]> git.proxmox.com Git - qemu.git/blame - kvm-all.c
cpu: Move cpu state syncs up into cpu_dump_state()
[qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
1de7afc9
PB
24#include "qemu/atomic.h"
25#include "qemu/option.h"
26#include "qemu/config-file.h"
9c17d615 27#include "sysemu/sysemu.h"
d33a1810 28#include "hw/hw.h"
a2cb15b0 29#include "hw/pci/msi.h"
022c62cb 30#include "exec/gdbstub.h"
9c17d615 31#include "sysemu/kvm.h"
1de7afc9 32#include "qemu/bswap.h"
022c62cb
PB
33#include "exec/memory.h"
34#include "exec/address-spaces.h"
1de7afc9 35#include "qemu/event_notifier.h"
9c775729 36#include "trace.h"
05330448 37
d2f2b8a7
SH
38/* This check must be after config-host.h is included */
39#ifdef CONFIG_EVENTFD
40#include <sys/eventfd.h>
41#endif
42
62fe8331
CB
43#ifdef CONFIG_VALGRIND_H
44#include <valgrind/memcheck.h>
45#endif
46
93148aa5 47/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
f65ed4c1
AL
48#define PAGE_SIZE TARGET_PAGE_SIZE
49
05330448
AL
50//#define DEBUG_KVM
51
52#ifdef DEBUG_KVM
8c0d577e 53#define DPRINTF(fmt, ...) \
05330448
AL
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55#else
8c0d577e 56#define DPRINTF(fmt, ...) \
05330448
AL
57 do { } while (0)
58#endif
59
04fa27f5
JK
60#define KVM_MSI_HASHTAB_SIZE 256
61
34fc643f
AL
62typedef struct KVMSlot
63{
a8170e5e 64 hwaddr start_addr;
c227f099 65 ram_addr_t memory_size;
9f213ed9 66 void *ram;
34fc643f
AL
67 int slot;
68 int flags;
69} KVMSlot;
05330448 70
5832d1f2
AL
71typedef struct kvm_dirty_log KVMDirtyLog;
72
05330448
AL
73struct KVMState
74{
75 KVMSlot slots[32];
76 int fd;
77 int vmfd;
f65ed4c1 78 int coalesced_mmio;
62a2744c 79 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
1cae88b9 80 bool coalesced_flush_in_progress;
e69917e2 81 int broken_set_mem_region;
4495d6a7 82 int migration_log;
a0fb002c 83 int vcpu_events;
b0b1d690 84 int robust_singlestep;
ff44f1a3 85 int debugregs;
e22a25c9
AL
86#ifdef KVM_CAP_SET_GUEST_DEBUG
87 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
88#endif
8a7c7393 89 int pit_state2;
f1665b21 90 int xsave, xcrs;
d2f2b8a7 91 int many_ioeventfds;
3ab73842 92 int intx_set_mask;
92e4b519
DG
93 /* The man page (and posix) say ioctl numbers are signed int, but
94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
95 * unsigned, and treating them as signed here can break things */
e333cd69 96 unsigned irq_set_ioctl;
84b058d7
JK
97#ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing *irq_routes;
99 int nr_allocated_irq_routes;
100 uint32_t *used_gsi_bitmap;
4e2e4e63 101 unsigned int gsi_count;
04fa27f5 102 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
4a3adebb 103 bool direct_msi;
84b058d7 104#endif
05330448
AL
105};
106
6a7af8cb 107KVMState *kvm_state;
3d4b2649 108bool kvm_kernel_irqchip;
7ae26bd4 109bool kvm_async_interrupts_allowed;
215e79c0 110bool kvm_halt_in_kernel_allowed;
cc7e0ddf 111bool kvm_irqfds_allowed;
614e41bc 112bool kvm_msi_via_irqfd_allowed;
f3e1bed8 113bool kvm_gsi_routing_allowed;
13eed94e 114bool kvm_allowed;
df9c8b75 115bool kvm_readonly_mem_allowed;
05330448 116
94a8d39a
JK
117static const KVMCapabilityInfo kvm_required_capabilites[] = {
118 KVM_CAP_INFO(USER_MEMORY),
119 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
120 KVM_CAP_LAST_INFO
121};
122
05330448
AL
123static KVMSlot *kvm_alloc_slot(KVMState *s)
124{
125 int i;
126
127 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
a426e122 128 if (s->slots[i].memory_size == 0) {
05330448 129 return &s->slots[i];
a426e122 130 }
05330448
AL
131 }
132
d3f8d37f
AL
133 fprintf(stderr, "%s: no free slot available\n", __func__);
134 abort();
135}
136
137static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
a8170e5e
AK
138 hwaddr start_addr,
139 hwaddr end_addr)
d3f8d37f
AL
140{
141 int i;
142
143 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
144 KVMSlot *mem = &s->slots[i];
145
146 if (start_addr == mem->start_addr &&
147 end_addr == mem->start_addr + mem->memory_size) {
148 return mem;
149 }
150 }
151
05330448
AL
152 return NULL;
153}
154
6152e2ae
AL
155/*
156 * Find overlapping slot with lowest start address
157 */
158static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
a8170e5e
AK
159 hwaddr start_addr,
160 hwaddr end_addr)
05330448 161{
6152e2ae 162 KVMSlot *found = NULL;
05330448
AL
163 int i;
164
165 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
166 KVMSlot *mem = &s->slots[i];
167
6152e2ae
AL
168 if (mem->memory_size == 0 ||
169 (found && found->start_addr < mem->start_addr)) {
170 continue;
171 }
172
173 if (end_addr > mem->start_addr &&
174 start_addr < mem->start_addr + mem->memory_size) {
175 found = mem;
176 }
05330448
AL
177 }
178
6152e2ae 179 return found;
05330448
AL
180}
181
9f213ed9 182int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
a8170e5e 183 hwaddr *phys_addr)
983dfc3b
HY
184{
185 int i;
186
187 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
188 KVMSlot *mem = &s->slots[i];
189
9f213ed9
AK
190 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
191 *phys_addr = mem->start_addr + (ram - mem->ram);
983dfc3b
HY
192 return 1;
193 }
194 }
195
196 return 0;
197}
198
5832d1f2
AL
199static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
200{
201 struct kvm_userspace_memory_region mem;
202
203 mem.slot = slot->slot;
204 mem.guest_phys_addr = slot->start_addr;
9f213ed9 205 mem.userspace_addr = (unsigned long)slot->ram;
5832d1f2 206 mem.flags = slot->flags;
4495d6a7
JK
207 if (s->migration_log) {
208 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
209 }
651eb0f4
XG
210
211 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
235e8982
JJ
212 /* Set the slot size to 0 before setting the slot to the desired
213 * value. This is needed based on KVM commit 75d61fbc. */
214 mem.memory_size = 0;
215 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
216 }
217 mem.memory_size = slot->memory_size;
5832d1f2
AL
218 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
219}
220
8d2ba1fb
JK
221static void kvm_reset_vcpu(void *opaque)
222{
20d695a9 223 CPUState *cpu = opaque;
8d2ba1fb 224
20d695a9 225 kvm_arch_reset_vcpu(cpu);
8d2ba1fb 226}
5832d1f2 227
504134d2 228int kvm_init_vcpu(CPUState *cpu)
05330448
AL
229{
230 KVMState *s = kvm_state;
231 long mmap_size;
232 int ret;
233
8c0d577e 234 DPRINTF("kvm_init_vcpu\n");
05330448 235
b164e48e 236 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
05330448 237 if (ret < 0) {
8c0d577e 238 DPRINTF("kvm_create_vcpu failed\n");
05330448
AL
239 goto err;
240 }
241
8737c51c 242 cpu->kvm_fd = ret;
a60f24b5 243 cpu->kvm_state = s;
20d695a9 244 cpu->kvm_vcpu_dirty = true;
05330448
AL
245
246 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
247 if (mmap_size < 0) {
748a680b 248 ret = mmap_size;
8c0d577e 249 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
05330448
AL
250 goto err;
251 }
252
f7575c96 253 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
8737c51c 254 cpu->kvm_fd, 0);
f7575c96 255 if (cpu->kvm_run == MAP_FAILED) {
05330448 256 ret = -errno;
8c0d577e 257 DPRINTF("mmap'ing vcpu state failed\n");
05330448
AL
258 goto err;
259 }
260
a426e122
JK
261 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
262 s->coalesced_mmio_ring =
f7575c96 263 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
a426e122 264 }
62a2744c 265
20d695a9 266 ret = kvm_arch_init_vcpu(cpu);
8d2ba1fb 267 if (ret == 0) {
20d695a9
AF
268 qemu_register_reset(kvm_reset_vcpu, cpu);
269 kvm_arch_reset_vcpu(cpu);
8d2ba1fb 270 }
05330448
AL
271err:
272 return ret;
273}
274
5832d1f2
AL
275/*
276 * dirty pages logging control
277 */
25254bbc 278
235e8982 279static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
25254bbc 280{
235e8982
JJ
281 int flags = 0;
282 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
283 if (readonly && kvm_readonly_mem_allowed) {
284 flags |= KVM_MEM_READONLY;
285 }
286 return flags;
25254bbc
MT
287}
288
289static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
5832d1f2
AL
290{
291 KVMState *s = kvm_state;
25254bbc 292 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
4495d6a7
JK
293 int old_flags;
294
4495d6a7 295 old_flags = mem->flags;
5832d1f2 296
235e8982 297 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
5832d1f2
AL
298 mem->flags = flags;
299
4495d6a7
JK
300 /* If nothing changed effectively, no need to issue ioctl */
301 if (s->migration_log) {
302 flags |= KVM_MEM_LOG_DIRTY_PAGES;
303 }
25254bbc 304
