]> git.proxmox.com Git - qemu.git/blame - exec.c
LAN9118 improvements
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
43#endif
54936004 44
fd6ce8f6 45//#define DEBUG_TB_INVALIDATE
66e85a21 46//#define DEBUG_FLUSH
9fa3e853 47//#define DEBUG_TLB
67d3b957 48//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
49
50/* make various TB consistency checks */
5fafdf24
TS
51//#define DEBUG_TB_CHECK
52//#define DEBUG_TLB_CHECK
fd6ce8f6 53
1196be37 54//#define DEBUG_IOPORT
db7b5426 55//#define DEBUG_SUBPAGE
1196be37 56
99773bd4
PB
57#if !defined(CONFIG_USER_ONLY)
58/* TB consistency checks only implemented for usermode emulation. */
59#undef DEBUG_TB_CHECK
60#endif
61
9fa3e853
FB
62#define SMC_BITMAP_USE_THRESHOLD 10
63
108c49b8
FB
64#if defined(TARGET_SPARC64)
65#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
66#elif defined(TARGET_SPARC)
67#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
68#elif defined(TARGET_ALPHA)
69#define TARGET_PHYS_ADDR_SPACE_BITS 42
70#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
71#elif defined(TARGET_PPC64)
72#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 73#elif defined(TARGET_X86_64)
00f82b8a 74#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 75#elif defined(TARGET_I386)
00f82b8a 76#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8 77#else
108c49b8
FB
78#define TARGET_PHYS_ADDR_SPACE_BITS 32
79#endif
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
c227f099 86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
1ccde1cb 113uint8_t *phys_ram_dirty;
74576198 114static int in_migration;
94a6b54f
PB
115
116typedef struct RAMBlock {
117 uint8_t *host;
c227f099
AL
118 ram_addr_t offset;
119 ram_addr_t length;
94a6b54f
PB
120 struct RAMBlock *next;
121} RAMBlock;
122
123static RAMBlock *ram_blocks;
124/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 125 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 126 of this variable will break. */
c227f099 127ram_addr_t last_ram_offset;
e2eef170 128#endif
9fa3e853 129
6a00d601
FB
130CPUState *first_cpu;
131/* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
5fafdf24 133CPUState *cpu_single_env;
2e70f6ef 134/* 0 = Do not count executed instructions.
bf20dc07 135 1 = Precise instruction counting.
2e70f6ef
PB
136 2 = Adaptive rate instruction counting. */
137int use_icount = 0;
138/* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140int64_t qemu_icount;
6a00d601 141
54936004 142typedef struct PageDesc {
92e873b9 143 /* list of TBs intersecting this ram page */
fd6ce8f6 144 TranslationBlock *first_tb;
9fa3e853
FB
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149#if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151#endif
54936004
FB
152} PageDesc;
153
92e873b9 154typedef struct PhysPageDesc {
0f459d16 155 /* offset in host memory of the page + io_index in the low bits */
c227f099
AL
156 ram_addr_t phys_offset;
157 ram_addr_t region_offset;
92e873b9
FB
158} PhysPageDesc;
159
54936004 160#define L2_BITS 10
bedb69ea
JM
161#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
162/* XXX: this is a temporary hack for alpha target.
163 * In the future, this is to be replaced by a multi-level table
164 * to actually be able to handle the complete 64 bits address space.
165 */
166#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
167#else
03875444 168#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 169#endif
54936004
FB
170
171#define L1_SIZE (1 << L1_BITS)
172#define L2_SIZE (1 << L2_BITS)
173
83fb7adf
FB
174unsigned long qemu_real_host_page_size;
175unsigned long qemu_host_page_bits;
176unsigned long qemu_host_page_size;
177unsigned long qemu_host_page_mask;
54936004 178
92e873b9 179/* XXX: for system emulation, it could just be an array */
54936004 180static PageDesc *l1_map[L1_SIZE];
bdaf78e0 181static PhysPageDesc **l1_phys_map;
54936004 182
e2eef170
PB
183#if !defined(CONFIG_USER_ONLY)
184static void io_mem_init(void);
185
33417e70 186/* io memory support */
33417e70
FB
187CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
188CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 189void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 190static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
191static int io_mem_watch;
192#endif
33417e70 193
34865134 194/* log support */
1e8b27ca
JR
195#ifdef WIN32
196static const char *logfilename = "qemu.log";
197#else
d9b630fd 198static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 199#endif
34865134
FB
200FILE *logfile;
201int loglevel;
e735b91c 202static int log_append = 0;
34865134 203
e3db7226
FB
204/* statistics */
205static int tlb_flush_count;
206static int tb_flush_count;
207static int tb_phys_invalidate_count;
208
db7b5426 209#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
c227f099
AL
210typedef struct subpage_t {
211 target_phys_addr_t base;
d60efc6b
BS
212 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
213 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
3ee89922 214 void *opaque[TARGET_PAGE_SIZE][2][4];
c227f099
AL
215 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
216} subpage_t;
db7b5426 217
7cb69cae
FB
218#ifdef _WIN32
219static void map_exec(void *addr, long size)
220{
221 DWORD old_protect;
222 VirtualProtect(addr, size,
223 PAGE_EXECUTE_READWRITE, &old_protect);
224
225}
226#else
227static void map_exec(void *addr, long size)
228{
4369415f 229 unsigned long start, end, page_size;
7cb69cae 230
4369415f 231 page_size = getpagesize();
7cb69cae 232 start = (unsigned long)addr;
4369415f 233 start &= ~(page_size - 1);
7cb69cae
FB
234
235 end = (unsigned long)addr + size;
4369415f
FB
236 end += page_size - 1;
237 end &= ~(page_size - 1);
7cb69cae
FB
238
239 mprotect((void *)start, end - start,
240 PROT_READ | PROT_WRITE | PROT_EXEC);
241}
242#endif
243
b346ff46 244static void page_init(void)
54936004 245{
83fb7adf 246 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 247 TARGET_PAGE_SIZE */
c2b48b69
AL
248#ifdef _WIN32
249 {
250 SYSTEM_INFO system_info;
251
252 GetSystemInfo(&system_info);
253 qemu_real_host_page_size = system_info.dwPageSize;
254 }
255#else
256 qemu_real_host_page_size = getpagesize();
257#endif
83fb7adf
FB
258 if (qemu_host_page_size == 0)
259 qemu_host_page_size = qemu_real_host_page_size;
260 if (qemu_host_page_size < TARGET_PAGE_SIZE)
261 qemu_host_page_size = TARGET_PAGE_SIZE;
262 qemu_host_page_bits = 0;
263 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
264 qemu_host_page_bits++;
265 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
266 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
267 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
268
269#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
270 {
271 long long startaddr, endaddr;
272 FILE *f;
273 int n;
274
c8a706fe 275 mmap_lock();
0776590d 276 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
277 f = fopen("/proc/self/maps", "r");
278 if (f) {
279 do {
280 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
281 if (n == 2) {
e0b8d65a
BS
282 startaddr = MIN(startaddr,
283 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
284 endaddr = MIN(endaddr,
285 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 286 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
287 TARGET_PAGE_ALIGN(endaddr),
288 PAGE_RESERVED);
289 }
290 } while (!feof(f));
291 fclose(f);
292 }
c8a706fe 293 mmap_unlock();
50a9569b
AZ
294 }
295#endif
54936004
FB
296}
297
434929bf 298static inline PageDesc **page_l1_map(target_ulong index)
54936004 299{
17e2377a
PB
300#if TARGET_LONG_BITS > 32
301 /* Host memory outside guest VM. For 32-bit targets we have already
302 excluded high addresses. */
d8173e0f 303 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
304 return NULL;
305#endif
434929bf
AL
306 return &l1_map[index >> L2_BITS];
307}
308
309static inline PageDesc *page_find_alloc(target_ulong index)
310{
311 PageDesc **lp, *p;
312 lp = page_l1_map(index);
313 if (!lp)
314 return NULL;
315
54936004
FB
316 p = *lp;
317 if (!p) {
318 /* allocate if not found */
17e2377a 319#if defined(CONFIG_USER_ONLY)
17e2377a
PB
320 size_t len = sizeof(PageDesc) * L2_SIZE;
321 /* Don't use qemu_malloc because it may recurse. */
660f11be 322 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
17e2377a 323 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 324 *lp = p;
fb1c2cd7
AJ
325 if (h2g_valid(p)) {
326 unsigned long addr = h2g(p);
17e2377a
PB
327 page_set_flags(addr & TARGET_PAGE_MASK,
328 TARGET_PAGE_ALIGN(addr + len),
329 PAGE_RESERVED);
330 }
331#else
332 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
333 *lp = p;
334#endif
54936004
FB
335 }
336 return p + (index & (L2_SIZE - 1));
337}
338
00f82b8a 339static inline PageDesc *page_find(target_ulong index)
54936004 340{
434929bf
AL
341 PageDesc **lp, *p;
342 lp = page_l1_map(index);
343 if (!lp)
344 return NULL;
54936004 345
434929bf 346 p = *lp;
660f11be
BS
347 if (!p) {
348 return NULL;
349 }
fd6ce8f6
FB
350 return p + (index & (L2_SIZE - 1));
351}
352
c227f099 353static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 354{
108c49b8 355 void **lp, **p;
e3f4e2a4 356 PhysPageDesc *pd;
92e873b9 357
108c49b8
FB
358 p = (void **)l1_phys_map;
359#if TARGET_PHYS_ADDR_SPACE_BITS > 32
360
361#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
362#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
363#endif
364 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
365 p = *lp;
366 if (!p) {
367 /* allocate if not found */
108c49b8
FB
368 if (!alloc)
369 return NULL;
370 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
371 memset(p, 0, sizeof(void *) * L1_SIZE);
372 *lp = p;
373 }
374#endif
375 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
376 pd = *lp;
377 if (!pd) {
378 int i;
108c49b8
FB
379 /* allocate if not found */
380 if (!alloc)
381 return NULL;
e3f4e2a4
PB
382 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
383 *lp = pd;
67c4d23c 384 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 385 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
386 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
387 }
92e873b9 388 }
e3f4e2a4 389 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
390}
391
c227f099 392static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 393{
108c49b8 394 return phys_page_find_alloc(index, 0);
92e873b9
FB
395}
396
9fa3e853 397#if !defined(CONFIG_USER_ONLY)
c227f099
AL
398static void tlb_protect_code(ram_addr_t ram_addr);
399static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 400 target_ulong vaddr);
c8a706fe
PB
401#define mmap_lock() do { } while(0)
402#define mmap_unlock() do { } while(0)
9fa3e853 403#endif
fd6ce8f6 404
4369415f
FB
405#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
406
407#if defined(CONFIG_USER_ONLY)
ccbb4d44 408/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
409 user mode. It will change when a dedicated libc will be used */
410#define USE_STATIC_CODE_GEN_BUFFER
411#endif
412
413#ifdef USE_STATIC_CODE_GEN_BUFFER
414static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
415#endif
416
8fcd3692 417static void code_gen_alloc(unsigned long tb_size)
26a5f13b 418{
4369415f
FB
419#ifdef USE_STATIC_CODE_GEN_BUFFER
420 code_gen_buffer = static_code_gen_buffer;
421 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
422 map_exec(code_gen_buffer, code_gen_buffer_size);
423#else
26a5f13b
FB
424 code_gen_buffer_size = tb_size;
425 if (code_gen_buffer_size == 0) {
4369415f
FB
426#if defined(CONFIG_USER_ONLY)
427 /* in user mode, phys_ram_size is not meaningful */
428 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
429#else
ccbb4d44 430 /* XXX: needs adjustments */
94a6b54f 431 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 432#endif
26a5f13b
FB
433 }
434 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
435 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
436 /* The code gen buffer location may have constraints depending on
437 the host cpu and OS */
438#if defined(__linux__)
439 {
440 int flags;
141ac468
BS
441 void *start = NULL;
442
26a5f13b
FB
443 flags = MAP_PRIVATE | MAP_ANONYMOUS;
444#if defined(__x86_64__)
445 flags |= MAP_32BIT;
446 /* Cannot map more than that */
447 if (code_gen_buffer_size > (800 * 1024 * 1024))
448 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
449#elif defined(__sparc_v9__)
450 // Map the buffer below 2G, so we can use direct calls and branches
451 flags |= MAP_FIXED;
452 start = (void *) 0x60000000UL;
453 if (code_gen_buffer_size > (512 * 1024 * 1024))
454 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 455#elif defined(__arm__)
63d41246 456 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
457 flags |= MAP_FIXED;
458 start = (void *) 0x01000000UL;
459 if (code_gen_buffer_size > 16 * 1024 * 1024)
460 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 461#endif
141ac468
BS
