0] = v >> 8;
466 d[1] = v;
83d73968 467#endif
93ac68bc
FB
468}
469
2df3b95d 470static inline void stl_be_p(void *ptr, int v)
93ac68bc 471{
4f2ac237 472#if defined(__i386__) || defined(__x86_64__)
83d73968
FB
473 asm volatile ("bswap %0\n"
474 "movl %0, %1\n"
475 : "=r" (v)
476 : "m" (*(uint32_t *)ptr), "0" (v));
477#else
93ac68bc
FB
478 uint8_t *d = (uint8_t *) ptr;
479 d[0] = v >> 24;
480 d[1] = v >> 16;
481 d[2] = v >> 8;
482 d[3] = v;
83d73968 483#endif
93ac68bc
FB
484}
485
2df3b95d 486static inline void stq_be_p(void *ptr, uint64_t v)
93ac68bc 487{
2df3b95d 488 stl_be_p(ptr, v >> 32);
4d7a0880 489 stl_be_p((uint8_t *)ptr + 4, v);
0ac4bd56
FB
490}
491
492/* float access */
493
8bba3ea1 494static inline float32 ldfl_be_p(const void *ptr)
0ac4bd56
FB
495{
496 union {
53cd6637 497 float32 f;
0ac4bd56
FB
498 uint32_t i;
499 } u;
2df3b95d 500 u.i = ldl_be_p(ptr);
0ac4bd56
FB
501 return u.f;
502}
503
2df3b95d 504static inline void stfl_be_p(void *ptr, float32 v)
0ac4bd56
FB
505{
506 union {
53cd6637 507 float32 f;
0ac4bd56
FB
508 uint32_t i;
509 } u;
510 u.f = v;
2df3b95d 511 stl_be_p(ptr, u.i);
0ac4bd56
FB
512}
513
8bba3ea1 514static inline float64 ldfq_be_p(const void *ptr)
0ac4bd56
FB
515{
516 CPU_DoubleU u;
2df3b95d 517 u.l.upper = ldl_be_p(ptr);
4d7a0880 518 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
0ac4bd56
FB
519 return u.d;
520}
521
2df3b95d 522static inline void stfq_be_p(void *ptr, float64 v)
0ac4bd56
FB
523{
524 CPU_DoubleU u;
525 u.d = v;
2df3b95d 526 stl_be_p(ptr, u.l.upper);
4d7a0880 527 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
93ac68bc
FB
528}
529
5a9fdfec
FB
530#else
531
8bba3ea1 532static inline int lduw_be_p(const void *ptr)
5a9fdfec
FB
533{
534 return *(uint16_t *)ptr;
535}
536
8bba3ea1 537static inline int ldsw_be_p(const void *ptr)
5a9fdfec
FB
538{
539 return *(int16_t *)ptr;
540}
541
8bba3ea1 542static inline int ldl_be_p(const void *ptr)
5a9fdfec
FB
543{
544 return *(uint32_t *)ptr;
545}
546
8bba3ea1 547static inline uint64_t ldq_be_p(const void *ptr)
5a9fdfec
FB
548{
549 return *(uint64_t *)ptr;
550}
551
2df3b95d 552static inline void stw_be_p(void *ptr, int v)
5a9fdfec
FB
553{
554 *(uint16_t *)ptr = v;
555}
556
2df3b95d 557static inline void stl_be_p(void *ptr, int v)
5a9fdfec
FB
558{
559 *(uint32_t *)ptr = v;
560}
561
2df3b95d 562static inline void stq_be_p(void *ptr, uint64_t v)
5a9fdfec
FB
563{
564 *(uint64_t *)ptr = v;
565}
566
567/* float access */
568
8bba3ea1 569static inline float32 ldfl_be_p(const void *ptr)
5a9fdfec 570{
53cd6637 571 return *(float32 *)ptr;
5a9fdfec
FB
572}
573
8bba3ea1 574static inline float64 ldfq_be_p(const void *ptr)
5a9fdfec 575{
53cd6637 576 return *(float64 *)ptr;
5a9fdfec
FB
577}
578
2df3b95d 579static inline void stfl_be_p(void *ptr, float32 v)
5a9fdfec 580{
53cd6637 581 *(float32 *)ptr = v;
5a9fdfec
FB
582}
583
2df3b95d 584static inline void stfq_be_p(void *ptr, float64 v)
5a9fdfec 585{
53cd6637 586 *(float64 *)ptr = v;
5a9fdfec 587}
2df3b95d
FB
588
589#endif
590
591/* target CPU memory access functions */
592#if defined(TARGET_WORDS_BIGENDIAN)