4495d6a7 305 if (flags == old_flags) {
25254bbc 306 return 0;
4495d6a7
JK
307 }
308
5832d1f2
AL
309 return kvm_set_user_memory_region(s, mem);
310}
311
a8170e5e 312static int kvm_dirty_pages_log_change(hwaddr phys_addr,
25254bbc
MT
313 ram_addr_t size, bool log_dirty)
314{
315 KVMState *s = kvm_state;
316 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
317
318 if (mem == NULL) {
319 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
320 TARGET_FMT_plx "\n", __func__, phys_addr,
a8170e5e 321 (hwaddr)(phys_addr + size - 1));
25254bbc
MT
322 return -EINVAL;
323 }
324 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
325}
326
a01672d3
AK
327static void kvm_log_start(MemoryListener *listener,
328 MemoryRegionSection *section)
5832d1f2 329{
a01672d3
AK
330 int r;
331
332 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
052e87b0 333 int128_get64(section->size), true);
a01672d3
AK
334 if (r < 0) {
335 abort();
336 }
5832d1f2
AL
337}
338
a01672d3
AK
339static void kvm_log_stop(MemoryListener *listener,
340 MemoryRegionSection *section)
5832d1f2 341{
a01672d3
AK
342 int r;
343
344 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
052e87b0 345 int128_get64(section->size), false);
a01672d3
AK
346 if (r < 0) {
347 abort();
348 }
5832d1f2
AL
349}
350
7b8f3b78 351static int kvm_set_migration_log(int enable)
4495d6a7
JK
352{
353 KVMState *s = kvm_state;
354 KVMSlot *mem;
355 int i, err;
356
357 s->migration_log = enable;
358
359 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
360 mem = &s->slots[i];
361
70fedd76
AW
362 if (!mem->memory_size) {
363 continue;
364 }
4495d6a7
JK
365 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
366 continue;
367 }
368 err = kvm_set_user_memory_region(s, mem);
369 if (err) {
370 return err;
371 }
372 }
373 return 0;
374}
375
8369e01c 376/* get kvm's dirty pages bitmap and update qemu's */
ffcde12f
AK
377static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
378 unsigned long *bitmap)
96c1606b 379{
8369e01c 380 unsigned int i, j;
aa90fec7 381 unsigned long page_number, c;
a8170e5e 382 hwaddr addr, addr1;
052e87b0
PB
383 unsigned int pages = int128_get64(section->size) / getpagesize();
384 unsigned int len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
3145fcb6 385 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
8369e01c
MT
386
387 /*
388 * bitmap-traveling is faster than memory-traveling (for addr...)
389 * especially when most of the memory is not dirty.
390 */
391 for (i = 0; i < len; i++) {
392 if (bitmap[i] != 0) {
393 c = leul_to_cpu(bitmap[i]);
394 do {
395 j = ffsl(c) - 1;
396 c &= ~(1ul << j);
3145fcb6 397 page_number = (i * HOST_LONG_BITS + j) * hpratio;
8369e01c 398 addr1 = page_number * TARGET_PAGE_SIZE;
ffcde12f 399 addr = section->offset_within_region + addr1;
3145fcb6
DG
400 memory_region_set_dirty(section->mr, addr,
401 TARGET_PAGE_SIZE * hpratio);
8369e01c
MT
402 } while (c != 0);
403 }
404 }
405 return 0;
96c1606b
AG
406}
407
8369e01c
MT
408#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
409
5832d1f2
AL
410/**
411 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
fd4aa979
BS
412 * This function updates qemu's dirty bitmap using
413 * memory_region_set_dirty(). This means all bits are set
414 * to dirty.
5832d1f2 415 *
d3f8d37f 416 * @start_add: start of logged region.
5832d1f2
AL
417 * @end_addr: end of logged region.
418 */
ffcde12f 419static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
5832d1f2
AL
420{
421 KVMState *s = kvm_state;
151f7749 422 unsigned long size, allocated_size = 0;
151f7749
JK
423 KVMDirtyLog d;
424 KVMSlot *mem;
425 int ret = 0;
a8170e5e 426 hwaddr start_addr = section->offset_within_address_space;
052e87b0 427 hwaddr end_addr = start_addr + int128_get64(section->size);
5832d1f2 428
151f7749
JK
429 d.dirty_bitmap = NULL;
430 while (start_addr < end_addr) {
431 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
432 if (mem == NULL) {
433 break;
434 }
5832d1f2 435
51b0c606
MT
436 /* XXX bad kernel interface alert
437 * For dirty bitmap, kernel allocates array of size aligned to
438 * bits-per-long. But for case when the kernel is 64bits and
439 * the userspace is 32bits, userspace can't align to the same
440 * bits-per-long, since sizeof(long) is different between kernel
441 * and user space. This way, userspace will provide buffer which
442 * may be 4 bytes less than the kernel will use, resulting in
443 * userspace memory corruption (which is not detectable by valgrind
444 * too, in most cases).
445 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
446 * a hope that sizeof(long) wont become >8 any time soon.
447 */
448 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
449 /*HOST_LONG_BITS*/ 64) / 8;
151f7749 450 if (!d.dirty_bitmap) {
7267c094 451 d.dirty_bitmap = g_malloc(size);
151f7749 452 } else if (size > allocated_size) {
7267c094 453 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
151f7749
JK
454 }
455 allocated_size = size;
456 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 457
151f7749 458 d.slot = mem->slot;
5832d1f2 459
6e489f3f 460 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
8c0d577e 461 DPRINTF("ioctl failed %d\n", errno);
151f7749
JK
462 ret = -1;
463 break;
464 }
5832d1f2 465
ffcde12f 466 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
8369e01c 467 start_addr = mem->start_addr + mem->memory_size;
5832d1f2 468 }
7267c094 469 g_free(d.dirty_bitmap);
151f7749
JK
470
471 return ret;
5832d1f2
AL
472}
473
95d2994a
AK
474static void kvm_coalesce_mmio_region(MemoryListener *listener,
475 MemoryRegionSection *secion,
a8170e5e 476 hwaddr start, hwaddr size)
f65ed4c1 477{
f65ed4c1
AL
478 KVMState *s = kvm_state;
479
480 if (s->coalesced_mmio) {
481 struct kvm_coalesced_mmio_zone zone;
482
483 zone.addr = start;
484 zone.size = size;
7e680753 485 zone.pad = 0;
f65ed4c1 486
95d2994a 487 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
f65ed4c1 488 }
f65ed4c1
AL
489}
490
95d2994a
AK
491static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
492 MemoryRegionSection *secion,
a8170e5e 493 hwaddr start, hwaddr size)
f65ed4c1 494{
f65ed4c1
AL
495 KVMState *s = kvm_state;
496
497 if (s->coalesced_mmio) {
498 struct kvm_coalesced_mmio_zone zone;
499
500 zone.addr = start;
501 zone.size = size;
7e680753 502 zone.pad = 0;
f65ed4c1 503
95d2994a 504 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
f65ed4c1 505 }
f65ed4c1
AL
506}
507
ad7b8b33
AL
508int kvm_check_extension(KVMState *s, unsigned int extension)
509{
510 int ret;
511
512 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
513 if (ret < 0) {
514 ret = 0;
515 }
516
517 return ret;
518}
519
44c3f8f7 520static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
41cb62c2 521 bool assign, uint32_t size, bool datamatch)
500ffd4a
MT
522{
523 int ret;
524 struct kvm_ioeventfd iofd;
525
41cb62c2 526 iofd.datamatch = datamatch ? val : 0;
500ffd4a
MT
527 iofd.addr = addr;
528 iofd.len = size;
41cb62c2 529 iofd.flags = 0;
500ffd4a
MT
530 iofd.fd = fd;
531
532 if (!kvm_enabled()) {
533 return -ENOSYS;
534 }
535
41cb62c2
MT
536 if (datamatch) {
537 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
538 }
500ffd4a
MT
539 if (!assign) {
540 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
541 }
542
543 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
544
545 if (ret < 0) {
546 return -errno;
547 }
548
549 return 0;
550}
551
44c3f8f7 552static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
41cb62c2 553 bool assign, uint32_t size, bool datamatch)
500ffd4a
MT
554{
555 struct kvm_ioeventfd kick = {
41cb62c2 556 .datamatch = datamatch ? val : 0,
500ffd4a 557 .addr = addr,
41cb62c2 558 .flags = KVM_IOEVENTFD_FLAG_PIO,
44c3f8f7 559 .len = size,
500ffd4a
MT
560 .fd = fd,
561 };
562 int r;
563 if (!kvm_enabled()) {
564 return -ENOSYS;
565 }
41cb62c2
MT
566 if (datamatch) {
567 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
568 }
500ffd4a
MT
569 if (!assign) {
570 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
571 }
572 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
573 if (r < 0) {
574 return r;
575 }
576 return 0;
577}
578
579
d2f2b8a7
SH
580static int kvm_check_many_ioeventfds(void)
581{
d0dcac83
SH
582 /* Userspace can use ioeventfd for io notification. This requires a host
583 * that supports eventfd(2) and an I/O thread; since eventfd does not
584 * support SIGIO it cannot interrupt the vcpu.
