]> git.proxmox.com Git - qemu.git/blame - kvm-all.c
piix_pci: load path clean up
[qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
85199474 24#include "qemu-barrier.h"
05330448 25#include "sysemu.h"
d33a1810 26#include "hw/hw.h"
e22a25c9 27#include "gdbstub.h"
05330448 28#include "kvm.h"
8369e01c 29#include "bswap.h"
05330448 30
d2f2b8a7
SH
31/* This check must be after config-host.h is included */
32#ifdef CONFIG_EVENTFD
33#include <sys/eventfd.h>
34#endif
35
f65ed4c1
AL
36/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37#define PAGE_SIZE TARGET_PAGE_SIZE
38
05330448
AL
39//#define DEBUG_KVM
40
41#ifdef DEBUG_KVM
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44#else
8c0d577e 45#define DPRINTF(fmt, ...) \
05330448
AL
46 do { } while (0)
47#endif
48
34fc643f
AL
49typedef struct KVMSlot
50{
c227f099
AL
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
34fc643f
AL
54 int slot;
55 int flags;
56} KVMSlot;
05330448 57
5832d1f2
AL
58typedef struct kvm_dirty_log KVMDirtyLog;
59
05330448
AL
60struct KVMState
61{
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
f65ed4c1 65 int coalesced_mmio;
62a2744c 66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
e69917e2 67 int broken_set_mem_region;
4495d6a7 68 int migration_log;
a0fb002c 69 int vcpu_events;
b0b1d690 70 int robust_singlestep;
ff44f1a3 71 int debugregs;
e22a25c9
AL
72#ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
74#endif
6f725c13
GC
75 int irqchip_in_kernel;
76 int pit_in_kernel;
f1665b21 77 int xsave, xcrs;
d2f2b8a7 78 int many_ioeventfds;
05330448
AL
79};
80
6a7af8cb 81KVMState *kvm_state;
05330448 82
94a8d39a
JK
83static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
86 KVM_CAP_LAST_INFO
87};
88
05330448
AL
89static KVMSlot *kvm_alloc_slot(KVMState *s)
90{
91 int i;
92
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
a426e122 94 if (s->slots[i].memory_size == 0) {
05330448 95 return &s->slots[i];
a426e122 96 }
05330448
AL
97 }
98
d3f8d37f
AL
99 fprintf(stderr, "%s: no free slot available\n", __func__);
100 abort();
101}
102
103static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
c227f099
AL
104 target_phys_addr_t start_addr,
105 target_phys_addr_t end_addr)
d3f8d37f
AL
106{
107 int i;
108
109 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
110 KVMSlot *mem = &s->slots[i];
111
112 if (start_addr == mem->start_addr &&
113 end_addr == mem->start_addr + mem->memory_size) {
114 return mem;
115 }
116 }
117
05330448
AL
118 return NULL;
119}
120
6152e2ae
AL
121/*
122 * Find overlapping slot with lowest start address
123 */
124static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
c227f099
AL
125 target_phys_addr_t start_addr,
126 target_phys_addr_t end_addr)
05330448 127{
6152e2ae 128 KVMSlot *found = NULL;
05330448
AL
129 int i;
130
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
133
6152e2ae
AL
134 if (mem->memory_size == 0 ||
135 (found && found->start_addr < mem->start_addr)) {
136 continue;
137 }
138
139 if (end_addr > mem->start_addr &&
140 start_addr < mem->start_addr + mem->memory_size) {
141 found = mem;
142 }
05330448
AL
143 }
144
6152e2ae 145 return found;
05330448
AL
146}
147
983dfc3b
HY
148int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
149 target_phys_addr_t *phys_addr)
150{
151 int i;
152
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
155
156 if (ram_addr >= mem->phys_offset &&
157 ram_addr < mem->phys_offset + mem->memory_size) {
158 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
159 return 1;
160 }
161 }
162
163 return 0;
164}
165
5832d1f2
AL
166static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
167{
168 struct kvm_userspace_memory_region mem;
169
170 mem.slot = slot->slot;
171 mem.guest_phys_addr = slot->start_addr;
172 mem.memory_size = slot->memory_size;
b2e0a138 173 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
5832d1f2 174 mem.flags = slot->flags;
4495d6a7
JK
175 if (s->migration_log) {
176 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
177 }
5832d1f2
AL
178 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
179}
180
8d2ba1fb
JK
181static void kvm_reset_vcpu(void *opaque)
182{
183 CPUState *env = opaque;
184
caa5af0f 185 kvm_arch_reset_vcpu(env);
8d2ba1fb 186}
5832d1f2 187
6f725c13
GC
188int kvm_irqchip_in_kernel(void)
189{
190 return kvm_state->irqchip_in_kernel;
191}
192
193int kvm_pit_in_kernel(void)
194{
195 return kvm_state->pit_in_kernel;
196}
197
05330448
AL
198int kvm_init_vcpu(CPUState *env)
199{
200 KVMState *s = kvm_state;
201 long mmap_size;
202 int ret;
203
