]> git.proxmox.com Git - qemu.git/blame - hw/block/m25p80.c
blockdev: Remove IF_* check for read-only blockdev_init
[qemu.git] / hw / block / m25p80.c
CommitLineData
82a24990
PC
1/*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
5 *
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 */
23
83c9f4ca 24#include "hw/hw.h"
9c17d615 25#include "sysemu/blockdev.h"
83c9f4ca 26#include "hw/ssi.h"
82a24990 27
28097d02
PC
28#ifndef M25P80_ERR_DEBUG
29#define M25P80_ERR_DEBUG 0
82a24990
PC
30#endif
31
28097d02
PC
32#define DB_PRINT_L(level, ...) do { \
33 if (M25P80_ERR_DEBUG > (level)) { \
34 fprintf(stderr, ": %s: ", __func__); \
35 fprintf(stderr, ## __VA_ARGS__); \
36 } \
37} while (0);
38
82a24990
PC
39/* Fields for FlashPartInfo->flags */
40
41/* erase capabilities */
42#define ER_4K 1
43#define ER_32K 2
44/* set to allow the page program command to write 0s back to 1. Useful for
45 * modelling EEPROM with SPI flash command set
46 */
47#define WR_1 0x100
48
49typedef struct FlashPartInfo {
50 const char *part_name;
51 /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
52 uint32_t jedec;
53 /* extended jedec code */
54 uint16_t ext_jedec;
55 /* there is confusion between manufacturers as to what a sector is. In this
56 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
57 * command (opcode 0xd8).
58 */
59 uint32_t sector_size;
60 uint32_t n_sectors;
61 uint32_t page_size;
62 uint8_t flags;
63} FlashPartInfo;
64
65/* adapted from linux */
66
67#define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
68 .part_name = (_part_name),\
69 .jedec = (_jedec),\
70 .ext_jedec = (_ext_jedec),\
71 .sector_size = (_sector_size),\
72 .n_sectors = (_n_sectors),\
73 .page_size = 256,\
74 .flags = (_flags),\
75
419336a9
PC
76#define JEDEC_NUMONYX 0x20
77#define JEDEC_WINBOND 0xEF
78#define JEDEC_SPANSION 0x01
79
82a24990
PC
80static const FlashPartInfo known_devices[] = {
81 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
82 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
83 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
84
85 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
86 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
87 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
88
89 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
90 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
91 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
92 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
93
3e758c1d
EM
94 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
95
82a24990
PC
96 /* EON -- en25xxx */
97 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
98 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
99 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
100 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
3e758c1d
EM
101 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
102
103 /* GigaDevice */
104 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
105 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
82a24990
PC
106
107 /* Intel/Numonyx -- xxxs33b */
108 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
109 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
110 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
3e758c1d 111 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
82a24990
PC
112
113 /* Macronix */
3e758c1d 114 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
82a24990
PC
115 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
116 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
117 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
118 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
119 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
120 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
121 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
122 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
123 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
124
3e758c1d 125 /* Micron */
f5aac8e0
EM
126 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
127 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
128 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
129 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
130 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
131 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
132 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
133 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
3e758c1d 134
82a24990
PC
135 /* Spansion -- single (large) sector size only, at least
136 * for the chips listed here (without boot sectors).
