]> git.proxmox.com Git - qemu.git/blame - qemu-doc.texi
hex numbers must have a leading 0x
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
8f40c388 4@settitle QEMU Emulator User Documentation
debc7065
FB
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
386405f7 8
0806e3f6 9@iftex
386405f7
FB
10@titlepage
11@sp 7
8f40c388 12@center @titlefont{QEMU Emulator}
debc7065
FB
13@sp 1
14@center @titlefont{User Documentation}
386405f7
FB
15@sp 3
16@end titlepage
0806e3f6 17@end iftex
386405f7 18
debc7065
FB
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
83195237 28* QEMU User space emulator::
debc7065
FB
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
386405f7
FB
37@chapter Introduction
38
debc7065
FB
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
322d0c66 44@section Features
386405f7 45
1f673135
FB
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
1eb20527
FB
48
49QEMU has two operating modes:
0806e3f6
FB
50
51@itemize @minus
52
5fafdf24 53@item
1f673135 54Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
1eb20527 58
5fafdf24 59@item
83195237
FB
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
1eb20527
FB
64
65@end itemize
66
7c3fc84d 67QEMU can run without an host kernel driver and yet gives acceptable
5fafdf24 68performance.
322d0c66 69
52c00a5f
FB
70For system emulation, the following hardware targets are supported:
71@itemize
9d0a8e6f 72@item PC (x86 or x86_64 processor)
3f9f3aa1 73@item ISA PC (old style PC without PCI bus)
52c00a5f 74@item PREP (PowerPC processor)
9d0a8e6f
FB
75@item G3 BW PowerMac (PowerPC processor)
76@item Mac99 PowerMac (PowerPC processor, in progress)
3475187d
FB
77@item Sun4m (32-bit Sparc processor)
78@item Sun4u (64-bit Sparc processor, in progress)
3f9f3aa1 79@item Malta board (32-bit MIPS processor)
9ee6e8bb
PB
80@item ARM Integrator/CP (ARM)
81@item ARM Versatile baseboard (ARM)
82@item ARM RealView Emulation baseboard (ARM)
b00052e4 83@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
9ee6e8bb
PB
84@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
85@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 86@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 87@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 88@item Palm Tungsten|E PDA (OMAP310 processor)
52c00a5f 89@end itemize
386405f7 90
e6e5906b 91For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
0806e3f6 92
debc7065 93@node Installation
5b9f457a
FB
94@chapter Installation
95
15a34c63
FB
96If you want to compile QEMU yourself, see @ref{compilation}.
97
debc7065
FB
98@menu
99* install_linux:: Linux
100* install_windows:: Windows
101* install_mac:: Macintosh
102@end menu
103
104@node install_linux
1f673135
FB
105@section Linux
106
7c3fc84d
FB
107If a precompiled package is available for your distribution - you just
108have to install it. Otherwise, see @ref{compilation}.
5b9f457a 109
debc7065 110@node install_windows
1f673135 111@section Windows
8cd0ac2f 112
15a34c63 113Download the experimental binary installer at
debc7065 114@url{http://www.free.oszoo.org/@/download.html}.
d691f669 115
debc7065 116@node install_mac
1f673135 117@section Mac OS X
d691f669 118
15a34c63 119Download the experimental binary installer at
debc7065 120@url{http://www.free.oszoo.org/@/download.html}.
df0f11a0 121
debc7065 122@node QEMU PC System emulator
3f9f3aa1 123@chapter QEMU PC System emulator
1eb20527 124
debc7065
FB
125@menu
126* pcsys_introduction:: Introduction
127* pcsys_quickstart:: Quick Start
128* sec_invocation:: Invocation
129* pcsys_keys:: Keys
130* pcsys_monitor:: QEMU Monitor
131* disk_images:: Disk Images
132* pcsys_network:: Network emulation
133* direct_linux_boot:: Direct Linux Boot
134* pcsys_usb:: USB emulation
f858dcae 135* vnc_security:: VNC security
debc7065
FB
136* gdb_usage:: GDB usage
137* pcsys_os_specific:: Target OS specific information
138@end menu
139
140@node pcsys_introduction
0806e3f6
FB
141@section Introduction
142
143@c man begin DESCRIPTION
144
3f9f3aa1
FB
145The QEMU PC System emulator simulates the
146following peripherals:
0806e3f6
FB
147
148@itemize @minus
5fafdf24 149@item
15a34c63 150i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 151@item
15a34c63
FB
152Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
153extensions (hardware level, including all non standard modes).
0806e3f6
FB
154@item
155PS/2 mouse and keyboard
5fafdf24 156@item
15a34c63 1572 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
158@item
159Floppy disk
5fafdf24 160@item
c4a7060c 161PCI/ISA PCI network adapters
0806e3f6 162@item
05d5818c
FB
163Serial ports
164@item
c0fe3827
FB
165Creative SoundBlaster 16 sound card
166@item
167ENSONIQ AudioPCI ES1370 sound card
168@item
169Adlib(OPL2) - Yamaha YM3812 compatible chip
b389dbfb
FB
170@item
171PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
172@end itemize
173
3f9f3aa1
FB
174SMP is supported with up to 255 CPUs.
175
c0fe3827
FB
176Note that adlib is only available when QEMU was configured with
177-enable-adlib
178
15a34c63
FB
179QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
180VGA BIOS.
181
c0fe3827
FB
182QEMU uses YM3812 emulation by Tatsuyuki Satoh.
183
0806e3f6
FB
184@c man end
185
debc7065 186@node pcsys_quickstart
1eb20527
FB
187@section Quick Start
188
285dc330 189Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
190
191@example
285dc330 192qemu linux.img
0806e3f6
FB
193@end example
194
195Linux should boot and give you a prompt.
196
6cc721cf 197@node sec_invocation
ec410fc9
FB
198@section Invocation
199
200@example
0806e3f6
FB
201@c man begin SYNOPSIS
202usage: qemu [options] [disk_image]
203@c man end
ec410fc9
FB
204@end example
205
0806e3f6 206@c man begin OPTIONS
9d4520d0 207@var{disk_image} is a raw hard disk image for IDE hard disk 0.
ec410fc9
FB
208
209General options:
210@table @option
3dbbdc25
FB
211@item -M machine
212Select the emulated machine (@code{-M ?} for list)
213
2be3bc02
FB
214@item -fda file
215@item -fdb file
debc7065 216Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
19cb3738 217use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
2be3bc02 218
ec410fc9
FB
219@item -hda file
220@item -hdb file
181f1558
FB
221@item -hdc file
222@item -hdd file
debc7065 223Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
1f47a922 224
181f1558
FB
225@item -cdrom file
226Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
be3edd95 227@option{-cdrom} at the same time). You can use the host CD-ROM by
19cb3738 228using @file{/dev/cdrom} as filename (@pxref{host_drives}).
181f1558 229
eec85c2a
TS
230@item -boot [a|c|d|n]
231Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
232is the default.
1f47a922 233
181f1558 234@item -snapshot
1f47a922
FB
235Write to temporary files instead of disk image files. In this case,
236the raw disk image you use is not written back. You can however force
42550fde 237the write back by pressing @key{C-a s} (@pxref{disk_images}).
ec410fc9 238
52ca8d6a
FB
239@item -no-fd-bootchk
240Disable boot signature checking for floppy disks in Bochs BIOS. It may
241be needed to boot from old floppy disks.
242
ec410fc9 243@item -m megs
15a34c63 244Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
ec410fc9 245
3f9f3aa1
FB
246@item -smp n
247Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
a785e42e
BS
248CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
249to 4.
3f9f3aa1 250
1d14ffa9
FB
251@item -audio-help
252
253Will show the audio subsystem help: list of drivers, tunable
254parameters.
255
6a36d84e 256@item -soundhw card1,card2,... or -soundhw all
1d14ffa9
FB
257
258Enable audio and selected sound hardware. Use ? to print all
259available sound hardware.
260
261@example
262qemu -soundhw sb16,adlib hda
263qemu -soundhw es1370 hda
6a36d84e 264qemu -soundhw all hda
1d14ffa9
FB
265qemu -soundhw ?
266@end example
a8c490cd 267
15a34c63
FB
268@item -localtime
269Set the real time clock to local time (the default is to UTC
270time). This option is needed to have correct date in MS-DOS or
271Windows.
272
7e0af5d0
FB
273@item -startdate date
274Set the initial date of the real time clock. Valid format for
275@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
276@code{2006-06-17}. The default value is @code{now}.
277
f7cce898
FB
278@item -pidfile file
279Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
280from a script.
281
71e3ceb8
TS
282@item -daemonize
283Daemonize the QEMU process after initialization. QEMU will not detach from
284standard IO until it is ready to receive connections on any of its devices.
285This option is a useful way for external programs to launch QEMU without having
286to cope with initialization race conditions.
287
9d0a8e6f
FB
288@item -win2k-hack
289Use it when installing Windows 2000 to avoid a disk full bug. After
290Windows 2000 is installed, you no longer need this option (this option
291slows down the IDE transfers).
292
9ae02555
TS
293@item -option-rom file
294Load the contents of file as an option ROM. This option is useful to load
295things like EtherBoot.
296
c35734b2
TS
297@item -name string
298Sets the name of the guest. This name will be display in the SDL window
299caption. The name will also be used for the VNC server.
300
0806e3f6
FB
301@end table
302
f858dcae
TS
303Display options:
304@table @option
305
306@item -nographic
307
308Normally, QEMU uses SDL to display the VGA output. With this option,
309you can totally disable graphical output so that QEMU is a simple
310command line application. The emulated serial port is redirected on
311the console. Therefore, you can still use QEMU to debug a Linux kernel
312with a serial console.
313
314@item -no-frame
315
316Do not use decorations for SDL windows and start them using the whole
317available screen space. This makes the using QEMU in a dedicated desktop
318workspace more convenient.
319
320@item -full-screen
321Start in full screen.
322
323@item -vnc display[,option[,option[,...]]]
324
325Normally, QEMU uses SDL to display the VGA output. With this option,
326you can have QEMU listen on VNC display @var{display} and redirect the VGA
327display over the VNC session. It is very useful to enable the usb
328tablet device when using this option (option @option{-usbdevice
329tablet}). When using the VNC display, you must use the @option{-k}
330parameter to set the keyboard layout if you are not using en-us. Valid
331syntax for the @var{display} is
332
333@table @code
334
335@item @var{interface:d}
336
337TCP connections will only be allowed from @var{interface} on display @var{d}.
338By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
339be omitted in which case the server will bind to all interfaces.
340
341@item @var{unix:path}
342
343Connections will be allowed over UNIX domain sockets where @var{path} is the
344location of a unix socket to listen for connections on.
345
346@item @var{none}
347
348VNC is initialized by not started. The monitor @code{change} command can be used
349to later start the VNC server.
