]> git.proxmox.com Git - qemu.git/blame - fpu/softfloat-specialize.h
hw/i386/Makefile.obj: use $(PYTHON) to run .py scripts consistently
[qemu.git] / fpu / softfloat-specialize.h
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
158142c2
FB
6
7/*============================================================================
8
9This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
10Arithmetic Package, Release 2b.
11
12Written by John R. Hauser. This work was made possible in part by the
13International Computer Science Institute, located at Suite 600, 1947 Center
14Street, Berkeley, California 94704. Funding was partially provided by the
15National Science Foundation under grant MIP-9311980. The original version
16of this code was written as part of a project to build a fixed-point vector
17processor in collaboration with the University of California at Berkeley,
18overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20arithmetic/SoftFloat.html'.
21
22THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31Derivative works are acceptable, even for commercial purposes, so long as
32(1) the source code for the derivative work includes prominent notice that
33the work is derivative, and (2) the source code includes prominent notice with
34these four paragraphs for those parts of this code that are retained.
35
36=============================================================================*/
37
789ec7ce
PB
38#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
39#define SNAN_BIT_IS_ONE 1
40#else
41#define SNAN_BIT_IS_ONE 0
42#endif
43
213ff4e6
MF
44#if defined(TARGET_XTENSA)
45/* Define for architectures which deviate from IEEE in not supporting
46 * signaling NaNs (so all NaNs are treated as quiet).
47 */
48#define NO_SIGNALING_NANS 1
49#endif
50
789ec7ce
PB
51/*----------------------------------------------------------------------------
52| The pattern for a default generated half-precision NaN.
53*----------------------------------------------------------------------------*/
54#if defined(TARGET_ARM)
55const float16 float16_default_nan = const_float16(0x7E00);
56#elif SNAN_BIT_IS_ONE
57const float16 float16_default_nan = const_float16(0x7DFF);
58#else
59const float16 float16_default_nan = const_float16(0xFE00);
60#endif
61
62/*----------------------------------------------------------------------------
63| The pattern for a default generated single-precision NaN.
64*----------------------------------------------------------------------------*/
65#if defined(TARGET_SPARC)
66const float32 float32_default_nan = const_float32(0x7FFFFFFF);
b81fe822
MF
67#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
68 defined(TARGET_XTENSA)
789ec7ce
PB
69const float32 float32_default_nan = const_float32(0x7FC00000);
70#elif SNAN_BIT_IS_ONE
71const float32 float32_default_nan = const_float32(0x7FBFFFFF);
72#else
73const float32 float32_default_nan = const_float32(0xFFC00000);
74#endif
75
76/*----------------------------------------------------------------------------
77| The pattern for a default generated double-precision NaN.
78*----------------------------------------------------------------------------*/
79#if defined(TARGET_SPARC)
80const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF ));
81#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
82const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 ));
83#elif SNAN_BIT_IS_ONE
84const float64 float64_default_nan = const_float64(LIT64( 0x7FF7FFFFFFFFFFFF ));
85#else
86const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 ));
87#endif
88
89/*----------------------------------------------------------------------------
90| The pattern for a default generated extended double-precision NaN.
91*----------------------------------------------------------------------------*/
92#if SNAN_BIT_IS_ONE
93#define floatx80_default_nan_high 0x7FFF
94#define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
95#else
96#define floatx80_default_nan_high 0xFFFF
97#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
98#endif
99
3bf7e40a
AK
100const floatx80 floatx80_default_nan
101 = make_floatx80_init(floatx80_default_nan_high, floatx80_default_nan_low);
789ec7ce
PB
102
103/*----------------------------------------------------------------------------
104| The pattern for a default generated quadruple-precision NaN. The `high' and
105| `low' values hold the most- and least-significant bits, respectively.
106*----------------------------------------------------------------------------*/
107#if SNAN_BIT_IS_ONE
108#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
109#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
110#else
111#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
112#define float128_default_nan_low LIT64( 0x0000000000000000 )
113#endif
114
3bf7e40a
AK
115const float128 float128_default_nan
116 = make_float128_init(float128_default_nan_high, float128_default_nan_low);
789ec7ce 117
158142c2
FB
118/*----------------------------------------------------------------------------
119| Raises the exceptions specified by `flags'. Floating-point traps can be
120| defined here if desired. It is currently not possible for such a trap
121| to substitute a result value. If traps are not implemented, this routine
122| should be simply `float_exception_flags |= flags;'.
123*----------------------------------------------------------------------------*/
124
125void float_raise( int8 flags STATUS_PARAM )
126{
158142c2 127 STATUS(float_exception_flags) |= flags;
158142c2
FB
128}
129
130/*----------------------------------------------------------------------------
131| Internal canonical NaN format.