137 */
82a24990 138 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
3e758c1d 139 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
82a24990
PC
140 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
141 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
142 { INFO("s25fl512s", 0x010220, 0x4d00, 256 << 10, 256, 0) },
143 { INFO("s70fl01gs", 0x010221, 0x4d00, 256 << 10, 256, 0) },
144 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
145 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
146 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
147 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
3e758c1d
EM
148 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
149 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
150 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
151 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
152 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
82a24990
PC
153 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
154 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
155
156 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
157 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
158 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
159 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
160 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
161 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
162 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
163 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
164 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
165
166 /* ST Microelectronics -- newer production may have feature updates */
167 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
168 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
169 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
170 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
171 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
172 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
173 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
174 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
175 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
3e758c1d 176 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
82a24990
PC
177
178 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
179 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
180 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
181
3e758c1d 182 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
82a24990
PC
183 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
184 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
185
186 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
187 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
188 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
189 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
190
191 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
192 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
193 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
194 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
195 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
196 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
197 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
198 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
3e758c1d 199 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
82a24990
PC
200 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
201 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
3e758c1d
EM
202 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
203 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
204 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
82a24990
PC
205
206 /* Numonyx -- n25q128 */
207 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
82a24990
PC
208};
209
210typedef enum {
211 NOP = 0,
03ec2f83 212 WRSR = 0x1,
82a24990
PC
213 WRDI = 0x4,
214 RDSR = 0x5,
215 WREN = 0x6,
419336a9
PC