350
351@end table
352
353Following the @var{display} value there may be one or more @var{option} flags
354separated by commas. Valid options are
355
356@table @code
357
358@item @var{password}
359
360Require that password based authentication is used for client connections.
361The password must be set separately using the @code{change} command in the
362@ref{pcsys_monitor}
363
364@item @var{tls}
365
366Require that client use TLS when communicating with the VNC server. This
367uses anonymous TLS credentials so is susceptible to a man-in-the-middle
368attack. It is recommended that this option be combined with either the
369@var{x509} or @var{x509verify} options.
370
371@item @var{x509=/path/to/certificate/dir}
372
373Valid if @var{tls} is specified. Require that x509 credentials are used
374for negotiating the TLS session. The server will send its x509 certificate
375to the client. It is recommended that a password be set on the VNC server
376to provide authentication of the client when this is used. The path following
377this option specifies where the x509 certificates are to be loaded from.
378See the @ref{vnc_security} section for details on generating certificates.
379
380@item @var{x509verify=/path/to/certificate/dir}
381
382Valid if @var{tls} is specified. Require that x509 credentials are used
383for negotiating the TLS session. The server will send its x509 certificate
384to the client, and request that the client send its own x509 certificate.
385The server will validate the client's certificate against the CA certificate,
386and reject clients when validation fails. If the certificate authority is
387trusted, this is a sufficient authentication mechanism. You may still wish
388to set a password on the VNC server as a second authentication layer. The
389path following this option specifies where the x509 certificates are to
390be loaded from. See the @ref{vnc_security} section for details on generating
391certificates.
392
393@end table
394
395@item -k language
396
397Use keyboard layout @var{language} (for example @code{fr} for
398French). This option is only needed where it is not easy to get raw PC
399keycodes (e.g. on Macs, with some X11 servers or with a VNC
400display). You don't normally need to use it on PC/Linux or PC/Windows
401hosts.
402
403The available layouts are:
404@example
405ar de-ch es fo fr-ca hu ja mk no pt-br sv
406da en-gb et fr fr-ch is lt nl pl ru th
407de en-us fi fr-be hr it lv nl-be pt sl tr
408@end example
409
410The default is @code{en-us}.
411
412@end table
413
b389dbfb
FB
414USB options:
415@table @option
416
417@item -usb
418Enable the USB driver (will be the default soon)
419
420@item -usbdevice devname
0aff66b5 421Add the USB device @var{devname}. @xref{usb_devices}.
b389dbfb
FB
422@end table
423
1f673135
FB
424Network options:
425
426@table @option
427
a41b2ff2 428@item -net nic[,vlan=n][,macaddr=addr][,model=type]
41d03949 429Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
c4a7060c 430= 0 is the default). The NIC is an ne2k_pci by default on the PC
41d03949
FB
431target. Optionally, the MAC address can be changed. If no
432@option{-net} option is specified, a single NIC is created.
549444e1
AZ
433Qemu can emulate several different models of network card.
434Valid values for @var{type} are
435@code{i82551}, @code{i82557b}, @code{i82559er},
436@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
7e049b8a 437@code{smc91c111}, @code{lance} and @code{mcf_fec}.
c4a7060c
BS
438Not all devices are supported on all targets. Use -net nic,model=?
439for a list of available devices for your target.
41d03949 440
115defd1 441@item -net user[,vlan=n][,hostname=name]
7e89463d 442Use the user mode network stack which requires no administrator
4be456f1 443privilege to run. @option{hostname=name} can be used to specify the client
115defd1 444hostname reported by the builtin DHCP server.
41d03949
FB
445
446@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
447Connect the host TAP network interface @var{name} to VLAN @var{n} and
448use the network script @var{file} to configure it. The default
6a1cbf68
TS
449network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
450disable script execution. If @var{name} is not
41d03949
FB
451provided, the OS automatically provides one. @option{fd=h} can be
452used to specify the handle of an already opened host TAP interface. Example:
1f673135 453
41d03949
FB
454@example
455qemu linux.img -net nic -net tap
456@end example
457
458More complicated example (two NICs, each one connected to a TAP device)
459@example
460qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
461 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
462@end example
3f1a88f4 463
3f1a88f4 464
41d03949 465@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
1f673135 466
41d03949
FB
467Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
468machine using a TCP socket connection. If @option{listen} is
469specified, QEMU waits for incoming connections on @var{port}
470(@var{host} is optional). @option{connect} is used to connect to
3d830459
FB
471another QEMU instance using the @option{listen} option. @option{fd=h}
472specifies an already opened TCP socket.
1f673135 473
41d03949
FB
474Example:
475@example
476# launch a first QEMU instance
debc7065
FB
477qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
478 -net socket,listen=:1234
479# connect the VLAN 0 of this instance to the VLAN 0
480# of the first instance
481qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
482 -net socket,connect=127.0.0.1:1234
41d03949 483@end example
52c00a5f 484
3d830459
FB
485@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
486
487Create a VLAN @var{n} shared with another QEMU virtual
5fafdf24 488machines using a UDP multicast socket, effectively making a bus for
3d830459
FB
489every QEMU with same multicast address @var{maddr} and @var{port}.
490NOTES:
491@enumerate
5fafdf24
TS
492@item
493Several QEMU can be running on different hosts and share same bus (assuming
3d830459
FB
494correct multicast setup for these hosts).
495@item
496mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
497@url{http://user-mode-linux.sf.net}.
4be456f1
TS
498@item
499Use @option{fd=h} to specify an already opened UDP multicast socket.
3d830459
FB
500@end enumerate
501
502Example:
503@example
504# launch one QEMU instance
debc7065
FB
505qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
506 -net socket,mcast=230.0.0.1:1234
3d830459 507# launch another QEMU instance on same "bus"
debc7065
FB
508qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
509 -net socket,mcast=230.0.0.1:1234
3d830459 510# launch yet another QEMU instance on same "bus"
debc7065
FB
511qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
512 -net socket,mcast=230.0.0.1:1234
3d830459
FB
513@end example
514
515Example (User Mode Linux compat.):
516@example
debc7065
FB
517# launch QEMU instance (note mcast address selected
518# is UML's default)
519qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
520 -net socket,mcast=239.192.168.1:1102
3d830459
FB
521# launch UML
522/path/to/linux ubd0=/path/to/root_fs eth0=mcast
523@end example
524
41d03949
FB
525@item -net none
526Indicate that no network devices should be configured. It is used to
039af320
FB
527override the default configuration (@option{-net nic -net user}) which
528is activated if no @option{-net} options are provided.
52c00a5f 529
0db1137d 530@item -tftp dir
9bf05444 531When using the user mode network stack, activate a built-in TFTP
0db1137d
TS
532server. The files in @var{dir} will be exposed as the root of a TFTP server.
533The TFTP client on the guest must be configured in binary mode (use the command
534@code{bin} of the Unix TFTP client). The host IP address on the guest is as
535usual 10.0.2.2.
9bf05444 536
47d5d01a
TS
537@item -bootp file
538When using the user mode network stack, broadcast @var{file} as the BOOTP
539filename. In conjunction with @option{-tftp}, this can be used to network boot
540a guest from a local directory.
541
542Example (using pxelinux):
543@example
544qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
545@end example
546
2518bd0d
FB
547@item -smb dir
548When using the user mode network stack, activate a built-in SMB
549server so that Windows OSes can access to the host files in @file{dir}
550transparently.
551
552In the guest Windows OS, the line:
553@example
55410.0.2.4 smbserver
555@end example
556must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
557or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
558
559Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
560
561Note that a SAMBA server must be installed on the host OS in
366dfc52 562@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
6cc721cf 5632.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
2518bd0d 564
9bf05444
FB
565@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
566
567When using the user mode network stack, redirect incoming TCP or UDP
568connections to the host port @var{host-port} to the guest
569@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
570is not specified, its value is 10.0.2.15 (default address given by the
571built-in DHCP server).
572
573For example, to redirect host X11 connection from screen 1 to guest
574screen 0, use the following:
575
576@example
577# on the host
578qemu -redir tcp:6001::6000 [...]
579# this host xterm should open in the guest X11 server
580xterm -display :1
581@end example
582
583To redirect telnet connections from host port 5555 to telnet port on
584the guest, use the following:
585
586@example
587# on the host
588qemu -redir tcp:5555::23 [...]
589telnet localhost 5555
590@end example
591
592Then when you use on the host @code{telnet localhost 5555}, you
593connect to the guest telnet server.
594
1f673135
FB
595@end table
596
41d03949 597Linux boot specific: When using these options, you can use a given
1f673135
FB
598Linux kernel without installing it in the disk image. It can be useful
599for easier testing of various kernels.
600
0806e3f6
FB
601@table @option
602
5fafdf24 603@item -kernel bzImage
0806e3f6
FB
604Use @var{bzImage} as kernel image.
605
5fafdf24 606@item -append cmdline
0806e3f6
FB
607Use @var{cmdline} as kernel command line
608
609@item -initrd file
610Use @var{file} as initial ram disk.
611
ec410fc9
FB
612@end table
613
15a34c63 614Debug/Expert options:
ec410fc9 615@table @option
a0a821a4
FB
616
617@item -serial dev
0bab00f3
FB
618Redirect the virtual serial port to host character device
619@var{dev}. The default device is @code{vc} in graphical mode and
620@code{stdio} in non graphical mode.
621
622This option can be used several times to simulate up to 4 serials
623ports.
624
c03b0f0f
FB
625Use @code{-serial none} to disable all serial ports.
626
0bab00f3 627Available character devices are:
a0a821a4 628@table @code
af3a9031
TS
629@item vc[:WxH]
630Virtual console. Optionally, a width and height can be given in pixel with
631@example
632vc:800x600
633@end example
634It is also possible to specify width or height in characters:
635@example
636vc:80Cx24C
637@end example
a0a821a4
FB
638@item pty
639[Linux only] Pseudo TTY (a new PTY is automatically allocated)
c03b0f0f
FB
640@item none
641No device is allocated.
a0a821a4
FB
642@item null
643void device
f8d179e3 644@item /dev/XXX
e57a8c0e 645[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
f8d179e3 646parameters are set according to the emulated ones.
e57a8c0e
FB
647@item /dev/parportN
648[Linux only, parallel port only] Use host parallel port
5867c88a 649@var{N}. Currently SPP and EPP parallel port features can be used.
f8d179e3
FB
650@item file:filename
651Write output to filename. No character can be read.
a0a821a4
FB
652@item stdio
653[Unix only] standard input/output
f8d179e3 654@item pipe:filename
0bab00f3
FB
655name pipe @var{filename}
656@item COMn
657[Windows only] Use host serial port @var{n}
951f1351 658@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
4be456f1 659This implements UDP Net Console. When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}. When not using a specified @var{src_port} a random port is automatically chosen.
951f1351
FB
660
661If you just want a simple readonly console you can use @code{netcat} or
662@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
663@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
664will appear in the netconsole session.