585 *
586 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
d2f2b8a7
SH
587 * can avoid creating too many ioeventfds.
588 */
12d4536f 589#if defined(CONFIG_EVENTFD)
d2f2b8a7
SH
590 int ioeventfds[7];
591 int i, ret = 0;
592 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
593 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
594 if (ioeventfds[i] < 0) {
595 break;
596 }
41cb62c2 597 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
d2f2b8a7
SH
598 if (ret < 0) {
599 close(ioeventfds[i]);
600 break;
601 }
602 }
603
604 /* Decide whether many devices are supported or not */
605 ret = i == ARRAY_SIZE(ioeventfds);
606
607 while (i-- > 0) {
41cb62c2 608 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
d2f2b8a7
SH
609 close(ioeventfds[i]);
610 }
611 return ret;
612#else
613 return 0;
614#endif
615}
616
94a8d39a
JK
617static const KVMCapabilityInfo *
618kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
619{
620 while (list->name) {
621 if (!kvm_check_extension(s, list->value)) {
622 return list;
623 }
624 list++;
625 }
626 return NULL;
627}
628
a01672d3 629static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
46dbef6a
MT
630{
631 KVMState *s = kvm_state;
46dbef6a
MT
632 KVMSlot *mem, old;
633 int err;
a01672d3
AK
634 MemoryRegion *mr = section->mr;
635 bool log_dirty = memory_region_is_logging(mr);
235e8982
JJ
636 bool writeable = !mr->readonly && !mr->rom_device;
637 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
a8170e5e 638 hwaddr start_addr = section->offset_within_address_space;
052e87b0 639 ram_addr_t size = int128_get64(section->size);
9f213ed9 640 void *ram = NULL;
8f6f962b 641 unsigned delta;
46dbef6a 642
14542fea
GN
643 /* kvm works in page size chunks, but the function may be called
644 with sub-page size and unaligned start address. */
8f6f962b
AK
645 delta = TARGET_PAGE_ALIGN(size) - size;
646 if (delta > size) {
647 return;
648 }
649 start_addr += delta;
650 size -= delta;
651 size &= TARGET_PAGE_MASK;
652 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
653 return;
654 }
46dbef6a 655
a01672d3 656 if (!memory_region_is_ram(mr)) {
235e8982
JJ
657 if (writeable || !kvm_readonly_mem_allowed) {
658 return;
659 } else if (!mr->romd_mode) {
660 /* If the memory device is not in romd_mode, then we actually want
661 * to remove the kvm memory slot so all accesses will trap. */
662 add = false;
663 }
9f213ed9
AK
664 }
665
8f6f962b 666 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
a01672d3 667
46dbef6a
MT
668 while (1) {
669 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
670 if (!mem) {
671 break;
672 }
673
a01672d3 674 if (add && start_addr >= mem->start_addr &&
46dbef6a 675 (start_addr + size <= mem->start_addr + mem->memory_size) &&
9f213ed9 676 (ram - start_addr == mem->ram - mem->start_addr)) {
46dbef6a 677 /* The new slot fits into the existing one and comes with
25254bbc
MT
678 * identical parameters - update flags and done. */
679 kvm_slot_dirty_pages_log_change(mem, log_dirty);
46dbef6a
MT
680 return;
681 }
682
683 old = *mem;
684
3fbffb62
AK
685 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
686 kvm_physical_sync_dirty_bitmap(section);
687 }
688
46dbef6a
MT
689 /* unregister the overlapping slot */
690 mem->memory_size = 0;
691 err = kvm_set_user_memory_region(s, mem);
692 if (err) {
693 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
694 __func__, strerror(-err));
695 abort();
696 }
697
698 /* Workaround for older KVM versions: we can't join slots, even not by
699 * unregistering the previous ones and then registering the larger
700 * slot. We have to maintain the existing fragmentation. Sigh.
701 *
702 * This workaround assumes that the new slot starts at the same
703 * address as the first existing one. If not or if some overlapping
704 * slot comes around later, we will fail (not seen in practice so far)
705 * - and actually require a recent KVM version. */
706 if (s->broken_set_mem_region &&
a01672d3 707 old.start_addr == start_addr && old.memory_size < size && add) {
46dbef6a
MT
708 mem = kvm_alloc_slot(s);
709 mem->memory_size = old.memory_size;
710 mem->start_addr = old.start_addr;
9f213ed9 711 mem->ram = old.ram;
235e8982 712 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
46dbef6a
MT
713
714 err = kvm_set_user_memory_region(s, mem);
715 if (err) {
716 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
717 strerror(-err));
718 abort();
719 }
720
721 start_addr += old.memory_size;
9f213ed9 722 ram += old.memory_size;
46dbef6a
MT
723 size -= old.memory_size;
724 continue;
725 }
726
727 /* register prefix slot */
728 if (old.start_addr < start_addr) {
729 mem = kvm_alloc_slot(s);
730 mem->memory_size = start_addr - old.start_addr;
731 mem->start_addr = old.start_addr;
9f213ed9 732 mem->ram = old.ram;
235e8982 733 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
46dbef6a
MT
734
735 err = kvm_set_user_memory_region(s, mem);
736 if (err) {
737 fprintf(stderr, "%s: error registering prefix slot: %s\n",
738 __func__, strerror(-err));
d4d6868f
AG
739#ifdef TARGET_PPC
740 fprintf(stderr, "%s: This is probably because your kernel's " \
741 "PAGE_SIZE is too big. Please try to use 4k " \
742 "PAGE_SIZE!\n", __func__);
743#endif
46dbef6a
MT
744 abort();
745 }
746 }
747
748 /* register suffix slot */
749 if (old.start_addr + old.memory_size > start_addr + size) {
750 ram_addr_t size_delta;
751
752 mem = kvm_alloc_slot(s);
753 mem->start_addr = start_addr + size;
754 size_delta = mem->start_addr - old.start_addr;
755 mem->memory_size = old.memory_size - size_delta;
9f213ed9 756 mem->ram = old.ram + size_delta;
235e8982 757 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
46dbef6a
MT
758
759 err = kvm_set_user_memory_region(s, mem);
760 if (err) {
761 fprintf(stderr, "%s: error registering suffix slot: %s\n",
762 __func__, strerror(-err));
763 abort();
764 }
765 }
766 }
767
768 /* in case the KVM bug workaround already "consumed" the new slot */
a426e122 769 if (!size) {
46dbef6a 770 return;
a426e122 771 }
a01672d3 772 if (!add) {
46dbef6a 773 return;
a426e122 774 }
46dbef6a
MT
775 mem = kvm_alloc_slot(s);
776 mem->memory_size = size;
777 mem->start_addr = start_addr;
9f213ed9 778 mem->ram = ram;
235e8982 779 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
46dbef6a
MT
780
781 err = kvm_set_user_memory_region(s, mem);
782 if (err) {
783 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
784 strerror(-err));
785 abort();
786 }
787}
788
a01672d3
AK
789static void kvm_region_add(MemoryListener *listener,
790 MemoryRegionSection *section)
791{
dfde4e6e 792 memory_region_ref(section->mr);
a01672d3
AK
793 kvm_set_phys_mem(section, true);
794}
795
796static void kvm_region_del(MemoryListener *listener,
797 MemoryRegionSection *section)
798{
799 kvm_set_phys_mem(section, false);
dfde4e6e 800 memory_region_unref(section->mr);
a01672d3
AK
801}
802
803static void kvm_log_sync(MemoryListener *listener,
804 MemoryRegionSection *section)
7b8f3b78 805{
a01672d3
AK
806 int r;
807
ffcde12f 808 r = kvm_physical_sync_dirty_bitmap(section);
a01672d3
AK
809 if (r < 0) {
810 abort();
811 }
7b8f3b78
MT
812}
813
a01672d3 814static void kvm_log_global_start(struct MemoryListener *listener)
7b8f3b78 815{
a01672d3
AK
816 int r;
817
818 r = kvm_set_migration_log(1);
