]> git.proxmox.com Git - qemu.git/blame - cpu-all.h
Don't leak VLANClientState on PCI hot remove
[qemu.git] / cpu-all.h
CommitLineData
5a9fdfec
FB
1/*
2 * defines common to all virtual CPUs
5fafdf24 3 *
5a9fdfec
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
fad6cb1a 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
5a9fdfec
FB
19 */
20#ifndef CPU_ALL_H
21#define CPU_ALL_H
22
7d99a001
BS
23#include "qemu-common.h"
24
f54b3f92 25#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
0ac4bd56
FB
26#define WORDS_ALIGNED
27#endif
28
5fafdf24
TS
29/* some important defines:
30 *
0ac4bd56
FB
31 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
32 * memory accesses.
5fafdf24 33 *
0ac4bd56
FB
34 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
35 * otherwise little endian.
5fafdf24 36 *
0ac4bd56 37 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
5fafdf24 38 *
0ac4bd56
FB
39 * TARGET_WORDS_BIGENDIAN : same for target cpu
40 */
41
f193c797 42#include "bswap.h"
939ef593 43#include "softfloat.h"
f193c797
FB
44
45#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
46#define BSWAP_NEEDED
47#endif
48
49#ifdef BSWAP_NEEDED
50
51static inline uint16_t tswap16(uint16_t s)
52{
53 return bswap16(s);
54}
55
56static inline uint32_t tswap32(uint32_t s)
57{
58 return bswap32(s);
59}
60
61static inline uint64_t tswap64(uint64_t s)
62{
63 return bswap64(s);
64}
65
66static inline void tswap16s(uint16_t *s)
67{
68 *s = bswap16(*s);
69}
70
71static inline void tswap32s(uint32_t *s)
72{
73 *s = bswap32(*s);
74}
75
76static inline void tswap64s(uint64_t *s)
77{
78 *s = bswap64(*s);
79}
80
81#else
82
83static inline uint16_t tswap16(uint16_t s)
84{
85 return s;
86}
87
88static inline uint32_t tswap32(uint32_t s)
89{
90 return s;
91}
92
93static inline uint64_t tswap64(uint64_t s)
94{
95 return s;
96}
97
98static inline void tswap16s(uint16_t *s)
99{
100}
101
102static inline void tswap32s(uint32_t *s)
103{
104}
105
106static inline void tswap64s(uint64_t *s)
107{
108}
109
110#endif
111
112#if TARGET_LONG_SIZE == 4
113#define tswapl(s) tswap32(s)
114#define tswapls(s) tswap32s((uint32_t *)(s))
0a962c02 115#define bswaptls(s) bswap32s(s)
f193c797
FB
116#else
117#define tswapl(s) tswap64(s)
118#define tswapls(s) tswap64s((uint64_t *)(s))
0a962c02 119#define bswaptls(s) bswap64s(s)
f193c797
FB
120#endif
121
0ca9d380
AJ
122typedef union {
123 float32 f;
124 uint32_t l;
125} CPU_FloatU;
126
832ed0fa
FB
127/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
128 endian ! */
0ac4bd56 129typedef union {
53cd6637 130 float64 d;
9d60cac0
FB
131#if defined(WORDS_BIGENDIAN) \
132 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
0ac4bd56 133 struct {
0ac4bd56 134 uint32_t upper;
832ed0fa 135 uint32_t lower;
0ac4bd56
FB
136 } l;
137#else
138 struct {
0ac4bd56 139 uint32_t lower;
832ed0fa 140 uint32_t upper;
0ac4bd56
FB
141 } l;
142#endif
143 uint64_t ll;
144} CPU_DoubleU;
145
1f587329
BS
146#ifdef TARGET_SPARC
147typedef union {
148 float128 q;
149#if defined(WORDS_BIGENDIAN) \
150 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
151 struct {
152 uint32_t upmost;
153 uint32_t upper;
154 uint32_t lower;
155 uint32_t lowest;
156 } l;
157 struct {
158 uint64_t upper;
159 uint64_t lower;
160 } ll;
161#else
162 struct {
163 uint32_t lowest;
164 uint32_t lower;
165 uint32_t upper;
166 uint32_t upmost;
167 } l;
168 struct {
169 uint64_t lower;
170 uint64_t upper;
171 } ll;
172#endif
173} CPU_QuadU;
174#endif
175
61382a50
FB
176/* CPU memory access without any memory or io remapping */
177
83d73968
FB
178/*
179 * the generic syntax for the memory accesses is:
180 *
181 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
182 *
183 * store: st{type}{size}{endian}_{access_type}(ptr, val)
184 *
185 * type is:
