]> git.proxmox.com Git - qemu.git/blame - hw/onenand.c
Use glib memory allocation and free functions
[qemu.git] / hw / onenand.c
CommitLineData
7e7c5e4c
AZ
1/*
2 * OneNAND flash memories emulation.
3 *
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
fad6cb1a 17 * You should have received a copy of the GNU General Public License along
8167ee88 18 * with this program; if not, see <http://www.gnu.org/licenses/>.
7e7c5e4c
AZ
19 */
20
21#include "qemu-common.h"
34f9f0b5 22#include "hw.h"
7e7c5e4c
AZ
23#include "flash.h"
24#include "irq.h"
666daa68 25#include "blockdev.h"
7e7c5e4c
AZ
26
27/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
28#define PAGE_SHIFT 11
29
30/* Fixed */
31#define BLOCK_SHIFT (PAGE_SHIFT + 6)
32
bc24a225 33typedef struct {
5923ba42
JR
34 struct {
35 uint16_t man;
36 uint16_t dev;
37 uint16_t ver;
38 } id;
7e7c5e4c 39 int shift;
c227f099 40 target_phys_addr_t base;
7e7c5e4c
AZ
41 qemu_irq intr;
42 qemu_irq rdy;
43 BlockDriverState *bdrv;
44 BlockDriverState *bdrv_cur;
45 uint8_t *image;
46 uint8_t *otp;
47 uint8_t *current;
c227f099 48 ram_addr_t ram;
7e7c5e4c
AZ
49 uint8_t *boot[2];
50 uint8_t *data[2][2];
51 int iomemtype;
52 int cycle;
53 int otpmode;
54
55 uint16_t addr[8];
56 uint16_t unladdr[8];
57 int bufaddr;
58 int count;
59 uint16_t command;
60 uint16_t config[2];
61 uint16_t status;
62 uint16_t intstatus;
63 uint16_t wpstatus;
64
bc24a225 65 ECCState ecc;
7e7c5e4c
AZ
66
67 int density_mask;
68 int secs;
69 int secs_cur;
70 int blocks;
71 uint8_t *blockwp;
bc24a225 72} OneNANDState;
7e7c5e4c
AZ
73
74enum {
75 ONEN_BUF_BLOCK = 0,
76 ONEN_BUF_BLOCK2 = 1,
77 ONEN_BUF_DEST_BLOCK = 2,
78 ONEN_BUF_DEST_PAGE = 3,
79 ONEN_BUF_PAGE = 7,
80};
81
82enum {
83 ONEN_ERR_CMD = 1 << 10,
84 ONEN_ERR_ERASE = 1 << 11,
85 ONEN_ERR_PROG = 1 << 12,
86 ONEN_ERR_LOAD = 1 << 13,
87};
88
89enum {
90 ONEN_INT_RESET = 1 << 4,
91 ONEN_INT_ERASE = 1 << 5,
92 ONEN_INT_PROG = 1 << 6,
93 ONEN_INT_LOAD = 1 << 7,
94 ONEN_INT = 1 << 15,
95};
96
97enum {
98 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
99 ONEN_LOCK_LOCKED = 1 << 1,
100 ONEN_LOCK_UNLOCKED = 1 << 2,
101};
102
c227f099 103void onenand_base_update(void *opaque, target_phys_addr_t new)
7e7c5e4c 104{
bc24a225 105 OneNANDState *s = (OneNANDState *) opaque;
7e7c5e4c
AZ
106
107 s->base = new;
108
109 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
110 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
111 * write boot commands. Also take note of the BWPS bit. */
112 cpu_register_physical_memory(s->base + (0x0000 << s->shift),
113 0x0200 << s->shift, s->iomemtype);
114 cpu_register_physical_memory(s->base + (0x0200 << s->shift),
115 0xbe00 << s->shift,
116 (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
117 if (s->iomemtype)
8da3ff18
PB
118 cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
119 0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
7e7c5e4c
AZ
120}
121
122void onenand_base_unmap(void *opaque)
123{
bc24a225 124 OneNANDState *s = (OneNANDState *) opaque;
7e7c5e4c
AZ
125
126 cpu_register_physical_memory(s->base,
127 0x10000 << s->shift, IO_MEM_UNASSIGNED);
128}
129
bc24a225 130static void onenand_intr_update(OneNANDState *s)
7e7c5e4c
AZ
131{
132 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
133}
134
135/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
bc24a225 136static void onenand_reset(OneNANDState *s, int cold)
7e7c5e4c
AZ
137{
138 memset(&s->addr, 0, sizeof(s->addr));
139 s->command = 0;