462 code_gen_buffer = mmap(start, code_gen_buffer_size,
463 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
464 flags, -1, 0);
465 if (code_gen_buffer == MAP_FAILED) {
466 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
467 exit(1);
468 }
469 }
a167ba50 470#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
471 {
472 int flags;
473 void *addr = NULL;
474 flags = MAP_PRIVATE | MAP_ANONYMOUS;
475#if defined(__x86_64__)
476 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
477 * 0x40000000 is free */
478 flags |= MAP_FIXED;
479 addr = (void *)0x40000000;
480 /* Cannot map more than that */
481 if (code_gen_buffer_size > (800 * 1024 * 1024))
482 code_gen_buffer_size = (800 * 1024 * 1024);
483#endif
484 code_gen_buffer = mmap(addr, code_gen_buffer_size,
485 PROT_WRITE | PROT_READ | PROT_EXEC,
486 flags, -1, 0);
487 if (code_gen_buffer == MAP_FAILED) {
488 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
489 exit(1);
490 }
491 }
26a5f13b
FB
492#else
493 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
494 map_exec(code_gen_buffer, code_gen_buffer_size);
495#endif
4369415f 496#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
497 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
498 code_gen_buffer_max_size = code_gen_buffer_size -
499 code_gen_max_block_size();
500 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
501 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
502}
503
504/* Must be called before using the QEMU cpus. 'tb_size' is the size
505 (in bytes) allocated to the translation buffer. Zero means default
506 size. */
507void cpu_exec_init_all(unsigned long tb_size)
508{
26a5f13b
FB
509 cpu_gen_init();
510 code_gen_alloc(tb_size);
511 code_gen_ptr = code_gen_buffer;
4369415f 512 page_init();
e2eef170 513#if !defined(CONFIG_USER_ONLY)
26a5f13b 514 io_mem_init();
e2eef170 515#endif
26a5f13b
FB
516}
517
9656f324
PB
518#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
519
d4bfa4d7 520static void cpu_common_pre_save(void *opaque)
9656f324 521{
d4bfa4d7 522 CPUState *env = opaque;
9656f324 523
4c0960c0 524 cpu_synchronize_state(env);
9656f324
PB
525}
526
e7f4eff7 527static int cpu_common_pre_load(void *opaque)
9656f324
PB
528{
529 CPUState *env = opaque;
530
4c0960c0 531 cpu_synchronize_state(env);
e7f4eff7
JQ
532 return 0;
533}
534
e59fb374 535static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
536{
537 CPUState *env = opaque;
9656f324 538
3098dba0
AJ
539 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
540 version_id is increased. */
541 env->interrupt_request &= ~0x01;
9656f324
PB
542 tlb_flush(env, 1);
543
544 return 0;
545}
e7f4eff7
JQ
546
547static const VMStateDescription vmstate_cpu_common = {
548 .name = "cpu_common",
549 .version_id = 1,
550 .minimum_version_id = 1,
551 .minimum_version_id_old = 1,
552 .pre_save = cpu_common_pre_save,
553 .pre_load = cpu_common_pre_load,
554 .post_load = cpu_common_post_load,
555 .fields = (VMStateField []) {
556 VMSTATE_UINT32(halted, CPUState),
557 VMSTATE_UINT32(interrupt_request, CPUState),
558 VMSTATE_END_OF_LIST()
559 }
560};
9656f324
PB
561#endif
562
950f1472
GC
563CPUState *qemu_get_cpu(int cpu)
564{
565 CPUState *env = first_cpu;
566
567 while (env) {
568 if (env->cpu_index == cpu)
569 break;
570 env = env->next_cpu;
571 }
572
573 return env;
574}
575
6a00d601 576void cpu_exec_init(CPUState *env)
fd6ce8f6 577{
6a00d601
FB
578 CPUState **penv;
579 int cpu_index;
580
c2764719
PB
581#if defined(CONFIG_USER_ONLY)
582 cpu_list_lock();
583#endif
6a00d601
FB
584 env->next_cpu = NULL;
585 penv = &first_cpu;
586 cpu_index = 0;
587 while (*penv != NULL) {
1e9fa730 588 penv = &(*penv)->next_cpu;
6a00d601
FB
589 cpu_index++;
590 }
591 env->cpu_index = cpu_index;
268a362c 592 env->numa_node = 0;
72cf2d4f
BS
593 QTAILQ_INIT(&env->breakpoints);
594 QTAILQ_INIT(&env->watchpoints);
6a00d601 595 *penv = env;
c2764719
PB
596#if defined(CONFIG_USER_ONLY)
597 cpu_list_unlock();
598#endif
b3c7724c 599#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 600 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
601 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
602 cpu_save, cpu_load, env);
603#endif
fd6ce8f6
FB
604}
605
9fa3e853
FB
606static inline void invalidate_page_bitmap(PageDesc *p)
607{
608 if (p->code_bitmap) {
59817ccb 609 qemu_free(p->code_bitmap);
9fa3e853
FB
610 p->code_bitmap = NULL;
611 }
612 p->code_write_count = 0;
613}
614
fd6ce8f6
FB
615/* set to NULL all the 'first_tb' fields in all PageDescs */
616static void page_flush_tb(void)
617{
618 int i, j;
619 PageDesc *p;
620
621 for(i = 0; i < L1_SIZE; i++) {
622 p = l1_map[i];
623 if (p) {
9fa3e853
FB
624 for(j = 0; j < L2_SIZE; j++) {
625 p->first_tb = NULL;
626 invalidate_page_bitmap(p);
627 p++;
628 }
fd6ce8f6
FB
629 }
630 }
631}
632
633/* flush all the translation blocks */
d4e8164f 634/* XXX: tb_flush is currently not thread safe */
6a00d601 635void tb_flush(CPUState *env1)
fd6ce8f6 636{
6a00d601 637 CPUState *env;
0124311e 638#if defined(DEBUG_FLUSH)
ab3d1727
BS
639 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
640 (unsigned long)(code_gen_ptr - code_gen_buffer),
641 nb_tbs, nb_tbs > 0 ?
642 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 643#endif
26a5f13b 644 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
645 cpu_abort(env1, "Internal error: code buffer overflow\n");
646
fd6ce8f6 647 nb_tbs = 0;
3b46e624 648
6a00d601
FB
649 for(env = first_cpu; env != NULL; env = env->next_cpu) {
650 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
651 }
9fa3e853 652
8a8a608f 653 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 654 page_flush_tb();
9fa3e853 655
fd6ce8f6 656 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
657 /* XXX: flush processor icache at this point if cache flush is
658 expensive */
e3db7226 659 tb_flush_count++;
fd6ce8f6
FB
660}
661
662#ifdef DEBUG_TB_CHECK
663
bc98a7ef 664static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
665{
666 TranslationBlock *tb;
667 int i;
668 address &= TARGET_PAGE_MASK;
99773bd4
PB
669 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
670 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
671 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
672 address >= tb->pc + tb->size)) {
0bf9e31a
BS
673 printf("ERROR invalidate: address=" TARGET_FMT_lx
674 " PC=%08lx size=%04x\n",
99773bd4 675 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
676 }
677 }
678 }
679}
680
681/* verify that all the pages have correct rights for code */
682static void tb_page_check(void)
683{
684 TranslationBlock *tb;
685 int i, flags1, flags2;
3b46e624 686
99773bd4
PB
687 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
688 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
689 flags1 = page_get_flags(tb->pc);
690 flags2 = page_get_flags(tb->pc + tb->size - 1);
691 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
692 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 693 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
694 }
695 }
696 }
697}
698
699#endif
700
701/* invalidate one TB */
702static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
703 int next_offset)
704{
705 TranslationBlock *tb1;
706 for(;;) {
707 tb1 = *ptb;
708 if (tb1 == tb) {
709 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
710 break;
711 }
712 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
713 }
714}
715
9fa3e853
FB
716static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
717{
718 TranslationBlock *tb1;
719 unsigned int n1;
720
721 for(;;) {
722 tb1 = *ptb;
723 n1 = (long)tb1 & 3;
724 tb1 = (TranslationBlock *)((long)tb1 & ~3);
725 if (tb1 == tb) {
726 *ptb = tb1->page_next[n1];
727 break;
728 }
729 ptb = &tb1->page_next[n1];
730 }
731}
732
d4e8164f
FB
733static inline void tb_jmp_remove(TranslationBlock *tb, int n)
734{
735 TranslationBlock *tb1, **ptb;
736 unsigned int n1;
737
738 ptb = &tb->jmp_next[n];
739 tb1 = *ptb;
740 if (tb1) {
741 /* find tb(n) in circular list */
742 for(;;) {
743 tb1 = *ptb;
744 n1 = (long)tb1 & 3;
745 tb1 = (TranslationBlock *)((long)tb1 & ~3);
746 if (n1 == n && tb1 == tb)
747 break;
748 if (n1 == 2) {
749 ptb = &tb1->jmp_first;
750 } else {
751 ptb = &tb1->jmp_next[n1];
752 }
753 }
754 /* now we can suppress tb(n) from the list */
755 *ptb = tb->jmp_next[n];
756
757 tb->jmp_next[n] = NULL;
758 }
759}
760
761/* reset the jump entry 'n' of a TB so that it is not chained to
762 another TB */
763static inline void tb_reset_jump(TranslationBlock *tb, int n)
764{
765 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
766}
767
2e70f6ef 768void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 769{
6a00d601 770 CPUState *env;
8a40a180 771 PageDesc *p;
d4e8164f 772 unsigned int h, n1;
c227f099 773 target_phys_addr_t phys_pc;
8a40a180 774 TranslationBlock *tb1, *tb2;
3b46e624 775
8a40a180
FB
776 /* remove the TB from the hash list */
777 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
778 h = tb_phys_hash_func(phys_pc);
5fafdf24 779 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
780 offsetof(TranslationBlock, phys_hash_next));
781
782 /* remove the TB from the page list */
783 if (tb->page_addr[0] != page_addr) {
784 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
785 tb_page_remove(&p->first_tb, tb);
786 invalidate_page_bitmap(p);
787 }
788 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
789 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
790 tb_page_remove(&p->first_tb, tb);
791 invalidate_page_bitmap(p);
792 }
793
36bdbe54 794 tb_invalidated_flag = 1;
59817ccb 795
fd6ce8f6 796 /* remove the TB from the hash list */
8a40a180 797 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
798 for(env = first_cpu; env != NULL; env = env->next_cpu) {
799 if (env->tb_jmp_cache[h] == tb)
800 env->tb_jmp_cache[h] = NULL;
801 }
d4e8164f
FB
802
803 /* suppress this TB from the two jump lists */
804 tb_jmp_remove(tb, 0);
805 tb_jmp_remove(tb, 1);
806
807 /* suppress any remaining jumps to this TB */
808 tb1 = tb->jmp_first;
809 for(;;) {
810 n1 = (long)tb1 & 3;
811 if (n1 == 2)
812 break;
813 tb1 = (TranslationBlock *)((long)tb1 & ~3);
814 tb2 = tb1->jmp_next[n1];
815 tb_reset_jump(tb1, n1);
816 tb1->jmp_next[n1] = NULL;
817 tb1 = tb2;
818 }
819 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 820
e3db7226 821 tb_phys_invalidate_count++;
9fa3e853
FB
822}
823
824static inline void set_bits(uint8_t *tab, int start, int len)
825{
826 int end, mask, end1;
827
828 end = start + len;
829 tab += start >> 3;
830 mask = 0xff << (start & 7);
831 if ((start & ~7) == (end & ~7)) {
832 if (start < end) {
833 mask &= ~(0xff << (end & 7));
834 *tab |= mask;
835 }
836 } else {
837 *tab++ |= mask;
838 start = (start + 8) & ~7;
839 end1 = end & ~7;
840 while (start < end1) {
841 *tab++ = 0xff;
842 start += 8;
843 }
844 if (start < end) {
845 mask = ~(0xff << (end & 7));
846 *tab |= mask;
847 }
848 }
849}
850
851static void build_page_bitmap(PageDesc *p)
852{
853 int n, tb_start, tb_end;
854 TranslationBlock *tb;
3b46e624 855
b2a7081a 856 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
857
858 tb = p->first_tb;
859 while (tb != NULL) {
860 n = (long)tb & 3;
861 tb = (TranslationBlock *)((long)tb & ~3);
862 /* NOTE: this is subtle as a TB may span two physical pages */
863 if (n == 0) {
864 /* NOTE: tb_end may be after the end of the page, but
865 it is not a problem */
866 tb_start = tb->pc & ~TARGET_PAGE_MASK;
867 tb_end = tb_start + tb->size;
868 if (tb_end > TARGET_PAGE_SIZE)
869 tb_end = TARGET_PAGE_SIZE;
870 } else {
871 tb_start = 0;
872 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
873 }
874 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
875 tb = tb->page_next[n];
876 }
877}
878
2e70f6ef
PB
879TranslationBlock *tb_gen_code(CPUState *env,
880 target_ulong pc, target_ulong cs_base,
881 int flags, int cflags)
d720b93d
FB
882{
883 TranslationBlock *tb;
884 uint8_t *tc_ptr;
885 target_ulong phys_pc, phys_page2, virt_page2;
886 int code_gen_size;
887
c27004ec
FB
888 phys_pc = get_phys_addr_code(env, pc);
889 tb = tb_alloc(pc);
d720b93d
FB
890 if (!tb) {
891 /* flush must be done */
892 tb_flush(env);
893 /* cannot fail at this point */
c27004ec 894 tb = tb_alloc(pc);
2e70f6ef
PB
895 /* Don't forget to invalidate previous TB info. */
896 tb_invalidated_flag = 1;
d720b93d
FB
897 }
898 tc_ptr = code_gen_ptr;
899 tb->tc_ptr = tc_ptr;
900 tb->cs_base = cs_base;
901 tb->flags = flags;
902 tb->cflags = cflags;
d07bde88 903 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 904 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 905
d720b93d 906 /* check next page if needed */
c27004ec 907 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 908 phys_page2 = -1;
c27004ec 909 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
910 phys_page2 = get_phys_addr_code(env, virt_page2);
911 }