186 * (empty): integer access
187 * f : float access
5fafdf24 188 *
83d73968
FB
189 * sign is:
190 * (empty): for floats or 32 bit size
191 * u : unsigned
192 * s : signed
193 *
194 * size is:
195 * b: 8 bits
196 * w: 16 bits
197 * l: 32 bits
198 * q: 64 bits
5fafdf24 199 *
83d73968
FB
200 * endian is:
201 * (empty): target cpu endianness or 8 bit access
202 * r : reversed target cpu endianness (not implemented yet)
203 * be : big endian (not implemented yet)
204 * le : little endian (not implemented yet)
205 *
206 * access_type is:
207 * raw : host memory access
208 * user : user mode access using soft MMU
209 * kernel : kernel mode access using soft MMU
210 */
8bba3ea1 211static inline int ldub_p(const void *ptr)
5a9fdfec
FB
212{
213 return *(uint8_t *)ptr;
214}
215
8bba3ea1 216static inline int ldsb_p(const void *ptr)
5a9fdfec
FB
217{
218 return *(int8_t *)ptr;
219}
220
c27004ec 221static inline void stb_p(void *ptr, int v)
5a9fdfec
FB
222{
223 *(uint8_t *)ptr = v;
224}
225
226/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
227 kernel handles unaligned load/stores may give better results, but
228 it is a system wide setting : bad */
2df3b95d 229#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
5a9fdfec
FB
230
231/* conservative code for little endian unaligned accesses */
8bba3ea1 232static inline int lduw_le_p(const void *ptr)
5a9fdfec 233{
e58ffeb3 234#ifdef _ARCH_PPC
5a9fdfec
FB
235 int val;
236 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
237 return val;
238#else
e01fe6d5 239 const uint8_t *p = ptr;
5a9fdfec
FB
240 return p[0] | (p[1] << 8);
241#endif
242}
243
8bba3ea1 244static inline int ldsw_le_p(const void *ptr)
5a9fdfec 245{
e58ffeb3 246#ifdef _ARCH_PPC
5a9fdfec
FB
247 int val;
248 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
249 return (int16_t)val;
250#else
e01fe6d5 251 const uint8_t *p = ptr;
5a9fdfec
FB
252 return (int16_t)(p[0] | (p[1] << 8));
253#endif
254}
255
8bba3ea1 256static inline int ldl_le_p(const void *ptr)
5a9fdfec 257{
e58ffeb3 258#ifdef _ARCH_PPC
5a9fdfec
FB
259 int val;
260 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
261 return val;
262#else
e01fe6d5 263 const uint8_t *p = ptr;
5a9fdfec
FB
264 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
265#endif
266}
267
8bba3ea1 268static inline uint64_t ldq_le_p(const void *ptr)
5a9fdfec 269{
e01fe6d5 270 const uint8_t *p = ptr;
5a9fdfec 271 uint32_t v1, v2;
f0aca822
FB
272 v1 = ldl_le_p(p);
273 v2 = ldl_le_p(p + 4);
5a9fdfec
FB
274 return v1 | ((uint64_t)v2 << 32);
275}
276
2df3b95d 277static inline void stw_le_p(void *ptr, int v)
5a9fdfec 278{
e58ffeb3 279#ifdef _ARCH_PPC
5a9fdfec
FB
280 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
281#else
282 uint8_t *p = ptr;
283 p[0] = v;
284 p[1] = v >> 8;
285#endif
286}
287
2df3b95d 288static inline void stl_le_p(void *ptr, int v)
5a9fdfec 289{
e58ffeb3 290#ifdef _ARCH_PPC
5a9fdfec
FB
291 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
292#else
293 uint8_t *p = ptr;
294 p[0] = v;
295 p[1] = v >> 8;
296 p[2] = v >> 16;
297 p[3] = v >> 24;
298#endif
299}
300
2df3b95d 301static inline void stq_le_p(void *ptr, uint64_t v)
5a9fdfec
FB
302{
303 uint8_t *p = ptr;
f0aca822
FB
304 stl_le_p(p, (uint32_t)v);
305 stl_le_p(p + 4, v >> 32);
5a9fdfec
FB
306}
307
308/* float access */
309
8bba3ea1 310static inline float32 ldfl_le_p(const void *ptr)
5a9fdfec
FB
311{
312 union {
53cd6637 313 float32 f;
5a9fdfec
FB
314 uint32_t i;
315 } u;
2df3b95d 316 u.i = ldl_le_p(ptr);
5a9fdfec
FB
317 return u.f;
318}
319
2df3b95d 320static inline void stfl_le_p(void *ptr, float32 v)
5a9fdfec
FB
321{
322 union {
53cd6637 323 float32 f;
5a9fdfec
FB
324 uint32_t i;
325 } u;
326 u.f = v;
2df3b95d 327 stl_le_p(ptr, u.i);
5a9fdfec
FB
328}
329