140 s->count = 1;
141 s->bufaddr = 0;
142 s->config[0] = 0x40c0;
143 s->config[1] = 0x0000;
144 onenand_intr_update(s);
145 qemu_irq_raise(s->rdy);
146 s->status = 0x0000;
147 s->intstatus = cold ? 0x8080 : 0x8010;
148 s->unladdr[0] = 0;
149 s->unladdr[1] = 0;
150 s->wpstatus = 0x0002;
151 s->cycle = 0;
152 s->otpmode = 0;
153 s->bdrv_cur = s->bdrv;
154 s->current = s->image;
155 s->secs_cur = s->secs;
156
157 if (cold) {
158 /* Lock the whole flash */
159 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
160
161 if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
2ac71179 162 hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__);
7e7c5e4c
AZ
163 }
164}
165
bc24a225 166static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
7e7c5e4c
AZ
167 void *dest)
168{
169 if (s->bdrv_cur)
170 return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
171 else if (sec + secn > s->secs_cur)
172 return 1;
173
174 memcpy(dest, s->current + (sec << 9), secn << 9);
175
176 return 0;
177}
178
bc24a225 179static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
7e7c5e4c
AZ
180 void *src)
181{
f1588dd2
JR
182 int result = 0;
183
184 if (secn > 0) {
185 uint32_t size = (uint32_t) secn * 512;
186 const uint8_t *sp = (const uint8_t *) src;
187 uint8_t *dp = 0;
188 if (s->bdrv_cur) {
7267c094 189 dp = g_malloc(size);
f1588dd2
JR
190 if (!dp || bdrv_read(s->bdrv_cur, sec, dp, secn) < 0) {
191 result = 1;
192 }
193 } else {
194 if (sec + secn > s->secs_cur) {
195 result = 1;
196 } else {
197 dp = (uint8_t *) s->current + (sec << 9);
198 }
199 }
200 if (!result) {
201 uint32_t i;
202 for (i = 0; i < size; i++) {
203 dp[i] &= sp[i];
204 }
205 if (s->bdrv_cur) {
206 result = bdrv_write(s->bdrv_cur, sec, dp, secn) < 0;
207 }
208 }
209 if (dp && s->bdrv_cur) {
7267c094 210 g_free(dp);
f1588dd2
JR
211 }
212 }
7e7c5e4c 213
f1588dd2 214 return result;
7e7c5e4c
AZ
215}
216
bc24a225 217static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
7e7c5e4c
AZ
218 void *dest)
219{
220 uint8_t buf[512];
221
222 if (s->bdrv_cur) {
223 if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
224 return 1;
225 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
226 } else if (sec + secn > s->secs_cur)
227 return 1;
228 else
229 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
230
231 return 0;
232}
233
bc24a225 234static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
7e7c5e4c
AZ
235 void *src)
236{
f1588dd2
JR
237 int result = 0;
238 if (secn > 0) {
239 const uint8_t *sp = (const uint8_t *) src;
240 uint8_t *dp = 0, *dpp = 0;
241 if (s->bdrv_cur) {
7267c094 242 dp = g_malloc(512);
f1588dd2
JR
243 if (!dp || bdrv_read(s->bdrv_cur,
244 s->secs_cur + (sec >> 5),
245 dp, 1) < 0) {
246 result = 1;
247 } else {
248 dpp = dp + ((sec & 31) << 4);
249 }
250 } else {
251 if (sec + secn > s->secs_cur) {
252 result = 1;
253 } else {
254 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
255 }
256 }
257 if (!result) {
258 uint32_t i;
259 for (i = 0; i < (secn << 4); i++) {
260 dpp[i] &= sp[i];
261 }
262 if (s->bdrv_cur) {
263 result = bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5),
264 dp, 1) < 0;
265 }
266 }
267 if (dp) {
7267c094 268 g_free(dp);
f1588dd2
JR
269 }
270 }
271 return result;
7e7c5e4c
AZ
272}
273
bc24a225 274static inline int onenand_erase(OneNANDState *s, int sec, int num)
7e7c5e4c 275{
f1588dd2 276 uint8_t *blankbuf, *tmpbuf;
7267c094 277 blankbuf = g_malloc(512);
f1588dd2
JR
278 if (!blankbuf) {