216 JEDEC_READ = 0x9f,
217 BULK_ERASE = 0xc7,
218
219 READ = 0x3,
82a24990 220 FAST_READ = 0xb,
419336a9
PC
221 DOR = 0x3b,
222 QOR = 0x6b,
223 DIOR = 0xbb,
224 QIOR = 0xeb,
225
226 PP = 0x2,
227 DPP = 0xa2,
228 QPP = 0x32,
229
82a24990
PC
230 ERASE_4K = 0x20,
231 ERASE_32K = 0x52,
232 ERASE_SECTOR = 0xd8,
82a24990
PC
233} FlashCMD;
234
235typedef enum {
236 STATE_IDLE,
237 STATE_PAGE_PROGRAM,
238 STATE_READ,
239 STATE_COLLECTING_DATA,
240 STATE_READING_DATA,
241} CMDState;
242
243typedef struct Flash {
244 SSISlave ssidev;
245 uint32_t r;
246
247 BlockDriverState *bdrv;
248
249 uint8_t *storage;
250 uint32_t size;
251 int page_size;
252
253 uint8_t state;
254 uint8_t data[16];
255 uint32_t len;
256 uint32_t pos;
257 uint8_t needed_bytes;
258 uint8_t cmd_in_progress;
259 uint64_t cur_addr;
260 bool write_enable;
261
262 int64_t dirty_page;
263
82a24990
PC
264 const FlashPartInfo *pi;
265
266} Flash;
267
a7fd6915
PC
268typedef struct M25P80Class {
269 SSISlaveClass parent_class;
270 FlashPartInfo *pi;
271} M25P80Class;
272
273#define TYPE_M25P80 "m25p80-generic"
274#define M25P80(obj) \
275 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
276#define M25P80_CLASS(klass) \
277 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
278#define M25P80_GET_CLASS(obj) \
279 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
280
82a24990
PC
281static void bdrv_sync_complete(void *opaque, int ret)
282{
283 /* do nothing. Masters do not directly interact with the backing store,
284 * only the working copy so no mutexing required.
285 */
286}
287
288static void flash_sync_page(Flash *s, int page)
289{
290 if (s->bdrv) {
291 int bdrv_sector, nb_sectors;
292 QEMUIOVector iov;
293
294 bdrv_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
295 nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
296 qemu_iovec_init(&iov, 1);
297 qemu_iovec_add(&iov, s->storage + bdrv_sector * BDRV_SECTOR_SIZE,
298 nb_sectors * BDRV_SECTOR_SIZE);
299 bdrv_aio_writev(s->bdrv, bdrv_sector, &iov, nb_sectors,
300 bdrv_sync_complete, NULL);
301 }
302}
303
304static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
305{
306 int64_t start, end, nb_sectors;
307 QEMUIOVector iov;
308
309 if (!s->bdrv) {
310 return;
311 }
312
313 assert(!(len % BDRV_SECTOR_SIZE));
314 start = off / BDRV_SECTOR_SIZE;
315 end = (off + len) / BDRV_SECTOR_SIZE;
316 nb_sectors = end - start;
317 qemu_iovec_init(&iov, 1);
318 qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
319 nb_sectors * BDRV_SECTOR_SIZE);
320 bdrv_aio_writev(s->bdrv, start, &iov, nb_sectors, bdrv_sync_complete, NULL);
321}
322
323static void flash_erase(Flash *s, int offset, FlashCMD cmd)
324{
325 uint32_t len;
326 uint8_t capa_to_assert = 0;
327
328 switch (cmd) {
329 case ERASE_4K:
330 len = 4 << 10;
331 capa_to_assert = ER_4K;
332 break;
333 case ERASE_32K:
334 len = 32 << 10;
335 capa_to_assert = ER_32K;
336 break;
337 case ERASE_SECTOR:
338 len = s->pi->sector_size;
339 break;
340 case BULK_ERASE:
341 len = s->size;
342 break;
343 default:
344 abort();
345 }
346
28097d02 347 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
82a24990 348 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
e9711b4d
PC
349 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
350 " device\n", len);
82a24990
PC
351 }
352
353 if (!s->write_enable) {
e9711b4d 354 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
82a24990
PC
355 return;
356 }
357 memset(s->storage + offset, 0xff, len);
358 flash_sync_area(s, offset, len);
359}
360
361static inline void flash_sync_dirty(Flash *s, int64_t newpage)
362{
363 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
364 flash_sync_page(s, s->dirty_page);
365 s->dirty_page = newpage;
366 }
367}
368
369static inline
370void flash_write8(Flash *s, uint64_t addr, uint8_t data)
371{
372 int64_t page = addr / s->pi->page_size;
373 uint8_t prev = s->storage[s->cur_addr];
374
375 if (!s->write_enable) {
e9711b4d 376 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