8bba3ea1 330static inline float64 ldfq_le_p(const void *ptr)
5a9fdfec 331{
0ac4bd56 332 CPU_DoubleU u;
2df3b95d
FB
333 u.l.lower = ldl_le_p(ptr);
334 u.l.upper = ldl_le_p(ptr + 4);
5a9fdfec
FB
335 return u.d;
336}
337
2df3b95d 338static inline void stfq_le_p(void *ptr, float64 v)
5a9fdfec 339{
0ac4bd56 340 CPU_DoubleU u;
5a9fdfec 341 u.d = v;
2df3b95d
FB
342 stl_le_p(ptr, u.l.lower);
343 stl_le_p(ptr + 4, u.l.upper);
5a9fdfec
FB
344}
345
2df3b95d
FB
346#else
347
8bba3ea1 348static inline int lduw_le_p(const void *ptr)
2df3b95d
FB
349{
350 return *(uint16_t *)ptr;
351}
352
8bba3ea1 353static inline int ldsw_le_p(const void *ptr)
2df3b95d
FB
354{
355 return *(int16_t *)ptr;
356}
93ac68bc 357
8bba3ea1 358static inline int ldl_le_p(const void *ptr)
2df3b95d
FB
359{
360 return *(uint32_t *)ptr;
361}
362
8bba3ea1 363static inline uint64_t ldq_le_p(const void *ptr)
2df3b95d
FB
364{
365 return *(uint64_t *)ptr;
366}
367
368static inline void stw_le_p(void *ptr, int v)
369{
370 *(uint16_t *)ptr = v;
371}
372
373static inline void stl_le_p(void *ptr, int v)
374{
375 *(uint32_t *)ptr = v;
376}
377
378static inline void stq_le_p(void *ptr, uint64_t v)
379{
380 *(uint64_t *)ptr = v;
381}
382
383/* float access */
384
8bba3ea1 385static inline float32 ldfl_le_p(const void *ptr)
2df3b95d
FB
386{
387 return *(float32 *)ptr;
388}
389
8bba3ea1 390static inline float64 ldfq_le_p(const void *ptr)
2df3b95d
FB
391{
392 return *(float64 *)ptr;
393}
394
395static inline void stfl_le_p(void *ptr, float32 v)
396{
397 *(float32 *)ptr = v;
398}
399
400static inline void stfq_le_p(void *ptr, float64 v)
401{
402 *(float64 *)ptr = v;
403}
404#endif
405
406#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
407
8bba3ea1 408static inline int lduw_be_p(const void *ptr)
93ac68bc 409{
83d73968
FB
410#if defined(__i386__)
411 int val;
412 asm volatile ("movzwl %1, %0\n"
413 "xchgb %b0, %h0\n"
414 : "=q" (val)
415 : "m" (*(uint16_t *)ptr));
416 return val;
417#else
e01fe6d5 418 const uint8_t *b = ptr;
83d73968
FB
419 return ((b[0] << 8) | b[1]);
420#endif
93ac68bc
FB
421}
422
8bba3ea1 423static inline int ldsw_be_p(const void *ptr)
93ac68bc 424{
83d73968
FB
425#if defined(__i386__)
426 int val;
427 asm volatile ("movzwl %1, %0\n"
428 "xchgb %b0, %h0\n"
429 : "=q" (val)
430 : "m" (*(uint16_t *)ptr));
431 return (int16_t)val;
432#else
e01fe6d5 433 const uint8_t *b = ptr;
83d73968
FB
434 return (int16_t)((b[0] << 8) | b[1]);
435#endif
93ac68bc
FB
436}
437
8bba3ea1 438static inline int ldl_be_p(const void *ptr)
93ac68bc 439{
4f2ac237 440#if defined(__i386__) || defined(__x86_64__)
83d73968
FB
441 int val;
442 asm volatile ("movl %1, %0\n"
443 "bswap %0\n"
444 : "=r" (val)
445 : "m" (*(uint32_t *)ptr));
446 return val;
447#else
e01fe6d5 448 const uint8_t *b = ptr;
83d73968
FB
449 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
450#endif
93ac68bc
FB
451}
452
8bba3ea1 453static inline uint64_t ldq_be_p(const void *ptr)
93ac68bc
FB
454{
455 uint32_t a,b;
2df3b95d 456 a = ldl_be_p(ptr);
4d7a0880 457 b = ldl_be_p((uint8_t *)ptr + 4);
93ac68bc
FB
458 return (((uint64_t)a<<32)|b);
459}
460
2df3b95d 461static inline void stw_be_p(void *ptr, int v)
93ac68bc 462{
83d73968
FB
463#if defined(__i386__)
464 asm volatile ("xchgb %b0, %h0\n"
465 "movw %w0, %1\n"
466 : "=q" (v)
467 : "m" (*(uint16_t *)ptr), "0" (v));
468#else
93ac68bc
FB
469 uint8_t *d = (uint8_t *) ptr;
470 d[0] = v >> 8;
471 d[1] = v;
83d73968 472#endif
93ac68bc
FB
473}
474
2df3b95d 475static inline void stl_be_p(void *ptr, int v)
93ac68bc 476{
4f2ac237 477#if defined(__i386__) || defined(__x86_64__)
83d73968
FB
478 asm volatile ("bswap %0\n"
479 "movl %0, %1\n"
480 : "=r" (v)
481 : "m" (*(uint32_t *)ptr), "0" (v));
482#else
93ac68bc
FB
483 uint8_t *d = (uint8_t *) ptr;
484 d[0] = v >> 24;