912 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 913 return tb;
d720b93d 914}
3b46e624 915
9fa3e853
FB
916/* invalidate all TBs which intersect with the target physical page
917 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
918 the same physical page. 'is_cpu_write_access' should be true if called
919 from a real cpu write access: the virtual CPU will exit the current
920 TB if code is modified inside this TB. */
c227f099 921void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
922 int is_cpu_write_access)
923{
6b917547 924 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 925 CPUState *env = cpu_single_env;
9fa3e853 926 target_ulong tb_start, tb_end;
6b917547
AL
927 PageDesc *p;
928 int n;
929#ifdef TARGET_HAS_PRECISE_SMC
930 int current_tb_not_found = is_cpu_write_access;
931 TranslationBlock *current_tb = NULL;
932 int current_tb_modified = 0;
933 target_ulong current_pc = 0;
934 target_ulong current_cs_base = 0;
935 int current_flags = 0;
936#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
937
938 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 939 if (!p)
9fa3e853 940 return;
5fafdf24 941 if (!p->code_bitmap &&
d720b93d
FB
942 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
943 is_cpu_write_access) {
9fa3e853
FB
944 /* build code bitmap */
945 build_page_bitmap(p);
946 }
947
948 /* we remove all the TBs in the range [start, end[ */
949 /* XXX: see if in some cases it could be faster to invalidate all the code */
950 tb = p->first_tb;
951 while (tb != NULL) {
952 n = (long)tb & 3;
953 tb = (TranslationBlock *)((long)tb & ~3);
954 tb_next = tb->page_next[n];
955 /* NOTE: this is subtle as a TB may span two physical pages */
956 if (n == 0) {
957 /* NOTE: tb_end may be after the end of the page, but
958 it is not a problem */
959 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
960 tb_end = tb_start + tb->size;
961 } else {
962 tb_start = tb->page_addr[1];
963 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
964 }
965 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
966#ifdef TARGET_HAS_PRECISE_SMC
967 if (current_tb_not_found) {
968 current_tb_not_found = 0;
969 current_tb = NULL;
2e70f6ef 970 if (env->mem_io_pc) {
d720b93d 971 /* now we have a real cpu fault */
2e70f6ef 972 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
973 }
974 }
975 if (current_tb == tb &&
2e70f6ef 976 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
977 /* If we are modifying the current TB, we must stop
978 its execution. We could be more precise by checking
979 that the modification is after the current PC, but it
980 would require a specialized function to partially
981 restore the CPU state */
3b46e624 982
d720b93d 983 current_tb_modified = 1;
5fafdf24 984 cpu_restore_state(current_tb, env,
2e70f6ef 985 env->mem_io_pc, NULL);
6b917547
AL
986 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
987 &current_flags);
d720b93d
FB
988 }
989#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
990 /* we need to do that to handle the case where a signal
991 occurs while doing tb_phys_invalidate() */
992 saved_tb = NULL;
993 if (env) {
994 saved_tb = env->current_tb;
995 env->current_tb = NULL;
996 }
9fa3e853 997 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
998 if (env) {
999 env->current_tb = saved_tb;
1000 if (env->interrupt_request && env->current_tb)
1001 cpu_interrupt(env, env->interrupt_request);
1002 }
9fa3e853
FB
1003 }
1004 tb = tb_next;
1005 }
1006#if !defined(CONFIG_USER_ONLY)
1007 /* if no code remaining, no need to continue to use slow writes */
1008 if (!p->first_tb) {
1009 invalidate_page_bitmap(p);
d720b93d 1010 if (is_cpu_write_access) {
2e70f6ef 1011 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1012 }
1013 }
1014#endif
1015#ifdef TARGET_HAS_PRECISE_SMC
1016 if (current_tb_modified) {
1017 /* we generate a block containing just the instruction
1018 modifying the memory. It will ensure that it cannot modify
1019 itself */
ea1c1802 1020 env->current_tb = NULL;
2e70f6ef 1021 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1022 cpu_resume_from_signal(env, NULL);
9fa3e853 1023 }
fd6ce8f6 1024#endif
9fa3e853 1025}
fd6ce8f6 1026
9fa3e853 1027/* len must be <= 8 and start must be a multiple of len */
c227f099 1028static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1029{
1030 PageDesc *p;
1031 int offset, b;
59817ccb 1032#if 0
a4193c8a 1033 if (1) {
93fcfe39
AL
1034 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1035 cpu_single_env->mem_io_vaddr, len,
1036 cpu_single_env->eip,
1037 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1038 }
1039#endif
9fa3e853 1040 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1041 if (!p)
9fa3e853
FB
1042 return;
1043 if (p->code_bitmap) {
1044 offset = start & ~TARGET_PAGE_MASK;
1045 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1046 if (b & ((1 << len) - 1))
1047 goto do_invalidate;
1048 } else {
1049 do_invalidate:
d720b93d 1050 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1051 }
1052}
1053
9fa3e853 1054#if !defined(CONFIG_SOFTMMU)
c227f099 1055static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1056 unsigned long pc, void *puc)
9fa3e853 1057{
6b917547 1058 TranslationBlock *tb;
9fa3e853 1059 PageDesc *p;
6b917547 1060 int n;
d720b93d 1061#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1062 TranslationBlock *current_tb = NULL;
d720b93d 1063 CPUState *env = cpu_single_env;
6b917547
AL
1064 int current_tb_modified = 0;
1065 target_ulong current_pc = 0;
1066 target_ulong current_cs_base = 0;
1067 int current_flags = 0;
d720b93d 1068#endif
9fa3e853
FB
1069
1070 addr &= TARGET_PAGE_MASK;
1071 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1072 if (!p)
9fa3e853
FB
1073 return;
1074 tb = p->first_tb;
d720b93d
FB
1075#ifdef TARGET_HAS_PRECISE_SMC
1076 if (tb && pc != 0) {
1077 current_tb = tb_find_pc(pc);
1078 }
1079#endif
9fa3e853
FB
1080 while (tb != NULL) {
1081 n = (long)tb & 3;
1082 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1083#ifdef TARGET_HAS_PRECISE_SMC
1084 if (current_tb == tb &&
2e70f6ef 1085 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1086 /* If we are modifying the current TB, we must stop
1087 its execution. We could be more precise by checking
1088 that the modification is after the current PC, but it
1089 would require a specialized function to partially
1090 restore the CPU state */
3b46e624 1091
d720b93d
FB
1092 current_tb_modified = 1;
1093 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1094 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1095 &current_flags);
d720b93d
FB
1096 }
1097#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1098 tb_phys_invalidate(tb, addr);
1099 tb = tb->page_next[n];
1100 }
fd6ce8f6 1101 p->first_tb = NULL;
d720b93d
FB
1102#ifdef TARGET_HAS_PRECISE_SMC
1103 if (current_tb_modified) {
1104 /* we generate a block containing just the instruction
1105 modifying the memory. It will ensure that it cannot modify
1106 itself */
ea1c1802 1107 env->current_tb = NULL;
2e70f6ef 1108 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1109 cpu_resume_from_signal(env, puc);
1110 }
1111#endif
fd6ce8f6 1112}
9fa3e853 1113#endif
fd6ce8f6
FB
1114
1115/* add the tb in the target page and protect it if necessary */
5fafdf24 1116static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1117 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1118{
1119 PageDesc *p;
9fa3e853
FB
1120 TranslationBlock *last_first_tb;
1121
1122 tb->page_addr[n] = page_addr;
3a7d929e 1123 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1124 tb->page_next[n] = p->first_tb;
1125 last_first_tb = p->first_tb;
1126 p->first_tb = (TranslationBlock *)((long)tb | n);
1127 invalidate_page_bitmap(p);
fd6ce8f6 1128
107db443 1129#if defined(TARGET_HAS_SMC) || 1
d720b93d 1130
9fa3e853 1131#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1132 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1133 target_ulong addr;
1134 PageDesc *p2;
9fa3e853
FB
1135 int prot;
1136
fd6ce8f6
FB
1137 /* force the host page as non writable (writes will have a
1138 page fault + mprotect overhead) */
53a5960a 1139 page_addr &= qemu_host_page_mask;
fd6ce8f6 1140 prot = 0;
53a5960a
PB
1141 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1142 addr += TARGET_PAGE_SIZE) {
1143
1144 p2 = page_find (addr >> TARGET_PAGE_BITS);
1145 if (!p2)
1146 continue;
1147 prot |= p2->flags;
1148 p2->flags &= ~PAGE_WRITE;
1149 page_get_flags(addr);
1150 }
5fafdf24 1151 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1152 (prot & PAGE_BITS) & ~PAGE_WRITE);
1153#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1154 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1155 page_addr);
fd6ce8f6 1156#endif
fd6ce8f6 1157 }
9fa3e853
FB
1158#else
1159 /* if some code is already present, then the pages are already
1160 protected. So we handle the case where only the first TB is
1161 allocated in a physical page */
1162 if (!last_first_tb) {
6a00d601 1163 tlb_protect_code(page_addr);
9fa3e853
FB
1164 }
1165#endif
d720b93d
FB
1166
1167#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1168}
1169
1170/* Allocate a new translation block. Flush the translation buffer if
1171 too many translation blocks or too much generated code. */
c27004ec 1172TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1173{
1174 TranslationBlock *tb;
fd6ce8f6 1175
26a5f13b
FB
1176 if (nb_tbs >= code_gen_max_blocks ||
1177 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1178 return NULL;
fd6ce8f6
FB
1179 tb = &tbs[nb_tbs++];
1180 tb->pc = pc;
b448f2f3 1181 tb->cflags = 0;
d4e8164f
FB
1182 return tb;
1183}
1184
2e70f6ef
PB
1185void tb_free(TranslationBlock *tb)
1186{
bf20dc07 1187 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1188 Ignore the hard cases and just back up if this TB happens to
1189 be the last one generated. */
1190 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1191 code_gen_ptr = tb->tc_ptr;
1192 nb_tbs--;
1193 }
1194}
1195
9fa3e853
FB
1196/* add a new TB and link it to the physical page tables. phys_page2 is
1197 (-1) to indicate that only one page contains the TB. */
5fafdf24 1198void tb_link_phys(TranslationBlock *tb,
9fa3e853 1199 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1200{
9fa3e853
FB
1201 unsigned int h;
1202 TranslationBlock **ptb;
1203
c8a706fe
PB
1204 /* Grab the mmap lock to stop another thread invalidating this TB
1205 before we are done. */
1206 mmap_lock();
9fa3e853
FB
1207 /* add in the physical hash table */
1208 h = tb_phys_hash_func(phys_pc);
1209 ptb = &tb_phys_hash[h];
1210 tb->phys_hash_next = *ptb;
1211 *ptb = tb;
fd6ce8f6
FB
1212
1213 /* add in the page list */
9fa3e853
FB
1214 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1215 if (phys_page2 != -1)
1216 tb_alloc_page(tb, 1, phys_page2);
1217 else
1218 tb->page_addr[1] = -1;
9fa3e853 1219
d4e8164f
FB
1220 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1221 tb->jmp_next[0] = NULL;
1222 tb->jmp_next[1] = NULL;
1223
1224 /* init original jump addresses */
1225 if (tb->tb_next_offset[0] != 0xffff)
1226 tb_reset_jump(tb, 0);
1227 if (tb->tb_next_offset[1] != 0xffff)
1228 tb_reset_jump(tb, 1);
8a40a180
FB
1229
1230#ifdef DEBUG_TB_CHECK
1231 tb_page_check();
1232#endif
c8a706fe 1233 mmap_unlock();
fd6ce8f6
FB
1234}
1235
9fa3e853
FB
1236/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1237 tb[1].tc_ptr. Return NULL if not found */
1238TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1239{
9fa3e853
FB
1240 int m_min, m_max, m;
1241 unsigned long v;
1242 TranslationBlock *tb;
a513fe19
FB
1243
1244 if (nb_tbs <= 0)
1245 return NULL;
1246 if (tc_ptr < (unsigned long)code_gen_buffer ||
1247 tc_ptr >= (unsigned long)code_gen_ptr)
1248 return NULL;
1249 /* binary search (cf Knuth) */
1250 m_min = 0;
1251 m_max = nb_tbs - 1;
1252 while (m_min <= m_max) {
1253 m = (m_min + m_max) >> 1;
1254 tb = &tbs[m];
1255 v = (unsigned long)tb->tc_ptr;
1256 if (v == tc_ptr)
1257 return tb;
1258 else if (tc_ptr < v) {
1259 m_max = m - 1;
1260 } else {
1261 m_min = m + 1;
1262 }
5fafdf24 1263 }
a513fe19
FB
1264 return &tbs[m_max];
1265}
7501267e 1266
ea041c0e
FB
1267static void tb_reset_jump_recursive(TranslationBlock *tb);
1268
1269static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1270{
1271 TranslationBlock *tb1, *tb_next, **ptb;
1272 unsigned int n1;
1273
1274 tb1 = tb->jmp_next[n];
1275 if (tb1 != NULL) {
1276 /* find head of list */
1277 for(;;) {
1278 n1 = (long)tb1 & 3;
1279 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1280 if (n1 == 2)
1281 break;
1282 tb1 = tb1->jmp_next[n1];
1283 }
1284 /* we are now sure now that tb jumps to tb1 */
1285 tb_next = tb1;
1286
1287 /* remove tb from the jmp_first list */
1288 ptb = &tb_next->jmp_first;
1289 for(;;) {
1290 tb1 = *ptb;
1291 n1 = (long)tb1 & 3;
1292 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1293 if (n1 == n && tb1 == tb)