819 assert(r >= 0);
7b8f3b78
MT
820}
821
a01672d3 822static void kvm_log_global_stop(struct MemoryListener *listener)
7b8f3b78 823{
a01672d3
AK
824 int r;
825
826 r = kvm_set_migration_log(0);
827 assert(r >= 0);
7b8f3b78
MT
828}
829
d22b096e
AK
830static void kvm_mem_ioeventfd_add(MemoryListener *listener,
831 MemoryRegionSection *section,
832 bool match_data, uint64_t data,
833 EventNotifier *e)
834{
835 int fd = event_notifier_get_fd(e);
80a1ea37
AK
836 int r;
837
4b8f1c88 838 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
052e87b0
PB
839 data, true, int128_get64(section->size),
840 match_data);
80a1ea37 841 if (r < 0) {
fa4ba923
AK
842 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
843 __func__, strerror(-r));
80a1ea37
AK
844 abort();
845 }
846}
847
d22b096e
AK
848static void kvm_mem_ioeventfd_del(MemoryListener *listener,
849 MemoryRegionSection *section,
850 bool match_data, uint64_t data,
851 EventNotifier *e)
80a1ea37 852{
d22b096e 853 int fd = event_notifier_get_fd(e);
80a1ea37
AK
854 int r;
855
4b8f1c88 856 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
052e87b0
PB
857 data, false, int128_get64(section->size),
858 match_data);
80a1ea37
AK
859 if (r < 0) {
860 abort();
861 }
862}
863
d22b096e
AK
864static void kvm_io_ioeventfd_add(MemoryListener *listener,
865 MemoryRegionSection *section,
866 bool match_data, uint64_t data,
867 EventNotifier *e)
80a1ea37 868{
d22b096e 869 int fd = event_notifier_get_fd(e);
80a1ea37
AK
870 int r;
871
44c3f8f7 872 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
052e87b0
PB
873 data, true, int128_get64(section->size),
874 match_data);
80a1ea37 875 if (r < 0) {
fa4ba923
AK
876 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
877 __func__, strerror(-r));
80a1ea37
AK
878 abort();
879 }
880}
881
d22b096e
AK
882static void kvm_io_ioeventfd_del(MemoryListener *listener,
883 MemoryRegionSection *section,
884 bool match_data, uint64_t data,
885 EventNotifier *e)
80a1ea37
AK
886
887{
d22b096e 888 int fd = event_notifier_get_fd(e);
80a1ea37
AK
889 int r;
890
44c3f8f7 891 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
052e87b0
PB
892 data, false, int128_get64(section->size),
893 match_data);
80a1ea37
AK
894 if (r < 0) {
895 abort();
896 }
897}
898
a01672d3
AK
899static MemoryListener kvm_memory_listener = {
900 .region_add = kvm_region_add,
901 .region_del = kvm_region_del,
e5896b12
AP
902 .log_start = kvm_log_start,
903 .log_stop = kvm_log_stop,
a01672d3
AK
904 .log_sync = kvm_log_sync,
905 .log_global_start = kvm_log_global_start,
906 .log_global_stop = kvm_log_global_stop,
d22b096e
AK
907 .eventfd_add = kvm_mem_ioeventfd_add,
908 .eventfd_del = kvm_mem_ioeventfd_del,
95d2994a
AK
909 .coalesced_mmio_add = kvm_coalesce_mmio_region,
910 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
d22b096e
AK
911 .priority = 10,
912};
913
914static MemoryListener kvm_io_listener = {
d22b096e
AK
915 .eventfd_add = kvm_io_ioeventfd_add,
916 .eventfd_del = kvm_io_ioeventfd_del,
72e22d2f 917 .priority = 10,
7b8f3b78
MT
918};
919
c3affe56 920static void kvm_handle_interrupt(CPUState *cpu, int mask)
aa7f74d1 921{
259186a7 922 cpu->interrupt_request |= mask;
aa7f74d1 923
60e82579 924 if (!qemu_cpu_is_self(cpu)) {
c08d7424 925 qemu_cpu_kick(cpu);
aa7f74d1
JK
926 }
927}
928
3889c3fa 929int kvm_set_irq(KVMState *s, int irq, int level)
84b058d7
JK
930{
931 struct kvm_irq_level event;
932 int ret;
933
7ae26bd4 934 assert(kvm_async_interrupts_enabled());
84b058d7
JK
935
936 event.level = level;
937 event.irq = irq;
e333cd69 938 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
84b058d7 939 if (ret < 0) {
3889c3fa 940 perror("kvm_set_irq");
84b058d7
JK
941 abort();
942 }
943
e333cd69 944 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
84b058d7
JK
945}
946
947#ifdef KVM_CAP_IRQ_ROUTING
d3d3bef0
JK
948typedef struct KVMMSIRoute {
949 struct kvm_irq_routing_entry kroute;
950 QTAILQ_ENTRY(KVMMSIRoute) entry;
951} KVMMSIRoute;
952
84b058d7
JK
953static void set_gsi(KVMState *s, unsigned int gsi)
954{
84b058d7
JK
955 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
956}
957
04fa27f5
JK
958static void clear_gsi(KVMState *s, unsigned int gsi)
959{
960 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
961}
962
7b774593 963void kvm_init_irq_routing(KVMState *s)
84b058d7 964{
04fa27f5 965 int gsi_count, i;
84b058d7
JK
966
967 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
968 if (gsi_count > 0) {
969 unsigned int gsi_bits, i;
970
971 /* Round up so we can search ints using ffs */
bc8c6788 972 gsi_bits = ALIGN(gsi_count, 32);
84b058d7 973 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
4e2e4e63 974 s->gsi_count = gsi_count;
84b058d7
JK
975
976 /* Mark any over-allocated bits as already in use */
977 for (i = gsi_count; i < gsi_bits; i++) {
978 set_gsi(s, i);
979 }
980 }
981
982 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
983 s->nr_allocated_irq_routes = 0;
984
4a3adebb
JK
985 if (!s->direct_msi) {
986 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
987 QTAILQ_INIT(&s->msi_hashtab[i]);
988 }
04fa27f5
JK
989 }
990
84b058d7
JK
991 kvm_arch_init_irq_routing(s);
992}
993
cb925cf9 994void kvm_irqchip_commit_routes(KVMState *s)
e7b20308
JK
995{
996 int ret;
997
998 s->irq_routes->flags = 0;
999 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1000 assert(ret == 0);
1001}
1002
84b058d7
JK
1003static void kvm_add_routing_entry(KVMState *s,
1004 struct kvm_irq_routing_entry *entry)
1005{
1006 struct kvm_irq_routing_entry *new;
1007 int n, size;
1008
1009 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1010 n = s->nr_allocated_irq_routes * 2;
1011 if (n < 64) {
1012 n = 64;
1013 }
1014 size = sizeof(struct kvm_irq_routing);
1015 size += n * sizeof(*new);
1016 s->irq_routes = g_realloc(s->irq_routes, size);
1017 s->nr_allocated_irq_routes = n;
1018 }
1019 n = s->irq_routes->nr++;
1020 new = &s->irq_routes->entries[n];
0fbc2074
MT
1021
1022 *new = *entry;
84b058d7
JK
1023
1024 set_gsi(s, entry->gsi);
1025}
1026
cc57407e
JK
1027static int kvm_update_routing_entry(KVMState *s,
1028 struct kvm_irq_routing_entry *new_entry)
1029{
1030 struct kvm_irq_routing_entry *entry;
1031 int n;
1032
1033 for (n = 0; n < s->irq_routes->nr; n++) {
1034 entry = &s->irq_routes->entries[n];
1035 if (entry->gsi != new_entry->gsi) {
1036 continue;
1037 }
1038
40509f7f
MT
1039 if(!memcmp(entry, new_entry, sizeof *entry)) {
1040 return 0;
1041 }
1042
0fbc2074 1043 *entry = *new_entry;
cc57407e
JK
1044
1045 kvm_irqchip_commit_routes(s);
1046
1047 return 0;
1048 }
1049
1050 return -ESRCH;
1051}
1052
1df186df 1053void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
84b058d7 1054{
0fbc2074 1055 struct kvm_irq_routing_entry e = {};
84b058d7 1056
4e2e4e63
JK
1057 assert(pin < s->gsi_count);
1058
84b058d7
JK
1059 e.gsi = irq;
1060 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1061 e.flags = 0;
1062 e.u.irqchip.irqchip = irqchip;
1063 e.u.irqchip.pin = pin;
1064 kvm_add_routing_entry(s, &e);
1065}
1066
1e2aa8be 1067void kvm_irqchip_release_virq(KVMState *s, int virq)
04fa27f5
JK
1068{
1069 struct kvm_irq_routing_entry *e;
1070 int i;
1071
1072 for (i = 0; i < s->irq_routes->nr; i++) {
1073 e = &s->irq_routes->entries[i];
1074 if (e->gsi == virq) {
1075 s->irq_routes->nr--;