593#define lduw_p(p) lduw_be_p(p)
594#define ldsw_p(p) ldsw_be_p(p)
595#define ldl_p(p) ldl_be_p(p)
596#define ldq_p(p) ldq_be_p(p)
597#define ldfl_p(p) ldfl_be_p(p)
598#define ldfq_p(p) ldfq_be_p(p)
599#define stw_p(p, v) stw_be_p(p, v)
600#define stl_p(p, v) stl_be_p(p, v)
601#define stq_p(p, v) stq_be_p(p, v)
602#define stfl_p(p, v) stfl_be_p(p, v)
603#define stfq_p(p, v) stfq_be_p(p, v)
604#else
605#define lduw_p(p) lduw_le_p(p)
606#define ldsw_p(p) ldsw_le_p(p)
607#define ldl_p(p) ldl_le_p(p)
608#define ldq_p(p) ldq_le_p(p)
609#define ldfl_p(p) ldfl_le_p(p)
610#define ldfq_p(p) ldfq_le_p(p)
611#define stw_p(p, v) stw_le_p(p, v)
612#define stl_p(p, v) stl_le_p(p, v)
613#define stq_p(p, v) stq_le_p(p, v)
614#define stfl_p(p, v) stfl_le_p(p, v)
615#define stfq_p(p, v) stfq_le_p(p, v)
5a9fdfec
FB
616#endif
617
61382a50
FB
618/* MMU memory access macros */
619
53a5960a 620#if defined(CONFIG_USER_ONLY)
0e62fd79
AJ
621#include <assert.h>
622#include "qemu-types.h"
623
53a5960a
PB
624/* On some host systems the guest address space is reserved on the host.
625 * This allows the guest address space to be offset to a convenient location.
626 */
627//#define GUEST_BASE 0x20000000
628#define GUEST_BASE 0
629
630/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
631#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
0e62fd79
AJ
632#define h2g(x) ({ \
633 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
634 /* Check if given address fits target address space */ \
635 assert(__ret == (abi_ulong)__ret); \
636 (abi_ulong)__ret; \
637})
14cc46b1
AJ
638#define h2g_valid(x) ({ \
639 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
640 (__guest == (abi_ulong)__guest); \
641})
53a5960a
PB
642
643#define saddr(x) g2h(x)
644#define laddr(x) g2h(x)
645
646#else /* !CONFIG_USER_ONLY */
c27004ec
FB
647/* NOTE: we use double casts if pointers and target_ulong have
648 different sizes */
53a5960a
PB
649#define saddr(x) (uint8_t *)(long)(x)
650#define laddr(x) (uint8_t *)(long)(x)
651#endif
652
653#define ldub_raw(p) ldub_p(laddr((p)))
654#define ldsb_raw(p) ldsb_p(laddr((p)))
655#define lduw_raw(p) lduw_p(laddr((p)))
656#define ldsw_raw(p) ldsw_p(laddr((p)))
657#define ldl_raw(p) ldl_p(laddr((p)))
658#define ldq_raw(p) ldq_p(laddr((p)))
659#define ldfl_raw(p) ldfl_p(laddr((p)))
660#define ldfq_raw(p) ldfq_p(laddr((p)))
661#define stb_raw(p, v) stb_p(saddr((p)), v)
662#define stw_raw(p, v) stw_p(saddr((p)), v)
663#define stl_raw(p, v) stl_p(saddr((p)), v)
664#define stq_raw(p, v) stq_p(saddr((p)), v)
665#define stfl_raw(p, v) stfl_p(saddr((p)), v)
666#define stfq_raw(p, v) stfq_p(saddr((p)), v)
c27004ec
FB
667
668
5fafdf24 669#if defined(CONFIG_USER_ONLY)
61382a50
FB
670
671/* if user mode, no other memory access functions */
672#define ldub(p) ldub_raw(p)
673#define ldsb(p) ldsb_raw(p)
674#define lduw(p) lduw_raw(p)
675#define ldsw(p) ldsw_raw(p)
676#define ldl(p) ldl_raw(p)
677#define ldq(p) ldq_raw(p)
678#define ldfl(p) ldfl_raw(p)
679#define ldfq(p) ldfq_raw(p)
680#define stb(p, v) stb_raw(p, v)
681#define stw(p, v) stw_raw(p, v)