8c0d577e 204 DPRINTF("kvm_init_vcpu\n");
05330448 205
984b5181 206 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448 207 if (ret < 0) {
8c0d577e 208 DPRINTF("kvm_create_vcpu failed\n");
05330448
AL
209 goto err;
210 }
211
212 env->kvm_fd = ret;
213 env->kvm_state = s;
d841b6c4 214 env->kvm_vcpu_dirty = 1;
05330448
AL
215
216 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
217 if (mmap_size < 0) {
748a680b 218 ret = mmap_size;
8c0d577e 219 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
05330448
AL
220 goto err;
221 }
222
223 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
224 env->kvm_fd, 0);
225 if (env->kvm_run == MAP_FAILED) {
226 ret = -errno;
8c0d577e 227 DPRINTF("mmap'ing vcpu state failed\n");
05330448
AL
228 goto err;
229 }
230
a426e122
JK
231 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
232 s->coalesced_mmio_ring =
233 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
234 }
62a2744c 235
05330448 236 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 237 if (ret == 0) {
a08d4367 238 qemu_register_reset(kvm_reset_vcpu, env);
caa5af0f 239 kvm_arch_reset_vcpu(env);
8d2ba1fb 240 }
05330448
AL
241err:
242 return ret;
243}
244
5832d1f2
AL
245/*
246 * dirty pages logging control
247 */
c227f099
AL
248static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
249 ram_addr_t size, int flags, int mask)
5832d1f2
AL
250{
251 KVMState *s = kvm_state;
d3f8d37f 252 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
4495d6a7
JK
253 int old_flags;
254
5832d1f2 255 if (mem == NULL) {
d3f8d37f
AL
256 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
257 TARGET_FMT_plx "\n", __func__, phys_addr,
c227f099 258 (target_phys_addr_t)(phys_addr + size - 1));
5832d1f2
AL
259 return -EINVAL;
260 }
261
4495d6a7 262 old_flags = mem->flags;
5832d1f2 263
4495d6a7 264 flags = (mem->flags & ~mask) | flags;
5832d1f2
AL
265 mem->flags = flags;
266
4495d6a7
JK
267 /* If nothing changed effectively, no need to issue ioctl */
268 if (s->migration_log) {
269 flags |= KVM_MEM_LOG_DIRTY_PAGES;
270 }
271 if (flags == old_flags) {
272 return 0;
273 }
274
5832d1f2
AL
275 return kvm_set_user_memory_region(s, mem);
276}
277
e5896b12
AP
278static int kvm_log_start(CPUPhysMemoryClient *client,
279 target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 280{
a426e122
JK
281 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
282 KVM_MEM_LOG_DIRTY_PAGES);
5832d1f2
AL
283}
284
e5896b12
AP
285static int kvm_log_stop(CPUPhysMemoryClient *client,
286 target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 287{
a426e122
JK
288 return kvm_dirty_pages_log_change(phys_addr, size, 0,
289 KVM_MEM_LOG_DIRTY_PAGES);
5832d1f2
AL
290}
291
7b8f3b78 292static int kvm_set_migration_log(int enable)
4495d6a7
JK
293{
294 KVMState *s = kvm_state;
295 KVMSlot *mem;
296 int i, err;
297
298 s->migration_log = enable;
299
300 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
301 mem = &s->slots[i];
302
70fedd76
AW
303 if (!mem->memory_size) {
304 continue;
305 }
4495d6a7
JK
306 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
307 continue;
308 }
309 err = kvm_set_user_memory_region(s, mem);
310 if (err) {
311 return err;
312 }
313 }
314 return 0;
315}
316
8369e01c
MT
317/* get kvm's dirty pages bitmap and update qemu's */
318static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
319 unsigned long *bitmap,
320 unsigned long offset,
321 unsigned long mem_size)
96c1606b 322{
8369e01c
MT
323 unsigned int i, j;
324 unsigned long page_number, addr, addr1, c;
325 ram_addr_t ram_addr;
326 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
327 HOST_LONG_BITS;
328
329 /*
330 * bitmap-traveling is faster than memory-traveling (for addr...)
331 * especially when most of the memory is not dirty.
332 */
333 for (i = 0; i < len; i++) {
334 if (bitmap[i] != 0) {
335 c = leul_to_cpu(bitmap[i]);
336 do {
337 j = ffsl(c) - 1;
338 c &= ~(1ul << j);
339 page_number = i * HOST_LONG_BITS + j;
340 addr1 = page_number * TARGET_PAGE_SIZE;
341 addr = offset + addr1;
342 ram_addr = cpu_get_physical_page_desc(addr);
343 cpu_physical_memory_set_dirty(ram_addr);
344 } while (c != 0);
345 }
346 }
347 return 0;
96c1606b
AG
348}
349
8369e01c
MT
350#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
351
5832d1f2
AL
352/**
353 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
354 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
355 * This means all bits are set to dirty.
356 *
d3f8d37f 357 * @start_add: start of logged region.
5832d1f2
AL
358 * @end_addr: end of logged region.