0bab00f3
FB
665
666If you plan to send characters back via netconsole or you want to stop
667and start qemu a lot of times, you should have qemu use the same
668source port each time by using something like @code{-serial
951f1351 669udp::4555@@:4556} to qemu. Another approach is to use a patched
0bab00f3
FB
670version of netcat which can listen to a TCP port and send and receive
671characters via udp. If you have a patched version of netcat which
672activates telnet remote echo and single char transfer, then you can
673use the following options to step up a netcat redirector to allow
674telnet on port 5555 to access the qemu port.
675@table @code
951f1351
FB
676@item Qemu Options:
677-serial udp::4555@@:4556
678@item netcat options:
679-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
680@item telnet options:
681localhost 5555
682@end table
683
684
f7499989 685@item tcp:[host]:port[,server][,nowait][,nodelay]
951f1351
FB
686The TCP Net Console has two modes of operation. It can send the serial
687I/O to a location or wait for a connection from a location. By default
688the TCP Net Console is sent to @var{host} at the @var{port}. If you use
f542086d
FB
689the @var{server} option QEMU will wait for a client socket application
690to connect to the port before continuing, unless the @code{nowait}
f7499989 691option was specified. The @code{nodelay} option disables the Nagle buffering
4be456f1 692algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
951f1351
FB
693one TCP connection at a time is accepted. You can use @code{telnet} to
694connect to the corresponding character device.
695@table @code
696@item Example to send tcp console to 192.168.0.2 port 4444
697-serial tcp:192.168.0.2:4444
698@item Example to listen and wait on port 4444 for connection
699-serial tcp::4444,server
700@item Example to not wait and listen on ip 192.168.0.100 port 4444
701-serial tcp:192.168.0.100:4444,server,nowait
a0a821a4 702@end table
a0a821a4 703
f7499989 704@item telnet:host:port[,server][,nowait][,nodelay]
951f1351
FB
705The telnet protocol is used instead of raw tcp sockets. The options
706work the same as if you had specified @code{-serial tcp}. The
707difference is that the port acts like a telnet server or client using
708telnet option negotiation. This will also allow you to send the
709MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
710sequence. Typically in unix telnet you do it with Control-] and then
711type "send break" followed by pressing the enter key.
0bab00f3 712
ffd843bc
TS
713@item unix:path[,server][,nowait]
714A unix domain socket is used instead of a tcp socket. The option works the
715same as if you had specified @code{-serial tcp} except the unix domain socket
716@var{path} is used for connections.
717
20d8a3ed
TS
718@item mon:dev_string
719This is a special option to allow the monitor to be multiplexed onto
720another serial port. The monitor is accessed with key sequence of
721@key{Control-a} and then pressing @key{c}. See monitor access
722@ref{pcsys_keys} in the -nographic section for more keys.
723@var{dev_string} should be any one of the serial devices specified
724above. An example to multiplex the monitor onto a telnet server
725listening on port 4444 would be:
726@table @code
727@item -serial mon:telnet::4444,server,nowait
728@end table
729
0bab00f3 730@end table
05d5818c 731
e57a8c0e
FB
732@item -parallel dev
733Redirect the virtual parallel port to host device @var{dev} (same
734devices as the serial port). On Linux hosts, @file{/dev/parportN} can
735be used to use hardware devices connected on the corresponding host
736parallel port.
737
738This option can be used several times to simulate up to 3 parallel
739ports.
740
c03b0f0f
FB
741Use @code{-parallel none} to disable all parallel ports.
742
a0a821a4
FB
743@item -monitor dev
744Redirect the monitor to host device @var{dev} (same devices as the
745serial port).
746The default device is @code{vc} in graphical mode and @code{stdio} in
747non graphical mode.
748
20d8a3ed
TS
749@item -echr numeric_ascii_value
750Change the escape character used for switching to the monitor when using
751monitor and serial sharing. The default is @code{0x01} when using the
752@code{-nographic} option. @code{0x01} is equal to pressing
753@code{Control-a}. You can select a different character from the ascii
754control keys where 1 through 26 map to Control-a through Control-z. For
755instance you could use the either of the following to change the escape
756character to Control-t.
757@table @code
758@item -echr 0x14
759@item -echr 20
760@end table
761
ec410fc9 762@item -s
5fafdf24 763Wait gdb connection to port 1234 (@pxref{gdb_usage}).
ec410fc9 764@item -p port
4046d913
PB
765Change gdb connection port. @var{port} can be either a decimal number
766to specify a TCP port, or a host device (same devices as the serial port).
52c00a5f
FB
767@item -S
768Do not start CPU at startup (you must type 'c' in the monitor).
3b46e624 769@item -d
9d4520d0 770Output log in /tmp/qemu.log
46d4767d
FB
771@item -hdachs c,h,s,[,t]
772Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
773@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
774translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
4be456f1 775all those parameters. This option is useful for old MS-DOS disk
46d4767d 776images.
7c3fc84d 777
87b47350
FB
778@item -L path
779Set the directory for the BIOS, VGA BIOS and keymaps.
780
15a34c63
FB
781@item -std-vga
782Simulate a standard VGA card with Bochs VBE extensions (default is
3cb0853a
FB
783Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
784VBE extensions (e.g. Windows XP) and if you want to use high
785resolution modes (>= 1280x1024x16) then you should use this option.
786
3c656346
FB
787@item -no-acpi
788Disable ACPI (Advanced Configuration and Power Interface) support. Use
789it if your guest OS complains about ACPI problems (PC target machine
790only).
791
d1beab82
FB
792@item -no-reboot
793Exit instead of rebooting.
794
d63d307f
FB
795@item -loadvm file
796Start right away with a saved state (@code{loadvm} in monitor)
8e71621f
PB
797
798@item -semihosting
a87295e8
PB
799Enable semihosting syscall emulation (ARM and M68K target machines only).
800
801On ARM this implements the "Angel" interface.
802On M68K this implements the "ColdFire GDB" interface used by libgloss.
803
8e71621f
PB
804Note that this allows guest direct access to the host filesystem,
805so should only be used with trusted guest OS.
ec410fc9
FB
806@end table
807
3e11db9a
FB
808@c man end
809
debc7065 810@node pcsys_keys
3e11db9a
FB
811@section Keys
812
813@c man begin OPTIONS
814
a1b74fe8
FB
815During the graphical emulation, you can use the following keys:
816@table @key
f9859310 817@item Ctrl-Alt-f
a1b74fe8 818Toggle full screen
a0a821a4 819
f9859310 820@item Ctrl-Alt-n
a0a821a4
FB
821Switch to virtual console 'n'. Standard console mappings are:
822@table @emph
823@item 1
824Target system display
825@item 2
826Monitor
827@item 3
828Serial port
a1b74fe8
FB
829@end table
830
f9859310 831@item Ctrl-Alt
a0a821a4
FB
832Toggle mouse and keyboard grab.
833@end table
834
3e11db9a
FB
835In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
836@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
837
a0a821a4
FB
838During emulation, if you are using the @option{-nographic} option, use
839@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
840
841@table @key
a1b74fe8 842@item Ctrl-a h
ec410fc9 843Print this help
3b46e624 844@item Ctrl-a x
366dfc52 845Exit emulator
3b46e624 846@item Ctrl-a s
1f47a922 847Save disk data back to file (if -snapshot)
20d8a3ed
TS
848@item Ctrl-a t
849toggle console timestamps
a1b74fe8 850@item Ctrl-a b
1f673135 851Send break (magic sysrq in Linux)
a1b74fe8 852@item Ctrl-a c
1f673135 853Switch between console and monitor
a1b74fe8
FB
854@item Ctrl-a Ctrl-a
855Send Ctrl-a
ec410fc9 856@end table
0806e3f6
FB
857@c man end
858
859@ignore
860
1f673135
FB
861@c man begin SEEALSO
862The HTML documentation of QEMU for more precise information and Linux
863user mode emulator invocation.
864@c man end
865
866@c man begin AUTHOR
867Fabrice Bellard
868@c man end
869
870@end ignore
871
debc7065 872@node pcsys_monitor
1f673135
FB
873@section QEMU Monitor
874
875The QEMU monitor is used to give complex commands to the QEMU
876emulator. You can use it to:
877
878@itemize @minus
879
880@item
e598752a 881Remove or insert removable media images
1f673135
FB
882(such as CD-ROM or floppies)
883
5fafdf24 884@item
1f673135
FB
885Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
886from a disk file.
887
888@item Inspect the VM state without an external debugger.
889
890@end itemize
891
892@subsection Commands
893
894The following commands are available:
895
896@table @option
897
898@item help or ? [cmd]
899Show the help for all commands or just for command @var{cmd}.
900
3b46e624 901@item commit
1f673135
FB
902Commit changes to the disk images (if -snapshot is used)
903
5fafdf24 904@item info subcommand
1f673135
FB
905show various information about the system state
906
907@table @option
908@item info network
41d03949 909show the various VLANs and the associated devices
1f673135
FB
910@item info block
911show the block devices
912@item info registers
913show the cpu registers
914@item info history
915show the command line history
b389dbfb
FB
916@item info pci
917show emulated PCI device
918@item info usb
919show USB devices plugged on the virtual USB hub
920@item info usbhost
921show all USB host devices
a3c25997
FB
922@item info capture
923show information about active capturing
13a2e80f
FB
924@item info snapshots
925show list of VM snapshots
455204eb
TS
926@item info mice
927show which guest mouse is receiving events
1f673135
FB
928@end table
929
930@item q or quit
931Quit the emulator.
932
933@item eject [-f] device
e598752a 934Eject a removable medium (use -f to force it).
1f673135 935
f858dcae
TS
936@item change device setting
937
938Change the configuration of a device
939
940@table @option
941@item change @var{diskdevice} @var{filename}
942Change the medium for a removable disk device to point to @var{filename}. eg
943
944@example
945(qemu) change cdrom /path/to/some.iso
946@end example
947
948@item change vnc @var{display,options}
949Change the configuration of the VNC server. The valid syntax for @var{display}
950and @var{options} are described at @ref{sec_invocation}. eg
951
952@example
953(qemu) change vnc localhost:1
954@end example
955
956@item change vnc password
957
958Change the password associated with the VNC server. The monitor will prompt for
959the new password to be entered. VNC passwords are only significant upto 8 letters.
960eg.
961
962@example
963(qemu) change vnc password
964Password: ********
965@end example
966
967@end table
1f673135
FB
968
969@item screendump filename
970Save screen into PPM image @var{filename}.
971
455204eb
TS
972@item mouse_move dx dy [dz]
973Move the active mouse to the specified coordinates @var{dx} @var{dy}
974with optional scroll axis @var{dz}.