485 d[1] = v >> 16;
486 d[2] = v >> 8;
487 d[3] = v;
83d73968 488#endif
93ac68bc
FB
489}
490
2df3b95d 491static inline void stq_be_p(void *ptr, uint64_t v)
93ac68bc 492{
2df3b95d 493 stl_be_p(ptr, v >> 32);
4d7a0880 494 stl_be_p((uint8_t *)ptr + 4, v);
0ac4bd56
FB
495}
496
497/* float access */
498
8bba3ea1 499static inline float32 ldfl_be_p(const void *ptr)
0ac4bd56
FB
500{
501 union {
53cd6637 502 float32 f;
0ac4bd56
FB
503 uint32_t i;
504 } u;
2df3b95d 505 u.i = ldl_be_p(ptr);
0ac4bd56
FB
506 return u.f;
507}
508
2df3b95d 509static inline void stfl_be_p(void *ptr, float32 v)
0ac4bd56
FB
510{
511 union {
53cd6637 512 float32 f;
0ac4bd56
FB
513 uint32_t i;
514 } u;
515 u.f = v;
2df3b95d 516 stl_be_p(ptr, u.i);
0ac4bd56
FB
517}
518
8bba3ea1 519static inline float64 ldfq_be_p(const void *ptr)
0ac4bd56
FB
520{
521 CPU_DoubleU u;
2df3b95d 522 u.l.upper = ldl_be_p(ptr);
4d7a0880 523 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
0ac4bd56
FB
524 return u.d;
525}
526
2df3b95d 527static inline void stfq_be_p(void *ptr, float64 v)
0ac4bd56
FB
528{
529 CPU_DoubleU u;
530 u.d = v;
2df3b95d 531 stl_be_p(ptr, u.l.upper);
4d7a0880 532 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
93ac68bc
FB
533}
534
5a9fdfec
FB
535#else
536
8bba3ea1 537static inline int lduw_be_p(const void *ptr)
5a9fdfec
FB
538{
539 return *(uint16_t *)ptr;
540}
541
8bba3ea1 542static inline int ldsw_be_p(const void *ptr)
5a9fdfec
FB
543{
544 return *(int16_t *)ptr;
545}
546
8bba3ea1 547static inline int ldl_be_p(const void *ptr)
5a9fdfec
FB
548{
549 return *(uint32_t *)ptr;
550}
551
8bba3ea1 552static inline uint64_t ldq_be_p(const void *ptr)
5a9fdfec
FB
553{
554 return *(uint64_t *)ptr;
555}
556
2df3b95d 557static inline void stw_be_p(void *ptr, int v)
5a9fdfec
FB
558{
559 *(uint16_t *)ptr = v;
560}
561
2df3b95d 562static inline void stl_be_p(void *ptr, int v)
5a9fdfec
FB
563{
564 *(uint32_t *)ptr = v;
565}
566
2df3b95d 567static inline void stq_be_p(void *ptr, uint64_t v)
5a9fdfec
FB
568{
569 *(uint64_t *)ptr = v;
570}
571
572/* float access */
573
8bba3ea1 574static inline float32 ldfl_be_p(const void *ptr)
5a9fdfec 575{
53cd6637 576 return *(float32 *)ptr;
5a9fdfec
FB
577}
578
8bba3ea1 579static inline float64 ldfq_be_p(const void *ptr)
5a9fdfec 580{
53cd6637 581 return *(float64 *)ptr;
5a9fdfec
FB
582}
583
2df3b95d 584static inline void stfl_be_p(void *ptr, float32 v)
5a9fdfec 585{
53cd6637 586 *(float32 *)ptr = v;
5a9fdfec
FB
587}
588
2df3b95d 589static inline void stfq_be_p(void *ptr, float64 v)
5a9fdfec 590{
53cd6637 591 *(float64 *)ptr = v;
5a9fdfec 592}
2df3b95d
FB
593
594#endif
595
596/* target CPU memory access functions */
597#if defined(TARGET_WORDS_BIGENDIAN)
598#define lduw_p(p) lduw_be_p(p)
599#define ldsw_p(p) ldsw_be_p(p)
600#define ldl_p(p) ldl_be_p(p)
601#define ldq_p(p) ldq_be_p(p)
602#define ldfl_p(p) ldfl_be_p(p)
603#define ldfq_p(p) ldfq_be_p(p)
604#define stw_p(p, v) stw_be_p(p, v)
605#define stl_p(p, v) stl_be_p(p, v)
606#define stq_p(p, v) stq_be_p(p, v)
607#define stfl_p(p, v) stfl_be_p(p, v)
608#define stfq_p(p, v) stfq_be_p(p, v)
609#else
610#define lduw_p(p) lduw_le_p(p)
611#define ldsw_p(p) ldsw_le_p(p)
612#define ldl_p(p) ldl_le_p(p)
613#define ldq_p(p) ldq_le_p(p)
614#define ldfl_p(p) ldfl_le_p(p)
615#define ldfq_p(p) ldfq_le_p(p)
616#define stw_p(p, v) stw_le_p(p, v)
617#define stl_p(p, v) stl_le_p(p, v)
618#define stq_p(p, v) stq_le_p(p, v)
619#define stfl_p(p, v) stfl_le_p(p, v)
620#define stfq_p(p, v) stfq_le_p(p, v)
5a9fdfec
FB
621#endif
622
61382a50
FB
623/* MMU memory access macros */
624
53a5960a 625#if defined(CONFIG_USER_ONLY)
0e62fd79
AJ
626#include <assert.h>
627#include "qemu-types.h"
628
53a5960a
PB
629/* On some host systems the guest address space is reserved on the host.