359 */
7b8f3b78 360static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
a426e122 361 target_phys_addr_t end_addr)
5832d1f2
AL
362{
363 KVMState *s = kvm_state;
151f7749 364 unsigned long size, allocated_size = 0;
151f7749
JK
365 KVMDirtyLog d;
366 KVMSlot *mem;
367 int ret = 0;
5832d1f2 368
151f7749
JK
369 d.dirty_bitmap = NULL;
370 while (start_addr < end_addr) {
371 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
372 if (mem == NULL) {
373 break;
374 }
5832d1f2 375
8369e01c 376 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
151f7749
JK
377 if (!d.dirty_bitmap) {
378 d.dirty_bitmap = qemu_malloc(size);
379 } else if (size > allocated_size) {
380 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
381 }
382 allocated_size = size;
383 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 384
151f7749 385 d.slot = mem->slot;
5832d1f2 386
6e489f3f 387 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
8c0d577e 388 DPRINTF("ioctl failed %d\n", errno);
151f7749
JK
389 ret = -1;
390 break;
391 }
5832d1f2 392
8369e01c
MT
393 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
394 mem->start_addr, mem->memory_size);
395 start_addr = mem->start_addr + mem->memory_size;
5832d1f2 396 }
5832d1f2 397 qemu_free(d.dirty_bitmap);
151f7749
JK
398
399 return ret;
5832d1f2
AL
400}
401
c227f099 402int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
403{
404 int ret = -ENOSYS;
f65ed4c1
AL
405 KVMState *s = kvm_state;
406
407 if (s->coalesced_mmio) {
408 struct kvm_coalesced_mmio_zone zone;
409
410 zone.addr = start;
411 zone.size = size;
412
413 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
414 }
f65ed4c1
AL
415
416 return ret;
417}
418
c227f099 419int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
420{
421 int ret = -ENOSYS;
f65ed4c1
AL
422 KVMState *s = kvm_state;
423
424 if (s->coalesced_mmio) {
425 struct kvm_coalesced_mmio_zone zone;
426
427 zone.addr = start;
428 zone.size = size;
429
430 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
431 }
f65ed4c1
AL
432
433 return ret;
434}
435
ad7b8b33
AL
436int kvm_check_extension(KVMState *s, unsigned int extension)
437{
438 int ret;
439
440 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
441 if (ret < 0) {
442 ret = 0;
443 }
444
445 return ret;
446}
447
d2f2b8a7
SH
448static int kvm_check_many_ioeventfds(void)
449{
d0dcac83
SH
450 /* Userspace can use ioeventfd for io notification. This requires a host
451 * that supports eventfd(2) and an I/O thread; since eventfd does not
452 * support SIGIO it cannot interrupt the vcpu.
453 *
454 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
d2f2b8a7
SH
455 * can avoid creating too many ioeventfds.
456 */
d0dcac83 457#if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
d2f2b8a7
SH
458 int ioeventfds[7];
459 int i, ret = 0;
460 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
461 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
462 if (ioeventfds[i] < 0) {
463 break;
464 }
465 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
466 if (ret < 0) {
467 close(ioeventfds[i]);
468 break;
469 }
470 }
471
472 /* Decide whether many devices are supported or not */
473 ret = i == ARRAY_SIZE(ioeventfds);
474
475 while (i-- > 0) {
476 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
477 close(ioeventfds[i]);
478 }
479 return ret;
480#else
481 return 0;
482#endif
483}
484
94a8d39a
JK
485static const KVMCapabilityInfo *
486kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
487{
488 while (list->name) {
489 if (!kvm_check_extension(s, list->value)) {
490 return list;
491 }
492 list++;
493 }
494 return NULL;
495}
496
a426e122
JK
497static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
498 ram_addr_t phys_offset)
46dbef6a
MT
499{
500 KVMState *s = kvm_state;
501 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
502 KVMSlot *mem, old;
503 int err;
504
14542fea
GN
505 /* kvm works in page size chunks, but the function may be called
506 with sub-page size and unaligned start address. */
507 size = TARGET_PAGE_ALIGN(size);
508 start_addr = TARGET_PAGE_ALIGN(start_addr);
46dbef6a
MT
509
510 /* KVM does not support read-only slots */
511 phys_offset &= ~IO_MEM_ROM;
512
513 while (1) {
514 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
515 if (!mem) {
516 break;
517 }
518
519 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
520 (start_addr + size <= mem->start_addr + mem->memory_size) &&
521 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
522 /* The new slot fits into the existing one and comes with
523 * identical parameters - nothing to be done. */
524 return;
525 }
526
527 old = *mem;
528
529 /* unregister the overlapping slot */
530 mem->memory_size = 0;
531 err = kvm_set_user_memory_region(s, mem);
532 if (err) {
533 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
534 __func__, strerror(-err));
535 abort();
536 }
537
538 /* Workaround for older KVM versions: we can't join slots, even not by
539 * unregistering the previous ones and then registering the larger
540 * slot. We have to maintain the existing fragmentation. Sigh.