975
976@item mouse_button val
977Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
978
979@item mouse_set index
980Set which mouse device receives events at given @var{index}, index
981can be obtained with
982@example
983info mice
984@end example
985
a3c25997
FB
986@item wavcapture filename [frequency [bits [channels]]]
987Capture audio into @var{filename}. Using sample rate @var{frequency}
988bits per sample @var{bits} and number of channels @var{channels}.
989
990Defaults:
991@itemize @minus
992@item Sample rate = 44100 Hz - CD quality
993@item Bits = 16
994@item Number of channels = 2 - Stereo
995@end itemize
996
997@item stopcapture index
998Stop capture with a given @var{index}, index can be obtained with
999@example
1000info capture
1001@end example
1002
1f673135
FB
1003@item log item1[,...]
1004Activate logging of the specified items to @file{/tmp/qemu.log}.
1005
13a2e80f
FB
1006@item savevm [tag|id]
1007Create a snapshot of the whole virtual machine. If @var{tag} is
1008provided, it is used as human readable identifier. If there is already
1009a snapshot with the same tag or ID, it is replaced. More info at
1010@ref{vm_snapshots}.
1f673135 1011
13a2e80f
FB
1012@item loadvm tag|id
1013Set the whole virtual machine to the snapshot identified by the tag
1014@var{tag} or the unique snapshot ID @var{id}.
1015
1016@item delvm tag|id
1017Delete the snapshot identified by @var{tag} or @var{id}.
1f673135
FB
1018
1019@item stop
1020Stop emulation.
1021
1022@item c or cont
1023Resume emulation.
1024
1025@item gdbserver [port]
1026Start gdbserver session (default port=1234)
1027
1028@item x/fmt addr
1029Virtual memory dump starting at @var{addr}.
1030
1031@item xp /fmt addr
1032Physical memory dump starting at @var{addr}.
1033
1034@var{fmt} is a format which tells the command how to format the
1035data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1036
1037@table @var
5fafdf24 1038@item count
1f673135
FB
1039is the number of items to be dumped.
1040
1041@item format
4be456f1 1042can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1f673135
FB
1043c (char) or i (asm instruction).
1044
1045@item size
52c00a5f
FB
1046can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1047@code{h} or @code{w} can be specified with the @code{i} format to
1048respectively select 16 or 32 bit code instruction size.
1f673135
FB
1049
1050@end table
1051
5fafdf24 1052Examples:
1f673135
FB
1053@itemize
1054@item
1055Dump 10 instructions at the current instruction pointer:
5fafdf24 1056@example
1f673135
FB
1057(qemu) x/10i $eip
10580x90107063: ret
10590x90107064: sti
10600x90107065: lea 0x0(%esi,1),%esi
10610x90107069: lea 0x0(%edi,1),%edi
10620x90107070: ret
10630x90107071: jmp 0x90107080
10640x90107073: nop
10650x90107074: nop
10660x90107075: nop
10670x90107076: nop
1068@end example
1069
1070@item
1071Dump 80 16 bit values at the start of the video memory.
5fafdf24 1072@smallexample
1f673135
FB
1073(qemu) xp/80hx 0xb8000
10740x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
10750x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
10760x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
10770x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
10780x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
10790x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
10800x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
10810x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
10820x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
10830x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
debc7065 1084@end smallexample
1f673135
FB
1085@end itemize
1086
1087@item p or print/fmt expr
1088
1089Print expression value. Only the @var{format} part of @var{fmt} is
1090used.
0806e3f6 1091
a3a91a35
FB
1092@item sendkey keys
1093
1094Send @var{keys} to the emulator. Use @code{-} to press several keys
1095simultaneously. Example:
1096@example
1097sendkey ctrl-alt-f1
1098@end example
1099
1100This command is useful to send keys that your graphical user interface
1101intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1102
15a34c63
FB
1103@item system_reset
1104
1105Reset the system.
1106
b389dbfb
FB
1107@item usb_add devname
1108
0aff66b5
PB
1109Add the USB device @var{devname}. For details of available devices see
1110@ref{usb_devices}
b389dbfb
FB
1111
1112@item usb_del devname
1113
1114Remove the USB device @var{devname} from the QEMU virtual USB
1115hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1116command @code{info usb} to see the devices you can remove.
1117
1f673135 1118@end table
0806e3f6 1119
1f673135
FB
1120@subsection Integer expressions
1121
1122The monitor understands integers expressions for every integer
1123argument. You can use register names to get the value of specifics
1124CPU registers by prefixing them with @emph{$}.
ec410fc9 1125
1f47a922
FB
1126@node disk_images
1127@section Disk Images
1128
acd935ef
FB
1129Since version 0.6.1, QEMU supports many disk image formats, including
1130growable disk images (their size increase as non empty sectors are
13a2e80f
FB
1131written), compressed and encrypted disk images. Version 0.8.3 added
1132the new qcow2 disk image format which is essential to support VM
1133snapshots.
1f47a922 1134
debc7065
FB
1135@menu
1136* disk_images_quickstart:: Quick start for disk image creation
1137* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 1138* vm_snapshots:: VM snapshots
debc7065 1139* qemu_img_invocation:: qemu-img Invocation
19cb3738 1140* host_drives:: Using host drives
debc7065
FB
1141* disk_images_fat_images:: Virtual FAT disk images
1142@end menu
1143
1144@node disk_images_quickstart
acd935ef
FB
1145@subsection Quick start for disk image creation
1146
1147You can create a disk image with the command:
1f47a922 1148@example
acd935ef 1149qemu-img create myimage.img mysize
1f47a922 1150@end example
acd935ef
FB
1151where @var{myimage.img} is the disk image filename and @var{mysize} is its
1152size in kilobytes. You can add an @code{M} suffix to give the size in
1153megabytes and a @code{G} suffix for gigabytes.
1154
debc7065 1155See @ref{qemu_img_invocation} for more information.
1f47a922 1156
debc7065 1157@node disk_images_snapshot_mode
1f47a922
FB
1158@subsection Snapshot mode
1159
1160If you use the option @option{-snapshot}, all disk images are
1161considered as read only. When sectors in written, they are written in
1162a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
1163write back to the raw disk images by using the @code{commit} monitor
1164command (or @key{C-a s} in the serial console).
1f47a922 1165
13a2e80f
FB
1166@node vm_snapshots
1167@subsection VM snapshots
1168
1169VM snapshots are snapshots of the complete virtual machine including
1170CPU state, RAM, device state and the content of all the writable
1171disks. In order to use VM snapshots, you must have at least one non
1172removable and writable block device using the @code{qcow2} disk image
1173format. Normally this device is the first virtual hard drive.
1174
1175Use the monitor command @code{savevm} to create a new VM snapshot or
1176replace an existing one. A human readable name can be assigned to each
19d36792 1177snapshot in addition to its numerical ID.
13a2e80f
FB
1178
1179Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1180a VM snapshot. @code{info snapshots} lists the available snapshots
1181with their associated information:
1182
1183@example
1184(qemu) info snapshots
1185Snapshot devices: hda
1186Snapshot list (from hda):
1187ID TAG VM SIZE DATE VM CLOCK
11881 start 41M 2006-08-06 12:38:02 00:00:14.954
11892 40M 2006-08-06 12:43:29 00:00:18.633
11903 msys 40M 2006-08-06 12:44:04 00:00:23.514
1191@end example
1192
1193A VM snapshot is made of a VM state info (its size is shown in
1194@code{info snapshots}) and a snapshot of every writable disk image.
1195The VM state info is stored in the first @code{qcow2} non removable
1196and writable block device. The disk image snapshots are stored in
1197every disk image. The size of a snapshot in a disk image is difficult
1198to evaluate and is not shown by @code{info snapshots} because the
1199associated disk sectors are shared among all the snapshots to save
19d36792
FB
1200disk space (otherwise each snapshot would need a full copy of all the
1201disk images).
13a2e80f
FB
1202
1203When using the (unrelated) @code{-snapshot} option
1204(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1205but they are deleted as soon as you exit QEMU.
1206
1207VM snapshots currently have the following known limitations:
1208@itemize
5fafdf24 1209@item
13a2e80f
FB
1210They cannot cope with removable devices if they are removed or
1211inserted after a snapshot is done.
5fafdf24 1212@item
13a2e80f
FB
1213A few device drivers still have incomplete snapshot support so their
1214state is not saved or restored properly (in particular USB).
1215@end itemize
1216
acd935ef
FB
1217@node qemu_img_invocation
1218@subsection @code{qemu-img} Invocation
1f47a922 1219
acd935ef 1220@include qemu-img.texi
05efe46e 1221
19cb3738
FB
1222@node host_drives
1223@subsection Using host drives
1224
1225In addition to disk image files, QEMU can directly access host
1226devices. We describe here the usage for QEMU version >= 0.8.3.
1227
1228@subsubsection Linux
1229
1230On Linux, you can directly use the host device filename instead of a
4be456f1 1231disk image filename provided you have enough privileges to access
19cb3738
FB
1232it. For example, use @file{/dev/cdrom} to access to the CDROM or
1233@file{/dev/fd0} for the floppy.
1234
f542086d 1235@table @code
19cb3738
FB
1236@item CD
1237You can specify a CDROM device even if no CDROM is loaded. QEMU has
1238specific code to detect CDROM insertion or removal. CDROM ejection by
1239the guest OS is supported. Currently only data CDs are supported.
1240@item Floppy
1241You can specify a floppy device even if no floppy is loaded. Floppy
1242removal is currently not detected accurately (if you change floppy
1243without doing floppy access while the floppy is not loaded, the guest
1244OS will think that the same floppy is loaded).
1245@item Hard disks
1246Hard disks can be used. Normally you must specify the whole disk
1247(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1248see it as a partitioned disk. WARNING: unless you know what you do, it
1249is better to only make READ-ONLY accesses to the hard disk otherwise
1250you may corrupt your host data (use the @option{-snapshot} command
1251line option or modify the device permissions accordingly).
1252@end table
1253
1254@subsubsection Windows
1255
01781963
FB
1256@table @code
1257@item CD
4be456f1 1258The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
1259alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1260supported as an alias to the first CDROM drive.
19cb3738 1261
e598752a 1262Currently there is no specific code to handle removable media, so it
19cb3738
FB
1263is better to use the @code{change} or @code{eject} monitor commands to
1264change or eject media.
01781963
FB
1265@item Hard disks
1266Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1267where @var{N} is the drive number (0 is the first hard disk).
1268
1269WARNING: unless you know what you do, it is better to only make
1270READ-ONLY accesses to the hard disk otherwise you may corrupt your
1271host data (use the @option{-snapshot} command line so that the
1272modifications are written in a temporary file).
1273@end table
1274
19cb3738
FB
1275
1276@subsubsection Mac OS X
1277
5fafdf24 1278@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 1279
e598752a 1280Currently there is no specific code to handle removable media, so it
19cb3738
FB
1281is better to use the @code{change} or @code{eject} monitor commands to
1282change or eject media.