630 * This allows the guest address space to be offset to a convenient location.
631 */
632//#define GUEST_BASE 0x20000000
633#define GUEST_BASE 0
634
635/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
636#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
0e62fd79
AJ
637#define h2g(x) ({ \
638 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
639 /* Check if given address fits target address space */ \
640 assert(__ret == (abi_ulong)__ret); \
641 (abi_ulong)__ret; \
642})
14cc46b1
AJ
643#define h2g_valid(x) ({ \
644 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
645 (__guest == (abi_ulong)__guest); \
646})
53a5960a
PB
647
648#define saddr(x) g2h(x)
649#define laddr(x) g2h(x)
650
651#else /* !CONFIG_USER_ONLY */
c27004ec
FB
652/* NOTE: we use double casts if pointers and target_ulong have
653 different sizes */
53a5960a
PB
654#define saddr(x) (uint8_t *)(long)(x)
655#define laddr(x) (uint8_t *)(long)(x)
656#endif
657
658#define ldub_raw(p) ldub_p(laddr((p)))
659#define ldsb_raw(p) ldsb_p(laddr((p)))
660#define lduw_raw(p) lduw_p(laddr((p)))
661#define ldsw_raw(p) ldsw_p(laddr((p)))
662#define ldl_raw(p) ldl_p(laddr((p)))
663#define ldq_raw(p) ldq_p(laddr((p)))
664#define ldfl_raw(p) ldfl_p(laddr((p)))
665#define ldfq_raw(p) ldfq_p(laddr((p)))
666#define stb_raw(p, v) stb_p(saddr((p)), v)
667#define stw_raw(p, v) stw_p(saddr((p)), v)
668#define stl_raw(p, v) stl_p(saddr((p)), v)
669#define stq_raw(p, v) stq_p(saddr((p)), v)
670#define stfl_raw(p, v) stfl_p(saddr((p)), v)
671#define stfq_raw(p, v) stfq_p(saddr((p)), v)
c27004ec
FB
672
673
5fafdf24 674#if defined(CONFIG_USER_ONLY)
61382a50
FB
675
676/* if user mode, no other memory access functions */
677#define ldub(p) ldub_raw(p)
678#define ldsb(p) ldsb_raw(p)
679#define lduw(p) lduw_raw(p)
680#define ldsw(p) ldsw_raw(p)
681#define ldl(p) ldl_raw(p)
682#define ldq(p) ldq_raw(p)
683#define ldfl(p) ldfl_raw(p)
684#define ldfq(p) ldfq_raw(p)
685#define stb(p, v) stb_raw(p, v)
686#define stw(p, v) stw_raw(p, v)
687#define stl(p, v) stl_raw(p, v)
688#define stq(p, v) stq_raw(p, v)
689#define stfl(p, v) stfl_raw(p, v)
690#define stfq(p, v) stfq_raw(p, v)
691
692#define ldub_code(p) ldub_raw(p)
693#define ldsb_code(p) ldsb_raw(p)
694#define lduw_code(p) lduw_raw(p)
695#define ldsw_code(p) ldsw_raw(p)
696#define ldl_code(p) ldl_raw(p)
bc98a7ef 697#define ldq_code(p) ldq_raw(p)
61382a50
FB
698
699#define ldub_kernel(p) ldub_raw(p)
700#define ldsb_kernel(p) ldsb_raw(p)
701#define lduw_kernel(p) lduw_raw(p)
702#define ldsw_kernel(p) ldsw_raw(p)
703#define ldl_kernel(p) ldl_raw(p)
bc98a7ef 704#define ldq_kernel(p) ldq_raw(p)
0ac4bd56
FB
705#define ldfl_kernel(p) ldfl_raw(p)
706#define ldfq_kernel(p) ldfq_raw(p)
61382a50
FB
707#define stb_kernel(p, v) stb_raw(p, v)
708#define stw_kernel(p, v) stw_raw(p, v)
709#define stl_kernel(p, v) stl_raw(p, v)
710#define stq_kernel(p, v) stq_raw(p, v)
0ac4bd56
FB
711#define stfl_kernel(p, v) stfl_raw(p, v)
712#define stfq_kernel(p, vt) stfq_raw(p, v)
61382a50
FB
713
714#endif /* defined(CONFIG_USER_ONLY) */
715
5a9fdfec
FB
716/* page related stuff */
717
03875444 718#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
5a9fdfec
FB
719#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
720#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
721
53a5960a 722/* ??? These should be the larger of unsigned long and target_ulong. */
83fb7adf
FB
723extern unsigned long qemu_real_host_page_size;
724extern unsigned long qemu_host_page_bits;
725extern unsigned long qemu_host_page_size;
726extern unsigned long qemu_host_page_mask;
5a9fdfec 727
83fb7adf 728#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
5a9fdfec
FB
729
730/* same as PROT_xxx */
731#define PAGE_READ 0x0001
732#define PAGE_WRITE 0x0002
733#define PAGE_EXEC 0x0004
734#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
735#define PAGE_VALID 0x0008
736/* original state of the write flag (used when tracking self-modifying
737 code */
5fafdf24 738#define PAGE_WRITE_ORG 0x0010
50a9569b 739#define PAGE_RESERVED 0x0020
5a9fdfec
FB
740
741void page_dump(FILE *f);
53a5960a
PB
742int page_get_flags(target_ulong address);
743void page_set_flags(target_ulong start, target_ulong end, int flags);
3d97b40b 744int page_check_range(target_ulong start, target_ulong len, int flags);
5a9fdfec 745
26a5f13b 746void cpu_exec_init_all(unsigned long tb_size);
c5be9f08
TS
747CPUState *cpu_copy(CPUState *env);
748
5fafdf24 749void cpu_dump_state(CPUState *env, FILE *f,
7fe48483
FB
750 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
751 int flags);
76a66253
JM
752void cpu_dump_statistics (CPUState *env, FILE *f,
753 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
754 int flags);
7fe48483 755
a5e50b26 756void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