682#define stl(p, v) stl_raw(p, v)
683#define stq(p, v) stq_raw(p, v)
684#define stfl(p, v) stfl_raw(p, v)
685#define stfq(p, v) stfq_raw(p, v)
686
687#define ldub_code(p) ldub_raw(p)
688#define ldsb_code(p) ldsb_raw(p)
689#define lduw_code(p) lduw_raw(p)
690#define ldsw_code(p) ldsw_raw(p)
691#define ldl_code(p) ldl_raw(p)
bc98a7ef 692#define ldq_code(p) ldq_raw(p)
61382a50
FB
693
694#define ldub_kernel(p) ldub_raw(p)
695#define ldsb_kernel(p) ldsb_raw(p)
696#define lduw_kernel(p) lduw_raw(p)
697#define ldsw_kernel(p) ldsw_raw(p)
698#define ldl_kernel(p) ldl_raw(p)
bc98a7ef 699#define ldq_kernel(p) ldq_raw(p)
0ac4bd56
FB
700#define ldfl_kernel(p) ldfl_raw(p)
701#define ldfq_kernel(p) ldfq_raw(p)
61382a50
FB
702#define stb_kernel(p, v) stb_raw(p, v)
703#define stw_kernel(p, v) stw_raw(p, v)
704#define stl_kernel(p, v) stl_raw(p, v)
705#define stq_kernel(p, v) stq_raw(p, v)
0ac4bd56
FB
706#define stfl_kernel(p, v) stfl_raw(p, v)
707#define stfq_kernel(p, vt) stfq_raw(p, v)
61382a50
FB
708
709#endif /* defined(CONFIG_USER_ONLY) */
710
5a9fdfec
FB
711/* page related stuff */
712
03875444 713#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
5a9fdfec
FB
714#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
715#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
716
53a5960a 717/* ??? These should be the larger of unsigned long and target_ulong. */
83fb7adf
FB
718extern unsigned long qemu_real_host_page_size;
719extern unsigned long qemu_host_page_bits;
720extern unsigned long qemu_host_page_size;
721extern unsigned long qemu_host_page_mask;
5a9fdfec 722
83fb7adf 723#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
5a9fdfec
FB
724
725/* same as PROT_xxx */
726#define PAGE_READ 0x0001
727#define PAGE_WRITE 0x0002
728#define PAGE_EXEC 0x0004
729#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
730#define PAGE_VALID 0x0008
731/* original state of the write flag (used when tracking self-modifying
732 code */
5fafdf24 733#define PAGE_WRITE_ORG 0x0010
50a9569b 734#define PAGE_RESERVED 0x0020
5a9fdfec
FB
735
736void page_dump(FILE *f);
edf8e2af
MW
737int walk_memory_regions(void *,
738 int (*fn)(void *, unsigned long, unsigned long, unsigned long));
53a5960a
PB
739int page_get_flags(target_ulong address);
740void page_set_flags(target_ulong start, target_ulong end, int flags);
3d97b40b 741int page_check_range(target_ulong start, target_ulong len, int flags);
5a9fdfec 742
26a5f13b 743void cpu_exec_init_all(unsigned long tb_size);
c5be9f08 744CPUState *cpu_copy(CPUState *env);
950f1472 745CPUState *qemu_get_cpu(int cpu);
c5be9f08 746
5fafdf24 747void cpu_dump_state(CPUState *env, FILE *f,
7fe48483
FB
748 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
749 int flags);
76a66253
JM
750void cpu_dump_statistics (CPUState *env, FILE *f,
751 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
752 int flags);
7fe48483 753
a5e50b26 754void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
7d99a001 755 __attribute__ ((__format__ (__printf__, 2, 3)));
f0aca822 756extern CPUState *first_cpu;
e2f22898 757extern CPUState *cpu_single_env;