1283
debc7065 1284@node disk_images_fat_images
2c6cadd4
FB
1285@subsection Virtual FAT disk images
1286
1287QEMU can automatically create a virtual FAT disk image from a
1288directory tree. In order to use it, just type:
1289
5fafdf24 1290@example
2c6cadd4
FB
1291qemu linux.img -hdb fat:/my_directory
1292@end example
1293
1294Then you access access to all the files in the @file{/my_directory}
1295directory without having to copy them in a disk image or to export
1296them via SAMBA or NFS. The default access is @emph{read-only}.
1297
1298Floppies can be emulated with the @code{:floppy:} option:
1299
5fafdf24 1300@example
2c6cadd4
FB
1301qemu linux.img -fda fat:floppy:/my_directory
1302@end example
1303
1304A read/write support is available for testing (beta stage) with the
1305@code{:rw:} option:
1306
5fafdf24 1307@example
2c6cadd4
FB
1308qemu linux.img -fda fat:floppy:rw:/my_directory
1309@end example
1310
1311What you should @emph{never} do:
1312@itemize
1313@item use non-ASCII filenames ;
1314@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
1315@item expect it to work when loadvm'ing ;
1316@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
1317@end itemize
1318
debc7065 1319@node pcsys_network
9d4fb82e
FB
1320@section Network emulation
1321
4be456f1 1322QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1323target) and can connect them to an arbitrary number of Virtual Local
1324Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1325VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1326simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1327network stack can replace the TAP device to have a basic network
1328connection.
1329
1330@subsection VLANs
9d4fb82e 1331
41d03949
FB
1332QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1333connection between several network devices. These devices can be for
1334example QEMU virtual Ethernet cards or virtual Host ethernet devices
1335(TAP devices).
9d4fb82e 1336
41d03949
FB
1337@subsection Using TAP network interfaces
1338
1339This is the standard way to connect QEMU to a real network. QEMU adds
1340a virtual network device on your host (called @code{tapN}), and you
1341can then configure it as if it was a real ethernet card.
9d4fb82e 1342
8f40c388
FB
1343@subsubsection Linux host
1344
9d4fb82e
FB
1345As an example, you can download the @file{linux-test-xxx.tar.gz}
1346archive and copy the script @file{qemu-ifup} in @file{/etc} and
1347configure properly @code{sudo} so that the command @code{ifconfig}
1348contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1349that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1350device @file{/dev/net/tun} must be present.
1351
ee0f4751
FB
1352See @ref{sec_invocation} to have examples of command lines using the
1353TAP network interfaces.
9d4fb82e 1354
8f40c388
FB
1355@subsubsection Windows host
1356
1357There is a virtual ethernet driver for Windows 2000/XP systems, called
1358TAP-Win32. But it is not included in standard QEMU for Windows,
1359so you will need to get it separately. It is part of OpenVPN package,
1360so download OpenVPN from : @url{http://openvpn.net/}.
1361
9d4fb82e
FB
1362@subsection Using the user mode network stack
1363
41d03949
FB
1364By using the option @option{-net user} (default configuration if no
1365@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1366network stack (you don't need root privilege to use the virtual
41d03949 1367network). The virtual network configuration is the following:
9d4fb82e
FB
1368
1369@example
1370
41d03949
FB
1371 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1372 | (10.0.2.2)
9d4fb82e 1373 |
2518bd0d 1374 ----> DNS server (10.0.2.3)
3b46e624 1375 |
2518bd0d 1376 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1377@end example
1378
1379The QEMU VM behaves as if it was behind a firewall which blocks all
1380incoming connections. You can use a DHCP client to automatically
41d03949
FB
1381configure the network in the QEMU VM. The DHCP server assign addresses
1382to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1383
1384In order to check that the user mode network is working, you can ping
1385the address 10.0.2.2 and verify that you got an address in the range
138610.0.2.x from the QEMU virtual DHCP server.
1387
b415a407 1388Note that @code{ping} is not supported reliably to the internet as it
4be456f1 1389would require root privileges. It means you can only ping the local
b415a407
FB
1390router (10.0.2.2).
1391
9bf05444
FB
1392When using the built-in TFTP server, the router is also the TFTP
1393server.
1394
1395When using the @option{-redir} option, TCP or UDP connections can be
1396redirected from the host to the guest. It allows for example to
1397redirect X11, telnet or SSH connections.
443f1376 1398
41d03949
FB
1399@subsection Connecting VLANs between QEMU instances
1400
1401Using the @option{-net socket} option, it is possible to make VLANs
1402that span several QEMU instances. See @ref{sec_invocation} to have a
1403basic example.
1404
9d4fb82e
FB
1405@node direct_linux_boot
1406@section Direct Linux Boot
1f673135
FB
1407
1408This section explains how to launch a Linux kernel inside QEMU without
1409having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1410kernel testing.
1f673135 1411
ee0f4751 1412The syntax is:
1f673135 1413@example
ee0f4751 1414qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1415@end example
1416
ee0f4751
FB
1417Use @option{-kernel} to provide the Linux kernel image and
1418@option{-append} to give the kernel command line arguments. The
1419@option{-initrd} option can be used to provide an INITRD image.
1f673135 1420
ee0f4751
FB
1421When using the direct Linux boot, a disk image for the first hard disk
1422@file{hda} is required because its boot sector is used to launch the
1423Linux kernel.
1f673135 1424
ee0f4751
FB
1425If you do not need graphical output, you can disable it and redirect
1426the virtual serial port and the QEMU monitor to the console with the
1427@option{-nographic} option. The typical command line is:
1f673135 1428@example
ee0f4751
FB
1429qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1430 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1431@end example
1432
ee0f4751
FB
1433Use @key{Ctrl-a c} to switch between the serial console and the
1434monitor (@pxref{pcsys_keys}).
1f673135 1435
debc7065 1436@node pcsys_usb
b389dbfb
FB
1437@section USB emulation
1438
0aff66b5
PB
1439QEMU emulates a PCI UHCI USB controller. You can virtually plug
1440virtual USB devices or real host USB devices (experimental, works only
1441on Linux hosts). Qemu will automatically create and connect virtual USB hubs
f542086d 1442as necessary to connect multiple USB devices.
b389dbfb 1443
0aff66b5
PB
1444@menu
1445* usb_devices::
1446* host_usb_devices::
1447@end menu
1448@node usb_devices
1449@subsection Connecting USB devices
b389dbfb 1450
0aff66b5
PB
1451USB devices can be connected with the @option{-usbdevice} commandline option
1452or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1453
0aff66b5
PB
1454@table @var
1455@item @code{mouse}
1456Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1457@item @code{tablet}
c6d46c20 1458Pointer device that uses absolute coordinates (like a touchscreen).
0aff66b5
PB
1459This means qemu is able to report the mouse position without having
1460to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1461@item @code{disk:file}
1462Mass storage device based on @var{file} (@pxref{disk_images})
1463@item @code{host:bus.addr}
1464Pass through the host device identified by @var{bus.addr}
1465(Linux only)
1466@item @code{host:vendor_id:product_id}
1467Pass through the host device identified by @var{vendor_id:product_id}
1468(Linux only)
f6d2a316
AZ
1469@item @code{wacom-tablet}
1470Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1471above but it can be used with the tslib library because in addition to touch
1472coordinates it reports touch pressure.
47b2d338
AZ
1473@item @code{keyboard}
1474Standard USB keyboard. Will override the PS/2 keyboard (if present).
0aff66b5 1475@end table
b389dbfb 1476
0aff66b5 1477@node host_usb_devices
b389dbfb
FB
1478@subsection Using host USB devices on a Linux host
1479
1480WARNING: this is an experimental feature. QEMU will slow down when
1481using it. USB devices requiring real time streaming (i.e. USB Video
1482Cameras) are not supported yet.
1483
1484@enumerate
5fafdf24 1485@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1486is actually using the USB device. A simple way to do that is simply to
1487disable the corresponding kernel module by renaming it from @file{mydriver.o}
1488to @file{mydriver.o.disabled}.
1489
1490@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1491@example
1492ls /proc/bus/usb
1493001 devices drivers
1494@end example
1495
1496@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1497@example
1498chown -R myuid /proc/bus/usb
1499@end example
1500
1501@item Launch QEMU and do in the monitor:
5fafdf24 1502@example
b389dbfb
FB
1503info usbhost
1504 Device 1.2, speed 480 Mb/s
1505 Class 00: USB device 1234:5678, USB DISK
1506@end example
1507You should see the list of the devices you can use (Never try to use
1508hubs, it won't work).
1509
1510@item Add the device in QEMU by using:
5fafdf24 1511@example
b389dbfb
FB
1512usb_add host:1234:5678
1513@end example
1514
1515Normally the guest OS should report that a new USB device is
1516plugged. You can use the option @option{-usbdevice} to do the same.
1517
1518@item Now you can try to use the host USB device in QEMU.
1519
1520@end enumerate
1521
1522When relaunching QEMU, you may have to unplug and plug again the USB
1523device to make it work again (this is a bug).
1524
f858dcae
TS
1525@node vnc_security
1526@section VNC security
1527
1528The VNC server capability provides access to the graphical console
1529of the guest VM across the network. This has a number of security
1530considerations depending on the deployment scenarios.
1531
1532@menu
1533* vnc_sec_none::
1534* vnc_sec_password::
1535* vnc_sec_certificate::
1536* vnc_sec_certificate_verify::
1537* vnc_sec_certificate_pw::
1538* vnc_generate_cert::
1539@end menu
1540@node vnc_sec_none
1541@subsection Without passwords
1542
1543The simplest VNC server setup does not include any form of authentication.
1544For this setup it is recommended to restrict it to listen on a UNIX domain
1545socket only. For example
1546
1547@example
1548qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1549@end example
1550
1551This ensures that only users on local box with read/write access to that
1552path can access the VNC server. To securely access the VNC server from a
1553remote machine, a combination of netcat+ssh can be used to provide a secure
1554tunnel.
1555
1556@node vnc_sec_password
1557@subsection With passwords
1558
1559The VNC protocol has limited support for password based authentication. Since
1560the protocol limits passwords to 8 characters it should not be considered
1561to provide high security. The password can be fairly easily brute-forced by
1562a client making repeat connections. For this reason, a VNC server using password
1563authentication should be restricted to only listen on the loopback interface
1564or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1565option, and then once QEMU is running the password is set with the monitor. Until
1566the monitor is used to set the password all clients will be rejected.
1567
1568@example
1569qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1570(qemu) change vnc password
1571Password: ********
1572(qemu)
1573@end example
1574
1575@node vnc_sec_certificate
1576@subsection With x509 certificates
1577
1578The QEMU VNC server also implements the VeNCrypt extension allowing use of
1579TLS for encryption of the session, and x509 certificates for authentication.