7d99a001 757 __attribute__ ((__format__ (__printf__, 2, 3)));
f0aca822 758extern CPUState *first_cpu;
e2f22898 759extern CPUState *cpu_single_env;
2e70f6ef
PB
760extern int64_t qemu_icount;
761extern int use_icount;
5a9fdfec 762
9acbed06
FB
763#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
764#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
765#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
ef792f9d 766#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
98699967 767#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
ba3c64fb 768#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
3b21e03e 769#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
6658ffb8 770#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
0573fbfc 771#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
474ea849 772#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
98699967 773
4690764b 774void cpu_interrupt(CPUState *s, int mask);
b54ad049 775void cpu_reset_interrupt(CPUState *env, int mask);
68a79315 776
a1d1bb31
AL
777/* Breakpoint/watchpoint flags */
778#define BP_MEM_READ 0x01
779#define BP_MEM_WRITE 0x02
780#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
06d55cc1 781#define BP_STOP_BEFORE_ACCESS 0x04
6e140f28 782#define BP_WATCHPOINT_HIT 0x08
a1d1bb31 783#define BP_GDB 0x10
2dc9f411 784#define BP_CPU 0x20
a1d1bb31
AL
785
786int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
787 CPUBreakpoint **breakpoint);
788int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
789void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
790void cpu_breakpoint_remove_all(CPUState *env, int mask);
791int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
792 int flags, CPUWatchpoint **watchpoint);
793int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
794 target_ulong len, int flags);
795void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
796void cpu_watchpoint_remove_all(CPUState *env, int mask);
60897d36
EI
797
798#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
799#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
800#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
801
c33a346e 802void cpu_single_step(CPUState *env, int enabled);
d95dc32d 803void cpu_reset(CPUState *s);
4c3a88a2 804
13eb76e0
FB
805/* Return the physical page corresponding to a virtual one. Use it
806 only for debugging because no protection checks are done. Return -1
807 if no page found. */
9b3c35e0 808target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
13eb76e0 809
5fafdf24 810#define CPU_LOG_TB_OUT_ASM (1 << 0)
9fddaa0c 811#define CPU_LOG_TB_IN_ASM (1 << 1)
f193c797
FB
812#define CPU_LOG_TB_OP (1 << 2)
813#define CPU_LOG_TB_OP_OPT (1 << 3)
814#define CPU_LOG_INT (1 << 4)
815#define CPU_LOG_EXEC (1 << 5)
816#define CPU_LOG_PCALL (1 << 6)
fd872598 817#define CPU_LOG_IOPORT (1 << 7)
9fddaa0c 818#define CPU_LOG_TB_CPU (1 << 8)
eca1bdf4 819#define CPU_LOG_RESET (1 << 9)
f193c797
FB
820
821/* define log items */
822typedef struct CPULogItem {
823 int mask;
824 const char *name;
825 const char *help;
826} CPULogItem;
827
c7cd6a37 828extern const CPULogItem cpu_log_items[];
f193c797 829
34865134
FB
830void cpu_set_log(int log_flags);
831void cpu_set_log_filename(const char *filename);
f193c797 832int cpu_str_to_log_mask(const char *str);
34865134 833
09683d35
FB
834/* IO ports API */
835
836/* NOTE: as these functions may be even used when there is an isa
837 brige on non x86 targets, we always defined them */
838#ifndef NO_CPU_IO_DEFS
839void cpu_outb(CPUState *env, int addr, int val);
840void cpu_outw(CPUState *env, int addr, int val);
841void cpu_outl(CPUState *env, int addr, int val);
842int cpu_inb(CPUState *env, int addr);
843int cpu_inw(CPUState *env, int addr);
844int cpu_inl(CPUState *env, int addr);
845#endif
846
00f82b8a
AJ
847/* address in the RAM (different from a physical address) */
848#ifdef USE_KQEMU
849typedef uint32_t ram_addr_t;
850#else
851typedef unsigned long ram_addr_t;
852#endif
853
33417e70
FB
854/* memory API */
855
00f82b8a 856extern ram_addr_t phys_ram_size;
edf75d59
FB
857extern int phys_ram_fd;
858extern uint8_t *phys_ram_base;
1ccde1cb 859extern uint8_t *phys_ram_dirty;
00f82b8a 860extern ram_addr_t ram_size;
edf75d59
FB
861
862/* physical memory access */
0f459d16
PB
863
864/* MMIO pages are identified by a combination of an IO device index and
865 3 flags. The ROMD code stores the page ram offset in iotlb entry,
866 so only a limited number of ids are avaiable. */
867
868#define IO_MEM_SHIFT 3
98699967 869#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
edf75d59
FB
870
871#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
872#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
873#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