1294 break;
1295 ptb = &tb1->jmp_next[n1];
1296 }
1297 *ptb = tb->jmp_next[n];
1298 tb->jmp_next[n] = NULL;
3b46e624 1299
ea041c0e
FB
1300 /* suppress the jump to next tb in generated code */
1301 tb_reset_jump(tb, n);
1302
0124311e 1303 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1304 tb_reset_jump_recursive(tb_next);
1305 }
1306}
1307
1308static void tb_reset_jump_recursive(TranslationBlock *tb)
1309{
1310 tb_reset_jump_recursive2(tb, 0);
1311 tb_reset_jump_recursive2(tb, 1);
1312}
1313
1fddef4b 1314#if defined(TARGET_HAS_ICE)
d720b93d
FB
1315static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1316{
c227f099 1317 target_phys_addr_t addr;
9b3c35e0 1318 target_ulong pd;
c227f099 1319 ram_addr_t ram_addr;
c2f07f81 1320 PhysPageDesc *p;
d720b93d 1321
c2f07f81
PB
1322 addr = cpu_get_phys_page_debug(env, pc);
1323 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1324 if (!p) {
1325 pd = IO_MEM_UNASSIGNED;
1326 } else {
1327 pd = p->phys_offset;
1328 }
1329 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1330 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1331}
c27004ec 1332#endif
d720b93d 1333
6658ffb8 1334/* Add a watchpoint. */
a1d1bb31
AL
1335int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1336 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1337{
b4051334 1338 target_ulong len_mask = ~(len - 1);
c0ce998e 1339 CPUWatchpoint *wp;
6658ffb8 1340
b4051334
AL
1341 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1342 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1343 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1344 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1345 return -EINVAL;
1346 }
a1d1bb31 1347 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1348
1349 wp->vaddr = addr;
b4051334 1350 wp->len_mask = len_mask;
a1d1bb31
AL
1351 wp->flags = flags;
1352
2dc9f411 1353 /* keep all GDB-injected watchpoints in front */
c0ce998e 1354 if (flags & BP_GDB)
72cf2d4f 1355 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1356 else
72cf2d4f 1357 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1358
6658ffb8 1359 tlb_flush_page(env, addr);
a1d1bb31
AL
1360
1361 if (watchpoint)
1362 *watchpoint = wp;
1363 return 0;
6658ffb8
PB
1364}
1365
a1d1bb31
AL
1366/* Remove a specific watchpoint. */
1367int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1368 int flags)
6658ffb8 1369{
b4051334 1370 target_ulong len_mask = ~(len - 1);
a1d1bb31 1371 CPUWatchpoint *wp;
6658ffb8 1372
72cf2d4f 1373 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1374 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1375 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1376 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1377 return 0;
1378 }
1379 }
a1d1bb31 1380 return -ENOENT;
6658ffb8
PB
1381}
1382
a1d1bb31
AL
1383/* Remove a specific watchpoint by reference. */
1384void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1385{
72cf2d4f 1386 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1387
a1d1bb31
AL
1388 tlb_flush_page(env, watchpoint->vaddr);
1389
1390 qemu_free(watchpoint);
1391}
1392
1393/* Remove all matching watchpoints. */
1394void cpu_watchpoint_remove_all(CPUState *env, int mask)
1395{
c0ce998e 1396 CPUWatchpoint *wp, *next;
a1d1bb31 1397
72cf2d4f 1398 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1399 if (wp->flags & mask)
1400 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1401 }
7d03f82f
EI
1402}
1403
a1d1bb31
AL
1404/* Add a breakpoint. */
1405int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1406 CPUBreakpoint **breakpoint)
4c3a88a2 1407{
1fddef4b 1408#if defined(TARGET_HAS_ICE)
c0ce998e 1409 CPUBreakpoint *bp;
3b46e624 1410
a1d1bb31 1411 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1412
a1d1bb31
AL
1413 bp->pc = pc;
1414 bp->flags = flags;
1415
2dc9f411 1416 /* keep all GDB-injected breakpoints in front */
c0ce998e 1417 if (flags & BP_GDB)
72cf2d4f 1418 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1419 else
72cf2d4f 1420 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1421
d720b93d 1422 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1423
1424 if (breakpoint)
1425 *breakpoint = bp;
4c3a88a2
FB
1426 return 0;
1427#else
a1d1bb31 1428 return -ENOSYS;
4c3a88a2
FB
1429#endif
1430}
1431
a1d1bb31
AL
1432/* Remove a specific breakpoint. */
1433int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1434{
7d03f82f 1435#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1436 CPUBreakpoint *bp;
1437
72cf2d4f 1438 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1439 if (bp->pc == pc && bp->flags == flags) {
1440 cpu_breakpoint_remove_by_ref(env, bp);
1441 return 0;
1442 }
7d03f82f 1443 }
a1d1bb31
AL
1444 return -ENOENT;
1445#else
1446 return -ENOSYS;
7d03f82f
EI
1447#endif
1448}
1449
a1d1bb31
AL
1450/* Remove a specific breakpoint by reference. */
1451void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1452{
1fddef4b 1453#if defined(TARGET_HAS_ICE)
72cf2d4f 1454 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1455
a1d1bb31
AL
1456 breakpoint_invalidate(env, breakpoint->pc);
1457
1458 qemu_free(breakpoint);
1459#endif
1460}
1461
1462/* Remove all matching breakpoints. */
1463void cpu_breakpoint_remove_all(CPUState *env, int mask)
1464{
1465#if defined(TARGET_HAS_ICE)
c0ce998e 1466 CPUBreakpoint *bp, *next;
a1d1bb31 1467
72cf2d4f 1468 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1469 if (bp->flags & mask)
1470 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1471 }
4c3a88a2
FB
1472#endif
1473}
1474
c33a346e
FB
1475/* enable or disable single step mode. EXCP_DEBUG is returned by the
1476 CPU loop after each instruction */
1477void cpu_single_step(CPUState *env, int enabled)
1478{
1fddef4b 1479#if defined(TARGET_HAS_ICE)
c33a346e
FB
1480 if (env->singlestep_enabled != enabled) {
1481 env->singlestep_enabled = enabled;
e22a25c9
AL
1482 if (kvm_enabled())
1483 kvm_update_guest_debug(env, 0);
1484 else {
ccbb4d44 1485 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1486 /* XXX: only flush what is necessary */
1487 tb_flush(env);
1488 }
c33a346e
FB
1489 }
1490#endif
1491}
1492
34865134
FB
1493/* enable or disable low levels log */
1494void cpu_set_log(int log_flags)
1495{
1496 loglevel = log_flags;
1497 if (loglevel && !logfile) {
11fcfab4 1498 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1499 if (!logfile) {
1500 perror(logfilename);
1501 _exit(1);
1502 }
9fa3e853
FB
1503#if !defined(CONFIG_SOFTMMU)
1504 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1505 {
b55266b5 1506 static char logfile_buf[4096];
9fa3e853
FB
1507 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1508 }
bf65f53f
FN
1509#elif !defined(_WIN32)
1510 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1511 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1512#endif
e735b91c
PB
1513 log_append = 1;
1514 }
1515 if (!loglevel && logfile) {
1516 fclose(logfile);
1517 logfile = NULL;
34865134
FB
1518 }
1519}
1520
1521void cpu_set_log_filename(const char *filename)
1522{
1523 logfilename = strdup(filename);
e735b91c
PB
1524 if (logfile) {
1525 fclose(logfile);
1526 logfile = NULL;
1527 }
1528 cpu_set_log(loglevel);
34865134 1529}
c33a346e 1530
3098dba0 1531static void cpu_unlink_tb(CPUState *env)
ea041c0e 1532{
3098dba0
AJ
1533 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1534 problem and hope the cpu will stop of its own accord. For userspace
1535 emulation this often isn't actually as bad as it sounds. Often
1536 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1537 TranslationBlock *tb;
c227f099 1538 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1539
3098dba0
AJ
1540 tb = env->current_tb;
1541 /* if the cpu is currently executing code, we must unlink it and
1542 all the potentially executing TB */
f76cfe56
RV
1543 if (tb) {
1544 spin_lock(&interrupt_lock);
3098dba0
AJ
1545 env->current_tb = NULL;
1546 tb_reset_jump_recursive(tb);
f76cfe56 1547 spin_unlock(&interrupt_lock);
be214e6c 1548 }
3098dba0
AJ
1549}
1550
1551/* mask must never be zero, except for A20 change call */
1552void cpu_interrupt(CPUState *env, int mask)
1553{
1554 int old_mask;
be214e6c 1555
2e70f6ef 1556 old_mask = env->interrupt_request;
68a79315 1557 env->interrupt_request |= mask;
3098dba0 1558
8edac960
AL
1559#ifndef CONFIG_USER_ONLY
1560 /*
1561 * If called from iothread context, wake the target cpu in
1562 * case its halted.
1563 */
1564 if (!qemu_cpu_self(env)) {
1565 qemu_cpu_kick(env);
1566 return;
1567 }
1568#endif
1569
2e70f6ef 1570 if (use_icount) {
266910c4 1571 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1572#ifndef CONFIG_USER_ONLY
2e70f6ef 1573 if (!can_do_io(env)
be214e6c 1574 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1575 cpu_abort(env, "Raised interrupt while not in I/O function");
1576 }
1577#endif
1578 } else {
3098dba0 1579 cpu_unlink_tb(env);
ea041c0e
FB
1580 }
1581}
1582
b54ad049
FB
1583void cpu_reset_interrupt(CPUState *env, int mask)
1584{
1585 env->interrupt_request &= ~mask;
1586}
1587
3098dba0
AJ
1588void cpu_exit(CPUState *env)
1589{
1590 env->exit_request = 1;
1591 cpu_unlink_tb(env);
1592}
1593
c7cd6a37 1594const CPULogItem cpu_log_items[] = {
5fafdf24 1595 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1596 "show generated host assembly code for each compiled TB" },
1597 { CPU_LOG_TB_IN_ASM, "in_asm",
1598 "show target assembly code for each compiled TB" },
5fafdf24 1599 { CPU_LOG_TB_OP, "op",
57fec1fe 1600 "show micro ops for each compiled TB" },
f193c797 1601 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1602 "show micro ops "
1603#ifdef TARGET_I386
1604 "before eflags optimization and "
f193c797 1605#endif
e01a1157 1606 "after liveness analysis" },
f193c797
FB
1607 { CPU_LOG_INT, "int",
1608 "show interrupts/exceptions in short format" },
1609 { CPU_LOG_EXEC, "exec",
1610 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1611 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1612 "show CPU state before block translation" },
f193c797
FB
1613#ifdef TARGET_I386
1614 { CPU_LOG_PCALL, "pcall",
1615 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1616 { CPU_LOG_RESET, "cpu_reset",
1617 "show CPU state before CPU resets" },
f193c797 1618#endif
8e3a9fd2 1619#ifdef DEBUG_IOPORT
fd872598
FB
1620 { CPU_LOG_IOPORT, "ioport",
1621 "show all i/o ports accesses" },
8e3a9fd2 1622#endif
f193c797
FB
1623 { 0, NULL, NULL },
1624};
1625
1626static int cmp1(const char *s1, int n, const char *s2)
1627{
1628 if (strlen(s2) != n)
1629 return 0;
1630 return memcmp(s1, s2, n) == 0;
1631}
3b46e624 1632
f193c797
FB
1633/* takes a comma separated list of log masks. Return 0 if error. */
1634int cpu_str_to_log_mask(const char *str)
1635{
c7cd6a37 1636 const CPULogItem *item;
f193c797
FB
1637 int mask;
1638 const char *p, *p1;
1639
1640 p = str;
1641 mask = 0;
1642 for(;;) {
1643 p1 = strchr(p, ',');
1644 if (!p1)
1645 p1 = p + strlen(p);
8e3a9fd2
FB
1646 if(cmp1(p,p1-p,"all")) {
1647 for(item = cpu_log_items; item->mask != 0; item++) {
1648 mask |= item->mask;
1649 }
1650 } else {
f193c797
FB
1651 for(item = cpu_log_items; item->mask != 0; item++) {
1652 if (cmp1(p, p1 - p, item->name))
1653 goto found;
1654 }
1655 return 0;
8e3a9fd2 1656 }
f193c797
FB
1657 found:
1658 mask |= item->mask;
1659 if (*p1 != ',')
1660 break;
1661 p = p1 + 1;
1662 }
1663 return mask;
1664}
ea041c0e 1665
7501267e
FB
1666void cpu_abort(CPUState *env, const char *fmt, ...)
1667{
1668 va_list ap;
493ae1f0 1669 va_list ap2;
7501267e
FB
1670
1671 va_start(ap, fmt);
493ae1f0 1672 va_copy(ap2, ap);
7501267e
FB
1673 fprintf(stderr, "qemu: fatal: ");
1674 vfprintf(stderr, fmt, ap);
1675 fprintf(stderr, "\n");
1676#ifdef TARGET_I386
7fe48483
FB
1677 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1678#else
1679 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1680#endif
93fcfe39
AL
1681 if (qemu_log_enabled()) {
1682 qemu_log("qemu: fatal: ");
1683 qemu_log_vprintf(fmt, ap2);
1684 qemu_log("\n");
f9373291 1685#ifdef TARGET_I386
93fcfe39 1686 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1687#else
93fcfe39 1688 log_cpu_state(env, 0);
f9373291 1689#endif
31b1a7b4 1690 qemu_log_flush();
93fcfe39 1691 qemu_log_close();
924edcae 1692 }
493ae1f0 1693 va_end(ap2);
f9373291 1694 va_end(ap);
7501267e
FB
1695 abort();
1696}
1697
c5be9f08
TS
1698CPUState *cpu_copy(CPUState *env)
1699{
01ba9816 1700 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1701 CPUState *next_cpu = new_env->next_cpu;
1702 int cpu_index = new_env->cpu_index;
5a38f081
AL
1703#if defined(TARGET_HAS_ICE)
1704 CPUBreakpoint *bp;
1705 CPUWatchpoint *wp;
1706#endif
1707
c5be9f08 1708 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1709
1710 /* Preserve chaining and index. */
c5be9f08
TS
1711 new_env->next_cpu = next_cpu;
1712 new_env->cpu_index = cpu_index;
5a38f081
AL
1713
1714 /* Clone all break/watchpoints.