1076 *e = s->irq_routes->entries[s->irq_routes->nr];
1077 }
1078 }
1079 clear_gsi(s, virq);
1080}
1081
1082static unsigned int kvm_hash_msi(uint32_t data)
1083{
1084 /* This is optimized for IA32 MSI layout. However, no other arch shall
1085 * repeat the mistake of not providing a direct MSI injection API. */
1086 return data & 0xff;
1087}
1088
1089static void kvm_flush_dynamic_msi_routes(KVMState *s)
1090{
1091 KVMMSIRoute *route, *next;
1092 unsigned int hash;
1093
1094 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1095 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1096 kvm_irqchip_release_virq(s, route->kroute.gsi);
1097 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1098 g_free(route);
1099 }
1100 }
1101}
1102
1103static int kvm_irqchip_get_virq(KVMState *s)
1104{
1105 uint32_t *word = s->used_gsi_bitmap;
1106 int max_words = ALIGN(s->gsi_count, 32) / 32;
1107 int i, bit;
1108 bool retry = true;
1109
1110again:
1111 /* Return the lowest unused GSI in the bitmap */
1112 for (i = 0; i < max_words; i++) {
1113 bit = ffs(~word[i]);
1114 if (!bit) {
1115 continue;
1116 }
1117
1118 return bit - 1 + i * 32;
1119 }
4a3adebb 1120 if (!s->direct_msi && retry) {
04fa27f5
JK
1121 retry = false;
1122 kvm_flush_dynamic_msi_routes(s);
1123 goto again;
1124 }
1125 return -ENOSPC;
1126
1127}
1128
1129static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1130{
1131 unsigned int hash = kvm_hash_msi(msg.data);
1132 KVMMSIRoute *route;
1133
1134 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1135 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1136 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
d07cc1f1 1137 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
04fa27f5
JK
1138 return route;
1139 }
1140 }
1141 return NULL;
1142}
1143
1144int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1145{
4a3adebb 1146 struct kvm_msi msi;
04fa27f5
JK
1147 KVMMSIRoute *route;
1148
4a3adebb
JK
1149 if (s->direct_msi) {
1150 msi.address_lo = (uint32_t)msg.address;
1151 msi.address_hi = msg.address >> 32;
d07cc1f1 1152 msi.data = le32_to_cpu(msg.data);
4a3adebb
JK
1153 msi.flags = 0;
1154 memset(msi.pad, 0, sizeof(msi.pad));
1155
1156 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1157 }
1158
04fa27f5
JK
1159 route = kvm_lookup_msi_route(s, msg);
1160 if (!route) {
e7b20308 1161 int virq;
04fa27f5
JK
1162
1163 virq = kvm_irqchip_get_virq(s);
1164 if (virq < 0) {
1165 return virq;
1166 }
1167
0fbc2074 1168 route = g_malloc0(sizeof(KVMMSIRoute));
04fa27f5
JK
1169 route->kroute.gsi = virq;
1170 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1171 route->kroute.flags = 0;
1172 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1173 route->kroute.u.msi.address_hi = msg.address >> 32;
d07cc1f1 1174 route->kroute.u.msi.data = le32_to_cpu(msg.data);
04fa27f5
JK
1175
1176 kvm_add_routing_entry(s, &route->kroute);
cb925cf9 1177 kvm_irqchip_commit_routes(s);
04fa27f5
JK
1178
1179 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1180 entry);
04fa27f5
JK
1181 }
1182
1183 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1184
3889c3fa 1185 return kvm_set_irq(s, route->kroute.gsi, 1);
04fa27f5
JK
1186}
1187
92b4e489
JK
1188int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1189{
0fbc2074 1190 struct kvm_irq_routing_entry kroute = {};
92b4e489
JK
1191 int virq;
1192
f3e1bed8 1193 if (!kvm_gsi_routing_enabled()) {
92b4e489
JK
1194 return -ENOSYS;
1195 }
1196
1197 virq = kvm_irqchip_get_virq(s);
1198 if (virq < 0) {
1199 return virq;
1200 }
1201
1202 kroute.gsi = virq;
1203 kroute.type = KVM_IRQ_ROUTING_MSI;
1204 kroute.flags = 0;
1205 kroute.u.msi.address_lo = (uint32_t)msg.address;
1206 kroute.u.msi.address_hi = msg.address >> 32;
d07cc1f1 1207 kroute.u.msi.data = le32_to_cpu(msg.data);
92b4e489
JK
1208
1209 kvm_add_routing_entry(s, &kroute);
cb925cf9 1210 kvm_irqchip_commit_routes(s);
92b4e489
JK
1211
1212 return virq;
1213}
1214
cc57407e
JK
1215int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1216{
0fbc2074 1217 struct kvm_irq_routing_entry kroute = {};
cc57407e
JK
1218
1219 if (!kvm_irqchip_in_kernel()) {
1220 return -ENOSYS;
1221 }
1222
1223 kroute.gsi = virq;
1224 kroute.type = KVM_IRQ_ROUTING_MSI;
1225 kroute.flags = 0;
1226 kroute.u.msi.address_lo = (uint32_t)msg.address;
1227 kroute.u.msi.address_hi = msg.address >> 32;
d07cc1f1 1228 kroute.u.msi.data = le32_to_cpu(msg.data);
cc57407e
JK
1229
1230 return kvm_update_routing_entry(s, &kroute);
1231}
1232
ca916d37
VM
1233static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1234 bool assign)
39853bbc
JK
1235{
1236 struct kvm_irqfd irqfd = {
1237 .fd = fd,
1238 .gsi = virq,
1239 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1240 };
1241
ca916d37
VM
1242 if (rfd != -1) {
1243 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1244 irqfd.resamplefd = rfd;
1245 }
1246
cc7e0ddf 1247 if (!kvm_irqfds_enabled()) {
39853bbc
JK
1248 return -ENOSYS;
1249 }
1250
1251 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1252}
1253
84b058d7
JK
1254#else /* !KVM_CAP_IRQ_ROUTING */
1255
7b774593 1256void kvm_init_irq_routing(KVMState *s)
84b058d7
JK
1257{
1258}
04fa27f5 1259
d3d3bef0
JK
1260void kvm_irqchip_release_virq(KVMState *s, int virq)
1261{
1262}
1263
04fa27f5
JK
1264int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1265{
1266 abort();
1267}
92b4e489
JK
1268
1269int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1270{
df410675 1271 return -ENOSYS;
92b4e489 1272}
39853bbc
JK
1273
1274static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1275{
1276 abort();
1277}
dabe3143
MT
1278
1279int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1280{
1281 return -ENOSYS;
1282}
84b058d7
JK
1283#endif /* !KVM_CAP_IRQ_ROUTING */
1284
ca916d37
VM
1285int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1286 EventNotifier *rn, int virq)
39853bbc 1287{
ca916d37
VM
1288 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1289 rn ? event_notifier_get_fd(rn) : -1, virq, true);
39853bbc
JK
1290}
1291
b131c74a 1292int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
15b2bd18 1293{
ca916d37
VM
1294 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1295 false);
15b2bd18
PB
1296}
1297
84b058d7
JK
1298static int kvm_irqchip_create(KVMState *s)
1299{
84b058d7
JK
1300 int ret;
1301
36ad0e94 1302 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
84b058d7
JK
1303 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1304 return 0;
1305 }
1306
1307 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1308 if (ret < 0) {
1309 fprintf(stderr, "Create kernel irqchip failed\n");
1310 return ret;
1311 }
1312
3d4b2649 1313 kvm_kernel_irqchip = true;
7ae26bd4
PM
1314 /* If we have an in-kernel IRQ chip then we must have asynchronous
1315 * interrupt delivery (though the reverse is not necessarily true)
1316 */
1317 kvm_async_interrupts_allowed = true;
215e79c0 1318 kvm_halt_in_kernel_allowed = true;
84b058d7
JK
1319
1320 kvm_init_irq_routing(s);
1321
1322 return 0;
1323}
1324
3ed444e9
DH
1325static int kvm_max_vcpus(KVMState *s)
1326{
1327 int ret;
1328
1329 /* Find number of supported CPUs using the recommended
1330 * procedure from the kernel API documentation to cope with
1331 * older kernels that may be missing capabilities.