132*----------------------------------------------------------------------------*/
133typedef struct {
134 flag sign;
bb98fe42 135 uint64_t high, low;
158142c2
FB
136} commonNaNT;
137
213ff4e6
MF
138#ifdef NO_SIGNALING_NANS
139int float16_is_quiet_nan(float16 a_)
140{
141 return float16_is_any_nan(a_);
142}
143
144int float16_is_signaling_nan(float16 a_)
145{
146 return 0;
147}
148#else
bb4d4bb3
PM
149/*----------------------------------------------------------------------------
150| Returns 1 if the half-precision floating-point value `a' is a quiet
151| NaN; otherwise returns 0.
152*----------------------------------------------------------------------------*/
153
154int float16_is_quiet_nan(float16 a_)
155{
156 uint16_t a = float16_val(a_);
157#if SNAN_BIT_IS_ONE
158 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
159#else
160 return ((a & ~0x8000) >= 0x7c80);
161#endif
162}
163
164/*----------------------------------------------------------------------------
165| Returns 1 if the half-precision floating-point value `a' is a signaling
166| NaN; otherwise returns 0.
167*----------------------------------------------------------------------------*/
168
169int float16_is_signaling_nan(float16 a_)
170{
171 uint16_t a = float16_val(a_);
172#if SNAN_BIT_IS_ONE
173 return ((a & ~0x8000) >= 0x7c80);
174#else
175 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
176#endif
177}
213ff4e6 178#endif
bb4d4bb3
PM
179
180/*----------------------------------------------------------------------------
181| Returns a quiet NaN if the half-precision floating point value `a' is a
182| signaling NaN; otherwise returns `a'.
183*----------------------------------------------------------------------------*/
184float16 float16_maybe_silence_nan(float16 a_)
185{
186 if (float16_is_signaling_nan(a_)) {
187#if SNAN_BIT_IS_ONE
d2fbca94 188# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
bb4d4bb3
PM
189 return float16_default_nan;
190# else
191# error Rules for silencing a signaling NaN are target-specific
192# endif
193#else
194 uint16_t a = float16_val(a_);
195 a |= (1 << 9);
196 return make_float16(a);
197#endif
198 }
199 return a_;
200}
201
f591e1be
PM
202/*----------------------------------------------------------------------------
203| Returns the result of converting the half-precision floating-point NaN
204| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
205| exception is raised.
206*----------------------------------------------------------------------------*/
207
208static commonNaNT float16ToCommonNaN( float16 a STATUS_PARAM )
209{
210 commonNaNT z;
211
212 if ( float16_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
213 z.sign = float16_val(a) >> 15;
214 z.low = 0;
bb98fe42 215 z.high = ((uint64_t) float16_val(a))<<54;
f591e1be
PM
216 return z;
217}
218
600e30d2
PM
219/*----------------------------------------------------------------------------
220| Returns the result of converting the canonical NaN `a' to the half-
221| precision floating-point format.
222*----------------------------------------------------------------------------*/
223
224static float16 commonNaNToFloat16(commonNaNT a STATUS_PARAM)
225{
226 uint16_t mantissa = a.high>>54;
227
228 if (STATUS(default_nan_mode)) {
229 return float16_default_nan;
230 }
231
232 if (mantissa) {
233 return make_float16(((((uint16_t) a.sign) << 15)
234 | (0x1F << 10) | mantissa));
235 } else {
236 return float16_default_nan;
237 }
238}
239
213ff4e6
MF
240#ifdef NO_SIGNALING_NANS
241int float32_is_quiet_nan(float32 a_)
242{
243 return float32_is_any_nan(a_);
244}
245
246int float32_is_signaling_nan(float32 a_)
247{
248 return 0;
249}
250#else
158142c2 251/*----------------------------------------------------------------------------
5a6932d5
TS
252| Returns 1 if the single-precision floating-point value `a' is a quiet
253| NaN; otherwise returns 0.
158142c2
FB
254*----------------------------------------------------------------------------*/
255
18569871 256int float32_is_quiet_nan( float32 a_ )
158142c2 257{
f090c9d4 258 uint32_t a = float32_val(a_);
5a6932d5 259#if SNAN_BIT_IS_ONE
b645bb48
TS
260 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
261#else
bb98fe42 262 return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
b645bb48 263#endif
158142c2
FB
264}
265
266/*----------------------------------------------------------------------------
267| Returns 1 if the single-precision floating-point value `a' is a signaling
268| NaN; otherwise returns 0.
269*----------------------------------------------------------------------------*/
270
f090c9d4 271int float32_is_signaling_nan( float32 a_ )
158142c2 272{
f090c9d4 273 uint32_t a = float32_val(a_);
5a6932d5 274#if SNAN_BIT_IS_ONE
bb98fe42 275 return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
b645bb48 276#else
158142c2 277 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
b645bb48 278#endif
158142c2 279}
213ff4e6 280#endif
158142c2 281
b408dbde
PM
282/*----------------------------------------------------------------------------
283| Returns a quiet NaN if the single-precision floating point value `a' is a
284| signaling NaN; otherwise returns `a'.