2e70f6ef
PB
758extern int64_t qemu_icount;
759extern int use_icount;
5a9fdfec 760
9acbed06
FB
761#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
762#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
ef792f9d 763#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
98699967 764#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
ba3c64fb 765#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
3b21e03e 766#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
6658ffb8 767#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
0573fbfc 768#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
474ea849 769#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
b09ea7d5
GN
770#define CPU_INTERRUPT_INIT 0x400 /* INIT pending. */
771#define CPU_INTERRUPT_SIPI 0x800 /* SIPI pending. */
79c4f6b0 772#define CPU_INTERRUPT_MCE 0x1000 /* (x86 only) MCE pending. */
98699967 773
4690764b 774void cpu_interrupt(CPUState *s, int mask);
b54ad049 775void cpu_reset_interrupt(CPUState *env, int mask);
68a79315 776
3098dba0
AJ
777void cpu_exit(CPUState *s);
778
6a4955a8
AL
779int qemu_cpu_has_work(CPUState *env);
780
a1d1bb31
AL
781/* Breakpoint/watchpoint flags */
782#define BP_MEM_READ 0x01
783#define BP_MEM_WRITE 0x02
784#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
06d55cc1 785#define BP_STOP_BEFORE_ACCESS 0x04
6e140f28 786#define BP_WATCHPOINT_HIT 0x08
a1d1bb31 787#define BP_GDB 0x10
2dc9f411 788#define BP_CPU 0x20
a1d1bb31
AL
789
790int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
791 CPUBreakpoint **breakpoint);
792int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
793void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
794void cpu_breakpoint_remove_all(CPUState *env, int mask);
795int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
796 int flags, CPUWatchpoint **watchpoint);
797int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
798 target_ulong len, int flags);
799void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
800void cpu_watchpoint_remove_all(CPUState *env, int mask);
60897d36
EI
801
802#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
803#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
804#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
805
c33a346e 806void cpu_single_step(CPUState *env, int enabled);
d95dc32d 807void cpu_reset(CPUState *s);
4c3a88a2 808
13eb76e0
FB
809/* Return the physical page corresponding to a virtual one. Use it
810 only for debugging because no protection checks are done. Return -1
811 if no page found. */
9b3c35e0 812target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
13eb76e0 813
5fafdf24 814#define CPU_LOG_TB_OUT_ASM (1 << 0)
9fddaa0c 815#define CPU_LOG_TB_IN_ASM (1 << 1)
f193c797
FB
816#define CPU_LOG_TB_OP (1 << 2)
817#define CPU_LOG_TB_OP_OPT (1 << 3)
818#define CPU_LOG_INT (1 << 4)
819#define CPU_LOG_EXEC (1 << 5)
820#define CPU_LOG_PCALL (1 << 6)
fd872598 821#define CPU_LOG_IOPORT (1 << 7)
9fddaa0c 822#define CPU_LOG_TB_CPU (1 << 8)
eca1bdf4 823#define CPU_LOG_RESET (1 << 9)
f193c797
FB
824