1332 */
1333 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1334 if (ret) {
1335 return ret;
1336 }
1337 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1338 if (ret) {
1339 return ret;
1340 }
1341
1342 return 4;
1343}
1344
cad1e282 1345int kvm_init(void)
05330448 1346{
168ccc11
JK
1347 static const char upgrade_note[] =
1348 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1349 "(see http://sourceforge.net/projects/kvm).\n";
05330448 1350 KVMState *s;
94a8d39a 1351 const KVMCapabilityInfo *missing_cap;
05330448
AL
1352 int ret;
1353 int i;
3ed444e9 1354 int max_vcpus;
05330448 1355
7267c094 1356 s = g_malloc0(sizeof(KVMState));
05330448 1357
3145fcb6
DG
1358 /*
1359 * On systems where the kernel can support different base page
1360 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1361 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1362 * page size for the system though.
1363 */
1364 assert(TARGET_PAGE_SIZE <= getpagesize());
1365
e22a25c9 1366#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 1367 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 1368#endif
a426e122 1369 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
05330448 1370 s->slots[i].slot = i;
a426e122 1371 }
05330448 1372 s->vmfd = -1;
40ff6d7e 1373 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
1374 if (s->fd == -1) {
1375 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1376 ret = -errno;
1377 goto err;
1378 }
1379
1380 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1381 if (ret < KVM_API_VERSION) {
a426e122 1382 if (ret > 0) {
05330448 1383 ret = -EINVAL;
a426e122 1384 }
05330448
AL
1385 fprintf(stderr, "kvm version too old\n");
1386 goto err;
1387 }
1388
1389 if (ret > KVM_API_VERSION) {
1390 ret = -EINVAL;
1391 fprintf(stderr, "kvm version not supported\n");
1392 goto err;
1393 }
1394
3ed444e9
DH
1395 max_vcpus = kvm_max_vcpus(s);
1396 if (smp_cpus > max_vcpus) {
1397 ret = -EINVAL;
1398 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1399 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1400 goto err;
1401 }
1402
7dc52526
MT
1403 if (max_cpus > max_vcpus) {
1404 ret = -EINVAL;
1405 fprintf(stderr, "Number of hotpluggable cpus requested (%d) exceeds max cpus "
1406 "supported by KVM (%d)\n", max_cpus, max_vcpus);
1407 goto err;
1408 }
1409
05330448 1410 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
0104dcac
AG
1411 if (s->vmfd < 0) {
1412#ifdef TARGET_S390X
1413 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1414 "your host kernel command line\n");
1415#endif
db9eae1c 1416 ret = s->vmfd;
05330448 1417 goto err;
0104dcac 1418 }
05330448 1419
94a8d39a
JK
1420 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1421 if (!missing_cap) {
1422 missing_cap =
1423 kvm_check_extension_list(s, kvm_arch_required_capabilities);
05330448 1424 }
94a8d39a 1425 if (missing_cap) {
ad7b8b33 1426 ret = -EINVAL;
94a8d39a
JK
1427 fprintf(stderr, "kvm does not support %s\n%s",
1428 missing_cap->name, upgrade_note);
d85dc283
AL
1429 goto err;
1430 }
1431
ad7b8b33 1432 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
f65ed4c1 1433
e69917e2 1434 s->broken_set_mem_region = 1;
14a09518 1435 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
e69917e2
JK
1436 if (ret > 0) {
1437 s->broken_set_mem_region = 0;
1438 }
e69917e2 1439
a0fb002c
JK
1440#ifdef KVM_CAP_VCPU_EVENTS
1441 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1442#endif
1443
b0b1d690
JK
1444 s->robust_singlestep =
1445 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
b0b1d690 1446
ff44f1a3
JK
1447#ifdef KVM_CAP_DEBUGREGS
1448 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1449#endif
1450
f1665b21
SY
1451#ifdef KVM_CAP_XSAVE
1452 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1453#endif
1454
f1665b21
SY
1455#ifdef KVM_CAP_XCRS
1456 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1457#endif
1458
8a7c7393
JK
1459#ifdef KVM_CAP_PIT_STATE2
1460 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1461#endif
1462
d3d3bef0 1463#ifdef KVM_CAP_IRQ_ROUTING
4a3adebb 1464 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
d3d3bef0 1465#endif
4a3adebb 1466
3ab73842
JK
1467 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1468
e333cd69 1469 s->irq_set_ioctl = KVM_IRQ_LINE;
8732fbd2 1470 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
e333cd69 1471 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
8732fbd2
PM
1472 }
1473
df9c8b75
JJ
1474#ifdef KVM_CAP_READONLY_MEM
1475 kvm_readonly_mem_allowed =
1476 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1477#endif
1478
cad1e282 1479 ret = kvm_arch_init(s);
a426e122 1480 if (ret < 0) {
05330448 1481 goto err;
a426e122 1482 }
05330448 1483
84b058d7
JK
1484 ret = kvm_irqchip_create(s);
1485 if (ret < 0) {
1486 goto err;
1487 }
1488
05330448 1489 kvm_state = s;
f6790af6
AK
1490 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1491 memory_listener_register(&kvm_io_listener, &address_space_io);
05330448 1492
d2f2b8a7
SH
1493 s->many_ioeventfds = kvm_check_many_ioeventfds();
1494
aa7f74d1
JK
1495 cpu_interrupt_handler = kvm_handle_interrupt;
1496
05330448
AL
1497 return 0;
1498
1499err:
6d1cc321
SW
1500 if (s->vmfd >= 0) {
1501 close(s->vmfd);
1502 }
1503 if (s->fd != -1) {
1504 close(s->fd);
05330448 1505 }
7267c094 1506 g_free(s);
05330448
AL
1507
1508 return ret;
1509}
1510
b30e93e9
JK
1511static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1512 uint32_t count)
05330448
AL
1513{
1514 int i;
1515 uint8_t *ptr = data;
1516
1517 for (i = 0; i < count; i++) {
354678c5
JK
1518 address_space_rw(&address_space_io, port, ptr, size,
1519 direction == KVM_EXIT_IO_OUT);
05330448
AL
1520 ptr += size;
1521 }
05330448
AL
1522}
1523
5326ab55 1524static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
7c80eef8 1525{
bb44e0d1 1526 fprintf(stderr, "KVM internal error.");
7c80eef8
MT
1527 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1528 int i;
1529
bb44e0d1 1530 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
7c80eef8
MT
1531 for (i = 0; i < run->internal.ndata; ++i) {
1532 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1533 i, (uint64_t)run->internal.data[i]);
1534 }
bb44e0d1
JK
1535 } else {
1536 fprintf(stderr, "\n");
7c80eef8 1537 }
7c80eef8
MT
1538 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1539 fprintf(stderr, "emulation failure\n");
20d695a9 1540 if (!kvm_arch_stop_on_emulation_error(cpu)) {
878096ee 1541 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
d73cd8f4 1542 return EXCP_INTERRUPT;
a426e122 1543 }
7c80eef8
MT
1544 }
1545 /* FIXME: Should trigger a qmp message to let management know
1546 * something went wrong.