1715 Note: Once we support ptrace with hw-debug register access, make sure
1716 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1717 QTAILQ_INIT(&env->breakpoints);
1718 QTAILQ_INIT(&env->watchpoints);
5a38f081 1719#if defined(TARGET_HAS_ICE)
72cf2d4f 1720 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1721 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1722 }
72cf2d4f 1723 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1724 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1725 wp->flags, NULL);
1726 }
1727#endif
1728
c5be9f08
TS
1729 return new_env;
1730}
1731
0124311e
FB
1732#if !defined(CONFIG_USER_ONLY)
1733
5c751e99
EI
1734static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1735{
1736 unsigned int i;
1737
1738 /* Discard jump cache entries for any tb which might potentially
1739 overlap the flushed page. */
1740 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1741 memset (&env->tb_jmp_cache[i], 0,
1742 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1743
1744 i = tb_jmp_cache_hash_page(addr);
1745 memset (&env->tb_jmp_cache[i], 0,
1746 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1747}
1748
08738984
IK
1749static CPUTLBEntry s_cputlb_empty_entry = {
1750 .addr_read = -1,
1751 .addr_write = -1,
1752 .addr_code = -1,
1753 .addend = -1,
1754};
1755
ee8b7021
FB
1756/* NOTE: if flush_global is true, also flush global entries (not
1757 implemented yet) */
1758void tlb_flush(CPUState *env, int flush_global)
33417e70 1759{
33417e70 1760 int i;
0124311e 1761
9fa3e853
FB
1762#if defined(DEBUG_TLB)
1763 printf("tlb_flush:\n");
1764#endif
0124311e
FB
1765 /* must reset current TB so that interrupts cannot modify the
1766 links while we are modifying them */
1767 env->current_tb = NULL;
1768
33417e70 1769 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1770 int mmu_idx;
1771 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1772 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1773 }
33417e70 1774 }
9fa3e853 1775
8a40a180 1776 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1777
e3db7226 1778 tlb_flush_count++;
33417e70
FB
1779}
1780
274da6b2 1781static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1782{
5fafdf24 1783 if (addr == (tlb_entry->addr_read &
84b7b8e7 1784 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1785 addr == (tlb_entry->addr_write &
84b7b8e7 1786 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1787 addr == (tlb_entry->addr_code &
84b7b8e7 1788 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1789 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1790 }
61382a50
FB
1791}
1792
2e12669a 1793void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1794{
8a40a180 1795 int i;
cfde4bd9 1796 int mmu_idx;
0124311e 1797
9fa3e853 1798#if defined(DEBUG_TLB)
108c49b8 1799 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1800#endif
0124311e
FB
1801 /* must reset current TB so that interrupts cannot modify the
1802 links while we are modifying them */
1803 env->current_tb = NULL;
61382a50
FB
1804
1805 addr &= TARGET_PAGE_MASK;
1806 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1807 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1808 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1809
5c751e99 1810 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1811}
1812
9fa3e853
FB
1813/* update the TLBs so that writes to code in the virtual page 'addr'
1814 can be detected */
c227f099 1815static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1816{
5fafdf24 1817 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1818 ram_addr + TARGET_PAGE_SIZE,
1819 CODE_DIRTY_FLAG);
9fa3e853
FB
1820}
1821
9fa3e853 1822/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1823 tested for self modifying code */
c227f099 1824static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1825 target_ulong vaddr)
9fa3e853 1826{
3a7d929e 1827 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1828}
1829
5fafdf24 1830static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1831 unsigned long start, unsigned long length)
1832{
1833 unsigned long addr;
84b7b8e7
FB
1834 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1835 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1836 if ((addr - start) < length) {
0f459d16 1837 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1838 }
1839 }
1840}
1841
5579c7f3 1842/* Note: start and end must be within the same ram block. */
c227f099 1843void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1844 int dirty_flags)
1ccde1cb
FB
1845{
1846 CPUState *env;
4f2ac237 1847 unsigned long length, start1;
0a962c02
FB
1848 int i, mask, len;
1849 uint8_t *p;
1ccde1cb
FB
1850
1851 start &= TARGET_PAGE_MASK;
1852 end = TARGET_PAGE_ALIGN(end);
1853
1854 length = end - start;
1855 if (length == 0)
1856 return;
0a962c02 1857 len = length >> TARGET_PAGE_BITS;
f23db169
FB
1858 mask = ~dirty_flags;
1859 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1860 for(i = 0; i < len; i++)
1861 p[i] &= mask;
1862
1ccde1cb
FB
1863 /* we modify the TLB cache so that the dirty bit will be set again
1864 when accessing the range */
5579c7f3
PB
1865 start1 = (unsigned long)qemu_get_ram_ptr(start);
1866 /* Chek that we don't span multiple blocks - this breaks the
1867 address comparisons below. */
1868 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1869 != (end - 1) - start) {
1870 abort();
1871 }
1872
6a00d601 1873 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1874 int mmu_idx;
1875 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1876 for(i = 0; i < CPU_TLB_SIZE; i++)
1877 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1878 start1, length);
1879 }
6a00d601 1880 }
1ccde1cb
FB
1881}
1882
74576198
AL
1883int cpu_physical_memory_set_dirty_tracking(int enable)
1884{
1885 in_migration = enable;
b0a46a33
JK
1886 if (kvm_enabled()) {
1887 return kvm_set_migration_log(enable);
1888 }
74576198
AL
1889 return 0;
1890}
1891
1892int cpu_physical_memory_get_dirty_tracking(void)
1893{
1894 return in_migration;
1895}
1896
c227f099
AL
1897int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1898 target_phys_addr_t end_addr)
2bec46dc 1899{
151f7749
JK
1900 int ret = 0;
1901
2bec46dc 1902 if (kvm_enabled())
151f7749
JK
1903 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1904 return ret;
2bec46dc
AL
1905}
1906
3a7d929e
FB
1907static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1908{
c227f099 1909 ram_addr_t ram_addr;
5579c7f3 1910 void *p;
3a7d929e 1911
84b7b8e7 1912 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
1913 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1914 + tlb_entry->addend);
1915 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 1916 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1917 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1918 }
1919 }
1920}
1921
1922/* update the TLB according to the current state of the dirty bits */
1923void cpu_tlb_update_dirty(CPUState *env)
1924{
1925 int i;
cfde4bd9
IY
1926 int mmu_idx;
1927 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1928 for(i = 0; i < CPU_TLB_SIZE; i++)
1929 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1930 }
3a7d929e
FB
1931}
1932
0f459d16 1933static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1934{
0f459d16
PB
1935 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1936 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1937}
1938
0f459d16
PB
1939/* update the TLB corresponding to virtual page vaddr
1940 so that it is no longer dirty */
1941static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1942{
1ccde1cb 1943 int i;
cfde4bd9 1944 int mmu_idx;
1ccde1cb 1945
0f459d16 1946 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1947 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1948 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1949 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
1950}
1951
59817ccb
FB
1952/* add a new TLB entry. At most one entry for a given virtual address
1953 is permitted. Return 0 if OK or 2 if the page could not be mapped
1954 (can only happen in non SOFTMMU mode for I/O pages or pages
1955 conflicting with the host address space). */
5fafdf24 1956int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 1957 target_phys_addr_t paddr, int prot,
6ebbf390 1958 int mmu_idx, int is_softmmu)
9fa3e853 1959{
92e873b9 1960 PhysPageDesc *p;
4f2ac237 1961 unsigned long pd;
9fa3e853 1962 unsigned int index;
4f2ac237 1963 target_ulong address;
0f459d16 1964 target_ulong code_address;
c227f099 1965 target_phys_addr_t addend;
9fa3e853 1966 int ret;
84b7b8e7 1967 CPUTLBEntry *te;
a1d1bb31 1968 CPUWatchpoint *wp;
c227f099 1969 target_phys_addr_t iotlb;
9fa3e853 1970
92e873b9 1971 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1972 if (!p) {
1973 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1974 } else {
1975 pd = p->phys_offset;
9fa3e853
FB
1976 }
1977#if defined(DEBUG_TLB)
6ebbf390
JM
1978 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1979 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1980#endif
1981
1982 ret = 0;
0f459d16
PB
1983 address = vaddr;
1984 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1985 /* IO memory case (romd handled later) */
1986 address |= TLB_MMIO;
1987 }
5579c7f3 1988 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
1989 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1990 /* Normal RAM. */
1991 iotlb = pd & TARGET_PAGE_MASK;
1992 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1993 iotlb |= IO_MEM_NOTDIRTY;
1994 else
1995 iotlb |= IO_MEM_ROM;
1996 } else {
ccbb4d44 1997 /* IO handlers are currently passed a physical address.
0f459d16
PB
1998 It would be nice to pass an offset from the base address
1999 of that region. This would avoid having to special case RAM,
2000 and avoid full address decoding in every device.
2001 We can't use the high bits of pd for this because
2002 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2003 iotlb = (pd & ~TARGET_PAGE_MASK);
2004 if (p) {
8da3ff18
PB
2005 iotlb += p->region_offset;
2006 } else {
2007 iotlb += paddr;
2008 }
0f459d16
PB
2009 }
2010
2011 code_address = address;
2012 /* Make accesses to pages with watchpoints go via the
2013 watchpoint trap routines. */
72cf2d4f 2014 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2015 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2016 iotlb = io_mem_watch + paddr;
2017 /* TODO: The memory case can be optimized by not trapping
2018 reads of pages with a write breakpoint. */
2019 address |= TLB_MMIO;
6658ffb8 2020 }
0f459d16 2021 }
d79acba4 2022
0f459d16
PB
2023 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2024 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2025 te = &env->tlb_table[mmu_idx][index];
2026 te->addend = addend - vaddr;
2027 if (prot & PAGE_READ) {
2028 te->addr_read = address;
2029 } else {
2030 te->addr_read = -1;
2031 }
5c751e99 2032
0f459d16
PB
2033 if (prot & PAGE_EXEC) {
2034 te->addr_code = code_address;
2035 } else {
2036 te->addr_code = -1;
2037 }
2038 if (prot & PAGE_WRITE) {
2039 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2040 (pd & IO_MEM_ROMD)) {
2041 /* Write access calls the I/O callback. */
2042 te->addr_write = address | TLB_MMIO;
2043 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2044 !cpu_physical_memory_is_dirty(pd)) {
2045 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2046 } else {
0f459d16 2047 te->addr_write = address;
9fa3e853 2048 }
0f459d16
PB
2049 } else {
2050 te->addr_write = -1;
9fa3e853 2051 }
9fa3e853
FB
2052 return ret;
2053}
2054
0124311e
FB
2055#else
2056
ee8b7021 2057void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2058{
2059}
2060
2e12669a 2061void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2062{
2063}
2064
5fafdf24 2065int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2066 target_phys_addr_t paddr, int prot,
6ebbf390 2067 int mmu_idx, int is_softmmu)
9fa3e853
FB
2068{
2069 return 0;
2070}
0124311e 2071
edf8e2af
MW
2072/*
2073 * Walks guest process memory "regions" one by one
2074 * and calls callback function 'fn' for each region.
2075 */
2076int walk_memory_regions(void *priv,
2077 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2078{
9fa3e853 2079 unsigned long start, end;
edf8e2af 2080 PageDesc *p = NULL;
9fa3e853 2081 int i, j, prot, prot1;
edf8e2af 2082 int rc = 0;
33417e70 2083
edf8e2af 2084 start = end = -1;
9fa3e853 2085 prot = 0;
edf8e2af
MW
2086
2087 for (i = 0; i <= L1_SIZE; i++) {
2088 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2089 for (j = 0; j < L2_SIZE; j++) {
2090 prot1 = (p == NULL) ? 0 : p[j].flags;
2091 /*
2092 * "region" is one continuous chunk of memory
2093 * that has same protection flags set.
2094 */
9fa3e853
FB
2095 if (prot1 != prot) {
2096 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2097 if (start != -1) {
edf8e2af
MW
2098 rc = (*fn)(priv, start, end, prot);
2099 /* callback can stop iteration by returning != 0 */
2100 if (rc != 0)
2101 return (rc);
9fa3e853
FB
2102 }
2103 if (prot1 != 0)
2104 start = end;
2105 else
2106 start = -1;
2107 prot = prot1;
2108 }
edf8e2af 2109 if (p == NULL)
9fa3e853
FB
2110 break;
2111 }
33417e70 2112 }
edf8e2af
MW
2113 return (rc);
2114}
2115
2116static int dump_region(void *priv, unsigned long start,
2117 unsigned long end, unsigned long prot)
2118{
2119 FILE *f = (FILE *)priv;
2120
2121 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2122 start, end, end - start,
2123 ((prot & PAGE_READ) ? 'r' : '-'),
2124 ((prot & PAGE_WRITE) ? 'w' : '-'),
2125 ((prot & PAGE_EXEC) ? 'x' : '-'));
2126
2127 return (0);
2128}
2129
2130/* dump memory mappings */
2131void page_dump(FILE *f)
2132{
2133 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2134 "start", "end", "size", "prot");
2135 walk_memory_regions(f, dump_region);
33417e70
FB
2136}
2137
53a5960a 2138int page_get_flags(target_ulong address)
33417e70 2139{
9fa3e853
FB
2140 PageDesc *p;
2141
2142 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2143 if (!p)
9fa3e853
FB
2144 return 0;
2145 return p->flags;
2146}
2147
2148/* modify the flags of a page and invalidate the code if
ccbb4d44 2149 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2150 depending on PAGE_WRITE */
53a5960a 2151void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2152{
2153 PageDesc *p;
53a5960a 2154 target_ulong addr;
9fa3e853 2155
c8a706fe 2156 /* mmap_lock should already be held. */
9fa3e853
FB
2157 start = start & TARGET_PAGE_MASK;
2158 end = TARGET_PAGE_ALIGN(end);
2159 if (flags & PAGE_WRITE)
2160 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2161 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2162 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2163 /* We may be called for host regions that are outside guest
2164 address space. */
2165 if (!p)
2166 return;
9fa3e853
FB
2167 /* if the write protection is set, then we invalidate the code
2168 inside */
5fafdf24 2169 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2170 (flags & PAGE_WRITE) &&
2171 p->first_tb) {
d720b93d 2172 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2173 }
2174 p->flags = flags;
2175 }
33417e70
FB
2176}
2177
3d97b40b
TS
2178int page_check_range(target_ulong start, target_ulong len, int flags)
2179{
2180 PageDesc *p;
2181 target_ulong end;
2182 target_ulong addr;
2183
55f280c9
AZ
2184 if (start + len < start)
2185 /* we've wrapped around */
2186 return -1;
2187
3d97b40b
TS
2188 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2189 start = start & TARGET_PAGE_MASK;
2190
3d97b40b
TS
2191 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2192 p = page_find(addr >> TARGET_PAGE_BITS);
2193 if( !p )
2194 return -1;
2195 if( !(p->flags & PAGE_VALID) )
2196 return -1;
2197
dae3270c 2198 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2199 return -1;
dae3270c
FB
2200 if (flags & PAGE_WRITE) {
2201 if (!(p->flags & PAGE_WRITE_ORG))
2202 return -1;
2203 /* unprotect the page if it was put read-only because it
2204 contains translated code */
2205 if (!(p->flags & PAGE_WRITE)) {
2206 if (!page_unprotect(addr, 0, NULL))
2207 return -1;
2208 }
2209 return 0;
2210 }
3d97b40b
TS
2211 }
2212 return 0;
2213}
2214
9fa3e853 2215/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2216 page. Return TRUE if the fault was successfully handled. */
53a5960a 2217int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2218{
2219 unsigned int page_index, prot, pindex;
2220 PageDesc *p, *p1;
53a5960a 2221 target_ulong host_start, host_end, addr;
9fa3e853 2222
c8a706fe
PB
2223 /* Technically this isn't safe inside a signal handler. However we
2224 know this only ever happens in a synchronous SEGV handler, so in
2225 practice it seems to be ok. */
2226 mmap_lock();
2227
83fb7adf 2228 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2229 page_index = host_start >> TARGET_PAGE_BITS;
2230 p1 = page_find(page_index);
c8a706fe
PB
2231 if (!p1) {
2232 mmap_unlock();
9fa3e853 2233 return 0;
c8a706fe 2234 }
83fb7adf 2235 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2236 p = p1;
2237 prot = 0;
2238 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2239 prot |= p->flags;
2240 p++;
2241 }
2242 /* if the page was really writable, then we change its
2243 protection back to writable */
2244 if (prot & PAGE_WRITE_ORG) {
2245 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2246 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2247 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2248 (prot & PAGE_BITS) | PAGE_WRITE);
2249 p1[pindex].flags |= PAGE_WRITE;
2250 /* and since the content will be modified, we must invalidate
2251 the corresponding translated code. */
d720b93d 2252 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2253#ifdef DEBUG_TB_CHECK
2254 tb_invalidate_check(address);
2255#endif
c8a706fe 2256 mmap_unlock();
9fa3e853
FB
2257 return 1;
2258 }
2259 }
c8a706fe 2260 mmap_unlock();
9fa3e853
FB
2261 return 0;
2262}
2263
6a00d601
FB
2264static inline void tlb_set_dirty(CPUState *env,
2265 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2266{
2267}
9fa3e853
FB
2268#endif /* defined(CONFIG_USER_ONLY) */
2269
e2eef170 2270#if !defined(CONFIG_USER_ONLY)
8da3ff18 2271
c227f099
AL
2272static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2273 ram_addr_t memory, ram_addr_t region_offset);
2274static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2275 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2276#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2277 need_subpage) \
2278 do { \
2279 if (addr > start_addr) \
2280 start_addr2 = 0; \
2281 else { \
2282 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2283 if (start_addr2 > 0) \
2284 need_subpage = 1; \
2285 } \
2286 \
49e9fba2 2287 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2288 end_addr2 = TARGET_PAGE_SIZE - 1; \
2289 else { \
2290 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2291 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2292 need_subpage = 1; \
2293 } \
2294 } while (0)
2295
8f2498f9
MT
2296/* register physical memory.