1580The use of x509 certificates is strongly recommended, because TLS on its
1581own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1582support provides a secure session, but no authentication. This allows any
1583client to connect, and provides an encrypted session.
1584
1585@example
1586qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1587@end example
1588
1589In the above example @code{/etc/pki/qemu} should contain at least three files,
1590@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1591users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1592NB the @code{server-key.pem} file should be protected with file mode 0600 to
1593only be readable by the user owning it.
1594
1595@node vnc_sec_certificate_verify
1596@subsection With x509 certificates and client verification
1597
1598Certificates can also provide a means to authenticate the client connecting.
1599The server will request that the client provide a certificate, which it will
1600then validate against the CA certificate. This is a good choice if deploying
1601in an environment with a private internal certificate authority.
1602
1603@example
1604qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1605@end example
1606
1607
1608@node vnc_sec_certificate_pw
1609@subsection With x509 certificates, client verification and passwords
1610
1611Finally, the previous method can be combined with VNC password authentication
1612to provide two layers of authentication for clients.
1613
1614@example
1615qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1616(qemu) change vnc password
1617Password: ********
1618(qemu)
1619@end example
1620
1621@node vnc_generate_cert
1622@subsection Generating certificates for VNC
1623
1624The GNU TLS packages provides a command called @code{certtool} which can
1625be used to generate certificates and keys in PEM format. At a minimum it
1626is neccessary to setup a certificate authority, and issue certificates to
1627each server. If using certificates for authentication, then each client
1628will also need to be issued a certificate. The recommendation is for the
1629server to keep its certificates in either @code{/etc/pki/qemu} or for
1630unprivileged users in @code{$HOME/.pki/qemu}.
1631
1632@menu
1633* vnc_generate_ca::
1634* vnc_generate_server::
1635* vnc_generate_client::
1636@end menu
1637@node vnc_generate_ca
1638@subsubsection Setup the Certificate Authority
1639
1640This step only needs to be performed once per organization / organizational
1641unit. First the CA needs a private key. This key must be kept VERY secret
1642and secure. If this key is compromised the entire trust chain of the certificates
1643issued with it is lost.
1644
1645@example
1646# certtool --generate-privkey > ca-key.pem
1647@end example
1648
1649A CA needs to have a public certificate. For simplicity it can be a self-signed
1650certificate, or one issue by a commercial certificate issuing authority. To
1651generate a self-signed certificate requires one core piece of information, the
1652name of the organization.
1653
1654@example
1655# cat > ca.info <<EOF
1656cn = Name of your organization
1657ca
1658cert_signing_key
1659EOF
1660# certtool --generate-self-signed \
1661 --load-privkey ca-key.pem
1662 --template ca.info \
1663 --outfile ca-cert.pem
1664@end example
1665
1666The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1667TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1668
1669@node vnc_generate_server
1670@subsubsection Issuing server certificates
1671
1672Each server (or host) needs to be issued with a key and certificate. When connecting
1673the certificate is sent to the client which validates it against the CA certificate.
1674The core piece of information for a server certificate is the hostname. This should
1675be the fully qualified hostname that the client will connect with, since the client
1676will typically also verify the hostname in the certificate. On the host holding the
1677secure CA private key:
1678
1679@example
1680# cat > server.info <<EOF
1681organization = Name of your organization
1682cn = server.foo.example.com
1683tls_www_server
1684encryption_key
1685signing_key
1686EOF
1687# certtool --generate-privkey > server-key.pem
1688# certtool --generate-certificate \
1689 --load-ca-certificate ca-cert.pem \
1690 --load-ca-privkey ca-key.pem \
1691 --load-privkey server server-key.pem \
1692 --template server.info \
1693 --outfile server-cert.pem
1694@end example
1695
1696The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1697to the server for which they were generated. The @code{server-key.pem} is security
1698sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1699
1700@node vnc_generate_client
1701@subsubsection Issuing client certificates
1702
1703If the QEMU VNC server is to use the @code{x509verify} option to validate client
1704certificates as its authentication mechanism, each client also needs to be issued
1705a certificate. The client certificate contains enough metadata to uniquely identify
1706the client, typically organization, state, city, building, etc. On the host holding
1707the secure CA private key:
1708
1709@example
1710# cat > client.info <<EOF
1711country = GB
1712state = London
1713locality = London
1714organiazation = Name of your organization
1715cn = client.foo.example.com
1716tls_www_client
1717encryption_key
1718signing_key
1719EOF
1720# certtool --generate-privkey > client-key.pem
1721# certtool --generate-certificate \
1722 --load-ca-certificate ca-cert.pem \
1723 --load-ca-privkey ca-key.pem \
1724 --load-privkey client-key.pem \
1725 --template client.info \
1726 --outfile client-cert.pem
1727@end example
1728
1729The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1730copied to the client for which they were generated.
1731
0806e3f6 1732@node gdb_usage
da415d54
FB
1733@section GDB usage
1734
1735QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1736'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1737
9d4520d0 1738In order to use gdb, launch qemu with the '-s' option. It will wait for a
da415d54
FB
1739gdb connection:
1740@example
debc7065
FB
1741> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1742 -append "root=/dev/hda"
da415d54
FB
1743Connected to host network interface: tun0
1744Waiting gdb connection on port 1234
1745@end example
1746
1747Then launch gdb on the 'vmlinux' executable:
1748@example
1749> gdb vmlinux
1750@end example
1751
1752In gdb, connect to QEMU:
1753@example
6c9bf893 1754(gdb) target remote localhost:1234
da415d54
FB
1755@end example
1756
1757Then you can use gdb normally. For example, type 'c' to launch the kernel:
1758@example
1759(gdb) c
1760@end example
1761
0806e3f6
FB
1762Here are some useful tips in order to use gdb on system code:
1763
1764@enumerate
1765@item
1766Use @code{info reg} to display all the CPU registers.
1767@item
1768Use @code{x/10i $eip} to display the code at the PC position.
1769@item
1770Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1771@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1772@end enumerate
1773
debc7065 1774@node pcsys_os_specific
1a084f3d
FB
1775@section Target OS specific information
1776
1777@subsection Linux
1778
15a34c63
FB
1779To have access to SVGA graphic modes under X11, use the @code{vesa} or
1780the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1781color depth in the guest and the host OS.
1a084f3d 1782
e3371e62
FB
1783When using a 2.6 guest Linux kernel, you should add the option
1784@code{clock=pit} on the kernel command line because the 2.6 Linux
1785kernels make very strict real time clock checks by default that QEMU
1786cannot simulate exactly.
1787
7c3fc84d
FB
1788When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1789not activated because QEMU is slower with this patch. The QEMU
1790Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1791Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1792patch by default. Newer kernels don't have it.
1793
1a084f3d
FB
1794@subsection Windows
1795
1796If you have a slow host, using Windows 95 is better as it gives the
1797best speed. Windows 2000 is also a good choice.
1798
e3371e62
FB
1799@subsubsection SVGA graphic modes support
1800
1801QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1802card. All Windows versions starting from Windows 95 should recognize
1803and use this graphic card. For optimal performances, use 16 bit color
1804depth in the guest and the host OS.
1a084f3d 1805
3cb0853a
FB
1806If you are using Windows XP as guest OS and if you want to use high
1807resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18081280x1024x16), then you should use the VESA VBE virtual graphic card
1809(option @option{-std-vga}).
1810
e3371e62
FB
1811@subsubsection CPU usage reduction
1812
1813Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1814instruction. The result is that it takes host CPU cycles even when
1815idle. You can install the utility from
1816@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1817problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1818
9d0a8e6f 1819@subsubsection Windows 2000 disk full problem
e3371e62 1820
9d0a8e6f
FB
1821Windows 2000 has a bug which gives a disk full problem during its
1822installation. When installing it, use the @option{-win2k-hack} QEMU
1823option to enable a specific workaround. After Windows 2000 is
1824installed, you no longer need this option (this option slows down the
1825IDE transfers).
e3371e62 1826
6cc721cf
FB
1827@subsubsection Windows 2000 shutdown
1828
1829Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1830can. It comes from the fact that Windows 2000 does not automatically
1831use the APM driver provided by the BIOS.
1832
1833In order to correct that, do the following (thanks to Struan
1834Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1835Add/Troubleshoot a device => Add a new device & Next => No, select the
1836hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1837(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1838correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1839
1840@subsubsection Share a directory between Unix and Windows
1841
1842See @ref{sec_invocation} about the help of the option @option{-smb}.
1843
2192c332 1844@subsubsection Windows XP security problem
e3371e62
FB
1845
1846Some releases of Windows XP install correctly but give a security
1847error when booting:
1848@example
1849A problem is preventing Windows from accurately checking the
1850license for this computer. Error code: 0x800703e6.
1851@end example
e3371e62 1852
2192c332
FB
1853The workaround is to install a service pack for XP after a boot in safe
1854mode. Then reboot, and the problem should go away. Since there is no
1855network while in safe mode, its recommended to download the full
1856installation of SP1 or SP2 and transfer that via an ISO or using the
1857vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1858
a0a821a4
FB
1859@subsection MS-DOS and FreeDOS
1860
1861@subsubsection CPU usage reduction
1862
1863DOS does not correctly use the CPU HLT instruction. The result is that
1864it takes host CPU cycles even when idle. You can install the utility
1865from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1866problem.
1867
debc7065 1868@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1869@chapter QEMU System emulator for non PC targets
1870
1871QEMU is a generic emulator and it emulates many non PC
1872machines. Most of the options are similar to the PC emulator. The
4be456f1 1873differences are mentioned in the following sections.
3f9f3aa1 1874
debc7065
FB
1875@menu
1876* QEMU PowerPC System emulator::
24d4de45
TS
1877* Sparc32 System emulator::
1878* Sparc64 System emulator::
1879* MIPS System emulator::
1880* ARM System emulator::
1881* ColdFire System emulator::
debc7065
FB
1882@end menu
1883
1884@node QEMU PowerPC System emulator
3f9f3aa1 1885@section QEMU PowerPC System emulator
1a084f3d 1886
15a34c63
FB
1887Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1888or PowerMac PowerPC system.
1a084f3d 1889
b671f9ed 1890QEMU emulates the following PowerMac peripherals:
1a084f3d 1891
15a34c63 1892@itemize @minus
5fafdf24
TS
1893@item
1894UniNorth PCI Bridge
15a34c63
FB
1895@item
1896PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1897@item
15a34c63 18982 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1899@item
15a34c63
FB
1900NE2000 PCI adapters
1901@item
1902Non Volatile RAM
1903@item
1904VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1905@end itemize
1906
b671f9ed 1907QEMU emulates the following PREP peripherals:
52c00a5f
FB
1908
1909@itemize @minus
5fafdf24 1910@item
15a34c63
FB
1911PCI Bridge
1912@item
1913PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1914@item
52c00a5f
FB
19152 IDE interfaces with hard disk and CD-ROM support
1916@item
1917Floppy disk
5fafdf24 1918@item
15a34c63 1919NE2000 network adapters
52c00a5f
FB
1920@item
1921Serial port
1922@item
1923PREP Non Volatile RAM
15a34c63
FB
1924@item
1925PC compatible keyboard and mouse.
