]> git.proxmox.com Git - qemu.git/blame - target-arm/cpu.h
Open 2.0 development tree
[qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3926cc84 22#include "config.h"
3cf1e035 23
3926cc84
AG
24#if defined(TARGET_AARCH64)
25 /* AArch64 definitions */
26# define TARGET_LONG_BITS 64
27# define ELF_MACHINE EM_AARCH64
28#else
29# define TARGET_LONG_BITS 32
30# define ELF_MACHINE EM_ARM
31#endif
9042c0e2 32
9349b4f9 33#define CPUArchState struct CPUARMState
c2764719 34
9a78eead 35#include "qemu-common.h"
022c62cb 36#include "exec/cpu-defs.h"
2c0262af 37
6b4c305c 38#include "fpu/softfloat.h"
53cd6637 39
1fddef4b
FB
40#define TARGET_HAS_ICE 1
41
b8a9e8f1
FB
42#define EXCP_UDEF 1 /* undefined instruction */
43#define EXCP_SWI 2 /* software interrupt */
44#define EXCP_PREFETCH_ABORT 3
45#define EXCP_DATA_ABORT 4
b5ff1b31
FB
46#define EXCP_IRQ 5
47#define EXCP_FIQ 6
06c949e6 48#define EXCP_BKPT 7
9ee6e8bb 49#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 50#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 51#define EXCP_STREX 10
9ee6e8bb
PB
52
53#define ARMV7M_EXCP_RESET 1
54#define ARMV7M_EXCP_NMI 2
55#define ARMV7M_EXCP_HARD 3
56#define ARMV7M_EXCP_MEM 4
57#define ARMV7M_EXCP_BUS 5
58#define ARMV7M_EXCP_USAGE 6
59#define ARMV7M_EXCP_SVC 11
60#define ARMV7M_EXCP_DEBUG 12
61#define ARMV7M_EXCP_PENDSV 14
62#define ARMV7M_EXCP_SYSTICK 15
2c0262af 63
403946c0
RH
64/* ARM-specific interrupt pending bits. */
65#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
66
7c1840b6
PM
67/* Meanings of the ARMCPU object's two inbound GPIO lines */
68#define ARM_CPU_IRQ 0
69#define ARM_CPU_FIQ 1
403946c0 70
c1713132
AZ
71typedef void ARMWriteCPFunc(void *opaque, int cp_info,
72 int srcreg, int operand, uint32_t value);
73typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
74 int dstreg, int operand);
75
f93eb9ff
AZ
76struct arm_boot_info;
77
6ebbf390
JM
78#define NB_MMU_MODES 2
79
b7bcbe95
FB
80/* We currently assume float and double are IEEE single and double
81 precision respectively.
82 Doing runtime conversions is tricky because VFP registers may contain
83 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
84 s<2n> maps to the least significant half of d<n>
85 s<2n+1> maps to the most significant half of d<n>
86 */
b7bcbe95 87
55d284af
PM
88/* CPU state for each instance of a generic timer (in cp15 c14) */
89typedef struct ARMGenericTimer {
90 uint64_t cval; /* Timer CompareValue register */
91 uint32_t ctl; /* Timer Control register */
92} ARMGenericTimer;
93
94#define GTIMER_PHYS 0
95#define GTIMER_VIRT 1
96#define NUM_GTIMERS 2
97
98/* Scale factor for generic timers, ie number of ns per tick.
99 * This gives a 62.5MHz timer.
100 */
101#define GTIMER_SCALE 16
102
2c0262af 103typedef struct CPUARMState {
b5ff1b31 104 /* Regs for current mode. */
2c0262af 105 uint32_t regs[16];
3926cc84
AG
106
107 /* 32/64 switch only happens when taking and returning from
108 * exceptions so the overlap semantics are taken care of then
109 * instead of having a complicated union.
110 */
111 /* Regs for A64 mode. */
112 uint64_t xregs[32];
113 uint64_t pc;
114 /* TODO: pstate doesn't correspond to an architectural register;
115 * it would be better modelled as the underlying fields.