825/* define log items */
826typedef struct CPULogItem {
827 int mask;
828 const char *name;
829 const char *help;
830} CPULogItem;
831
c7cd6a37 832extern const CPULogItem cpu_log_items[];
f193c797 833
34865134
FB
834void cpu_set_log(int log_flags);
835void cpu_set_log_filename(const char *filename);
f193c797 836int cpu_str_to_log_mask(const char *str);
34865134 837
09683d35 838/* IO ports API */
32993977 839#include "ioport.h"
09683d35 840
33417e70
FB
841/* memory API */
842
edf75d59 843extern int phys_ram_fd;
1ccde1cb 844extern uint8_t *phys_ram_dirty;
00f82b8a 845extern ram_addr_t ram_size;
94a6b54f 846extern ram_addr_t last_ram_offset;
edf75d59
FB
847
848/* physical memory access */
0f459d16
PB
849
850/* MMIO pages are identified by a combination of an IO device index and
851 3 flags. The ROMD code stores the page ram offset in iotlb entry,
852 so only a limited number of ids are avaiable. */
853
98699967 854#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
edf75d59 855
0f459d16
PB
856/* Flags stored in the low bits of the TLB virtual address. These are
857 defined so that fast path ram access is all zeros. */
858/* Zero if TLB entry is valid. */
859#define TLB_INVALID_MASK (1 << 3)
860/* Set if TLB entry references a clean RAM page. The iotlb entry will
861 contain the page physical address. */
862#define TLB_NOTDIRTY (1 << 4)
863/* Set if TLB entry is an IO callback. */
864#define TLB_MMIO (1 << 5)
865
5fafdf24 866int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
8b1f24b0 867 uint8_t *buf, int len, int is_write);
13eb76e0 868
74576198
AL
869#define VGA_DIRTY_FLAG 0x01
870#define CODE_DIRTY_FLAG 0x02
871#define KQEMU_DIRTY_FLAG 0x04
872#define MIGRATION_DIRTY_FLAG 0x08
0a962c02 873
1ccde1cb 874/* read dirty bit (return 0 or 1) */
04c504cc 875static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
1ccde1cb 876{
0a962c02
FB
877 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
878}
879
5fafdf24 880static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
0a962c02
FB
881 int dirty_flags)
882{
883 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
1ccde1cb
FB
884}
885
04c504cc 886static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
1ccde1cb 887{
0a962c02 888 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
1ccde1cb
FB
889}
890
04c504cc 891void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 892 int dirty_flags);
04c504cc 893void cpu_tlb_update_dirty(CPUState *env);
1ccde1cb 894
74576198
AL
895int cpu_physical_memory_set_dirty_tracking(int enable);
896
897int cpu_physical_memory_get_dirty_tracking(void);
898
151f7749
JK
899int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
900 target_phys_addr_t end_addr);
2bec46dc 901
e3db7226
FB
902void dump_exec_info(FILE *f,
903 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
904
f65ed4c1
AL
905/* Coalesced MMIO regions are areas where write operations can be reordered.
906 * This usually implies that write operations are side-effect free. This allows
907 * batching which can make a major impact on performance when using
908 * virtualization.