1547 */
73aaec4a 1548 return -1;
7c80eef8 1549}
7c80eef8 1550
62a2744c 1551void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1 1552{
f65ed4c1 1553 KVMState *s = kvm_state;
1cae88b9
AK
1554
1555 if (s->coalesced_flush_in_progress) {
1556 return;
1557 }
1558
1559 s->coalesced_flush_in_progress = true;
1560
62a2744c
SY
1561 if (s->coalesced_mmio_ring) {
1562 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
1563 while (ring->first != ring->last) {
1564 struct kvm_coalesced_mmio *ent;
1565
1566 ent = &ring->coalesced_mmio[ring->first];
1567
1568 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
85199474 1569 smp_wmb();
f65ed4c1
AL
1570 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1571 }
1572 }
1cae88b9
AK
1573
1574 s->coalesced_flush_in_progress = false;
f65ed4c1
AL
1575}
1576
20d695a9 1577static void do_kvm_cpu_synchronize_state(void *arg)
4c0960c0 1578{
20d695a9 1579 CPUState *cpu = arg;
2705d56a 1580
20d695a9
AF
1581 if (!cpu->kvm_vcpu_dirty) {
1582 kvm_arch_get_registers(cpu);
1583 cpu->kvm_vcpu_dirty = true;
4c0960c0
AK
1584 }
1585}
1586
dd1750d7 1587void kvm_cpu_synchronize_state(CPUState *cpu)
2705d56a 1588{
20d695a9
AF
1589 if (!cpu->kvm_vcpu_dirty) {
1590 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
a426e122 1591 }
2705d56a
JK
1592}
1593
3f24a58f 1594void kvm_cpu_synchronize_post_reset(CPUState *cpu)
ea375f9a 1595{
20d695a9
AF
1596 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1597 cpu->kvm_vcpu_dirty = false;
ea375f9a
JK
1598}
1599
3f24a58f 1600void kvm_cpu_synchronize_post_init(CPUState *cpu)
ea375f9a 1601{
20d695a9
AF
1602 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1603 cpu->kvm_vcpu_dirty = false;
ea375f9a
JK
1604}
1605
1458c363 1606int kvm_cpu_exec(CPUState *cpu)
05330448 1607{
f7575c96 1608 struct kvm_run *run = cpu->kvm_run;
7cbb533f 1609 int ret, run_ret;
05330448 1610
8c0d577e 1611 DPRINTF("kvm_cpu_exec()\n");
05330448 1612
20d695a9 1613 if (kvm_arch_process_async_events(cpu)) {
fcd7d003 1614 cpu->exit_request = 0;
6792a57b 1615 return EXCP_HLT;
9ccfac9e 1616 }
0af691d7 1617
9ccfac9e 1618 do {
20d695a9
AF
1619 if (cpu->kvm_vcpu_dirty) {
1620 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1621 cpu->kvm_vcpu_dirty = false;
4c0960c0
AK
1622 }
1623
20d695a9 1624 kvm_arch_pre_run(cpu, run);
fcd7d003 1625 if (cpu->exit_request) {
9ccfac9e
JK
1626 DPRINTF("interrupt exit requested\n");
1627 /*
1628 * KVM requires us to reenter the kernel after IO exits to complete
1629 * instruction emulation. This self-signal will ensure that we
1630 * leave ASAP again.
1631 */
1632 qemu_cpu_kick_self();
1633 }
d549db5a 1634 qemu_mutex_unlock_iothread();
9ccfac9e 1635
1bc22652 1636 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
9ccfac9e 1637
d549db5a 1638 qemu_mutex_lock_iothread();
20d695a9 1639 kvm_arch_post_run(cpu, run);
05330448 1640
7cbb533f 1641 if (run_ret < 0) {
dc77d341
JK
1642 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1643 DPRINTF("io window exit\n");
d73cd8f4 1644 ret = EXCP_INTERRUPT;
dc77d341
JK
1645 break;
1646 }
7b011fbc
ME
1647 fprintf(stderr, "error: kvm run failed %s\n",
1648 strerror(-run_ret));
05330448
AL
1649 abort();
1650 }
1651
b76ac80a 1652 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
05330448
AL
1653 switch (run->exit_reason) {
1654 case KVM_EXIT_IO:
8c0d577e 1655 DPRINTF("handle_io\n");
b30e93e9
JK
1656 kvm_handle_io(run->io.port,
1657 (uint8_t *)run + run->io.data_offset,
1658 run->io.direction,
1659 run->io.size,
1660 run->io.count);
d73cd8f4 1661 ret = 0;
05330448
AL
1662 break;
1663 case KVM_EXIT_MMIO:
8c0d577e 1664 DPRINTF("handle_mmio\n");
05330448
AL
1665 cpu_physical_memory_rw(run->mmio.phys_addr,
1666 run->mmio.data,
1667 run->mmio.len,
1668 run->mmio.is_write);
d73cd8f4 1669 ret = 0;
05330448
AL
1670 break;
1671 case KVM_EXIT_IRQ_WINDOW_OPEN:
8c0d577e 1672 DPRINTF("irq_window_open\n");
d73cd8f4 1673 ret = EXCP_INTERRUPT;
05330448
AL
1674 break;
1675 case KVM_EXIT_SHUTDOWN:
8c0d577e 1676 DPRINTF("shutdown\n");
05330448 1677 qemu_system_reset_request();
d73cd8f4 1678 ret = EXCP_INTERRUPT;
05330448
AL
1679 break;
1680 case KVM_EXIT_UNKNOWN:
bb44e0d1
JK
1681 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1682 (uint64_t)run->hw.hardware_exit_reason);
73aaec4a 1683 ret = -1;
05330448 1684 break;
7c80eef8 1685 case KVM_EXIT_INTERNAL_ERROR:
5326ab55 1686 ret = kvm_handle_internal_error(cpu, run);
7c80eef8 1687 break;
05330448 1688 default:
8c0d577e 1689 DPRINTF("kvm_arch_handle_exit\n");
20d695a9 1690 ret = kvm_arch_handle_exit(cpu, run);
05330448
AL
1691 break;
1692 }
d73cd8f4 1693 } while (ret == 0);
05330448 1694
73aaec4a 1695 if (ret < 0) {
878096ee 1696 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
0461d5a6 1697 vm_stop(RUN_STATE_INTERNAL_ERROR);
becfc390
AL
1698 }
1699
fcd7d003 1700 cpu->exit_request = 0;
05330448
AL
1701 return ret;
1702}
1703
984b5181 1704int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
1705{
1706 int ret;
984b5181
AL
1707 void *arg;
1708 va_list ap;
05330448 1709
984b5181
AL
1710 va_start(ap, type);
1711 arg = va_arg(ap, void *);
1712 va_end(ap);
1713
9c775729 1714 trace_kvm_ioctl(type, arg);
984b5181 1715 ret = ioctl(s->fd, type, arg);
a426e122 1716 if (ret == -1) {
05330448 1717 ret = -errno;
a426e122 1718 }
05330448
AL
1719 return ret;
1720}
1721
984b5181 1722int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
1723{
1724 int ret;
984b5181
AL
1725 void *arg;
1726 va_list ap;
1727
1728 va_start(ap, type);
1729 arg = va_arg(ap, void *);
1730 va_end(ap);
05330448 1731
9c775729 1732 trace_kvm_vm_ioctl(type, arg);
984b5181 1733 ret = ioctl(s->vmfd, type, arg);
a426e122 1734 if (ret == -1) {
05330448 1735 ret = -errno;
a426e122 1736 }
05330448
AL
1737 return ret;
1738}
1739
1bc22652 1740int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
05330448
AL
1741{
1742 int ret;
984b5181
AL
1743 void *arg;
1744 va_list ap;
1745
1746 va_start(ap, type);
1747 arg = va_arg(ap, void *);
1748 va_end(ap);
05330448 1749
9c775729 1750 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
8737c51c 1751 ret = ioctl(cpu->kvm_fd, type, arg);
a426e122 1752 if (ret == -1) {
05330448 1753 ret = -errno;
a426e122 1754 }
05330448
AL
1755 return ret;
1756}
bd322087
AL
1757
1758int kvm_has_sync_mmu(void)
1759{
94a8d39a 1760 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
bd322087 1761}
e22a25c9 1762
a0fb002c
JK
1763int kvm_has_vcpu_events(void)
1764{
1765 return kvm_state->vcpu_events;
1766}
1767
b0b1d690
JK
1768int kvm_has_robust_singlestep(void)
1769{
1770 return kvm_state->robust_singlestep;
1771}
1772
ff44f1a3
JK
1773int kvm_has_debugregs(void)
1774{
1775 return kvm_state->debugregs;
1776}
1777
f1665b21
SY
1778int kvm_has_xsave(void)
1779{
1780 return kvm_state->xsave;
1781}
1782
1783int kvm_has_xcrs(void)
1784{
1785 return kvm_state->xcrs;
1786}
1787
8a7c7393
JK
1788int kvm_has_pit_state2(void)
1789{
1790 return kvm_state->pit_state2;
1791}
1792
d2f2b8a7
SH
1793int kvm_has_many_ioeventfds(void)
1794{
1795 if (!kvm_enabled()) {
1796 return 0;
1797 }
1798 return kvm_state->many_ioeventfds;
1799}
1800
84b058d7
JK
1801int kvm_has_gsi_routing(void)