82a24990
PC
377 }
378
379 if ((prev ^ data) & data) {
28097d02
PC
380 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 " %" PRIx8
381 " -> %" PRIx8 "\n", addr, prev, data);
82a24990
PC
382 }
383
384 if (s->pi->flags & WR_1) {
385 s->storage[s->cur_addr] = data;
386 } else {
387 s->storage[s->cur_addr] &= data;
388 }
389
390 flash_sync_dirty(s, page);
391 s->dirty_page = page;
392}
393
394static void complete_collecting_data(Flash *s)
395{
396 s->cur_addr = s->data[0] << 16;
397 s->cur_addr |= s->data[1] << 8;
398 s->cur_addr |= s->data[2];
399
a56d305a
PC
400 s->state = STATE_IDLE;
401
82a24990 402 switch (s->cmd_in_progress) {
419336a9
PC
403 case DPP:
404 case QPP:
82a24990
PC
405 case PP:
406 s->state = STATE_PAGE_PROGRAM;
407 break;
408 case READ:
409 case FAST_READ:
419336a9
PC
410 case DOR:
411 case QOR:
412 case DIOR:
413 case QIOR:
82a24990
PC
414 s->state = STATE_READ;
415 break;
416 case ERASE_4K:
417 case ERASE_32K:
418 case ERASE_SECTOR:
419 flash_erase(s, s->cur_addr, s->cmd_in_progress);
420 break;
03ec2f83
KJS
421 case WRSR:
422 if (s->write_enable) {
423 s->write_enable = false;
424 }
425 break;
82a24990
PC
426 default:
427 break;
428 }
429}
430
431static void decode_new_cmd(Flash *s, uint32_t value)
432{
433 s->cmd_in_progress = value;
28097d02 434 DB_PRINT_L(0, "decoded new command:%x\n", value);
82a24990
PC
435
436 switch (value) {
437
438 case ERASE_4K:
439 case ERASE_32K:
440 case ERASE_SECTOR:
441 case READ:
419336a9
PC
442 case DPP:
443 case QPP:
82a24990
PC
444 case PP:
445 s->needed_bytes = 3;
446 s->pos = 0;
447 s->len = 0;
448 s->state = STATE_COLLECTING_DATA;
449 break;
450
451 case FAST_READ:
419336a9
PC
452 case DOR:
453 case QOR:
82a24990
PC
454 s->needed_bytes = 4;
455 s->pos = 0;
456 s->len = 0;
457 s->state = STATE_COLLECTING_DATA;
458 break;
459
419336a9
PC
460 case DIOR:
461 switch ((s->pi->jedec >> 16) & 0xFF) {
462 case JEDEC_WINBOND:
463 case JEDEC_SPANSION:
464 s->needed_bytes = 4;
465 break;
466 case JEDEC_NUMONYX:
467 default:
468 s->needed_bytes = 5;
469 }
470 s->pos = 0;
471 s->len = 0;
472 s->state = STATE_COLLECTING_DATA;
473 break;
474
475 case QIOR:
476 switch ((s->pi->jedec >> 16) & 0xFF) {
477 case JEDEC_WINBOND:
478 case JEDEC_SPANSION:
479 s->needed_bytes = 6;
480 break;
481 case JEDEC_NUMONYX:
482 default:
483 s->needed_bytes = 8;
484 }
485 s->pos = 0;
486 s->len = 0;
487 s->state = STATE_COLLECTING_DATA;
488 break;
489
03ec2f83
KJS
490 case WRSR:
491 if (s->write_enable) {
492 s->needed_bytes = 1;
493 s->pos = 0;
494 s->len = 0;
495 s->state = STATE_COLLECTING_DATA;
496 }
497 break;
498
82a24990
PC
499 case WRDI:
500 s->write_enable = false;
501 break;
502 case WREN:
503 s->write_enable = true;
504 break;
505
506 case RDSR:
507 s->data[0] = (!!s->write_enable) << 1;
508 s->pos = 0;
509 s->len = 1;
510 s->state = STATE_READING_DATA;
511 break;
512
513 case JEDEC_READ:
28097d02 514 DB_PRINT_L(0, "populated jedec code\n");
82a24990
PC
515 s->data[0] = (s->pi->jedec >> 16) & 0xff;
516 s->data[1] = (s->pi->jedec >> 8) & 0xff;
517 s->data[2] = s->pi->jedec & 0xff;
518 if (s->pi->ext_jedec) {
519 s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
520 s->data[4] = s->pi->ext_jedec & 0xff;
521 s->len = 5;
522 } else {
523 s->len = 3;
524 }
525 s->pos = 0;
526 s->state = STATE_READING_DATA;
527 break;
528
529 case BULK_ERASE:
530 if (s->write_enable) {
28097d02 531 DB_PRINT_L(0, "chip erase\n");
82a24990
PC
532 flash_erase(s, 0, BULK_ERASE);
533 } else {
e9711b4d
PC
534 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
535 "protect!\n");
82a24990
PC
536 }
537 break;
538 case NOP:
539 break;
540 default:
e9711b4d 541 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
82a24990
PC
542 break;
543 }
544}
545
546static int m25p80_cs(SSISlave *ss, bool select)
547{
548 Flash *s = FROM_SSI_SLAVE(Flash, ss);
549
550 if (select) {
551 s->len = 0;
552 s->pos = 0;
553 s->state = STATE_IDLE;
554 flash_sync_dirty(s, -1);
555 }
556
28097d02 557 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