541 *
542 * This workaround assumes that the new slot starts at the same
543 * address as the first existing one. If not or if some overlapping
544 * slot comes around later, we will fail (not seen in practice so far)
545 * - and actually require a recent KVM version. */
546 if (s->broken_set_mem_region &&
547 old.start_addr == start_addr && old.memory_size < size &&
548 flags < IO_MEM_UNASSIGNED) {
549 mem = kvm_alloc_slot(s);
550 mem->memory_size = old.memory_size;
551 mem->start_addr = old.start_addr;
552 mem->phys_offset = old.phys_offset;
553 mem->flags = 0;
554
555 err = kvm_set_user_memory_region(s, mem);
556 if (err) {
557 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
558 strerror(-err));
559 abort();
560 }
561
562 start_addr += old.memory_size;
563 phys_offset += old.memory_size;
564 size -= old.memory_size;
565 continue;
566 }
567
568 /* register prefix slot */
569 if (old.start_addr < start_addr) {
570 mem = kvm_alloc_slot(s);
571 mem->memory_size = start_addr - old.start_addr;
572 mem->start_addr = old.start_addr;
573 mem->phys_offset = old.phys_offset;
574 mem->flags = 0;
575
576 err = kvm_set_user_memory_region(s, mem);
577 if (err) {
578 fprintf(stderr, "%s: error registering prefix slot: %s\n",
579 __func__, strerror(-err));
580 abort();
581 }
582 }
583
584 /* register suffix slot */
585 if (old.start_addr + old.memory_size > start_addr + size) {
586 ram_addr_t size_delta;
587
588 mem = kvm_alloc_slot(s);
589 mem->start_addr = start_addr + size;
590 size_delta = mem->start_addr - old.start_addr;
591 mem->memory_size = old.memory_size - size_delta;
592 mem->phys_offset = old.phys_offset + size_delta;
593 mem->flags = 0;
594
595 err = kvm_set_user_memory_region(s, mem);
596 if (err) {
597 fprintf(stderr, "%s: error registering suffix slot: %s\n",
598 __func__, strerror(-err));
599 abort();
600 }
601 }
602 }
603
604 /* in case the KVM bug workaround already "consumed" the new slot */
a426e122 605 if (!size) {
46dbef6a 606 return;
a426e122 607 }
46dbef6a 608 /* KVM does not need to know about this memory */
a426e122 609 if (flags >= IO_MEM_UNASSIGNED) {
46dbef6a 610 return;
a426e122 611 }
46dbef6a
MT
612 mem = kvm_alloc_slot(s);
613 mem->memory_size = size;
614 mem->start_addr = start_addr;
615 mem->phys_offset = phys_offset;
616 mem->flags = 0;
617
618 err = kvm_set_user_memory_region(s, mem);
619 if (err) {
620 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
621 strerror(-err));
622 abort();
623 }
624}
625
7b8f3b78 626static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
a426e122
JK
627 target_phys_addr_t start_addr,
628 ram_addr_t size, ram_addr_t phys_offset)
7b8f3b78 629{
a426e122 630 kvm_set_phys_mem(start_addr, size, phys_offset);
7b8f3b78
MT
631}
632
633static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
a426e122
JK
634 target_phys_addr_t start_addr,
635 target_phys_addr_t end_addr)
7b8f3b78 636{
a426e122 637 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
7b8f3b78
MT
638}
639
640static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
a426e122 641 int enable)
7b8f3b78 642{
a426e122 643 return kvm_set_migration_log(enable);
7b8f3b78
MT
644}
645
646static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
a426e122
JK
647 .set_memory = kvm_client_set_memory,
648 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
649 .migration_log = kvm_client_migration_log,
e5896b12
AP
650 .log_start = kvm_log_start,
651 .log_stop = kvm_log_stop,
7b8f3b78
MT
652};
653
cad1e282 654int kvm_init(void)
05330448 655{
168ccc11
JK
656 static const char upgrade_note[] =
657 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
658 "(see http://sourceforge.net/projects/kvm).\n";
05330448 659 KVMState *s;
94a8d39a 660 const KVMCapabilityInfo *missing_cap;
05330448
AL
661 int ret;
662 int i;
663
05330448 664 s = qemu_mallocz(sizeof(KVMState));
05330448 665
e22a25c9 666#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 667 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 668#endif
a426e122 669 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
05330448 670 s->slots[i].slot = i;
a426e122 671 }
05330448 672 s->vmfd = -1;
40ff6d7e 673 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
674 if (s->fd == -1) {
675 fprintf(stderr, "Could not access KVM kernel module: %m\n");
676 ret = -errno;
677 goto err;
678 }
679
680 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