52c00a5f
FB
1926@end itemize
1927
15a34c63 1928QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1929@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1930
15a34c63
FB
1931@c man begin OPTIONS
1932
1933The following options are specific to the PowerPC emulation:
1934
1935@table @option
1936
3b46e624 1937@item -g WxH[xDEPTH]
15a34c63
FB
1938
1939Set the initial VGA graphic mode. The default is 800x600x15.
1940
1941@end table
1942
5fafdf24 1943@c man end
15a34c63
FB
1944
1945
52c00a5f 1946More information is available at
3f9f3aa1 1947@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1948
24d4de45
TS
1949@node Sparc32 System emulator
1950@section Sparc32 System emulator
e80cfcfc 1951
0986ac3b 1952Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
a2502b58 1953or SparcStation 10 (sun4m architecture). The emulation is somewhat complete.
a785e42e
BS
1954SMP up to 16 CPUs is supported, but Linux limits the number of usable CPUs
1955to 4.
e80cfcfc 1956
b671f9ed 1957QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1958
1959@itemize @minus
3475187d 1960@item
e80cfcfc
FB
1961IOMMU
1962@item
1963TCX Frame buffer
5fafdf24 1964@item
e80cfcfc
FB
1965Lance (Am7990) Ethernet
1966@item
1967Non Volatile RAM M48T08
1968@item
3475187d
FB
1969Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1970and power/reset logic
1971@item
1972ESP SCSI controller with hard disk and CD-ROM support
1973@item
1974Floppy drive
a2502b58
BS
1975@item
1976CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1977@end itemize
1978
a785e42e
BS
1979The number of peripherals is fixed in the architecture. Maximum memory size
1980depends on the machine type, for SS-5 it is 256MB and for SS-10 2047MB.
3475187d 1981
30a604f3 1982Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
1983@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1984firmware implementation. The goal is to implement a 100% IEEE
19851275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1986
1987A sample Linux 2.6 series kernel and ram disk image are available on
0986ac3b
FB
1988the QEMU web site. Please note that currently NetBSD, OpenBSD or
1989Solaris kernels don't work.
3475187d
FB
1990
1991@c man begin OPTIONS
1992
a2502b58 1993The following options are specific to the Sparc32 emulation:
3475187d
FB
1994
1995@table @option
1996
a2502b58 1997@item -g WxHx[xDEPTH]
3475187d 1998
a2502b58
BS
1999Set the initial TCX graphic mode. The default is 1024x768x8, currently
2000the only other possible mode is 1024x768x24.
3475187d 2001
66508601
BS
2002@item -prom-env string
2003
2004Set OpenBIOS variables in NVRAM, for example:
2005
2006@example
2007qemu-system-sparc -prom-env 'auto-boot?=false' \
2008 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2009@end example
2010
a2502b58
BS
2011@item -M [SS-5|SS-10]
2012
2013Set the emulated machine type. Default is SS-5.
2014
3475187d
FB
2015@end table
2016
5fafdf24 2017@c man end
3475187d 2018
24d4de45
TS
2019@node Sparc64 System emulator
2020@section Sparc64 System emulator
e80cfcfc 2021
3475187d
FB
2022Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2023The emulator is not usable for anything yet.
b756921a 2024
83469015
FB
2025QEMU emulates the following sun4u peripherals:
2026
2027@itemize @minus
2028@item
5fafdf24 2029UltraSparc IIi APB PCI Bridge
83469015
FB
2030@item
2031PCI VGA compatible card with VESA Bochs Extensions
2032@item
2033Non Volatile RAM M48T59
2034@item
2035PC-compatible serial ports
2036@end itemize
2037
24d4de45
TS
2038@node MIPS System emulator
2039@section MIPS System emulator
9d0a8e6f
FB
2040
2041Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
24d4de45
TS
2042Three different machine types are emulated:
2043
2044@itemize @minus
2045@item
2046A generic ISA PC-like machine "mips"
2047@item
2048The MIPS Malta prototype board "malta"
2049@item
2050An ACER Pica "pica61"
6bf5b4e8 2051@item
f0fc6f8f 2052MIPS emulator pseudo board "mipssim"
24d4de45
TS
2053@end itemize
2054
2055The generic emulation is supported by Debian 'Etch' and is able to
2056install Debian into a virtual disk image. The following devices are
2057emulated:
3f9f3aa1
FB
2058
2059@itemize @minus
5fafdf24 2060@item
6bf5b4e8 2061A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2062@item
2063PC style serial port
2064@item
24d4de45
TS
2065PC style IDE disk
2066@item
3f9f3aa1
FB
2067NE2000 network card
2068@end itemize
2069
24d4de45
TS
2070The Malta emulation supports the following devices:
2071
2072@itemize @minus
2073@item
0b64d008 2074Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2075@item
2076PIIX4 PCI/USB/SMbus controller
2077@item
2078The Multi-I/O chip's serial device
2079@item
2080PCnet32 PCI network card
2081@item
2082Malta FPGA serial device
2083@item
2084Cirrus VGA graphics card
2085@end itemize
2086
2087The ACER Pica emulation supports:
2088
2089@itemize @minus
2090@item
2091MIPS R4000 CPU
2092@item
2093PC-style IRQ and DMA controllers
2094@item
2095PC Keyboard
2096@item
2097IDE controller
2098@end itemize
3f9f3aa1 2099
f0fc6f8f
TS
2100The mipssim pseudo board emulation provides an environment similiar
2101to what the proprietary MIPS emulator uses for running Linux.
2102It supports:
6bf5b4e8
TS
2103
2104@itemize @minus
2105@item
2106A range of MIPS CPUs, default is the 24Kf
2107@item
2108PC style serial port
2109@item
2110MIPSnet network emulation
2111@end itemize
2112
24d4de45
TS
2113@node ARM System emulator
2114@section ARM System emulator
3f9f3aa1
FB
2115
2116Use the executable @file{qemu-system-arm} to simulate a ARM
2117machine. The ARM Integrator/CP board is emulated with the following
2118devices:
2119
2120@itemize @minus
2121@item
9ee6e8bb 2122ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2123@item
2124Two PL011 UARTs
5fafdf24 2125@item
3f9f3aa1 2126SMC 91c111 Ethernet adapter
00a9bf19
PB
2127@item
2128PL110 LCD controller
2129@item
2130PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2131@item
2132PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2133@end itemize
2134
2135The ARM Versatile baseboard is emulated with the following devices:
2136
2137@itemize @minus
2138@item
9ee6e8bb 2139ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2140@item
2141PL190 Vectored Interrupt Controller
2142@item
2143Four PL011 UARTs
5fafdf24 2144@item
00a9bf19
PB
2145SMC 91c111 Ethernet adapter
2146@item
2147PL110 LCD controller
2148@item
2149PL050 KMI with PS/2 keyboard and mouse.
2150@item
2151PCI host bridge. Note the emulated PCI bridge only provides access to
2152PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2153This means some devices (eg. ne2k_pci NIC) are not usable, and others
2154(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2155mapped control registers.
e6de1bad
PB
2156@item
2157PCI OHCI USB controller.
2158@item
2159LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2160@item
2161PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2162@end itemize
2163
d7739d75
PB
2164The ARM RealView Emulation baseboard is emulated with the following devices:
2165
2166@itemize @minus
2167@item
9ee6e8bb 2168ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
d7739d75
PB
2169@item
2170ARM AMBA Generic/Distributed Interrupt Controller
2171@item
2172Four PL011 UARTs
5fafdf24 2173@item
d7739d75
PB
2174SMC 91c111 Ethernet adapter
2175@item
2176PL110 LCD controller
2177@item
2178PL050 KMI with PS/2 keyboard and mouse
2179@item
2180PCI host bridge
2181@item
2182PCI OHCI USB controller
2183@item
2184LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2185@item
2186PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2187@end itemize
2188
b00052e4
AZ
2189The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2190and "Terrier") emulation includes the following peripherals:
2191
2192@itemize @minus
2193@item
2194Intel PXA270 System-on-chip (ARM V5TE core)
2195@item
2196NAND Flash memory
2197@item
2198IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2199@item
2200On-chip OHCI USB controller
2201@item
2202On-chip LCD controller
2203@item
2204On-chip Real Time Clock
2205@item
2206TI ADS7846 touchscreen controller on SSP bus
2207@item
2208Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2209@item
2210GPIO-connected keyboard controller and LEDs
2211@item
549444e1 2212Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2213@item
2214Three on-chip UARTs
2215@item
2216WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2217@end itemize
2218
02645926
AZ
2219The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2220following elements:
2221
2222@itemize @minus
2223@item
2224Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2225@item
2226ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2227@item
2228On-chip LCD controller
2229@item
2230On-chip Real Time Clock
2231@item
2232TI TSC2102i touchscreen controller / analog-digital converter / Audio
2233CODEC, connected through MicroWire and I@math{^2}S busses
2234@item
2235GPIO-connected matrix keypad
2236@item
2237Secure Digital card connected to OMAP MMC/SD host
2238@item
2239Three on-chip UARTs
2240@end itemize
2241
9ee6e8bb
PB
2242The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2243devices:
2244
2245@itemize @minus
2246@item
2247Cortex-M3 CPU core.
2248@item
224964k Flash and 8k SRAM.
2250@item
2251Timers, UARTs, ADC and I@math{^2}C interface.
2252@item
2253OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2254@end itemize
2255
2256The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2257devices:
2258
2259@itemize @minus
2260@item
2261Cortex-M3 CPU core.
2262@item
2263256k Flash and 64k SRAM.
2264@item
2265Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2266@item
2267OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2268@end itemize
2269
3f9f3aa1
FB
2270A Linux 2.6 test image is available on the QEMU web site. More
2271information is available in the QEMU mailing-list archive.
9d0a8e6f 2272
24d4de45
TS
2273@node ColdFire System emulator
2274@section ColdFire System emulator
209a4e69
PB
2275
2276Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2277The emulator is able to boot a uClinux kernel.
707e011b
PB
2278
2279The M5208EVB emulation includes the following devices:
2280
2281@itemize @minus
5fafdf24 2282@item
707e011b
PB
2283MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2284@item
2285Three Two on-chip UARTs.
2286@item
2287Fast Ethernet Controller (FEC)
2288@end itemize
2289
2290The AN5206 emulation includes the following devices:
209a4e69
PB
2291
2292@itemize @minus
5fafdf24 2293@item
209a4e69
PB
2294MCF5206 ColdFire V2 Microprocessor.
2295@item
2296Two on-chip UARTs.