285*----------------------------------------------------------------------------*/
286
287float32 float32_maybe_silence_nan( float32 a_ )
288{
289 if (float32_is_signaling_nan(a_)) {
b408dbde 290#if SNAN_BIT_IS_ONE
d2fbca94 291# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
93ae1c6f
AJ
292 return float32_default_nan;
293# else
294# error Rules for silencing a signaling NaN are target-specific
295# endif
b408dbde 296#else
bb98fe42 297 uint32_t a = float32_val(a_);
b408dbde 298 a |= (1 << 22);
b408dbde 299 return make_float32(a);
93ae1c6f 300#endif
b408dbde
PM
301 }
302 return a_;
303}
304
158142c2
FB
305/*----------------------------------------------------------------------------
306| Returns the result of converting the single-precision floating-point NaN
307| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
308| exception is raised.
309*----------------------------------------------------------------------------*/
310
311static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
312{
313 commonNaNT z;
314
315 if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
f090c9d4 316 z.sign = float32_val(a)>>31;
158142c2 317 z.low = 0;
bb98fe42 318 z.high = ( (uint64_t) float32_val(a) )<<41;
158142c2 319 return z;
158142c2
FB
320}
321
322/*----------------------------------------------------------------------------
323| Returns the result of converting the canonical NaN `a' to the single-
324| precision floating-point format.
325*----------------------------------------------------------------------------*/
326
bcd4d9af 327static float32 commonNaNToFloat32( commonNaNT a STATUS_PARAM)
158142c2 328{
bb98fe42 329 uint32_t mantissa = a.high>>41;
bcd4d9af
CL
330
331 if ( STATUS(default_nan_mode) ) {
332 return float32_default_nan;
333 }
334
85016c98
TS
335 if ( mantissa )
336 return make_float32(
bb98fe42 337 ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
85016c98
TS
338 else
339 return float32_default_nan;
158142c2
FB
340}
341
354f211b
PM
342/*----------------------------------------------------------------------------
343| Select which NaN to propagate for a two-input operation.
344| IEEE754 doesn't specify all the details of this, so the
345| algorithm is target-specific.
346| The routine is passed various bits of information about the
347| two NaNs and should return 0 to select NaN a and 1 for NaN b.
348| Note that signalling NaNs are always squashed to quiet NaNs
1f398e08
AJ
349| by the caller, by calling floatXX_maybe_silence_nan() before
350| returning them.
354f211b
PM
351|
352| aIsLargerSignificand is only valid if both a and b are NaNs
353| of some kind, and is true if a has the larger significand,
354| or if both a and b have the same significand but a is
355| positive but b is negative. It is only needed for the x87
356| tie-break rule.
357*----------------------------------------------------------------------------*/
358
011da610
PM
359#if defined(TARGET_ARM)
360static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
361 flag aIsLargerSignificand)
362{
363 /* ARM mandated NaN propagation rules: take the first of:
364 * 1. A if it is signaling
365 * 2. B if it is signaling
366 * 3. A (quiet)
367 * 4. B (quiet)
368 * A signaling NaN is always quietened before returning it.
369 */
370 if (aIsSNaN) {
371 return 0;
372 } else if (bIsSNaN) {
373 return 1;
374 } else if (aIsQNaN) {
375 return 0;
376 } else {
377 return 1;
378 }
379}
084d19ba
AJ
380#elif defined(TARGET_MIPS)
381static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
382 flag aIsLargerSignificand)
383{
384 /* According to MIPS specifications, if one of the two operands is
385 * a sNaN, a new qNaN has to be generated. This is done in
386 * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
387 * says: "When possible, this QNaN result is one of the operand QNaN
388 * values." In practice it seems that most implementations choose
389 * the first operand if both operands are qNaN. In short this gives
390 * the following rules:
391 * 1. A if it is signaling
392 * 2. B if it is signaling
393 * 3. A (quiet)
394 * 4. B (quiet)
395 * A signaling NaN is always silenced before returning it.
396 */
397 if (aIsSNaN) {
398 return 0;
399 } else if (bIsSNaN) {
400 return 1;
401 } else if (aIsQNaN) {
402 return 0;
403 } else {
404 return 1;
405 }
406}
b81fe822 407#elif defined(TARGET_PPC) || defined(TARGET_XTENSA)
e024e881
AJ
408static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
409 flag aIsLargerSignificand)
410{
411 /* PowerPC propagation rules:
412 * 1. A if it sNaN or qNaN
413 * 2. B if it sNaN or qNaN
414 * A signaling NaN is always silenced before returning it.
415 */
416 if (aIsSNaN || aIsQNaN) {
417 return 0;
418 } else {
419 return 1;
420 }
421}
011da610 422#else
354f211b
PM
423static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
424 flag aIsLargerSignificand)
425{
426 /* This implements x87 NaN propagation rules:
427 * SNaN + QNaN => return the QNaN
428 * two SNaNs => return the one with the larger significand, silenced
429 * two QNaNs => return the one with the larger significand
430 * SNaN and a non-NaN => return the SNaN, silenced
431 * QNaN and a non-NaN => return the QNaN
432 *
433 * If we get down to comparing significands and they are the same,
434 * return the NaN with the positive sign bit (if any).