0f459d16
PB
874#define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
875
876/* Acts like a ROM when read and like a device when written. */
2a4188a3 877#define IO_MEM_ROMD (1)
db7b5426 878#define IO_MEM_SUBPAGE (2)
4254fab8 879#define IO_MEM_SUBWIDTH (4)
edf75d59 880
0f459d16
PB
881/* Flags stored in the low bits of the TLB virtual address. These are
882 defined so that fast path ram access is all zeros. */
883/* Zero if TLB entry is valid. */
884#define TLB_INVALID_MASK (1 << 3)
885/* Set if TLB entry references a clean RAM page. The iotlb entry will
886 contain the page physical address. */
887#define TLB_NOTDIRTY (1 << 4)
888/* Set if TLB entry is an IO callback. */
889#define TLB_MMIO (1 << 5)
890
7727994d
FB
891typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
892typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
33417e70 893
8da3ff18
PB
894void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
895 ram_addr_t size,
896 ram_addr_t phys_offset,
897 ram_addr_t region_offset);
898static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
899 ram_addr_t size,
900 ram_addr_t phys_offset)
901{
902 cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
903}
904
00f82b8a
AJ
905ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
906ram_addr_t qemu_ram_alloc(ram_addr_t);
e9a1ab19 907void qemu_ram_free(ram_addr_t addr);
33417e70
FB
908int cpu_register_io_memory(int io_index,
909 CPUReadMemoryFunc **mem_read,
7727994d
FB
910 CPUWriteMemoryFunc **mem_write,
911 void *opaque);
88715657 912void cpu_unregister_io_memory(int table_address);
8926b517
FB
913CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
914CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
33417e70 915
2e12669a 916void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0 917 int len, int is_write);
5fafdf24 918static inline void cpu_physical_memory_read(target_phys_addr_t addr,
2e12669a 919 uint8_t *buf, int len)
8b1f24b0
FB
920{
921 cpu_physical_memory_rw(addr, buf, len, 0);
922}
5fafdf24 923static inline void cpu_physical_memory_write(target_phys_addr_t addr,
2e12669a 924 const uint8_t *buf, int len)
8b1f24b0
FB
925{
926 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
927}
6d16c2f8
AL
928void *cpu_physical_memory_map(target_phys_addr_t addr,
929 target_phys_addr_t *plen,
930 int is_write);
931void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
932 int is_write, target_phys_addr_t access_len);
ba223c29
AL
933void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque));
934void cpu_unregister_map_client(void *cookie);
6d16c2f8 935
aab33094
FB
936uint32_t ldub_phys(target_phys_addr_t addr);
937uint32_t lduw_phys(target_phys_addr_t addr);
8df1cd07 938uint32_t ldl_phys(target_phys_addr_t addr);
aab33094 939uint64_t ldq_phys(target_phys_addr_t addr);
8df1cd07 940void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
bc98a7ef 941void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
aab33094
FB
942void stb_phys(target_phys_addr_t addr, uint32_t val);
943void stw_phys(target_phys_addr_t addr, uint32_t val);
8df1cd07 944void stl_phys(target_phys_addr_t addr, uint32_t val);
aab33094 945void stq_phys(target_phys_addr_t addr, uint64_t val);
8b1f24b0 946
5fafdf24 947void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa 948 const uint8_t *buf, int len);
5fafdf24 949int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
8b1f24b0 950 uint8_t *buf, int len, int is_write);
13eb76e0 951
74576198
AL
952#define VGA_DIRTY_FLAG 0x01
953#define CODE_DIRTY_FLAG 0x02
954#define KQEMU_DIRTY_FLAG 0x04
955#define MIGRATION_DIRTY_FLAG 0x08
0a962c02 956
1ccde1cb 957/* read dirty bit (return 0 or 1) */
04c504cc 958static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
1ccde1cb 959{
0a962c02
FB
960 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
961}
962
5fafdf24 963static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
0a962c02
FB
964 int dirty_flags)
965{
966 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
1ccde1cb
FB
967}
968
04c504cc 969static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
1ccde1cb 970{
0a962c02 971 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
1ccde1cb
FB
972}
973
04c504cc 974void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 975 int dirty_flags);
04c504cc 976void cpu_tlb_update_dirty(CPUState *env);
1ccde1cb 977
74576198
AL
978int cpu_physical_memory_set_dirty_tracking(int enable);
979
980int cpu_physical_memory_get_dirty_tracking(void);
981
2bec46dc
AL
982void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
983
e3db7226
FB
984void dump_exec_info(FILE *f,
985 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
986
f65ed4c1
AL
987/* Coalesced MMIO regions are areas where write operations can be reordered.