2297@end itemize
2298
5fafdf24
TS
2299@node QEMU User space emulator
2300@chapter QEMU User space emulator
83195237
FB
2301
2302@menu
2303* Supported Operating Systems ::
2304* Linux User space emulator::
2305* Mac OS X/Darwin User space emulator ::
2306@end menu
2307
2308@node Supported Operating Systems
2309@section Supported Operating Systems
2310
2311The following OS are supported in user space emulation:
2312
2313@itemize @minus
2314@item
4be456f1 2315Linux (referred as qemu-linux-user)
83195237 2316@item
4be456f1 2317Mac OS X/Darwin (referred as qemu-darwin-user)
83195237
FB
2318@end itemize
2319
2320@node Linux User space emulator
2321@section Linux User space emulator
386405f7 2322
debc7065
FB
2323@menu
2324* Quick Start::
2325* Wine launch::
2326* Command line options::
79737e4a 2327* Other binaries::
debc7065
FB
2328@end menu
2329
2330@node Quick Start
83195237 2331@subsection Quick Start
df0f11a0 2332
1f673135 2333In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2334itself and all the target (x86) dynamic libraries used by it.
386405f7 2335
1f673135 2336@itemize
386405f7 2337
1f673135
FB
2338@item On x86, you can just try to launch any process by using the native
2339libraries:
386405f7 2340
5fafdf24 2341@example
1f673135
FB
2342qemu-i386 -L / /bin/ls
2343@end example
386405f7 2344
1f673135
FB
2345@code{-L /} tells that the x86 dynamic linker must be searched with a
2346@file{/} prefix.
386405f7 2347
dbcf5e82
TS
2348@item Since QEMU is also a linux process, you can launch qemu with
2349qemu (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2350
5fafdf24 2351@example
1f673135
FB
2352qemu-i386 -L / qemu-i386 -L / /bin/ls
2353@end example
386405f7 2354
1f673135
FB
2355@item On non x86 CPUs, you need first to download at least an x86 glibc
2356(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2357@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2358
1f673135 2359@example
5fafdf24 2360unset LD_LIBRARY_PATH
1f673135 2361@end example
1eb87257 2362
1f673135 2363Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2364
1f673135
FB
2365@example
2366qemu-i386 tests/i386/ls
2367@end example
2368You can look at @file{qemu-binfmt-conf.sh} so that
2369QEMU is automatically launched by the Linux kernel when you try to
2370launch x86 executables. It requires the @code{binfmt_misc} module in the
2371Linux kernel.
1eb87257 2372
1f673135
FB
2373@item The x86 version of QEMU is also included. You can try weird things such as:
2374@example
debc7065
FB
2375qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2376 /usr/local/qemu-i386/bin/ls-i386
1f673135 2377@end example
1eb20527 2378
1f673135 2379@end itemize
1eb20527 2380
debc7065 2381@node Wine launch
83195237 2382@subsection Wine launch
1eb20527 2383
1f673135 2384@itemize
386405f7 2385
1f673135
FB
2386@item Ensure that you have a working QEMU with the x86 glibc
2387distribution (see previous section). In order to verify it, you must be
2388able to do:
386405f7 2389
1f673135
FB
2390@example
2391qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2392@end example
386405f7 2393
1f673135 2394@item Download the binary x86 Wine install
5fafdf24 2395(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2396
1f673135 2397@item Configure Wine on your account. Look at the provided script
debc7065 2398@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2399@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2400
1f673135 2401@item Then you can try the example @file{putty.exe}:
386405f7 2402
1f673135 2403@example
debc7065
FB
2404qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2405 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2406@end example
386405f7 2407
1f673135 2408@end itemize
fd429f2f 2409
debc7065 2410@node Command line options
83195237 2411@subsection Command line options
1eb20527 2412
1f673135
FB
2413@example
2414usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2415@end example
1eb20527 2416
1f673135
FB
2417@table @option
2418@item -h
2419Print the help
3b46e624 2420@item -L path
1f673135
FB
2421Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2422@item -s size
2423Set the x86 stack size in bytes (default=524288)
386405f7
FB
2424@end table
2425
1f673135 2426Debug options:
386405f7 2427
1f673135
FB
2428@table @option
2429@item -d
2430Activate log (logfile=/tmp/qemu.log)
2431@item -p pagesize
2432Act as if the host page size was 'pagesize' bytes
2433@end table
386405f7 2434
79737e4a 2435@node Other binaries
83195237 2436@subsection Other binaries
79737e4a
PB
2437
2438@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2439binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2440configurations), and arm-uclinux bFLT format binaries.
2441
e6e5906b
PB
2442@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2443(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2444coldfire uClinux bFLT format binaries.
2445
79737e4a
PB
2446The binary format is detected automatically.
2447
a785e42e
BS
2448@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2449(Sparc64 CPU, 32 bit ABI).
2450
2451@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2452SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2453
83195237
FB
2454@node Mac OS X/Darwin User space emulator
2455@section Mac OS X/Darwin User space emulator
2456
2457@menu
2458* Mac OS X/Darwin Status::
2459* Mac OS X/Darwin Quick Start::
2460* Mac OS X/Darwin Command line options::
2461@end menu
2462
2463@node Mac OS X/Darwin Status
2464@subsection Mac OS X/Darwin Status
2465
2466@itemize @minus
2467@item
2468target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2469@item
2470target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2471@item
dbcf5e82 2472target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
83195237
FB
2473@item
2474target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2475@end itemize
2476
2477[1] If you're host commpage can be executed by qemu.
2478
2479@node Mac OS X/Darwin Quick Start
2480@subsection Quick Start
2481
2482In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2483itself and all the target dynamic libraries used by it. If you don't have the FAT
2484libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2485CD or compile them by hand.
2486
2487@itemize
2488
2489@item On x86, you can just try to launch any process by using the native
2490libraries:
2491
5fafdf24 2492@example
dbcf5e82 2493qemu-i386 /bin/ls
83195237
FB
2494@end example
2495
2496or to run the ppc version of the executable:
2497
5fafdf24 2498@example
dbcf5e82 2499qemu-ppc /bin/ls
83195237
FB
2500@end example
2501
2502@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2503are installed:
2504
5fafdf24 2505@example
dbcf5e82 2506qemu-i386 -L /opt/x86_root/ /bin/ls
83195237
FB
2507@end example
2508
2509@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2510@file{/opt/x86_root/usr/bin/dyld}.
2511
2512@end itemize
2513
2514@node Mac OS X/Darwin Command line options
2515@subsection Command line options
2516
2517@example
dbcf5e82 2518usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
83195237
FB
2519@end example
2520
2521@table @option
2522@item -h
2523Print the help
3b46e624 2524@item -L path
83195237
FB
2525Set the library root path (default=/)
2526@item -s size
2527Set the stack size in bytes (default=524288)
2528@end table
2529
2530Debug options:
2531
2532@table @option
2533@item -d
2534Activate log (logfile=/tmp/qemu.log)
2535@item -p pagesize
2536Act as if the host page size was 'pagesize' bytes
2537@end table
2538
15a34c63
FB
2539@node compilation
2540@chapter Compilation from the sources
2541
debc7065
FB
2542@menu
2543* Linux/Unix::
2544* Windows::
2545* Cross compilation for Windows with Linux::
2546* Mac OS X::
2547@end menu
2548
2549@node Linux/Unix
7c3fc84d
FB
2550@section Linux/Unix
2551
2552@subsection Compilation
2553
2554First you must decompress the sources:
2555@example
2556cd /tmp
2557tar zxvf qemu-x.y.z.tar.gz
2558cd qemu-x.y.z
2559@end example
2560
2561Then you configure QEMU and build it (usually no options are needed):
2562@example
2563./configure
2564make
2565@end example
2566
2567Then type as root user:
2568@example
2569make install
2570@end example
2571to install QEMU in @file{/usr/local}.
2572
4fe8b87a 2573@subsection GCC version
7c3fc84d 2574
366dfc52 2575In order to compile QEMU successfully, it is very important that you
4fe8b87a
FB
2576have the right tools. The most important one is gcc. On most hosts and
2577in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2578Linux distribution includes a gcc 4.x compiler, you can usually
2579install an older version (it is invoked by @code{gcc32} or
2580@code{gcc34}). The QEMU configure script automatically probes for
4be456f1 2581these older versions so that usually you don't have to do anything.
15a34c63 2582
debc7065 2583@node Windows
15a34c63
FB
2584@section Windows
2585
2586@itemize
2587@item Install the current versions of MSYS and MinGW from
2588@url{http://www.mingw.org/}. You can find detailed installation
2589instructions in the download section and the FAQ.
2590
5fafdf24 2591@item Download
15a34c63 2592the MinGW development library of SDL 1.2.x
debc7065 2593(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
15a34c63
FB
2594@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2595unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2596directory. Edit the @file{sdl-config} script so that it gives the
2597correct SDL directory when invoked.
2598
2599@item Extract the current version of QEMU.
5fafdf24 2600
15a34c63
FB
2601@item Start the MSYS shell (file @file{msys.bat}).
2602
5fafdf24 2603@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2604@file{make}. If you have problems using SDL, verify that
2605@file{sdl-config} can be launched from the MSYS command line.
2606
5fafdf24 2607@item You can install QEMU in @file{Program Files/Qemu} by typing
15a34c63
FB
2608@file{make install}. Don't forget to copy @file{SDL.dll} in
2609@file{Program Files/Qemu}.
2610
2611@end itemize
2612
debc7065 2613@node Cross compilation for Windows with Linux
15a34c63
FB
2614@section Cross compilation for Windows with Linux
2615
2616@itemize
2617@item
2618Install the MinGW cross compilation tools available at
2619@url{http://www.mingw.org/}.
2620
5fafdf24 2621@item
15a34c63
FB
2622Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2623unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2624variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2625the QEMU configuration script.
2626
5fafdf24 2627@item
15a34c63
FB
2628Configure QEMU for Windows cross compilation:
2629@example
2630./configure --enable-mingw32
2631@end example
2632If necessary, you can change the cross-prefix according to the prefix
4be456f1 2633chosen for the MinGW tools with --cross-prefix. You can also use
15a34c63
FB
2634--prefix to set the Win32 install path.
2635
5fafdf24 2636@item You can install QEMU in the installation directory by typing
15a34c63 2637@file{make install}. Don't forget to copy @file{SDL.dll} in the
5fafdf24 2638installation directory.
15a34c63
FB
2639
2640@end itemize
2641
2642Note: Currently, Wine does not seem able to launch
2643QEMU for Win32.
2644
debc7065 2645@node Mac OS X
15a34c63
FB
2646@section Mac OS X
2647
2648The Mac OS X patches are not fully merged in QEMU, so you should look
2649at the QEMU mailing list archive to have all the necessary
2650information.
2651
debc7065
FB
2652@node Index
2653@chapter Index
2654@printindex cp
2655
2656@bye