435 */
436 if (aIsSNaN) {
437 if (bIsSNaN) {
438 return aIsLargerSignificand ? 0 : 1;
439 }
440 return bIsQNaN ? 1 : 0;
441 }
442 else if (aIsQNaN) {
443 if (bIsSNaN || !bIsQNaN)
444 return 0;
445 else {
446 return aIsLargerSignificand ? 0 : 1;
447 }
448 } else {
449 return 1;
450 }
451}
011da610 452#endif
354f211b 453
369be8f6
PM
454/*----------------------------------------------------------------------------
455| Select which NaN to propagate for a three-input operation.
456| For the moment we assume that no CPU needs the 'larger significand'
457| information.
458| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
459*----------------------------------------------------------------------------*/
460#if defined(TARGET_ARM)
461static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
462 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
463{
464 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
465 * the default NaN
466 */
467 if (infzero && cIsQNaN) {
468 float_raise(float_flag_invalid STATUS_VAR);
469 return 3;
470 }
471
472 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
473 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
474 */
475 if (cIsSNaN) {
476 return 2;
477 } else if (aIsSNaN) {
478 return 0;
479 } else if (bIsSNaN) {
480 return 1;
481 } else if (cIsQNaN) {
482 return 2;
483 } else if (aIsQNaN) {
484 return 0;
485 } else {
486 return 1;
487 }
488}
bbc1dede
AJ
489#elif defined(TARGET_MIPS)
490static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
491 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
492{
493 /* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns
494 * the default NaN
495 */
496 if (infzero) {
497 float_raise(float_flag_invalid STATUS_VAR);
498 return 3;
499 }
500
501 /* Prefer sNaN over qNaN, in the a, b, c order. */
502 if (aIsSNaN) {
503 return 0;
504 } else if (bIsSNaN) {
505 return 1;
506 } else if (cIsSNaN) {
507 return 2;
508 } else if (aIsQNaN) {
509 return 0;
510 } else if (bIsQNaN) {
511 return 1;
512 } else {
513 return 2;
514 }
515}
369be8f6
PM
516#elif defined(TARGET_PPC)
517static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
518 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
519{
520 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
521 * to return an input NaN if we have one (ie c) rather than generating
522 * a default NaN
523 */
524 if (infzero) {
525 float_raise(float_flag_invalid STATUS_VAR);
526 return 2;
527 }
528
529 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
530 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
531 */
532 if (aIsSNaN || aIsQNaN) {
533 return 0;
534 } else if (cIsSNaN || cIsQNaN) {
535 return 2;
536 } else {
537 return 1;
538 }
539}
540#else
541/* A default implementation: prefer a to b to c.
542 * This is unlikely to actually match any real implementation.
543 */
544static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
545 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
546{
547 if (aIsSNaN || aIsQNaN) {
548 return 0;
549 } else if (bIsSNaN || bIsQNaN) {
550 return 1;
551 } else {
552 return 2;
553 }
554}
555#endif
556
158142c2
FB
557/*----------------------------------------------------------------------------
558| Takes two single-precision floating-point values `a' and `b', one of which
559| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
560| signaling NaN, the invalid exception is raised.
561*----------------------------------------------------------------------------*/
562
563static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
564{
d735d695
AJ
565 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
566 flag aIsLargerSignificand;
bb98fe42 567 uint32_t av, bv;
158142c2 568
d735d695 569 aIsQuietNaN = float32_is_quiet_nan( a );
158142c2 570 aIsSignalingNaN = float32_is_signaling_nan( a );
d735d695 571 bIsQuietNaN = float32_is_quiet_nan( b );
158142c2 572 bIsSignalingNaN = float32_is_signaling_nan( b );
f090c9d4
PB
573 av = float32_val(a);
574 bv = float32_val(b);
1f398e08 575
158142c2 576 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
354f211b 577
10201602
AJ
578 if ( STATUS(default_nan_mode) )
579 return float32_default_nan;
580
bb98fe42 581 if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) {
354f211b 582 aIsLargerSignificand = 0;
bb98fe42 583 } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) {
354f211b
PM
584 aIsLargerSignificand = 1;
585 } else {
586 aIsLargerSignificand = (av < bv) ? 1 : 0;
158142c2 587 }
354f211b 588
d735d695 589 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 590 aIsLargerSignificand)) {
1f398e08 591 return float32_maybe_silence_nan(b);
354f211b 592 } else {
1f398e08 593 return float32_maybe_silence_nan(a);
158142c2 594 }
158142c2
FB
595}
596
369be8f6
PM
597/*----------------------------------------------------------------------------
598| Takes three single-precision floating-point values `a', `b' and `c', one of
599| which is a NaN, and returns the appropriate NaN result. If any of `a',
600| `b' or `c' is a signaling NaN, the invalid exception is raised.
601| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
602| obviously c is a NaN, and whether to propagate c or some other NaN is
603| implementation defined).