681 if (ret < KVM_API_VERSION) {
a426e122 682 if (ret > 0) {
05330448 683 ret = -EINVAL;
a426e122 684 }
05330448
AL
685 fprintf(stderr, "kvm version too old\n");
686 goto err;
687 }
688
689 if (ret > KVM_API_VERSION) {
690 ret = -EINVAL;
691 fprintf(stderr, "kvm version not supported\n");
692 goto err;
693 }
694
695 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
0104dcac
AG
696 if (s->vmfd < 0) {
697#ifdef TARGET_S390X
698 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
699 "your host kernel command line\n");
700#endif
05330448 701 goto err;
0104dcac 702 }
05330448 703
94a8d39a
JK
704 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
705 if (!missing_cap) {
706 missing_cap =
707 kvm_check_extension_list(s, kvm_arch_required_capabilities);
05330448 708 }
94a8d39a 709 if (missing_cap) {
ad7b8b33 710 ret = -EINVAL;
94a8d39a
JK
711 fprintf(stderr, "kvm does not support %s\n%s",
712 missing_cap->name, upgrade_note);
d85dc283
AL
713 goto err;
714 }
715
ad7b8b33 716 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
f65ed4c1 717
e69917e2
JK
718 s->broken_set_mem_region = 1;
719#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
14a09518 720 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
e69917e2
JK
721 if (ret > 0) {
722 s->broken_set_mem_region = 0;
723 }
724#endif
725
a0fb002c
JK
726 s->vcpu_events = 0;
727#ifdef KVM_CAP_VCPU_EVENTS
728 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
729#endif
730
b0b1d690
JK
731 s->robust_singlestep = 0;
732#ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
733 s->robust_singlestep =
734 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
735#endif
736
ff44f1a3
JK
737 s->debugregs = 0;
738#ifdef KVM_CAP_DEBUGREGS
739 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
740#endif
741
f1665b21
SY
742 s->xsave = 0;
743#ifdef KVM_CAP_XSAVE
744 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
745#endif
746
747 s->xcrs = 0;
748#ifdef KVM_CAP_XCRS
749 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
750#endif
751
cad1e282 752 ret = kvm_arch_init(s);
a426e122 753 if (ret < 0) {
05330448 754 goto err;
a426e122 755 }
05330448
AL
756
757 kvm_state = s;
7b8f3b78 758 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
05330448 759
d2f2b8a7
SH
760 s->many_ioeventfds = kvm_check_many_ioeventfds();
761
05330448
AL
762 return 0;
763
764err:
765 if (s) {
a426e122 766 if (s->vmfd != -1) {
05330448 767 close(s->vmfd);
a426e122
JK
768 }
769 if (s->fd != -1) {
05330448 770 close(s->fd);
a426e122 771 }
05330448
AL
772 }
773 qemu_free(s);
774
775 return ret;
776}
777
b30e93e9
JK
778static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
779 uint32_t count)
05330448
AL
780{
781 int i;
782 uint8_t *ptr = data;
783
784 for (i = 0; i < count; i++) {
785 if (direction == KVM_EXIT_IO_IN) {
786 switch (size) {
787 case 1:
afcea8cb 788 stb_p(ptr, cpu_inb(port));
05330448
AL
789 break;
790 case 2:
afcea8cb 791 stw_p(ptr, cpu_inw(port));
05330448
AL
792 break;
793 case 4:
afcea8cb 794 stl_p(ptr, cpu_inl(port));
05330448
AL
795 break;
796 }
797 } else {
798 switch (size) {
799 case 1:
afcea8cb 800 cpu_outb(port, ldub_p(ptr));
05330448
AL
801 break;
802 case 2:
afcea8cb 803 cpu_outw(port, lduw_p(ptr));
05330448
AL
804 break;
805 case 4:
afcea8cb 806 cpu_outl(port, ldl_p(ptr));
05330448
AL
807 break;
808 }
809 }
810
811 ptr += size;
812 }
05330448
AL
813}
814
7c80eef8 815#ifdef KVM_CAP_INTERNAL_ERROR_DATA
73aaec4a 816static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
7c80eef8 817{
bb44e0d1 818 fprintf(stderr, "KVM internal error.");
7c80eef8
MT
819 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
820 int i;
821
bb44e0d1 822 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
7c80eef8
MT
823 for (i = 0; i < run->internal.ndata; ++i) {
824 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
825 i, (uint64_t)run->internal.data[i]);
826 }
bb44e0d1
JK
827 } else {
828 fprintf(stderr, "\n");
7c80eef8 829 }
7c80eef8
MT
830 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
831 fprintf(stderr, "emulation failure\n");
a426e122 832 if (!kvm_arch_stop_on_emulation_error(env)) {
f5c848ee 833 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
d73cd8f4 834 return EXCP_INTERRUPT;
a426e122 835 }
7c80eef8
MT
836 }
837 /* FIXME: Should trigger a qmp message to let management know
838 * something went wrong.