2297 For RAM, 'size' must be a multiple of the target page size.
2298 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2299 io memory page. The address used when calling the IO function is
2300 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2301 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2302 before calculating this offset. This should not be a problem unless
2303 the low bits of start_addr and region_offset differ. */
c227f099
AL
2304void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2305 ram_addr_t size,
2306 ram_addr_t phys_offset,
2307 ram_addr_t region_offset)
33417e70 2308{
c227f099 2309 target_phys_addr_t addr, end_addr;
92e873b9 2310 PhysPageDesc *p;
9d42037b 2311 CPUState *env;
c227f099 2312 ram_addr_t orig_size = size;
db7b5426 2313 void *subpage;
33417e70 2314
7ba1e619
AL
2315 if (kvm_enabled())
2316 kvm_set_phys_mem(start_addr, size, phys_offset);
2317
67c4d23c
PB
2318 if (phys_offset == IO_MEM_UNASSIGNED) {
2319 region_offset = start_addr;
2320 }
8da3ff18 2321 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2322 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2323 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2324 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2325 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2326 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2327 ram_addr_t orig_memory = p->phys_offset;
2328 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2329 int need_subpage = 0;
2330
2331 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2332 need_subpage);
4254fab8 2333 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2334 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2335 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2336 &p->phys_offset, orig_memory,
2337 p->region_offset);
db7b5426
BS
2338 } else {
2339 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2340 >> IO_MEM_SHIFT];
2341 }
8da3ff18
PB
2342 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2343 region_offset);
2344 p->region_offset = 0;
db7b5426
BS
2345 } else {
2346 p->phys_offset = phys_offset;
2347 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2348 (phys_offset & IO_MEM_ROMD))
2349 phys_offset += TARGET_PAGE_SIZE;
2350 }
2351 } else {
2352 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2353 p->phys_offset = phys_offset;
8da3ff18 2354 p->region_offset = region_offset;
db7b5426 2355 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2356 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2357 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2358 } else {
c227f099 2359 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2360 int need_subpage = 0;
2361
2362 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2363 end_addr2, need_subpage);
2364
4254fab8 2365 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2366 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2367 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2368 addr & TARGET_PAGE_MASK);
db7b5426 2369 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2370 phys_offset, region_offset);
2371 p->region_offset = 0;
db7b5426
BS
2372 }
2373 }
2374 }
8da3ff18 2375 region_offset += TARGET_PAGE_SIZE;
33417e70 2376 }
3b46e624 2377
9d42037b
FB
2378 /* since each CPU stores ram addresses in its TLB cache, we must
2379 reset the modified entries */
2380 /* XXX: slow ! */
2381 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2382 tlb_flush(env, 1);
2383 }
33417e70
FB
2384}
2385
ba863458 2386/* XXX: temporary until new memory mapping API */
c227f099 2387ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2388{
2389 PhysPageDesc *p;
2390
2391 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2392 if (!p)
2393 return IO_MEM_UNASSIGNED;
2394 return p->phys_offset;
2395}
2396
c227f099 2397void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2398{
2399 if (kvm_enabled())
2400 kvm_coalesce_mmio_region(addr, size);
2401}
2402
c227f099 2403void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2404{
2405 if (kvm_enabled())
2406 kvm_uncoalesce_mmio_region(addr, size);
2407}
2408
c227f099 2409ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2410{
2411 RAMBlock *new_block;
2412
94a6b54f
PB
2413 size = TARGET_PAGE_ALIGN(size);
2414 new_block = qemu_malloc(sizeof(*new_block));
2415
6b02494d
AG
2416#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2417 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2418 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2419 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2420#else
94a6b54f 2421 new_block->host = qemu_vmalloc(size);
6b02494d 2422#endif
ccb167e9
IE
2423#ifdef MADV_MERGEABLE
2424 madvise(new_block->host, size, MADV_MERGEABLE);
2425#endif
94a6b54f
PB
2426 new_block->offset = last_ram_offset;
2427 new_block->length = size;
2428
2429 new_block->next = ram_blocks;
2430 ram_blocks = new_block;
2431
2432 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2433 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2434 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2435 0xff, size >> TARGET_PAGE_BITS);
2436
2437 last_ram_offset += size;
2438
6f0437e8
JK
2439 if (kvm_enabled())
2440 kvm_setup_guest_memory(new_block->host, size);
2441
94a6b54f
PB
2442 return new_block->offset;
2443}
e9a1ab19 2444
c227f099 2445void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2446{
94a6b54f 2447 /* TODO: implement this. */
e9a1ab19
FB
2448}
2449
dc828ca1 2450/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2451 With the exception of the softmmu code in this file, this should
2452 only be used for local memory (e.g. video ram) that the device owns,
2453 and knows it isn't going to access beyond the end of the block.
2454
2455 It should not be used for general purpose DMA.
2456 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2457 */
c227f099 2458void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2459{
94a6b54f
PB
2460 RAMBlock *prev;
2461 RAMBlock **prevp;
2462 RAMBlock *block;
2463
94a6b54f
PB
2464 prev = NULL;
2465 prevp = &ram_blocks;
2466 block = ram_blocks;
2467 while (block && (block->offset > addr
2468 || block->offset + block->length <= addr)) {
2469 if (prev)
2470 prevp = &prev->next;
2471 prev = block;
2472 block = block->next;
2473 }
2474 if (!block) {
2475 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2476 abort();
2477 }
2478 /* Move this entry to to start of the list. */
2479 if (prev) {
2480 prev->next = block->next;
2481 block->next = *prevp;
2482 *prevp = block;
2483 }
2484 return block->host + (addr - block->offset);
dc828ca1
PB
2485}
2486
5579c7f3
PB
2487/* Some of the softmmu routines need to translate from a host pointer
2488 (typically a TLB entry) back to a ram offset. */
c227f099 2489ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2490{
94a6b54f
PB
2491 RAMBlock *prev;
2492 RAMBlock **prevp;
2493 RAMBlock *block;
2494 uint8_t *host = ptr;
2495
94a6b54f
PB
2496 prev = NULL;
2497 prevp = &ram_blocks;
2498 block = ram_blocks;
2499 while (block && (block->host > host
2500 || block->host + block->length <= host)) {
2501 if (prev)
2502 prevp = &prev->next;
2503 prev = block;
2504 block = block->next;
2505 }
2506 if (!block) {
2507 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2508 abort();
2509 }
2510 return block->offset + (host - block->host);
5579c7f3
PB
2511}
2512
c227f099 2513static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2514{
67d3b957 2515#ifdef DEBUG_UNASSIGNED
ab3d1727 2516 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2517#endif
faed1c2a 2518#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2519 do_unassigned_access(addr, 0, 0, 0, 1);
2520#endif
2521 return 0;
2522}
2523
c227f099 2524static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2525{
2526#ifdef DEBUG_UNASSIGNED
2527 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2528#endif
faed1c2a 2529#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2530 do_unassigned_access(addr, 0, 0, 0, 2);
2531#endif
2532 return 0;
2533}
2534
c227f099 2535static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2536{
2537#ifdef DEBUG_UNASSIGNED
2538 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2539#endif
faed1c2a 2540#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2541 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2542#endif
33417e70
FB
2543 return 0;
2544}
2545
c227f099 2546static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2547{
67d3b957 2548#ifdef DEBUG_UNASSIGNED
ab3d1727 2549 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2550#endif
faed1c2a 2551#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2552 do_unassigned_access(addr, 1, 0, 0, 1);
2553#endif
2554}
2555
c227f099 2556static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2557{
2558#ifdef DEBUG_UNASSIGNED
2559 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2560#endif
faed1c2a 2561#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2562 do_unassigned_access(addr, 1, 0, 0, 2);
2563#endif
2564}
2565
c227f099 2566static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2567{
2568#ifdef DEBUG_UNASSIGNED
2569 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2570#endif
faed1c2a 2571#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2572 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2573#endif
33417e70
FB
2574}
2575
d60efc6b 2576static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2577 unassigned_mem_readb,
e18231a3
BS
2578 unassigned_mem_readw,
2579 unassigned_mem_readl,
33417e70
FB
2580};
2581
d60efc6b 2582static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2583 unassigned_mem_writeb,
e18231a3
BS
2584 unassigned_mem_writew,
2585 unassigned_mem_writel,
33417e70
FB
2586};
2587
c227f099 2588static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2589 uint32_t val)
9fa3e853 2590{
3a7d929e 2591 int dirty_flags;
3a7d929e
FB
2592 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2593 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2594#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2595 tb_invalidate_phys_page_fast(ram_addr, 1);
2596 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2597#endif
3a7d929e 2598 }
5579c7f3 2599 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2600 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2601 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2602 /* we remove the notdirty callback only if the code has been
2603 flushed */
2604 if (dirty_flags == 0xff)
2e70f6ef 2605 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2606}
2607
c227f099 2608static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2609 uint32_t val)
9fa3e853 2610{
3a7d929e 2611 int dirty_flags;
3a7d929e
FB
2612 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2613 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2614#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2615 tb_invalidate_phys_page_fast(ram_addr, 2);
2616 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2617#endif
3a7d929e 2618 }
5579c7f3 2619 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2620 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2621 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2622 /* we remove the notdirty callback only if the code has been
2623 flushed */
2624 if (dirty_flags == 0xff)
2e70f6ef 2625 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2626}
2627
c227f099 2628static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2629 uint32_t val)
9fa3e853 2630{
3a7d929e 2631 int dirty_flags;
3a7d929e
FB
2632 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2633 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2634#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2635 tb_invalidate_phys_page_fast(ram_addr, 4);
2636 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2637#endif
3a7d929e 2638 }
5579c7f3 2639 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2640 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2641 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2642 /* we remove the notdirty callback only if the code has been
2643 flushed */
2644 if (dirty_flags == 0xff)
2e70f6ef 2645 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2646}
2647
d60efc6b 2648static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2649 NULL, /* never used */
2650 NULL, /* never used */
2651 NULL, /* never used */
2652};
2653
d60efc6b 2654static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
2655 notdirty_mem_writeb,
2656 notdirty_mem_writew,
2657 notdirty_mem_writel,
2658};
2659
0f459d16 2660/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2661static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2662{
2663 CPUState *env = cpu_single_env;
06d55cc1
AL
2664 target_ulong pc, cs_base;
2665 TranslationBlock *tb;
0f459d16 2666 target_ulong vaddr;
a1d1bb31 2667 CPUWatchpoint *wp;
06d55cc1 2668 int cpu_flags;
0f459d16 2669
06d55cc1
AL
2670 if (env->watchpoint_hit) {
2671 /* We re-entered the check after replacing the TB. Now raise
2672 * the debug interrupt so that is will trigger after the
2673 * current instruction. */
2674 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2675 return;
2676 }
2e70f6ef 2677 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2678 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2679 if ((vaddr == (wp->vaddr & len_mask) ||
2680 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2681 wp->flags |= BP_WATCHPOINT_HIT;
2682 if (!env->watchpoint_hit) {
2683 env->watchpoint_hit = wp;
2684 tb = tb_find_pc(env->mem_io_pc);
2685 if (!tb) {
2686 cpu_abort(env, "check_watchpoint: could not find TB for "
2687 "pc=%p", (void *)env->mem_io_pc);
2688 }
2689 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2690 tb_phys_invalidate(tb, -1);
2691 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2692 env->exception_index = EXCP_DEBUG;
2693 } else {
2694 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2695 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2696 }
2697 cpu_resume_from_signal(env, NULL);
06d55cc1 2698 }
6e140f28
AL
2699 } else {
2700 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2701 }
2702 }
2703}
2704
6658ffb8
PB
2705/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2706 so these check for a hit then pass through to the normal out-of-line
2707 phys routines. */
c227f099 2708static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 2709{
b4051334 2710 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2711 return ldub_phys(addr);
2712}
2713
c227f099 2714static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 2715{
b4051334 2716 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2717 return lduw_phys(addr);
2718}
2719
c227f099 2720static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 2721{
b4051334 2722 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2723 return ldl_phys(addr);
2724}
2725
c227f099 2726static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2727 uint32_t val)
2728{
b4051334 2729 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2730 stb_phys(addr, val);
2731}
2732
c227f099 2733static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2734 uint32_t val)