604*----------------------------------------------------------------------------*/
605
606static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
607 float32 c, flag infzero STATUS_PARAM)
608{
609 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
610 cIsQuietNaN, cIsSignalingNaN;
611 int which;
612
613 aIsQuietNaN = float32_is_quiet_nan(a);
614 aIsSignalingNaN = float32_is_signaling_nan(a);
615 bIsQuietNaN = float32_is_quiet_nan(b);
616 bIsSignalingNaN = float32_is_signaling_nan(b);
617 cIsQuietNaN = float32_is_quiet_nan(c);
618 cIsSignalingNaN = float32_is_signaling_nan(c);
619
620 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
621 float_raise(float_flag_invalid STATUS_VAR);
622 }
623
624 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
625 bIsQuietNaN, bIsSignalingNaN,
626 cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
627
628 if (STATUS(default_nan_mode)) {
629 /* Note that this check is after pickNaNMulAdd so that function
630 * has an opportunity to set the Invalid flag.
631 */
632 return float32_default_nan;
633 }
634
635 switch (which) {
636 case 0:
637 return float32_maybe_silence_nan(a);
638 case 1:
639 return float32_maybe_silence_nan(b);
640 case 2:
641 return float32_maybe_silence_nan(c);
642 case 3:
643 default:
644 return float32_default_nan;
645 }
646}
647
213ff4e6
MF
648#ifdef NO_SIGNALING_NANS
649int float64_is_quiet_nan(float64 a_)
650{
651 return float64_is_any_nan(a_);
652}
653
654int float64_is_signaling_nan(float64 a_)
655{
656 return 0;
657}
658#else
158142c2 659/*----------------------------------------------------------------------------
5a6932d5
TS
660| Returns 1 if the double-precision floating-point value `a' is a quiet
661| NaN; otherwise returns 0.
158142c2
FB
662*----------------------------------------------------------------------------*/
663
18569871 664int float64_is_quiet_nan( float64 a_ )
158142c2 665{
bb98fe42 666 uint64_t a = float64_val(a_);
5a6932d5 667#if SNAN_BIT_IS_ONE
b645bb48
TS
668 return
669 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
670 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
671#else
bb98fe42 672 return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
b645bb48 673#endif
158142c2
FB
674}
675
676/*----------------------------------------------------------------------------
677| Returns 1 if the double-precision floating-point value `a' is a signaling
678| NaN; otherwise returns 0.
679*----------------------------------------------------------------------------*/
680
f090c9d4 681int float64_is_signaling_nan( float64 a_ )
158142c2 682{
bb98fe42 683 uint64_t a = float64_val(a_);
5a6932d5 684#if SNAN_BIT_IS_ONE
bb98fe42 685 return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
b645bb48 686#else
158142c2
FB
687 return
688 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
689 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
b645bb48 690#endif
158142c2 691}
213ff4e6 692#endif
158142c2 693
b408dbde
PM
694/*----------------------------------------------------------------------------
695| Returns a quiet NaN if the double-precision floating point value `a' is a
696| signaling NaN; otherwise returns `a'.
697*----------------------------------------------------------------------------*/
698
699float64 float64_maybe_silence_nan( float64 a_ )
700{
701 if (float64_is_signaling_nan(a_)) {
b408dbde 702#if SNAN_BIT_IS_ONE
d2fbca94 703# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
93ae1c6f
AJ
704 return float64_default_nan;
705# else
706# error Rules for silencing a signaling NaN are target-specific
707# endif
b408dbde 708#else
bb98fe42 709 uint64_t a = float64_val(a_);
b408dbde 710 a |= LIT64( 0x0008000000000000 );
b408dbde 711 return make_float64(a);
93ae1c6f 712#endif
b408dbde
PM
713 }
714 return a_;
715}
716
158142c2
FB
717/*----------------------------------------------------------------------------
718| Returns the result of converting the double-precision floating-point NaN
719| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
720| exception is raised.
721*----------------------------------------------------------------------------*/
722
723static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
724{
725 commonNaNT z;
726
727 if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
f090c9d4 728 z.sign = float64_val(a)>>63;
158142c2 729 z.low = 0;
f090c9d4 730 z.high = float64_val(a)<<12;
158142c2 731 return z;
158142c2
FB
732}
733
734/*----------------------------------------------------------------------------
735| Returns the result of converting the canonical NaN `a' to the double-
736| precision floating-point format.
737*----------------------------------------------------------------------------*/
738
bcd4d9af 739static float64 commonNaNToFloat64( commonNaNT a STATUS_PARAM)
158142c2 740{
bb98fe42 741 uint64_t mantissa = a.high>>12;
85016c98 742
bcd4d9af
CL
743 if ( STATUS(default_nan_mode) ) {
744 return float64_default_nan;
745 }
746
85016c98
TS
747 if ( mantissa )
748 return make_float64(
bb98fe42 749 ( ( (uint64_t) a.sign )<<63 )
85016c98
TS
750 | LIT64( 0x7FF0000000000000 )
751 | ( a.high>>12 ));
752 else
753 return float64_default_nan;
158142c2
FB
754}
755
756/*----------------------------------------------------------------------------
757| Takes two double-precision floating-point values `a' and `b', one of which
758| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
759| signaling NaN, the invalid exception is raised.