839 */
73aaec4a 840 return -1;
7c80eef8
MT
841}
842#endif
843
62a2744c 844void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1 845{
f65ed4c1 846 KVMState *s = kvm_state;
62a2744c
SY
847 if (s->coalesced_mmio_ring) {
848 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
849 while (ring->first != ring->last) {
850 struct kvm_coalesced_mmio *ent;
851
852 ent = &ring->coalesced_mmio[ring->first];
853
854 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
85199474 855 smp_wmb();
f65ed4c1
AL
856 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
857 }
858 }
f65ed4c1
AL
859}
860
2705d56a 861static void do_kvm_cpu_synchronize_state(void *_env)
4c0960c0 862{
2705d56a
JK
863 CPUState *env = _env;
864
9ded2744 865 if (!env->kvm_vcpu_dirty) {
4c0960c0 866 kvm_arch_get_registers(env);
9ded2744 867 env->kvm_vcpu_dirty = 1;
4c0960c0
AK
868 }
869}
870
2705d56a
JK
871void kvm_cpu_synchronize_state(CPUState *env)
872{
a426e122 873 if (!env->kvm_vcpu_dirty) {
2705d56a 874 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
a426e122 875 }
2705d56a
JK
876}
877
ea375f9a
JK
878void kvm_cpu_synchronize_post_reset(CPUState *env)
879{
880 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
881 env->kvm_vcpu_dirty = 0;
882}
883
884void kvm_cpu_synchronize_post_init(CPUState *env)
885{
886 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
887 env->kvm_vcpu_dirty = 0;
888}
889
05330448
AL
890int kvm_cpu_exec(CPUState *env)
891{
892 struct kvm_run *run = env->kvm_run;
7cbb533f 893 int ret, run_ret;
05330448 894
8c0d577e 895 DPRINTF("kvm_cpu_exec()\n");
05330448 896
99036865 897 if (kvm_arch_process_async_events(env)) {
9ccfac9e 898 env->exit_request = 0;
6792a57b 899 return EXCP_HLT;
9ccfac9e 900 }
0af691d7 901
6792a57b
JK
902 cpu_single_env = env;
903
9ccfac9e 904 do {
9ded2744 905 if (env->kvm_vcpu_dirty) {
ea375f9a 906 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
9ded2744 907 env->kvm_vcpu_dirty = 0;
4c0960c0
AK
908 }
909
8c14c173 910 kvm_arch_pre_run(env, run);
9ccfac9e
JK
911 if (env->exit_request) {
912 DPRINTF("interrupt exit requested\n");
913 /*
914 * KVM requires us to reenter the kernel after IO exits to complete
915 * instruction emulation. This self-signal will ensure that we
916 * leave ASAP again.
917 */
918 qemu_cpu_kick_self();
919 }
273faf1b 920 cpu_single_env = NULL;
d549db5a 921 qemu_mutex_unlock_iothread();
9ccfac9e 922
7cbb533f 923 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
9ccfac9e 924
d549db5a 925 qemu_mutex_lock_iothread();
273faf1b 926 cpu_single_env = env;
05330448
AL
927 kvm_arch_post_run(env, run);
928
b0c883b5
JK
929 kvm_flush_coalesced_mmio_buffer();
930
7cbb533f 931 if (run_ret < 0) {
dc77d341
JK
932 if (run_ret == -EINTR || run_ret == -EAGAIN) {
933 DPRINTF("io window exit\n");
d73cd8f4 934 ret = EXCP_INTERRUPT;
dc77d341
JK
935 break;
936 }
7cbb533f 937 DPRINTF("kvm run failed %s\n", strerror(-run_ret));
05330448
AL
938 abort();
939 }
940
05330448
AL
941 switch (run->exit_reason) {
942 case KVM_EXIT_IO:
8c0d577e 943 DPRINTF("handle_io\n");
b30e93e9
JK
944 kvm_handle_io(run->io.port,
945 (uint8_t *)run + run->io.data_offset,
946 run->io.direction,
947 run->io.size,
948 run->io.count);
d73cd8f4 949 ret = 0;
05330448
AL
950 break;
951 case KVM_EXIT_MMIO:
8c0d577e 952 DPRINTF("handle_mmio\n");
05330448
AL
953 cpu_physical_memory_rw(run->mmio.phys_addr,
954 run->mmio.data,
955 run->mmio.len,
956 run->mmio.is_write);
d73cd8f4 957 ret = 0;
05330448
AL
958 break;
959 case KVM_EXIT_IRQ_WINDOW_OPEN:
8c0d577e 960 DPRINTF("irq_window_open\n");
d73cd8f4 961 ret = EXCP_INTERRUPT;
05330448
AL
962 break;
963 case KVM_EXIT_SHUTDOWN:
8c0d577e 964 DPRINTF("shutdown\n");
05330448 965 qemu_system_reset_request();
d73cd8f4 966 ret = EXCP_INTERRUPT;
05330448
AL
967 break;
968 case KVM_EXIT_UNKNOWN:
bb44e0d1
JK
969 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
970 (uint64_t)run->hw.hardware_exit_reason);
73aaec4a 971 ret = -1;
05330448 972 break;
7c80eef8
MT
973#ifdef KVM_CAP_INTERNAL_ERROR_DATA
974 case KVM_EXIT_INTERNAL_ERROR:
73aaec4a 975 ret = kvm_handle_internal_error(env, run);
7c80eef8
MT
976 break;
977#endif
05330448 978 default:
8c0d577e 979 DPRINTF("kvm_arch_handle_exit\n");
05330448
AL
980 ret = kvm_arch_handle_exit(env, run);
981 break;
982 }
d73cd8f4 983 } while (ret == 0);
05330448 984
73aaec4a 985 if (ret < 0) {
f5c848ee 986 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
e07bbac5 987 vm_stop(VMSTOP_PANIC);
becfc390
AL
988 }
989
6792a57b
JK
990 env->exit_request = 0;
991 cpu_single_env = NULL;
05330448
AL
992 return ret;
993}
994
984b5181 995int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
996{
997 int ret;
984b5181
AL
998 void *arg;
999 va_list ap;
05330448 1000
984b5181
AL
1001 va_start(ap, type);
1002 arg = va_arg(ap, void *);
1003 va_end(ap);
1004
1005 ret = ioctl(s->fd, type, arg);
a426e122 1006 if (ret == -1) {
05330448 1007 ret = -errno;
a426e122 1008 }
05330448
AL
1009 return ret;
1010}
1011
984b5181 1012int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
1013{
1014 int ret;
984b5181
AL
1015 void *arg;
1016 va_list ap;
1017
1018 va_start(ap, type);
1019 arg = va_arg(ap, void *);
1020 va_end(ap);
05330448 1021
984b5181 1022 ret = ioctl(s->vmfd, type, arg);
a426e122 1023 if (ret == -1) {
05330448 1024 ret = -errno;
a426e122 1025 }
05330448
AL
1026 return ret;
1027}
1028
984b5181 1029int kvm_vcpu_ioctl(CPUState *env, int type, ...)