2735{
b4051334 2736 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2737 stw_phys(addr, val);
2738}
2739
c227f099 2740static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2741 uint32_t val)
2742{
b4051334 2743 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2744 stl_phys(addr, val);
2745}
2746
d60efc6b 2747static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
2748 watch_mem_readb,
2749 watch_mem_readw,
2750 watch_mem_readl,
2751};
2752
d60efc6b 2753static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
2754 watch_mem_writeb,
2755 watch_mem_writew,
2756 watch_mem_writel,
2757};
6658ffb8 2758
c227f099 2759static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2760 unsigned int len)
2761{
db7b5426
BS
2762 uint32_t ret;
2763 unsigned int idx;
2764
8da3ff18 2765 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2766#if defined(DEBUG_SUBPAGE)
2767 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2768 mmio, len, addr, idx);
2769#endif
8da3ff18
PB
2770 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2771 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2772
2773 return ret;
2774}
2775
c227f099 2776static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2777 uint32_t value, unsigned int len)
2778{
db7b5426
BS
2779 unsigned int idx;
2780
8da3ff18 2781 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2782#if defined(DEBUG_SUBPAGE)
2783 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2784 mmio, len, addr, idx, value);
2785#endif
8da3ff18
PB
2786 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2787 addr + mmio->region_offset[idx][1][len],
2788 value);
db7b5426
BS
2789}
2790
c227f099 2791static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2792{
2793#if defined(DEBUG_SUBPAGE)
2794 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2795#endif
2796
2797 return subpage_readlen(opaque, addr, 0);
2798}
2799
c227f099 2800static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2801 uint32_t value)
2802{
2803#if defined(DEBUG_SUBPAGE)
2804 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2805#endif
2806 subpage_writelen(opaque, addr, value, 0);
2807}
2808
c227f099 2809static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2810{
2811#if defined(DEBUG_SUBPAGE)
2812 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2813#endif
2814
2815 return subpage_readlen(opaque, addr, 1);
2816}
2817
c227f099 2818static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2819 uint32_t value)
2820{
2821#if defined(DEBUG_SUBPAGE)
2822 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2823#endif
2824 subpage_writelen(opaque, addr, value, 1);
2825}
2826
c227f099 2827static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2828{
2829#if defined(DEBUG_SUBPAGE)
2830 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2831#endif
2832
2833 return subpage_readlen(opaque, addr, 2);
2834}
2835
2836static void subpage_writel (void *opaque,
c227f099 2837 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
2838{
2839#if defined(DEBUG_SUBPAGE)
2840 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2841#endif
2842 subpage_writelen(opaque, addr, value, 2);
2843}
2844
d60efc6b 2845static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
2846 &subpage_readb,
2847 &subpage_readw,
2848 &subpage_readl,
2849};
2850
d60efc6b 2851static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
2852 &subpage_writeb,
2853 &subpage_writew,
2854 &subpage_writel,
2855};
2856
c227f099
AL
2857static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2858 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2859{
2860 int idx, eidx;
4254fab8 2861 unsigned int i;
db7b5426
BS
2862
2863 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2864 return -1;
2865 idx = SUBPAGE_IDX(start);
2866 eidx = SUBPAGE_IDX(end);
2867#if defined(DEBUG_SUBPAGE)
0bf9e31a 2868 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2869 mmio, start, end, idx, eidx, memory);
2870#endif
2871 memory >>= IO_MEM_SHIFT;
2872 for (; idx <= eidx; idx++) {
4254fab8 2873 for (i = 0; i < 4; i++) {
3ee89922
BS
2874 if (io_mem_read[memory][i]) {
2875 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2876 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2877 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2878 }
2879 if (io_mem_write[memory][i]) {
2880 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2881 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2882 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2883 }
4254fab8 2884 }
db7b5426
BS
2885 }
2886
2887 return 0;
2888}
2889
c227f099
AL
2890static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2891 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 2892{
c227f099 2893 subpage_t *mmio;
db7b5426
BS
2894 int subpage_memory;
2895
c227f099 2896 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
2897
2898 mmio->base = base;
1eed09cb 2899 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 2900#if defined(DEBUG_SUBPAGE)
1eec614b
AL
2901 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2902 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 2903#endif
1eec614b
AL
2904 *phys = subpage_memory | IO_MEM_SUBPAGE;
2905 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 2906 region_offset);
db7b5426
BS
2907
2908 return mmio;
2909}
2910
88715657
AL
2911static int get_free_io_mem_idx(void)
2912{
2913 int i;
2914
2915 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2916 if (!io_mem_used[i]) {
2917 io_mem_used[i] = 1;
2918 return i;
2919 }
c6703b47 2920 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
2921 return -1;
2922}
2923
33417e70
FB
2924/* mem_read and mem_write are arrays of functions containing the
2925 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 2926 2). Functions can be omitted with a NULL function pointer.
3ee89922 2927 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2928 modified. If it is zero, a new io zone is allocated. The return
2929 value can be used with cpu_register_physical_memory(). (-1) is
2930 returned if error. */
1eed09cb 2931static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
2932 CPUReadMemoryFunc * const *mem_read,
2933 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 2934 void *opaque)
33417e70 2935{
4254fab8 2936 int i, subwidth = 0;
33417e70
FB
2937
2938 if (io_index <= 0) {
88715657
AL
2939 io_index = get_free_io_mem_idx();
2940 if (io_index == -1)
2941 return io_index;
33417e70 2942 } else {
1eed09cb 2943 io_index >>= IO_MEM_SHIFT;
33417e70
FB
2944 if (io_index >= IO_MEM_NB_ENTRIES)
2945 return -1;
2946 }
b5ff1b31 2947
33417e70 2948 for(i = 0;i < 3; i++) {
4254fab8
BS
2949 if (!mem_read[i] || !mem_write[i])
2950 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2951 io_mem_read[io_index][i] = mem_read[i];
2952 io_mem_write[io_index][i] = mem_write[i];
2953 }
a4193c8a 2954 io_mem_opaque[io_index] = opaque;
4254fab8 2955 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2956}
61382a50 2957
d60efc6b
BS
2958int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
2959 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
2960 void *opaque)
2961{
2962 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
2963}
2964
88715657
AL
2965void cpu_unregister_io_memory(int io_table_address)
2966{
2967 int i;
2968 int io_index = io_table_address >> IO_MEM_SHIFT;
2969
2970 for (i=0;i < 3; i++) {
2971 io_mem_read[io_index][i] = unassigned_mem_read[i];
2972 io_mem_write[io_index][i] = unassigned_mem_write[i];
2973 }
2974 io_mem_opaque[io_index] = NULL;
2975 io_mem_used[io_index] = 0;
2976}
2977
e9179ce1
AK
2978static void io_mem_init(void)
2979{
2980 int i;
2981
2982 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
2983 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
2984 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
2985 for (i=0; i<5; i++)
2986 io_mem_used[i] = 1;
2987
2988 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2989 watch_mem_write, NULL);
e9179ce1
AK
2990}
2991
e2eef170
PB
2992#endif /* !defined(CONFIG_USER_ONLY) */
2993
13eb76e0
FB
2994/* physical memory access (slow version, mainly for debug) */
2995#if defined(CONFIG_USER_ONLY)
c227f099 2996void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2997 int len, int is_write)
2998{
2999 int l, flags;
3000 target_ulong page;
53a5960a 3001 void * p;
13eb76e0
FB
3002
3003 while (len > 0) {
3004 page = addr & TARGET_PAGE_MASK;
3005 l = (page + TARGET_PAGE_SIZE) - addr;
3006 if (l > len)
3007 l = len;
3008 flags = page_get_flags(page);
3009 if (!(flags & PAGE_VALID))
3010 return;
3011 if (is_write) {
3012 if (!(flags & PAGE_WRITE))
3013 return;
579a97f7 3014 /* XXX: this code should not depend on lock_user */
72fb7daa 3015 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3016 /* FIXME - should this return an error rather than just fail? */
3017 return;
72fb7daa
AJ
3018 memcpy(p, buf, l);
3019 unlock_user(p, addr, l);
13eb76e0
FB
3020 } else {
3021 if (!(flags & PAGE_READ))
3022 return;
579a97f7 3023 /* XXX: this code should not depend on lock_user */
72fb7daa 3024 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3025 /* FIXME - should this return an error rather than just fail? */
3026 return;
72fb7daa 3027 memcpy(buf, p, l);
5b257578 3028 unlock_user(p, addr, 0);
13eb76e0
FB
3029 }
3030 len -= l;
3031 buf += l;
3032 addr += l;
3033 }
3034}
8df1cd07 3035
13eb76e0 3036#else
c227f099 3037void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3038 int len, int is_write)
3039{
3040 int l, io_index;
3041 uint8_t *ptr;
3042 uint32_t val;
c227f099 3043 target_phys_addr_t page;
2e12669a 3044 unsigned long pd;
92e873b9 3045 PhysPageDesc *p;
3b46e624 3046
13eb76e0
FB
3047 while (len > 0) {
3048 page = addr & TARGET_PAGE_MASK;
3049 l = (page + TARGET_PAGE_SIZE) - addr;
3050 if (l > len)
3051 l = len;
92e873b9 3052 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3053 if (!p) {
3054 pd = IO_MEM_UNASSIGNED;
3055 } else {
3056 pd = p->phys_offset;
3057 }
3b46e624 3058
13eb76e0 3059 if (is_write) {
3a7d929e 3060 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3061 target_phys_addr_t addr1 = addr;
13eb76e0 3062 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3063 if (p)
6c2934db 3064 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3065 /* XXX: could force cpu_single_env to NULL to avoid
3066 potential bugs */
6c2934db 3067 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3068 /* 32 bit write access */
c27004ec 3069 val = ldl_p(buf);
6c2934db 3070 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3071 l = 4;
6c2934db 3072 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3073 /* 16 bit write access */
c27004ec 3074 val = lduw_p(buf);
6c2934db 3075 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3076 l = 2;
3077 } else {
1c213d19 3078 /* 8 bit write access */
c27004ec 3079 val = ldub_p(buf);
6c2934db 3080 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3081 l = 1;
3082 }
3083 } else {
b448f2f3
FB
3084 unsigned long addr1;
3085 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3086 /* RAM case */
5579c7f3 3087 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3088 memcpy(ptr, buf, l);
3a7d929e
FB
3089 if (!cpu_physical_memory_is_dirty(addr1)) {
3090 /* invalidate code */
3091 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3092 /* set dirty bit */
5fafdf24 3093 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3094 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3095 }
13eb76e0
FB
3096 }
3097 } else {
5fafdf24 3098 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3099 !(pd & IO_MEM_ROMD)) {
c227f099 3100 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3101 /* I/O case */
3102 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3103 if (p)
6c2934db
AJ
3104 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3105 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3106 /* 32 bit read access */
6c2934db 3107 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3108 stl_p(buf, val);
13eb76e0 3109 l = 4;
6c2934db 3110 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3111 /* 16 bit read access */
6c2934db 3112 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3113 stw_p(buf, val);
13eb76e0
FB
3114 l = 2;
3115 } else {
1c213d19 3116 /* 8 bit read access */
6c2934db 3117 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3118 stb_p(buf, val);
13eb76e0
FB
3119 l = 1;
3120 }
3121 } else {
3122 /* RAM case */
5579c7f3 3123 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3124 (addr & ~TARGET_PAGE_MASK);
3125 memcpy(buf, ptr, l);
3126 }
3127 }
3128 len -= l;
3129 buf += l;
3130 addr += l;
3131 }
3132}
8df1cd07 3133
d0ecd2aa 3134/* used for ROM loading : can write in RAM and ROM */
c227f099 3135void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3136 const uint8_t *buf, int len)
3137{
3138 int l;
3139 uint8_t *ptr;
c227f099 3140 target_phys_addr_t page;
d0ecd2aa
FB
3141 unsigned long pd;
3142 PhysPageDesc *p;
3b46e624 3143
d0ecd2aa
FB
3144 while (len > 0) {
3145 page = addr & TARGET_PAGE_MASK;
3146 l = (page + TARGET_PAGE_SIZE) - addr;
3147 if (l > len)
3148 l = len;
3149 p = phys_page_find(page >> TARGET_PAGE_BITS);
3150 if (!p) {
3151 pd = IO_MEM_UNASSIGNED;
3152 } else {
3153 pd = p->phys_offset;
3154 }
3b46e624 3155
d0ecd2aa 3156 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3157 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3158 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3159 /* do nothing */
3160 } else {
3161 unsigned long addr1;
3162 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3163 /* ROM/RAM case */
5579c7f3 3164 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3165 memcpy(ptr, buf, l);
3166 }
3167 len -= l;
3168 buf += l;
3169 addr += l;
3170 }
3171}
3172
6d16c2f8
AL
3173typedef struct {
3174 void *buffer;
c227f099
AL
3175 target_phys_addr_t addr;
3176 target_phys_addr_t len;
6d16c2f8
AL
3177} BounceBuffer;
3178
3179static BounceBuffer bounce;
3180
ba223c29
AL
3181typedef struct MapClient {
3182 void *opaque;
3183 void (*callback)(void *opaque);
72cf2d4f 3184 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3185} MapClient;
3186
72cf2d4f
BS
3187static QLIST_HEAD(map_client_list, MapClient) map_client_list
3188 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3189
3190void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3191{
3192 MapClient *client = qemu_malloc(sizeof(*client));
3193
3194 client->opaque = opaque;
3195 client->callback = callback;
72cf2d4f 3196 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3197 return client;
3198}
3199
3200void cpu_unregister_map_client(void *_client)
3201{
3202 MapClient *client = (MapClient *)_client;
3203
72cf2d4f 3204 QLIST_REMOVE(client, link);
34d5e948 3205 qemu_free(client);
ba223c29
AL
3206}
3207
3208static void cpu_notify_map_clients(void)
3209{
3210 MapClient *client;
3211
72cf2d4f
BS
3212 while (!QLIST_EMPTY(&map_client_list)) {
3213 client = QLIST_FIRST(&map_client_list);
ba223c29 3214 client->callback(client->opaque);
34d5e948 3215 cpu_unregister_map_client(client);
ba223c29
AL
3216 }
3217}
3218
6d16c2f8
AL
3219/* Map a physical memory region into a host virtual address.