760*----------------------------------------------------------------------------*/
761
762static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
763{
d735d695
AJ
764 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
765 flag aIsLargerSignificand;
bb98fe42 766 uint64_t av, bv;
158142c2 767
d735d695 768 aIsQuietNaN = float64_is_quiet_nan( a );
158142c2 769 aIsSignalingNaN = float64_is_signaling_nan( a );
d735d695 770 bIsQuietNaN = float64_is_quiet_nan( b );
158142c2 771 bIsSignalingNaN = float64_is_signaling_nan( b );
f090c9d4
PB
772 av = float64_val(a);
773 bv = float64_val(b);
1f398e08 774
158142c2 775 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
354f211b 776
10201602
AJ
777 if ( STATUS(default_nan_mode) )
778 return float64_default_nan;
779
bb98fe42 780 if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) {
354f211b 781 aIsLargerSignificand = 0;
bb98fe42 782 } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) {
354f211b
PM
783 aIsLargerSignificand = 1;
784 } else {
785 aIsLargerSignificand = (av < bv) ? 1 : 0;
158142c2 786 }
354f211b 787
d735d695 788 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 789 aIsLargerSignificand)) {
1f398e08 790 return float64_maybe_silence_nan(b);
354f211b 791 } else {
1f398e08 792 return float64_maybe_silence_nan(a);
158142c2 793 }
158142c2
FB
794}
795
369be8f6
PM
796/*----------------------------------------------------------------------------
797| Takes three double-precision floating-point values `a', `b' and `c', one of
798| which is a NaN, and returns the appropriate NaN result. If any of `a',
799| `b' or `c' is a signaling NaN, the invalid exception is raised.
800| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
801| obviously c is a NaN, and whether to propagate c or some other NaN is
802| implementation defined).
803*----------------------------------------------------------------------------*/
804
805static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
806 float64 c, flag infzero STATUS_PARAM)
807{
808 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
809 cIsQuietNaN, cIsSignalingNaN;
810 int which;
811
812 aIsQuietNaN = float64_is_quiet_nan(a);
813 aIsSignalingNaN = float64_is_signaling_nan(a);
814 bIsQuietNaN = float64_is_quiet_nan(b);
815 bIsSignalingNaN = float64_is_signaling_nan(b);
816 cIsQuietNaN = float64_is_quiet_nan(c);
817 cIsSignalingNaN = float64_is_signaling_nan(c);
818
819 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
820 float_raise(float_flag_invalid STATUS_VAR);
821 }
822
823 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
824 bIsQuietNaN, bIsSignalingNaN,
825 cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
826
827 if (STATUS(default_nan_mode)) {
828 /* Note that this check is after pickNaNMulAdd so that function
829 * has an opportunity to set the Invalid flag.
830 */
831 return float64_default_nan;
832 }
833
834 switch (which) {
835 case 0:
836 return float64_maybe_silence_nan(a);
837 case 1:
838 return float64_maybe_silence_nan(b);
839 case 2:
840 return float64_maybe_silence_nan(c);
841 case 3:
842 default:
843 return float64_default_nan;
844 }
845}
846
213ff4e6
MF
847#ifdef NO_SIGNALING_NANS
848int floatx80_is_quiet_nan(floatx80 a_)
849{
850 return floatx80_is_any_nan(a_);
851}
852
853int floatx80_is_signaling_nan(floatx80 a_)
854{
855 return 0;
856}
857#else
158142c2
FB
858/*----------------------------------------------------------------------------
859| Returns 1 if the extended double-precision floating-point value `a' is a
de4af5f7
AJ
860| quiet NaN; otherwise returns 0. This slightly differs from the same
861| function for other types as floatx80 has an explicit bit.
158142c2
FB
862*----------------------------------------------------------------------------*/
863
18569871 864int floatx80_is_quiet_nan( floatx80 a )
158142c2 865{
5a6932d5 866#if SNAN_BIT_IS_ONE
bb98fe42 867 uint64_t aLow;
158142c2 868
5a6932d5
TS
869 aLow = a.low & ~ LIT64( 0x4000000000000000 );
870 return
871 ( ( a.high & 0x7FFF ) == 0x7FFF )
bb98fe42 872 && (uint64_t) ( aLow<<1 )
5a6932d5
TS
873 && ( a.low == aLow );
874#else
de4af5f7 875 return ( ( a.high & 0x7FFF ) == 0x7FFF )
bb98fe42 876 && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
5a6932d5 877#endif
158142c2
FB
878}
879
880/*----------------------------------------------------------------------------
881| Returns 1 if the extended double-precision floating-point value `a' is a
de4af5f7
AJ
882| signaling NaN; otherwise returns 0. This slightly differs from the same
883| function for other types as floatx80 has an explicit bit.