82a24990
PC
558
559 return 0;
560}
561
562static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
563{
564 Flash *s = FROM_SSI_SLAVE(Flash, ss);
565 uint32_t r = 0;
566
567 switch (s->state) {
568
569 case STATE_PAGE_PROGRAM:
28097d02
PC
570 DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
571 s->cur_addr, (uint8_t)tx);
82a24990
PC
572 flash_write8(s, s->cur_addr, (uint8_t)tx);
573 s->cur_addr++;
574 break;
575
576 case STATE_READ:
577 r = s->storage[s->cur_addr];
28097d02
PC
578 DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
579 (uint8_t)r);
82a24990
PC
580 s->cur_addr = (s->cur_addr + 1) % s->size;
581 break;
582
583 case STATE_COLLECTING_DATA:
584 s->data[s->len] = (uint8_t)tx;
585 s->len++;
586
587 if (s->len == s->needed_bytes) {
588 complete_collecting_data(s);
589 }
590 break;
591
592 case STATE_READING_DATA:
593 r = s->data[s->pos];
594 s->pos++;
595 if (s->pos == s->len) {
596 s->pos = 0;
597 s->state = STATE_IDLE;
598 }
599 break;
600
601 default:
602 case STATE_IDLE:
603 decode_new_cmd(s, (uint8_t)tx);
604 break;
605 }
606
607 return r;
608}
609
610static int m25p80_init(SSISlave *ss)
611{
612 DriveInfo *dinfo;
613 Flash *s = FROM_SSI_SLAVE(Flash, ss);
a7fd6915 614 M25P80Class *mc = M25P80_GET_CLASS(s);
82a24990 615
a7fd6915 616 s->pi = mc->pi;
82a24990
PC
617
618 s->size = s->pi->sector_size * s->pi->n_sectors;
619 s->dirty_page = -1;
620 s->storage = qemu_blockalign(s->bdrv, s->size);
621
622 dinfo = drive_get_next(IF_MTD);
623
624 if (dinfo && dinfo->bdrv) {
28097d02 625 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
82a24990 626 s->bdrv = dinfo->bdrv;
4f8a066b
KW
627 if (bdrv_is_read_only(s->bdrv)) {
628 fprintf(stderr, "Can't use a read-only drive");
629 return 1;
630 }
631
82a24990
PC
632 /* FIXME: Move to late init */
633 if (bdrv_read(s->bdrv, 0, s->storage, DIV_ROUND_UP(s->size,
634 BDRV_SECTOR_SIZE))) {
635 fprintf(stderr, "Failed to initialize SPI flash!\n");
636 return 1;
637 }
638 } else {
095b9c48 639 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
82a24990
PC
640 memset(s->storage, 0xFF, s->size);
641 }
642
643 return 0;
644}
645
646static void m25p80_pre_save(void *opaque)
647{
648 flash_sync_dirty((Flash *)opaque, -1);
649}
650
651static const VMStateDescription vmstate_m25p80 = {
652 .name = "xilinx_spi",
653 .version_id = 1,
654 .minimum_version_id = 1,
655 .minimum_version_id_old = 1,
656 .pre_save = m25p80_pre_save,
657 .fields = (VMStateField[]) {
658 VMSTATE_UINT8(state, Flash),
659 VMSTATE_UINT8_ARRAY(data, Flash, 16),
660 VMSTATE_UINT32(len, Flash),
661 VMSTATE_UINT32(pos, Flash),
662 VMSTATE_UINT8(needed_bytes, Flash),
663 VMSTATE_UINT8(cmd_in_progress, Flash),
664 VMSTATE_UINT64(cur_addr, Flash),
665 VMSTATE_BOOL(write_enable, Flash),
666 VMSTATE_END_OF_LIST()
667 }
668};
669
82a24990
PC
670static void m25p80_class_init(ObjectClass *klass, void *data)
671{
672 DeviceClass *dc = DEVICE_CLASS(klass);
673 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
a7fd6915 674 M25P80Class *mc = M25P80_CLASS(klass);
82a24990
PC
675
676 k->init = m25p80_init;
677 k->transfer = m25p80_transfer8;
678 k->set_cs = m25p80_cs;
679 k->cs_polarity = SSI_CS_LOW;
82a24990 680 dc->vmsd = &vmstate_m25p80;
a7fd6915 681 mc->pi = data;
82a24990
PC
682}
683
684static const TypeInfo m25p80_info = {
a7fd6915 685 .name = TYPE_M25P80,
82a24990
PC
686 .parent = TYPE_SSI_SLAVE,
687 .instance_size = sizeof(Flash),
a7fd6915
PC
688 .class_size = sizeof(M25P80Class),
689 .abstract = true,
82a24990
PC
690};
691
692static void m25p80_register_types(void)
693{
a7fd6915
PC
694 int i;
695
82a24990 696 type_register_static(&m25p80_info);
a7fd6915
PC
697 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
698 TypeInfo ti = {
699 .name = known_devices[i].part_name,
700 .parent = TYPE_M25P80,
701 .class_init = m25p80_class_init,
702 .class_data = (void *)&known_devices[i],
703 };
704 type_register(&ti);
705 }
82a24990
PC
706}
707
708type_init(m25p80_register_types)