909 */
910void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
911
912void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
913
effedbc9
FB
914/*******************************************/
915/* host CPU ticks (if available) */
916
e58ffeb3 917#if defined(_ARCH_PPC)
effedbc9 918
effedbc9
FB
919static inline int64_t cpu_get_real_ticks(void)
920{
5e10fc90 921 int64_t retval;
922#ifdef _ARCH_PPC64
923 /* This reads timebase in one 64bit go and includes Cell workaround from:
924 http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
925 */
926 __asm__ __volatile__ (
927 "mftb %0\n\t"
928 "cmpwi %0,0\n\t"
929 "beq- $-8"
930 : "=r" (retval));
931#else
932 /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
933 unsigned long junk;
934 __asm__ __volatile__ (
935 "mftbu %1\n\t"
936 "mftb %L0\n\t"
937 "mftbu %0\n\t"
938 "cmpw %0,%1\n\t"
939 "bne $-16"
940 : "=r" (retval), "=r" (junk));
941#endif
942 return retval;
effedbc9
FB
943}
944
945#elif defined(__i386__)
946
947static inline int64_t cpu_get_real_ticks(void)
5f1ce948
FB
948{
949 int64_t val;
950 asm volatile ("rdtsc" : "=A" (val));
951 return val;
952}
953
effedbc9
FB
954#elif defined(__x86_64__)
955
956static inline int64_t cpu_get_real_ticks(void)
957{
958 uint32_t low,high;
959 int64_t val;
960 asm volatile("rdtsc" : "=a" (low), "=d" (high));
961 val = high;
962 val <<= 32;
963 val |= low;
964 return val;
965}
966
f54b3f92
AJ
967#elif defined(__hppa__)
968
969static inline int64_t cpu_get_real_ticks(void)
970{
971 int val;
972 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
973 return val;
974}
975
effedbc9
FB
976#elif defined(__ia64)
977
978static inline int64_t cpu_get_real_ticks(void)
979{
980 int64_t val;
981 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
982 return val;
983}
984
985#elif defined(__s390__)
986
987static inline int64_t cpu_get_real_ticks(void)
988{
989 int64_t val;
990 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
991 return val;
992}
993
3142255c 994#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
effedbc9
FB
995
996static inline int64_t cpu_get_real_ticks (void)
997{
998#if defined(_LP64)
999 uint64_t rval;
1000 asm volatile("rd %%tick,%0" : "=r"(rval));
1001 return rval;
1002#else
1003 union {
1004 uint64_t i64;
1005 struct {
1006 uint32_t high;
1007 uint32_t low;
1008 } i32;
1009 } rval;
1010 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1011 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1012 return rval.i64;
1013#endif
1014}
c4b89d18
TS
1015
1016#elif defined(__mips__)
1017
1018static inline int64_t cpu_get_real_ticks(void)
1019{
1020#if __mips_isa_rev >= 2
1021 uint32_t count;
1022 static uint32_t cyc_per_count = 0;
1023
1024 if (!cyc_per_count)
1025 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1026
1027 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1028 return (int64_t)(count * cyc_per_count);
1029#else
1030 /* FIXME */
1031 static int64_t ticks = 0;
1032 return ticks++;
1033#endif
1034}
1035
46152182
PB
1036#else
1037/* The host CPU doesn't have an easily accessible cycle counter.
85028e4d
TS
1038 Just return a monotonically increasing value. This will be
1039 totally wrong, but hopefully better than nothing. */
46152182
PB
1040static inline int64_t cpu_get_real_ticks (void)
1041{
1042 static int64_t ticks = 0;
1043 return ticks++;
1044}
effedbc9
FB
1045#endif
1046
1047/* profiling */
1048#ifdef CONFIG_PROFILER
1049static inline int64_t profile_getclock(void)
1050{
1051 return cpu_get_real_ticks();
1052}
1053
5f1ce948
FB
1054extern int64_t kqemu_time, kqemu_time_start;
1055extern int64_t qemu_time, qemu_time_start;
1056extern int64_t tlb_flush_time;
1057extern int64_t kqemu_exec_count;
1058extern int64_t dev_time;
1059extern int64_t kqemu_ret_int_count;
1060extern int64_t kqemu_ret_excp_count;
1061extern int64_t kqemu_ret_intr_count;
5f1ce948
FB
1062#endif
1063
79c4f6b0
HY
1064void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
1065 uint64_t mcg_status, uint64_t addr, uint64_t misc);
1066
5a9fdfec 1067#endif /* CPU_ALL_H */