279 return 1;
280 }
7267c094 281 tmpbuf = g_malloc(512);
f1588dd2 282 if (!tmpbuf) {
7267c094 283 g_free(blankbuf);
f1588dd2
JR
284 return 1;
285 }
286 memset(blankbuf, 0xff, 512);
287 for (; num > 0; num--, sec++) {
288 if (s->bdrv_cur) {
289 int erasesec = s->secs_cur + (sec >> 5);
290 if (bdrv_write(s->bdrv_cur, sec, blankbuf, 1)) {
291 goto fail;
292 }
293 if (bdrv_read(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
294 goto fail;
295 }
296 memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
297 if (bdrv_write(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
298 goto fail;
299 }
300 } else {
301 if (sec + 1 > s->secs_cur) {
302 goto fail;
303 }
304 memcpy(s->current + (sec << 9), blankbuf, 512);
305 memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
306 blankbuf, 1 << 4);
307 }
7e7c5e4c
AZ
308 }
309
7267c094
AL
310 g_free(tmpbuf);
311 g_free(blankbuf);
7e7c5e4c 312 return 0;
f1588dd2
JR
313
314fail:
7267c094
AL
315 g_free(tmpbuf);
316 g_free(blankbuf);
f1588dd2 317 return 1;
7e7c5e4c
AZ
318}
319
bc24a225 320static void onenand_command(OneNANDState *s, int cmd)
7e7c5e4c
AZ
321{
322 int b;
323 int sec;
324 void *buf;
325#define SETADDR(block, page) \
326 sec = (s->addr[page] & 3) + \
327 ((((s->addr[page] >> 2) & 0x3f) + \
328 (((s->addr[block] & 0xfff) | \
329 (s->addr[block] >> 15 ? \
330 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
331#define SETBUF_M() \
332 buf = (s->bufaddr & 8) ? \
333 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
334 buf += (s->bufaddr & 3) << 9;
335#define SETBUF_S() \
336 buf = (s->bufaddr & 8) ? \
337 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
338 buf += (s->bufaddr & 3) << 4;
339
340 switch (cmd) {
341 case 0x00: /* Load single/multiple sector data unit into buffer */
342 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
343
344 SETBUF_M()
345 if (onenand_load_main(s, sec, s->count, buf))
346 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
347
348#if 0
349 SETBUF_S()
350 if (onenand_load_spare(s, sec, s->count, buf))
351 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
352#endif
353
354 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
355 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
356 * then we need two split the read/write into two chunks.
357 */
358 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
359 break;
360 case 0x13: /* Load single/multiple spare sector into buffer */
361 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
362
363 SETBUF_S()
364 if (onenand_load_spare(s, sec, s->count, buf))
365 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
366
367 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
368 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
369 * then we need two split the read/write into two chunks.
370 */
371 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
372 break;
373 case 0x80: /* Program single/multiple sector data unit from buffer */
374 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
375
376 SETBUF_M()
377 if (onenand_prog_main(s, sec, s->count, buf))
378 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
379
380#if 0
381 SETBUF_S()
382 if (onenand_prog_spare(s, sec, s->count, buf))
383 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
384#endif
385
386 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
387 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
388 * then we need two split the read/write into two chunks.