3220 * May map a subset of the requested range, given by and returned in *plen.
3221 * May return NULL if resources needed to perform the mapping are exhausted.
3222 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3223 * Use cpu_register_map_client() to know when retrying the map operation is
3224 * likely to succeed.
6d16c2f8 3225 */
c227f099
AL
3226void *cpu_physical_memory_map(target_phys_addr_t addr,
3227 target_phys_addr_t *plen,
6d16c2f8
AL
3228 int is_write)
3229{
c227f099
AL
3230 target_phys_addr_t len = *plen;
3231 target_phys_addr_t done = 0;
6d16c2f8
AL
3232 int l;
3233 uint8_t *ret = NULL;
3234 uint8_t *ptr;
c227f099 3235 target_phys_addr_t page;
6d16c2f8
AL
3236 unsigned long pd;
3237 PhysPageDesc *p;
3238 unsigned long addr1;
3239
3240 while (len > 0) {
3241 page = addr & TARGET_PAGE_MASK;
3242 l = (page + TARGET_PAGE_SIZE) - addr;
3243 if (l > len)
3244 l = len;
3245 p = phys_page_find(page >> TARGET_PAGE_BITS);
3246 if (!p) {
3247 pd = IO_MEM_UNASSIGNED;
3248 } else {
3249 pd = p->phys_offset;
3250 }
3251
3252 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3253 if (done || bounce.buffer) {
3254 break;
3255 }
3256 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3257 bounce.addr = addr;
3258 bounce.len = l;
3259 if (!is_write) {
3260 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3261 }
3262 ptr = bounce.buffer;
3263 } else {
3264 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3265 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3266 }
3267 if (!done) {
3268 ret = ptr;
3269 } else if (ret + done != ptr) {
3270 break;
3271 }
3272
3273 len -= l;
3274 addr += l;
3275 done += l;
3276 }
3277 *plen = done;
3278 return ret;
3279}
3280
3281/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3282 * Will also mark the memory as dirty if is_write == 1. access_len gives
3283 * the amount of memory that was actually read or written by the caller.
3284 */
c227f099
AL
3285void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3286 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3287{
3288 if (buffer != bounce.buffer) {
3289 if (is_write) {
c227f099 3290 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3291 while (access_len) {
3292 unsigned l;
3293 l = TARGET_PAGE_SIZE;
3294 if (l > access_len)
3295 l = access_len;
3296 if (!cpu_physical_memory_is_dirty(addr1)) {
3297 /* invalidate code */
3298 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3299 /* set dirty bit */
3300 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3301 (0xff & ~CODE_DIRTY_FLAG);
3302 }
3303 addr1 += l;
3304 access_len -= l;
3305 }
3306 }
3307 return;
3308 }
3309 if (is_write) {
3310 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3311 }
3312 qemu_free(bounce.buffer);
3313 bounce.buffer = NULL;
ba223c29 3314 cpu_notify_map_clients();
6d16c2f8 3315}
d0ecd2aa 3316
8df1cd07 3317/* warning: addr must be aligned */
c227f099 3318uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3319{
3320 int io_index;
3321 uint8_t *ptr;
3322 uint32_t val;
3323 unsigned long pd;
3324 PhysPageDesc *p;
3325
3326 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3327 if (!p) {
3328 pd = IO_MEM_UNASSIGNED;
3329 } else {
3330 pd = p->phys_offset;
3331 }
3b46e624 3332
5fafdf24 3333 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3334 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3335 /* I/O case */
3336 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3337 if (p)
3338 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3339 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3340 } else {
3341 /* RAM case */
5579c7f3 3342 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3343 (addr & ~TARGET_PAGE_MASK);
3344 val = ldl_p(ptr);
3345 }
3346 return val;
3347}
3348
84b7b8e7 3349/* warning: addr must be aligned */
c227f099 3350uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3351{
3352 int io_index;
3353 uint8_t *ptr;
3354 uint64_t val;
3355 unsigned long pd;
3356 PhysPageDesc *p;
3357
3358 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3359 if (!p) {
3360 pd = IO_MEM_UNASSIGNED;
3361 } else {
3362 pd = p->phys_offset;
3363 }
3b46e624 3364
2a4188a3
FB
3365 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3366 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3367 /* I/O case */
3368 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3369 if (p)
3370 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3371#ifdef TARGET_WORDS_BIGENDIAN
3372 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3373 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3374#else
3375 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3376 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3377#endif
3378 } else {
3379 /* RAM case */
5579c7f3 3380 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3381 (addr & ~TARGET_PAGE_MASK);
3382 val = ldq_p(ptr);
3383 }
3384 return val;
3385}
3386
aab33094 3387/* XXX: optimize */
c227f099 3388uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3389{
3390 uint8_t val;
3391 cpu_physical_memory_read(addr, &val, 1);
3392 return val;
3393}
3394
3395/* XXX: optimize */
c227f099 3396uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3397{
3398 uint16_t val;
3399 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3400 return tswap16(val);
3401}
3402
8df1cd07
FB
3403/* warning: addr must be aligned. The ram page is not masked as dirty
3404 and the code inside is not invalidated. It is useful if the dirty
3405 bits are used to track modified PTEs */
c227f099 3406void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3407{
3408 int io_index;
3409 uint8_t *ptr;
3410 unsigned long pd;
3411 PhysPageDesc *p;
3412
3413 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3414 if (!p) {
3415 pd = IO_MEM_UNASSIGNED;
3416 } else {
3417 pd = p->phys_offset;
3418 }
3b46e624 3419
3a7d929e 3420 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3421 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3422 if (p)
3423 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3424 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3425 } else {
74576198 3426 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3427 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3428 stl_p(ptr, val);
74576198
AL
3429
3430 if (unlikely(in_migration)) {
3431 if (!cpu_physical_memory_is_dirty(addr1)) {
3432 /* invalidate code */
3433 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3434 /* set dirty bit */
3435 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3436 (0xff & ~CODE_DIRTY_FLAG);
3437 }
3438 }
8df1cd07
FB
3439 }
3440}
3441
c227f099 3442void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3443{
3444 int io_index;
3445 uint8_t *ptr;
3446 unsigned long pd;
3447 PhysPageDesc *p;
3448
3449 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3450 if (!p) {
3451 pd = IO_MEM_UNASSIGNED;
3452 } else {
3453 pd = p->phys_offset;
3454 }
3b46e624 3455
bc98a7ef
JM
3456 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3457 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3458 if (p)
3459 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3460#ifdef TARGET_WORDS_BIGENDIAN
3461 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3462 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3463#else
3464 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3465 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3466#endif
3467 } else {
5579c7f3 3468 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3469 (addr & ~TARGET_PAGE_MASK);
3470 stq_p(ptr, val);
3471 }
3472}
3473
8df1cd07 3474/* warning: addr must be aligned */
c227f099 3475void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3476{
3477 int io_index;
3478 uint8_t *ptr;
3479 unsigned long pd;
3480 PhysPageDesc *p;
3481
3482 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3483 if (!p) {
3484 pd = IO_MEM_UNASSIGNED;
3485 } else {
3486 pd = p->phys_offset;
3487 }
3b46e624 3488
3a7d929e 3489 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3490 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3491 if (p)
3492 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3493 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3494 } else {
3495 unsigned long addr1;
3496 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3497 /* RAM case */
5579c7f3 3498 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3499 stl_p(ptr, val);
3a7d929e
FB
3500 if (!cpu_physical_memory_is_dirty(addr1)) {
3501 /* invalidate code */
3502 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3503 /* set dirty bit */
f23db169
FB
3504 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3505 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3506 }
8df1cd07
FB
3507 }
3508}
3509
aab33094 3510/* XXX: optimize */
c227f099 3511void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3512{
3513 uint8_t v = val;
3514 cpu_physical_memory_write(addr, &v, 1);
3515}
3516
3517/* XXX: optimize */
c227f099 3518void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3519{
3520 uint16_t v = tswap16(val);
3521 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3522}
3523
3524/* XXX: optimize */
c227f099 3525void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3526{
3527 val = tswap64(val);
3528 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3529}
3530
13eb76e0
FB
3531#endif
3532
5e2972fd 3533/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3534int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3535 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3536{
3537 int l;
c227f099 3538 target_phys_addr_t phys_addr;
9b3c35e0 3539 target_ulong page;
13eb76e0
FB
3540
3541 while (len > 0) {
3542 page = addr & TARGET_PAGE_MASK;
3543 phys_addr = cpu_get_phys_page_debug(env, page);
3544 /* if no physical page mapped, return an error */
3545 if (phys_addr == -1)
3546 return -1;
3547 l = (page + TARGET_PAGE_SIZE) - addr;
3548 if (l > len)
3549 l = len;
5e2972fd
AL
3550 phys_addr += (addr & ~TARGET_PAGE_MASK);
3551#if !defined(CONFIG_USER_ONLY)
3552 if (is_write)
3553 cpu_physical_memory_write_rom(phys_addr, buf, l);
3554 else
3555#endif
3556 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3557 len -= l;
3558 buf += l;
3559 addr += l;
3560 }
3561 return 0;
3562}
3563
2e70f6ef
PB
3564/* in deterministic execution mode, instructions doing device I/Os
3565 must be at the end of the TB */
3566void cpu_io_recompile(CPUState *env, void *retaddr)
3567{
3568 TranslationBlock *tb;
3569 uint32_t n, cflags;
3570 target_ulong pc, cs_base;
3571 uint64_t flags;
3572
3573 tb = tb_find_pc((unsigned long)retaddr);
3574 if (!tb) {
3575 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3576 retaddr);
3577 }
3578 n = env->icount_decr.u16.low + tb->icount;
3579 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3580 /* Calculate how many instructions had been executed before the fault
bf20dc07 3581 occurred. */
2e70f6ef
PB
3582 n = n - env->icount_decr.u16.low;
3583 /* Generate a new TB ending on the I/O insn. */
3584 n++;
3585 /* On MIPS and SH, delay slot instructions can only be restarted if
3586 they were already the first instruction in the TB. If this is not
bf20dc07 3587 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3588 branch. */
3589#if defined(TARGET_MIPS)
3590 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3591 env->active_tc.PC -= 4;
3592 env->icount_decr.u16.low++;
3593 env->hflags &= ~MIPS_HFLAG_BMASK;
3594 }
3595#elif defined(TARGET_SH4)
3596 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3597 && n > 1) {
3598 env->pc -= 2;
3599 env->icount_decr.u16.low++;
3600 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3601 }
3602#endif
3603 /* This should never happen. */
3604 if (n > CF_COUNT_MASK)
3605 cpu_abort(env, "TB too big during recompile");
3606
3607 cflags = n | CF_LAST_IO;
3608 pc = tb->pc;
3609 cs_base = tb->cs_base;
3610 flags = tb->flags;
3611 tb_phys_invalidate(tb, -1);
3612 /* FIXME: In theory this could raise an exception. In practice
3613 we have already translated the block once so it's probably ok. */
3614 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3615 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3616 the first in the TB) then we end up generating a whole new TB and
3617 repeating the fault, which is horribly inefficient.
3618 Better would be to execute just this insn uncached, or generate a
3619 second new TB. */
3620 cpu_resume_from_signal(env, NULL);
3621}
3622
e3db7226
FB
3623void dump_exec_info(FILE *f,
3624 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3625{
3626 int i, target_code_size, max_target_code_size;
3627 int direct_jmp_count, direct_jmp2_count, cross_page;
3628 TranslationBlock *tb;
3b46e624 3629
e3db7226
FB
3630 target_code_size = 0;
3631 max_target_code_size = 0;
3632 cross_page = 0;
3633 direct_jmp_count = 0;
3634 direct_jmp2_count = 0;
3635 for(i = 0; i < nb_tbs; i++) {
3636 tb = &tbs[i];
3637 target_code_size += tb->size;
3638 if (tb->size > max_target_code_size)
3639 max_target_code_size = tb->size;
3640 if (tb->page_addr[1] != -1)
3641 cross_page++;
3642 if (tb->tb_next_offset[0] != 0xffff) {
3643 direct_jmp_count++;
3644 if (tb->tb_next_offset[1] != 0xffff) {
3645 direct_jmp2_count++;
3646 }
3647 }
3648 }
3649 /* XXX: avoid using doubles ? */
57fec1fe 3650 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3651 cpu_fprintf(f, "gen code size %ld/%ld\n",
3652 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3653 cpu_fprintf(f, "TB count %d/%d\n",
3654 nb_tbs, code_gen_max_blocks);
5fafdf24 3655 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3656 nb_tbs ? target_code_size / nb_tbs : 0,
3657 max_target_code_size);
5fafdf24 3658 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3659 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3660 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3661 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3662 cross_page,
e3db7226
FB
3663 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3664 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3665 direct_jmp_count,
e3db7226
FB
3666 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3667 direct_jmp2_count,
3668 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3669 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3670 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3671 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3672 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3673 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3674}
3675
5fafdf24 3676#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3677
3678#define MMUSUFFIX _cmmu
3679#define GETPC() NULL
3680#define env cpu_single_env
b769d8fe 3681#define SOFTMMU_CODE_ACCESS
61382a50
FB
3682
3683#define SHIFT 0
3684#include "softmmu_template.h"
3685
3686#define SHIFT 1
3687#include "softmmu_template.h"
3688
3689#define SHIFT 2
3690#include "softmmu_template.h"
3691
3692#define SHIFT 3
3693#include "softmmu_template.h"
3694
3695#undef env
3696
3697#endif