988 * This usually implies that write operations are side-effect free. This allows
989 * batching which can make a major impact on performance when using
990 * virtualization.
991 */
992void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
993
994void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
995
effedbc9
FB
996/*******************************************/
997/* host CPU ticks (if available) */
998
e58ffeb3 999#if defined(_ARCH_PPC)
effedbc9 1000
effedbc9
FB
1001static inline int64_t cpu_get_real_ticks(void)
1002{
5e10fc90 1003 int64_t retval;
1004#ifdef _ARCH_PPC64
1005 /* This reads timebase in one 64bit go and includes Cell workaround from:
1006 http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
1007 */
1008 __asm__ __volatile__ (
1009 "mftb %0\n\t"
1010 "cmpwi %0,0\n\t"
1011 "beq- $-8"
1012 : "=r" (retval));
1013#else
1014 /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
1015 unsigned long junk;
1016 __asm__ __volatile__ (
1017 "mftbu %1\n\t"
1018 "mftb %L0\n\t"
1019 "mftbu %0\n\t"
1020 "cmpw %0,%1\n\t"
1021 "bne $-16"
1022 : "=r" (retval), "=r" (junk));
1023#endif
1024 return retval;
effedbc9
FB
1025}
1026
1027#elif defined(__i386__)
1028
1029static inline int64_t cpu_get_real_ticks(void)
5f1ce948
FB
1030{
1031 int64_t val;
1032 asm volatile ("rdtsc" : "=A" (val));
1033 return val;
1034}
1035
effedbc9
FB
1036#elif defined(__x86_64__)
1037
1038static inline int64_t cpu_get_real_ticks(void)
1039{
1040 uint32_t low,high;
1041 int64_t val;
1042 asm volatile("rdtsc" : "=a" (low), "=d" (high));
1043 val = high;
1044 val <<= 32;
1045 val |= low;
1046 return val;
1047}
1048
f54b3f92
AJ
1049#elif defined(__hppa__)
1050
1051static inline int64_t cpu_get_real_ticks(void)
1052{
1053 int val;
1054 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
1055 return val;
1056}
1057
effedbc9
FB
1058#elif defined(__ia64)
1059
1060static inline int64_t cpu_get_real_ticks(void)
1061{
1062 int64_t val;
1063 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1064 return val;
1065}
1066
1067#elif defined(__s390__)
1068
1069static inline int64_t cpu_get_real_ticks(void)
1070{
1071 int64_t val;
1072 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1073 return val;
1074}
1075
3142255c 1076#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
effedbc9
FB
1077
1078static inline int64_t cpu_get_real_ticks (void)
1079{
1080#if defined(_LP64)
1081 uint64_t rval;
1082 asm volatile("rd %%tick,%0" : "=r"(rval));
1083 return rval;
1084#else
1085 union {
1086 uint64_t i64;
1087 struct {
1088 uint32_t high;
1089 uint32_t low;
1090 } i32;
1091 } rval;
1092 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1093 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1094 return rval.i64;
1095#endif
1096}
c4b89d18
TS
1097
1098#elif defined(__mips__)
1099
1100static inline int64_t cpu_get_real_ticks(void)
1101{
1102#if __mips_isa_rev >= 2
1103 uint32_t count;
1104 static uint32_t cyc_per_count = 0;
1105
1106 if (!cyc_per_count)
1107 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1108
1109 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1110 return (int64_t)(count * cyc_per_count);
1111#else
1112 /* FIXME */
1113 static int64_t ticks = 0;
1114 return ticks++;
1115#endif
1116}
1117
46152182
PB
1118#else
1119/* The host CPU doesn't have an easily accessible cycle counter.
85028e4d
TS
1120 Just return a monotonically increasing value. This will be
1121 totally wrong, but hopefully better than nothing. */
46152182
PB
1122static inline int64_t cpu_get_real_ticks (void)
1123{
1124 static int64_t ticks = 0;
1125 return ticks++;
1126}
effedbc9
FB
1127#endif
1128
1129/* profiling */
1130#ifdef CONFIG_PROFILER
1131static inline int64_t profile_getclock(void)
1132{
1133 return cpu_get_real_ticks();
1134}
1135
5f1ce948
FB
1136extern int64_t kqemu_time, kqemu_time_start;
1137extern int64_t qemu_time, qemu_time_start;
1138extern int64_t tlb_flush_time;
1139extern int64_t kqemu_exec_count;
1140extern int64_t dev_time;
1141extern int64_t kqemu_ret_int_count;
1142extern int64_t kqemu_ret_excp_count;
1143extern int64_t kqemu_ret_intr_count;
5f1ce948
FB
1144#endif
1145
5a9fdfec 1146#endif /* CPU_ALL_H */