389 */
390 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
391 break;
392 case 0x1a: /* Program single/multiple spare area sector from buffer */
393 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
394
395 SETBUF_S()
396 if (onenand_prog_spare(s, sec, s->count, buf))
397 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
398
399 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
400 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
401 * then we need two split the read/write into two chunks.
402 */
403 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
404 break;
405 case 0x1b: /* Copy-back program */
406 SETBUF_S()
407
408 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
409 if (onenand_load_main(s, sec, s->count, buf))
410 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
411
412 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
413 if (onenand_prog_main(s, sec, s->count, buf))
414 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
415
416 /* TODO: spare areas */
417
418 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
419 break;
420
421 case 0x23: /* Unlock NAND array block(s) */
422 s->intstatus |= ONEN_INT;
423
424 /* XXX the previous (?) area should be locked automatically */
425 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
426 if (b >= s->blocks) {
427 s->status |= ONEN_ERR_CMD;
428 break;
429 }
430 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
431 break;
432
433 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
434 }
435 break;
89588a4b
AZ
436 case 0x27: /* Unlock All NAND array blocks */
437 s->intstatus |= ONEN_INT;
438
439 for (b = 0; b < s->blocks; b ++) {
440 if (b >= s->blocks) {
441 s->status |= ONEN_ERR_CMD;
442 break;
443 }
444 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
445 break;
446
447 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
448 }
449 break;
450
7e7c5e4c
AZ
451 case 0x2a: /* Lock NAND array block(s) */
452 s->intstatus |= ONEN_INT;
453
454 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
455 if (b >= s->blocks) {
456 s->status |= ONEN_ERR_CMD;
457 break;
458 }
459 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
460 break;
461
462 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
463 }
464 break;
465 case 0x2c: /* Lock-tight NAND array block(s) */
466 s->intstatus |= ONEN_INT;
467
468 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
469 if (b >= s->blocks) {
470 s->status |= ONEN_ERR_CMD;
471 break;
472 }
473 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
474 continue;
475
476 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
477 }
478 break;
479
480 case 0x71: /* Erase-Verify-Read */
481 s->intstatus |= ONEN_INT;
482 break;
483 case 0x95: /* Multi-block erase */
484 qemu_irq_pulse(s->intr);
485 /* Fall through. */
486 case 0x94: /* Block erase */
487 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
488 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
489 << (BLOCK_SHIFT - 9);
490 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
491 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
492
493 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
494 break;
495 case 0xb0: /* Erase suspend */
496 break;
497 case 0x30: /* Erase resume */
498 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
499 break;
500
501 case 0xf0: /* Reset NAND Flash core */
502 onenand_reset(s, 0);
503 break;
504 case 0xf3: /* Reset OneNAND */
505 onenand_reset(s, 0);
506 break;
507
508 case 0x65: /* OTP Access */
509 s->intstatus |= ONEN_INT;
b9d38e95 510 s->bdrv_cur = NULL;
7e7c5e4c
AZ