158142c2
FB
884*----------------------------------------------------------------------------*/
885
750afe93 886int floatx80_is_signaling_nan( floatx80 a )
158142c2 887{
5a6932d5 888#if SNAN_BIT_IS_ONE
de4af5f7 889 return ( ( a.high & 0x7FFF ) == 0x7FFF )
bb98fe42 890 && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
5a6932d5 891#else
bb98fe42 892 uint64_t aLow;
158142c2
FB
893
894 aLow = a.low & ~ LIT64( 0x4000000000000000 );
895 return
896 ( ( a.high & 0x7FFF ) == 0x7FFF )
bb98fe42 897 && (uint64_t) ( aLow<<1 )
158142c2 898 && ( a.low == aLow );
5a6932d5 899#endif
158142c2 900}
213ff4e6 901#endif
158142c2 902
f6a7d92a
AJ
903/*----------------------------------------------------------------------------
904| Returns a quiet NaN if the extended double-precision floating point value
905| `a' is a signaling NaN; otherwise returns `a'.
906*----------------------------------------------------------------------------*/
907
908floatx80 floatx80_maybe_silence_nan( floatx80 a )
909{
910 if (floatx80_is_signaling_nan(a)) {
911#if SNAN_BIT_IS_ONE
d2fbca94 912# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
f6a7d92a
AJ
913 a.low = floatx80_default_nan_low;
914 a.high = floatx80_default_nan_high;
915# else
916# error Rules for silencing a signaling NaN are target-specific
917# endif
918#else
919 a.low |= LIT64( 0xC000000000000000 );
920 return a;
921#endif
922 }
923 return a;
924}
925
158142c2
FB
926/*----------------------------------------------------------------------------
927| Returns the result of converting the extended double-precision floating-
928| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
929| invalid exception is raised.
930*----------------------------------------------------------------------------*/
931
932static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
933{
934 commonNaNT z;
935
936 if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
e2f42204
AJ
937 if ( a.low >> 63 ) {
938 z.sign = a.high >> 15;
939 z.low = 0;
940 z.high = a.low << 1;
941 } else {
942 z.sign = floatx80_default_nan_high >> 15;
943 z.low = 0;
944 z.high = floatx80_default_nan_low << 1;
945 }
158142c2 946 return z;
158142c2
FB
947}
948
949/*----------------------------------------------------------------------------
950| Returns the result of converting the canonical NaN `a' to the extended
951| double-precision floating-point format.
952*----------------------------------------------------------------------------*/
953
bcd4d9af 954static floatx80 commonNaNToFloatx80( commonNaNT a STATUS_PARAM)
158142c2
FB
955{
956 floatx80 z;
957
bcd4d9af
CL
958 if ( STATUS(default_nan_mode) ) {
959 z.low = floatx80_default_nan_low;
960 z.high = floatx80_default_nan_high;
961 return z;
962 }
963
e2f42204
AJ
964 if (a.high >> 1) {
965 z.low = LIT64( 0x8000000000000000 ) | a.high >> 1;
966 z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
967 } else {
85016c98 968 z.low = floatx80_default_nan_low;
e2f42204
AJ
969 z.high = floatx80_default_nan_high;
970 }
971
158142c2 972 return z;
158142c2
FB
973}
974
975/*----------------------------------------------------------------------------
976| Takes two extended double-precision floating-point values `a' and `b', one
977| of which is a NaN, and returns the appropriate NaN result. If either `a' or
978| `b' is a signaling NaN, the invalid exception is raised.
979*----------------------------------------------------------------------------*/
980
981static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
982{
d735d695
AJ
983 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
984 flag aIsLargerSignificand;
158142c2 985
d735d695 986 aIsQuietNaN = floatx80_is_quiet_nan( a );
158142c2 987 aIsSignalingNaN = floatx80_is_signaling_nan( a );
d735d695 988 bIsQuietNaN = floatx80_is_quiet_nan( b );
158142c2 989 bIsSignalingNaN = floatx80_is_signaling_nan( b );
1f398e08 990
158142c2 991 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
354f211b 992
10201602
AJ
993 if ( STATUS(default_nan_mode) ) {
994 a.low = floatx80_default_nan_low;
995 a.high = floatx80_default_nan_high;
996 return a;
997 }
998
354f211b
PM
999 if (a.low < b.low) {
1000 aIsLargerSignificand = 0;
1001 } else if (b.low < a.low) {
1002 aIsLargerSignificand = 1;
1003 } else {
1004 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
158142c2 1005 }
354f211b 1006
d735d695 1007 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 1008 aIsLargerSignificand)) {
1f398e08 1009 return floatx80_maybe_silence_nan(b);
354f211b 1010 } else {
1f398e08 1011 return floatx80_maybe_silence_nan(a);
158142c2 1012 }
158142c2
FB
1013}
1014
213ff4e6
MF
1015#ifdef NO_SIGNALING_NANS
1016int float128_is_quiet_nan(float128 a_)
1017{
1018 return float128_is_any_nan(a_);
1019}
1020
1021int float128_is_signaling_nan(float128 a_)
1022{
1023 return 0;
1024}
1025#else
158142c2 1026/*----------------------------------------------------------------------------
5a6932d5
TS
1027| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
1028| NaN; otherwise returns 0.