05330448
AL
1030{
1031 int ret;
984b5181
AL
1032 void *arg;
1033 va_list ap;
1034
1035 va_start(ap, type);
1036 arg = va_arg(ap, void *);
1037 va_end(ap);
05330448 1038
984b5181 1039 ret = ioctl(env->kvm_fd, type, arg);
a426e122 1040 if (ret == -1) {
05330448 1041 ret = -errno;
a426e122 1042 }
05330448
AL
1043 return ret;
1044}
bd322087
AL
1045
1046int kvm_has_sync_mmu(void)
1047{
94a8d39a 1048 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
bd322087 1049}
e22a25c9 1050
a0fb002c
JK
1051int kvm_has_vcpu_events(void)
1052{
1053 return kvm_state->vcpu_events;
1054}
1055
b0b1d690
JK
1056int kvm_has_robust_singlestep(void)
1057{
1058 return kvm_state->robust_singlestep;
1059}
1060
ff44f1a3
JK
1061int kvm_has_debugregs(void)
1062{
1063 return kvm_state->debugregs;
1064}
1065
f1665b21
SY
1066int kvm_has_xsave(void)
1067{
1068 return kvm_state->xsave;
1069}
1070
1071int kvm_has_xcrs(void)
1072{
1073 return kvm_state->xcrs;
1074}
1075
d2f2b8a7
SH
1076int kvm_has_many_ioeventfds(void)
1077{
1078 if (!kvm_enabled()) {
1079 return 0;
1080 }
1081 return kvm_state->many_ioeventfds;
1082}
1083
6f0437e8
JK
1084void kvm_setup_guest_memory(void *start, size_t size)
1085{
1086 if (!kvm_has_sync_mmu()) {
e78815a5 1087 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
6f0437e8
JK
1088
1089 if (ret) {
e78815a5
AF
1090 perror("qemu_madvise");
1091 fprintf(stderr,
1092 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
6f0437e8
JK
1093 exit(1);
1094 }
6f0437e8
JK
1095 }
1096}
1097
e22a25c9
AL
1098#ifdef KVM_CAP_SET_GUEST_DEBUG
1099struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1100 target_ulong pc)
1101{
1102 struct kvm_sw_breakpoint *bp;
1103
72cf2d4f 1104 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
a426e122 1105 if (bp->pc == pc) {
e22a25c9 1106 return bp;
a426e122 1107 }
e22a25c9
AL
1108 }
1109 return NULL;
1110}
1111
1112int kvm_sw_breakpoints_active(CPUState *env)
1113{
72cf2d4f 1114 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
1115}
1116
452e4751
GC
1117struct kvm_set_guest_debug_data {
1118 struct kvm_guest_debug dbg;
1119 CPUState *env;
1120 int err;
1121};
1122
1123static void kvm_invoke_set_guest_debug(void *data)
1124{
1125 struct kvm_set_guest_debug_data *dbg_data = data;
b3807725
JK
1126 CPUState *env = dbg_data->env;
1127
b3807725 1128 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
452e4751
GC
1129}
1130
e22a25c9
AL
1131int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1132{
452e4751 1133 struct kvm_set_guest_debug_data data;
e22a25c9 1134
b0b1d690 1135 data.dbg.control = reinject_trap;
e22a25c9 1136
b0b1d690
JK
1137 if (env->singlestep_enabled) {
1138 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1139 }
452e4751 1140 kvm_arch_update_guest_debug(env, &data.dbg);
452e4751 1141 data.env = env;
e22a25c9 1142
be41cbe0 1143 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
452e4751 1144 return data.err;
e22a25c9
AL
1145}
1146
1147int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1148 target_ulong len, int type)
1149{
1150 struct kvm_sw_breakpoint *bp;
1151 CPUState *env;
1152 int err;
1153
1154 if (type == GDB_BREAKPOINT_SW) {
1155 bp = kvm_find_sw_breakpoint(current_env, addr);
1156 if (bp) {
1157 bp->use_count++;
1158 return 0;
1159 }
1160
1161 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
a426e122 1162 if (!bp) {
e22a25c9 1163 return -ENOMEM;
a426e122 1164 }
e22a25c9
AL
1165
1166 bp->pc = addr;
1167 bp->use_count = 1;
1168 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1169 if (err) {
1170 free(bp);
1171 return err;
1172 }
1173
72cf2d4f 1174 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
e22a25c9
AL
1175 bp, entry);
1176 } else {
1177 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
a426e122 1178 if (err) {
e22a25c9 1179 return err;
a426e122 1180 }
e22a25c9
AL
1181 }
1182
1183 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1184 err = kvm_update_guest_debug(env, 0);
a426e122 1185 if (err) {
e22a25c9 1186 return err;
a426e122 1187 }
e22a25c9
AL
1188 }
1189 return 0;
1190}
1191
1192int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1193 target_ulong len, int type)
1194{
1195 struct kvm_sw_breakpoint *bp;
1196 CPUState *env;
1197 int err;
1198
1199 if (type == GDB_BREAKPOINT_SW) {
1200 bp = kvm_find_sw_breakpoint(current_env, addr);