511 s->current = s->otp;
512 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
513 s->addr[ONEN_BUF_BLOCK] = 0;
514 s->otpmode = 1;
515 break;
516
517 default:
518 s->status |= ONEN_ERR_CMD;
519 s->intstatus |= ONEN_INT;
520 fprintf(stderr, "%s: unknown OneNAND command %x\n",
521 __FUNCTION__, cmd);
522 }
523
524 onenand_intr_update(s);
525}
526
c227f099 527static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
7e7c5e4c 528{
bc24a225 529 OneNANDState *s = (OneNANDState *) opaque;
8da3ff18 530 int offset = addr >> s->shift;
7e7c5e4c
AZ
531
532 switch (offset) {
533 case 0x0000 ... 0xc000:
8da3ff18 534 return lduw_le_p(s->boot[0] + addr);
7e7c5e4c
AZ
535
536 case 0xf000: /* Manufacturer ID */
5923ba42 537 return s->id.man;
7e7c5e4c 538 case 0xf001: /* Device ID */
5923ba42 539 return s->id.dev;
7e7c5e4c 540 case 0xf002: /* Version ID */
5923ba42
JR
541 return s->id.ver;
542 /* TODO: get the following values from a real chip! */
7e7c5e4c
AZ
543 case 0xf003: /* Data Buffer size */
544 return 1 << PAGE_SHIFT;
545 case 0xf004: /* Boot Buffer size */
546 return 0x200;
547 case 0xf005: /* Amount of buffers */
548 return 1 | (2 << 8);
549 case 0xf006: /* Technology */
550 return 0;
551
552 case 0xf100 ... 0xf107: /* Start addresses */
553 return s->addr[offset - 0xf100];
554
555 case 0xf200: /* Start buffer */
556 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
557
558 case 0xf220: /* Command */
559 return s->command;
560 case 0xf221: /* System Configuration 1 */
561 return s->config[0] & 0xffe0;
562 case 0xf222: /* System Configuration 2 */
563 return s->config[1];
564
565 case 0xf240: /* Controller Status */
566 return s->status;
567 case 0xf241: /* Interrupt */
568 return s->intstatus;
569 case 0xf24c: /* Unlock Start Block Address */
570 return s->unladdr[0];
571 case 0xf24d: /* Unlock End Block Address */
572 return s->unladdr[1];
573 case 0xf24e: /* Write Protection Status */
574 return s->wpstatus;
575
576 case 0xff00: /* ECC Status */
577 return 0x00;
578 case 0xff01: /* ECC Result of main area data */
579 case 0xff02: /* ECC Result of spare area data */
580 case 0xff03: /* ECC Result of main area data */
581 case 0xff04: /* ECC Result of spare area data */
2ac71179 582 hw_error("%s: imeplement ECC\n", __FUNCTION__);
7e7c5e4c
AZ
583 return 0x0000;
584 }
585
586 fprintf(stderr, "%s: unknown OneNAND register %x\n",
587 __FUNCTION__, offset);
588 return 0;
589}
590
c227f099 591static void onenand_write(void *opaque, target_phys_addr_t addr,
7e7c5e4c
AZ
592 uint32_t value)
593{
bc24a225 594 OneNANDState *s = (OneNANDState *) opaque;
8da3ff18 595 int offset = addr >> s->shift;
7e7c5e4c
AZ
596 int sec;
597
598 switch (offset) {
599 case 0x0000 ... 0x01ff:
600 case 0x8000 ... 0x800f:
601 if (s->cycle) {
602 s->cycle = 0;
603
604 if (value == 0x0000) {
605 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
606 onenand_load_main(s, sec,
607 1 << (PAGE_SHIFT - 9), s->data[0][0]);
608 s->addr[ONEN_BUF_PAGE] += 4;
609 s->addr[ONEN_BUF_PAGE] &= 0xff;
610 }
611 break;
612 }
613
614 switch (value) {
615 case 0x00f0: /* Reset OneNAND */
616 onenand_reset(s, 0);
617 break;
618
619 case 0x00e0: /* Load Data into Buffer */
620 s->cycle = 1;
621 break;
622
623 case 0x0090: /* Read Identification Data */
624 memset(s->boot[0], 0, 3 << s->shift);
5923ba42
JR
625 s->boot[0][0 << s->shift] = s->id.man & 0xff;
626 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
7e7c5e4c
AZ
627 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
628 break;
629
630 default:
631 fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