158142c2
FB
1029*----------------------------------------------------------------------------*/
1030
18569871 1031int float128_is_quiet_nan( float128 a )
158142c2 1032{
5a6932d5
TS
1033#if SNAN_BIT_IS_ONE
1034 return
1035 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
1036 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
1037#else
158142c2 1038 return
bb98fe42 1039 ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
158142c2 1040 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
5a6932d5 1041#endif
158142c2
FB
1042}
1043
1044/*----------------------------------------------------------------------------
1045| Returns 1 if the quadruple-precision floating-point value `a' is a
1046| signaling NaN; otherwise returns 0.
1047*----------------------------------------------------------------------------*/
1048
750afe93 1049int float128_is_signaling_nan( float128 a )
158142c2 1050{
5a6932d5
TS
1051#if SNAN_BIT_IS_ONE
1052 return
bb98fe42 1053 ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
5a6932d5
TS
1054 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
1055#else
158142c2
FB
1056 return
1057 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
1058 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
5a6932d5 1059#endif
158142c2 1060}
213ff4e6 1061#endif
158142c2 1062
f6a7d92a
AJ
1063/*----------------------------------------------------------------------------
1064| Returns a quiet NaN if the quadruple-precision floating point value `a' is
1065| a signaling NaN; otherwise returns `a'.
1066*----------------------------------------------------------------------------*/
1067
1068float128 float128_maybe_silence_nan( float128 a )
1069{
1070 if (float128_is_signaling_nan(a)) {
1071#if SNAN_BIT_IS_ONE
d2fbca94 1072# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
f6a7d92a
AJ
1073 a.low = float128_default_nan_low;
1074 a.high = float128_default_nan_high;
1075# else
1076# error Rules for silencing a signaling NaN are target-specific
1077# endif
1078#else
1079 a.high |= LIT64( 0x0000800000000000 );
1080 return a;
1081#endif
1082 }
1083 return a;
1084}
1085
158142c2
FB
1086/*----------------------------------------------------------------------------
1087| Returns the result of converting the quadruple-precision floating-point NaN
1088| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
1089| exception is raised.
1090*----------------------------------------------------------------------------*/
1091
1092static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM)
1093{
1094 commonNaNT z;
1095
1096 if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
1097 z.sign = a.high>>63;
1098 shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
1099 return z;
158142c2
FB
1100}
1101
1102/*----------------------------------------------------------------------------
1103| Returns the result of converting the canonical NaN `a' to the quadruple-
1104| precision floating-point format.
1105*----------------------------------------------------------------------------*/
1106
bcd4d9af 1107static float128 commonNaNToFloat128( commonNaNT a STATUS_PARAM)
158142c2
FB
1108{
1109 float128 z;
1110
bcd4d9af
CL
1111 if ( STATUS(default_nan_mode) ) {
1112 z.low = float128_default_nan_low;
1113 z.high = float128_default_nan_high;
1114 return z;
1115 }
1116
158142c2 1117 shift128Right( a.high, a.low, 16, &z.high, &z.low );
bb98fe42 1118 z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
158142c2 1119 return z;
158142c2
FB
1120}
1121
1122/*----------------------------------------------------------------------------
1123| Takes two quadruple-precision floating-point values `a' and `b', one of
1124| which is a NaN, and returns the appropriate NaN result. If either `a' or
1125| `b' is a signaling NaN, the invalid exception is raised.
1126*----------------------------------------------------------------------------*/
1127
1128static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
1129{
d735d695
AJ
1130 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1131 flag aIsLargerSignificand;
158142c2 1132
d735d695 1133 aIsQuietNaN = float128_is_quiet_nan( a );
158142c2 1134 aIsSignalingNaN = float128_is_signaling_nan( a );
d735d695 1135 bIsQuietNaN = float128_is_quiet_nan( b );
158142c2 1136 bIsSignalingNaN = float128_is_signaling_nan( b );
1f398e08 1137
158142c2 1138 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
354f211b 1139
10201602
AJ
1140 if ( STATUS(default_nan_mode) ) {
1141 a.low = float128_default_nan_low;
1142 a.high = float128_default_nan_high;
1143 return a;
1144 }
1145
354f211b
PM
1146 if (lt128(a.high<<1, a.low, b.high<<1, b.low)) {
1147 aIsLargerSignificand = 0;
1148 } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) {
1149 aIsLargerSignificand = 1;
1150 } else {
1151 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
158142c2 1152 }
354f211b 1153
d735d695 1154 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 1155 aIsLargerSignificand)) {
1f398e08 1156 return float128_maybe_silence_nan(b);
354f211b 1157 } else {
1f398e08 1158 return float128_maybe_silence_nan(a);
158142c2 1159 }
158142c2
FB
1160}
1161