a426e122 1201 if (!bp) {
e22a25c9 1202 return -ENOENT;
a426e122 1203 }
e22a25c9
AL
1204
1205 if (bp->use_count > 1) {
1206 bp->use_count--;
1207 return 0;
1208 }
1209
1210 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
a426e122 1211 if (err) {
e22a25c9 1212 return err;
a426e122 1213 }
e22a25c9 1214
72cf2d4f 1215 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
e22a25c9
AL
1216 qemu_free(bp);
1217 } else {
1218 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
a426e122 1219 if (err) {
e22a25c9 1220 return err;
a426e122 1221 }
e22a25c9
AL
1222 }
1223
1224 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1225 err = kvm_update_guest_debug(env, 0);
a426e122 1226 if (err) {
e22a25c9 1227 return err;
a426e122 1228 }
e22a25c9
AL
1229 }
1230 return 0;
1231}
1232
1233void kvm_remove_all_breakpoints(CPUState *current_env)
1234{
1235 struct kvm_sw_breakpoint *bp, *next;
1236 KVMState *s = current_env->kvm_state;
1237 CPUState *env;
1238
72cf2d4f 1239 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
e22a25c9
AL
1240 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1241 /* Try harder to find a CPU that currently sees the breakpoint. */
1242 for (env = first_cpu; env != NULL; env = env->next_cpu) {
a426e122 1243 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
e22a25c9 1244 break;
a426e122 1245 }
e22a25c9
AL
1246 }
1247 }
1248 }
1249 kvm_arch_remove_all_hw_breakpoints();
1250
a426e122 1251 for (env = first_cpu; env != NULL; env = env->next_cpu) {
e22a25c9 1252 kvm_update_guest_debug(env, 0);
a426e122 1253 }
e22a25c9
AL
1254}
1255
1256#else /* !KVM_CAP_SET_GUEST_DEBUG */
1257
1258int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1259{
1260 return -EINVAL;
1261}
1262
1263int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1264 target_ulong len, int type)
1265{
1266 return -EINVAL;
1267}
1268
1269int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1270 target_ulong len, int type)
1271{
1272 return -EINVAL;
1273}
1274
1275void kvm_remove_all_breakpoints(CPUState *current_env)
1276{
1277}
1278#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95
MT
1279
1280int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1281{
1282 struct kvm_signal_mask *sigmask;
1283 int r;
1284
a426e122 1285 if (!sigset) {
cc84de95 1286 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
a426e122 1287 }
cc84de95
MT
1288
1289 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1290
1291 sigmask->len = 8;
1292 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1293 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1294 free(sigmask);
1295
1296 return r;
1297}
ca821806 1298
44f1a3d8
CM
1299int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1300{
1301#ifdef KVM_IOEVENTFD
1302 int ret;
1303 struct kvm_ioeventfd iofd;
1304
1305 iofd.datamatch = val;
1306 iofd.addr = addr;
1307 iofd.len = 4;
1308 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1309 iofd.fd = fd;
1310
1311 if (!kvm_enabled()) {
1312 return -ENOSYS;
1313 }
1314
1315 if (!assign) {
1316 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1317 }
1318
1319 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1320
1321 if (ret < 0) {
1322 return -errno;
1323 }
1324
1325 return 0;
1326#else
1327 return -ENOSYS;
1328#endif
1329}
1330
ca821806
MT
1331int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1332{
98c8573e 1333#ifdef KVM_IOEVENTFD
ca821806
MT
1334 struct kvm_ioeventfd kick = {
1335 .datamatch = val,
1336 .addr = addr,
1337 .len = 2,
1338 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1339 .fd = fd,
1340 };
1341 int r;
a426e122 1342 if (!kvm_enabled()) {
ca821806 1343 return -ENOSYS;
a426e122
JK
1344 }
1345 if (!assign) {
ca821806 1346 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
a426e122 1347 }
ca821806 1348 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
a426e122 1349 if (r < 0) {
ca821806 1350 return r;
a426e122 1351 }
ca821806 1352 return 0;
98c8573e
PB
1353#else
1354 return -ENOSYS;
ca821806 1355#endif
98c8573e 1356}
a1b87fe0
JK
1357
1358int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1359{
1360 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1361}
1362
1363int kvm_on_sigbus(int code, void *addr)
1364{
1365 return kvm_arch_on_sigbus(code, addr);
1366}