632 __FUNCTION__, value);
633 }
634 break;
635
636 case 0xf100 ... 0xf107: /* Start addresses */
637 s->addr[offset - 0xf100] = value;
638 break;
639
640 case 0xf200: /* Start buffer */
641 s->bufaddr = (value >> 8) & 0xf;
642 if (PAGE_SHIFT == 11)
643 s->count = (value & 3) ?: 4;
644 else if (PAGE_SHIFT == 10)
645 s->count = (value & 1) ?: 2;
646 break;
647
648 case 0xf220: /* Command */
649 if (s->intstatus & (1 << 15))
650 break;
651 s->command = value;
652 onenand_command(s, s->command);
653 break;
654 case 0xf221: /* System Configuration 1 */
655 s->config[0] = value;
656 onenand_intr_update(s);
657 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
658 break;
659 case 0xf222: /* System Configuration 2 */
660 s->config[1] = value;
661 break;
662
663 case 0xf241: /* Interrupt */
664 s->intstatus &= value;
665 if ((1 << 15) & ~s->intstatus)
666 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
667 ONEN_ERR_PROG | ONEN_ERR_LOAD);
668 onenand_intr_update(s);
669 break;
670 case 0xf24c: /* Unlock Start Block Address */
671 s->unladdr[0] = value & (s->blocks - 1);
672 /* For some reason we have to set the end address to by default
673 * be same as start because the software forgets to write anything
674 * in there. */
675 s->unladdr[1] = value & (s->blocks - 1);
676 break;
677 case 0xf24d: /* Unlock End Block Address */
678 s->unladdr[1] = value & (s->blocks - 1);
679 break;
680
681 default:
682 fprintf(stderr, "%s: unknown OneNAND register %x\n",
683 __FUNCTION__, offset);
684 }
685}
686
d60efc6b 687static CPUReadMemoryFunc * const onenand_readfn[] = {
7e7c5e4c
AZ
688 onenand_read, /* TODO */
689 onenand_read,
690 onenand_read,
691};
692
d60efc6b 693static CPUWriteMemoryFunc * const onenand_writefn[] = {
7e7c5e4c
AZ
694 onenand_write, /* TODO */
695 onenand_write,
696 onenand_write,
697};
698
5923ba42
JR
699void *onenand_init(BlockDriverState *bdrv,
700 uint16_t man_id, uint16_t dev_id, uint16_t ver_id,
af5a75f4 701 int regshift, qemu_irq irq)
7e7c5e4c 702{
7267c094 703 OneNANDState *s = (OneNANDState *) g_malloc0(sizeof(*s));
5923ba42 704 uint32_t size = 1 << (24 + ((dev_id >> 4) & 7));
7e7c5e4c
AZ
705 void *ram;
706
707 s->shift = regshift;
708 s->intr = irq;
b9d38e95 709 s->rdy = NULL;
5923ba42
JR
710 s->id.man = man_id;
711 s->id.dev = dev_id;
712 s->id.ver = ver_id;
7e7c5e4c
AZ
713 s->blocks = size >> BLOCK_SHIFT;
714 s->secs = size >> 9;
7267c094 715 s->blockwp = g_malloc(s->blocks);
5923ba42 716 s->density_mask = (dev_id & 0x08) ? (1 << (6 + ((dev_id >> 4) & 7))) : 0;
1eed09cb 717 s->iomemtype = cpu_register_io_memory(onenand_readfn,
2507c12a 718 onenand_writefn, s, DEVICE_NATIVE_ENDIAN);
af5a75f4
PM
719 s->bdrv = bdrv;
720 if (!s->bdrv) {
7267c094 721 s->image = memset(g_malloc(size + (size >> 5)),
7e7c5e4c 722 0xff, size + (size >> 5));
63efb1d9 723 }
7267c094 724 s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
7e7c5e4c 725 0xff, (64 + 2) << PAGE_SHIFT);
1724f049 726 s->ram = qemu_ram_alloc(NULL, "onenand.ram", 0xc000 << s->shift);
5c130f65 727 ram = qemu_get_ram_ptr(s->ram);
7e7c5e4c
AZ
728 s->boot[0] = ram + (0x0000 << s->shift);
729 s->boot[1] = ram + (0x8000 << s->shift);
730 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
731 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
732 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
733 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
734
735 onenand_reset(s, 1);
736
737 return s;
738}
c580d92b
AZ
739
740void *onenand_raw_otp(void *opaque)
741{
bc24a225 742 OneNANDState *s = (OneNANDState *) opaque;
c580d92b
AZ
743
744 return s->otp;
745}