1802{
a9c5eb0d 1803#ifdef KVM_CAP_IRQ_ROUTING
84b058d7 1804 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
a9c5eb0d
AG
1805#else
1806 return false;
1807#endif
84b058d7
JK
1808}
1809
3ab73842
JK
1810int kvm_has_intx_set_mask(void)
1811{
1812 return kvm_state->intx_set_mask;
1813}
1814
6eebf958 1815void *kvm_ram_alloc(ram_addr_t size)
fdec9918
CB
1816{
1817#ifdef TARGET_S390X
1818 void *mem;
1819
6eebf958 1820 mem = kvm_arch_ram_alloc(size);
fdec9918
CB
1821 if (mem) {
1822 return mem;
1823 }
1824#endif
6eebf958 1825 return qemu_anon_ram_alloc(size);
fdec9918
CB
1826}
1827
6f0437e8
JK
1828void kvm_setup_guest_memory(void *start, size_t size)
1829{
62fe8331
CB
1830#ifdef CONFIG_VALGRIND_H
1831 VALGRIND_MAKE_MEM_DEFINED(start, size);
1832#endif
6f0437e8 1833 if (!kvm_has_sync_mmu()) {
e78815a5 1834 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
6f0437e8
JK
1835
1836 if (ret) {
e78815a5
AF
1837 perror("qemu_madvise");
1838 fprintf(stderr,
1839 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
6f0437e8
JK
1840 exit(1);
1841 }
6f0437e8
JK
1842 }
1843}
1844
e22a25c9 1845#ifdef KVM_CAP_SET_GUEST_DEBUG
a60f24b5 1846struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
e22a25c9
AL
1847 target_ulong pc)
1848{
1849 struct kvm_sw_breakpoint *bp;
1850
a60f24b5 1851 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
a426e122 1852 if (bp->pc == pc) {
e22a25c9 1853 return bp;
a426e122 1854 }
e22a25c9
AL
1855 }
1856 return NULL;
1857}
1858
a60f24b5 1859int kvm_sw_breakpoints_active(CPUState *cpu)
e22a25c9 1860{
a60f24b5 1861 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
1862}
1863
452e4751
GC
1864struct kvm_set_guest_debug_data {
1865 struct kvm_guest_debug dbg;
a60f24b5 1866 CPUState *cpu;
452e4751
GC
1867 int err;
1868};
1869
1870static void kvm_invoke_set_guest_debug(void *data)
1871{
1872 struct kvm_set_guest_debug_data *dbg_data = data;
b3807725 1873
a60f24b5
AF
1874 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1875 &dbg_data->dbg);
452e4751
GC
1876}
1877
38e478ec 1878int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
e22a25c9 1879{
452e4751 1880 struct kvm_set_guest_debug_data data;
e22a25c9 1881
b0b1d690 1882 data.dbg.control = reinject_trap;
e22a25c9 1883
ed2803da 1884 if (cpu->singlestep_enabled) {
b0b1d690
JK
1885 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1886 }
20d695a9 1887 kvm_arch_update_guest_debug(cpu, &data.dbg);
a60f24b5 1888 data.cpu = cpu;
e22a25c9 1889
f100f0b3 1890 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
452e4751 1891 return data.err;
e22a25c9
AL
1892}
1893
62278814 1894int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
e22a25c9
AL
1895 target_ulong len, int type)
1896{
1897 struct kvm_sw_breakpoint *bp;
e22a25c9
AL
1898 int err;
1899
1900 if (type == GDB_BREAKPOINT_SW) {
80b7cd73 1901 bp = kvm_find_sw_breakpoint(cpu, addr);
e22a25c9
AL
1902 if (bp) {
1903 bp->use_count++;
1904 return 0;
1905 }
1906
7267c094 1907 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
a426e122 1908 if (!bp) {
e22a25c9 1909 return -ENOMEM;
a426e122 1910 }
e22a25c9
AL
1911
1912 bp->pc = addr;
1913 bp->use_count = 1;
80b7cd73 1914 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
e22a25c9 1915 if (err) {
7267c094 1916 g_free(bp);
e22a25c9
AL
1917 return err;
1918 }
1919
80b7cd73 1920 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
e22a25c9
AL
1921 } else {
1922 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
a426e122 1923 if (err) {
e22a25c9 1924 return err;
a426e122 1925 }
e22a25c9
AL
1926 }
1927
bdc44640 1928 CPU_FOREACH(cpu) {
38e478ec 1929 err = kvm_update_guest_debug(cpu, 0);
a426e122 1930 if (err) {
e22a25c9 1931 return err;
a426e122 1932 }
e22a25c9
AL
1933 }
1934 return 0;
1935}
1936
62278814 1937int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
e22a25c9
AL
1938 target_ulong len, int type)
1939{
1940 struct kvm_sw_breakpoint *bp;
e22a25c9
AL
1941 int err;
1942
1943 if (type == GDB_BREAKPOINT_SW) {
80b7cd73 1944 bp = kvm_find_sw_breakpoint(cpu, addr);
a426e122 1945 if (!bp) {
e22a25c9 1946 return -ENOENT;
a426e122 1947 }
e22a25c9
AL
1948
1949 if (bp->use_count > 1) {
1950 bp->use_count--;
1951 return 0;
1952 }
1953
80b7cd73 1954 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
a426e122 1955 if (err) {
e22a25c9 1956 return err;
a426e122 1957 }
e22a25c9 1958
80b7cd73 1959 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
7267c094 1960 g_free(bp);
e22a25c9
AL
1961 } else {
1962 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
a426e122 1963 if (err) {
e22a25c9 1964 return err;
a426e122 1965 }
e22a25c9
AL
1966 }
1967
bdc44640 1968 CPU_FOREACH(cpu) {
38e478ec 1969 err = kvm_update_guest_debug(cpu, 0);
a426e122 1970 if (err) {
e22a25c9 1971 return err;
a426e122 1972 }
e22a25c9
AL
1973 }
1974 return 0;
1975}
1976
1d5791f4 1977void kvm_remove_all_breakpoints(CPUState *cpu)
e22a25c9
AL
1978{
1979 struct kvm_sw_breakpoint *bp, *next;
80b7cd73 1980 KVMState *s = cpu->kvm_state;
e22a25c9 1981
72cf2d4f 1982 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
80b7cd73 1983 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
e22a25c9 1984 /* Try harder to find a CPU that currently sees the breakpoint. */
bdc44640 1985 CPU_FOREACH(cpu) {
20d695a9 1986 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
e22a25c9 1987 break;
a426e122 1988 }
e22a25c9
AL
1989 }
1990 }
78021d6d
JK
1991 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
1992 g_free(bp);
e22a25c9
AL
1993 }
1994 kvm_arch_remove_all_hw_breakpoints();
1995
bdc44640 1996 CPU_FOREACH(cpu) {
38e478ec 1997 kvm_update_guest_debug(cpu, 0);
a426e122 1998 }
e22a25c9
AL
1999}
2000
2001#else /* !KVM_CAP_SET_GUEST_DEBUG */
2002
38e478ec 2003int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
e22a25c9
AL
2004{
2005 return -EINVAL;
2006}
2007
62278814 2008int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
e22a25c9
AL
2009 target_ulong len, int type)
2010{
2011 return -EINVAL;
2012}
2013
62278814 2014int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
e22a25c9
AL
2015 target_ulong len, int type)
2016{
2017 return -EINVAL;
2018}
2019
1d5791f4 2020void kvm_remove_all_breakpoints(CPUState *cpu)
e22a25c9
AL
2021{
2022}
2023#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95 2024
491d6e80 2025int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
cc84de95
MT
2026{
2027 struct kvm_signal_mask *sigmask;
2028 int r;
2029
a426e122 2030 if (!sigset) {
1bc22652 2031 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
a426e122 2032 }
cc84de95 2033
7267c094 2034 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
cc84de95
MT
2035
2036 sigmask->len = 8;
2037 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1bc22652 2038 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
7267c094 2039 g_free(sigmask);
cc84de95
MT
2040
2041 return r;
2042}
290adf38 2043int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
a1b87fe0 2044{
20d695a9 2045 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
a1b87fe0
JK
2046}
2047
2048int kvm_on_sigbus(int code, void *addr)
2049{
2050 return kvm_arch_on_sigbus(code, addr);
2051}