116 */
117 uint32_t pstate;
118 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
119
b90372ad 120 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 121 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
122 the whole CPSR. */
123 uint32_t uncached_cpsr;
124 uint32_t spsr;
125
126 /* Banked registers. */
127 uint32_t banked_spsr[6];
128 uint32_t banked_r13[6];
129 uint32_t banked_r14[6];
3b46e624 130
b5ff1b31
FB
131 /* These hold r8-r12. */
132 uint32_t usr_regs[5];
133 uint32_t fiq_regs[5];
3b46e624 134
2c0262af
FB
135 /* cpsr flag cache for faster execution */
136 uint32_t CF; /* 0 or 1 */
137 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
138 uint32_t NF; /* N is bit 31. All other bits are undefined. */
139 uint32_t ZF; /* Z set if zero. */
99c475ab 140 uint32_t QF; /* 0 or 1 */
9ee6e8bb 141 uint32_t GE; /* cpsr[19:16] */
b26eefb6 142 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 143 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
2c0262af 144
b5ff1b31
FB
145 /* System control coprocessor (cp15) */
146 struct {
40f137e1 147 uint32_t c0_cpuid;
a49ea279 148 uint32_t c0_cssel; /* Cache size selection. */
b5ff1b31
FB
149 uint32_t c1_sys; /* System control register. */
150 uint32_t c1_coproc; /* Coprocessor access register. */
610c3c8a 151 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
2be27624 152 uint32_t c1_scr; /* secure config register. */
9ee6e8bb 153 uint32_t c2_base0; /* MMU translation table base 0. */
891a2fe7
PM
154 uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
155 uint32_t c2_base1; /* MMU translation table base 0. */
156 uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
b2fa1797
PB
157 uint32_t c2_control; /* MMU translation table base control. */
158 uint32_t c2_mask; /* MMU translation table base selection mask. */
159 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
160 uint32_t c2_data; /* MPU data cachable bits. */
161 uint32_t c2_insn; /* MPU instruction cachable bits. */
162 uint32_t c3; /* MMU domain access control register
163 MPU write buffer control. */
b5ff1b31
FB
164 uint32_t c5_insn; /* Fault status registers. */
165 uint32_t c5_data;
ce819861 166 uint32_t c6_region[8]; /* MPU base/size registers. */
b5ff1b31
FB
167 uint32_t c6_insn; /* Fault address registers. */
168 uint32_t c6_data;
f8bf8606 169 uint32_t c7_par; /* Translation result. */
891a2fe7 170 uint32_t c7_par_hi; /* Translation result, high 32 bits */
b5ff1b31
FB
171 uint32_t c9_insn; /* Cache lockdown registers. */
172 uint32_t c9_data;
74594c9d
PM
173 uint32_t c9_pmcr; /* performance monitor control register */
174 uint32_t c9_pmcnten; /* perf monitor counter enables */
175 uint32_t c9_pmovsr; /* perf monitor overflow status */
176 uint32_t c9_pmxevtyper; /* perf monitor event type */
177 uint32_t c9_pmuserenr; /* perf monitor user enable */
178 uint32_t c9_pminten; /* perf monitor interrupt enables */
8641136c 179 uint32_t c12_vbar; /* vector base address register */
b5ff1b31
FB
180 uint32_t c13_fcse; /* FCSE PID. */
181 uint32_t c13_context; /* Context ID. */
9ee6e8bb
PB
182 uint32_t c13_tls1; /* User RW Thread register. */
183 uint32_t c13_tls2; /* User RO Thread register. */
184 uint32_t c13_tls3; /* Privileged Thread register. */
55d284af
PM
185 uint32_t c14_cntfrq; /* Counter Frequency register */
186 uint32_t c14_cntkctl; /* Timer Control register */
187 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 188 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
189 uint32_t c15_ticonfig; /* TI925T configuration byte. */
190 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
191 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
192 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
193 uint32_t c15_config_base_address; /* SCU base address. */
194 uint32_t c15_diagnostic; /* diagnostic register */
195 uint32_t c15_power_diagnostic;
196 uint32_t c15_power_control; /* power control */
b5ff1b31 197 } cp15;
40f137e1 198
3926cc84
AG
199 /* System registers (AArch64) */
200 struct {
201 uint64_t tpidr_el0;
202 } sr;
203
9ee6e8bb
PB
204 struct {
205 uint32_t other_sp;
206 uint32_t vecbase;
207 uint32_t basepri;
208 uint32_t control;
209 int current_sp;
210 int exception;
211 int pending_exception;
9ee6e8bb
PB
212 } v7m;
213
fe1479c3
PB
214 /* Thumb-2 EE state. */
215 uint32_t teecr;
216 uint32_t teehbr;
217
b7bcbe95
FB
218 /* VFP coprocessor state. */
219 struct {
3926cc84
AG
220 /* VFP/Neon register state. Note that the mapping between S, D and Q
221 * views of the register bank differs between AArch64 and AArch32:
222 * In AArch32:
223 * Qn = regs[2n+1]:regs[2n]
224 * Dn = regs[n]
225 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
226 * (and regs[32] to regs[63] are inaccessible)
227 * In AArch64:
228 * Qn = regs[2n+1]:regs[2n]
229 * Dn = regs[2n]
230 * Sn = regs[2n] bits 31..0
231 * This corresponds to the architecturally defined mapping between
232 * the two execution states, and means we do not need to explicitly
233 * map these registers when changing states.
234 */
235 float64 regs[64];
b7bcbe95 236
40f137e1 237 uint32_t xregs[16];
b7bcbe95
FB
238 /* We store these fpcsr fields separately for convenience. */
239 int vec_len;
240 int vec_stride;
241
9ee6e8bb
PB
242 /* scratch space when Tn are not sufficient. */
243 uint32_t scratch[8];
3b46e624 244
3a492f3a
PM
245 /* fp_status is the "normal" fp status. standard_fp_status retains
246 * values corresponding to the ARM "Standard FPSCR Value", ie
247 * default-NaN, flush-to-zero, round-to-nearest and is used by
248 * any operations (generally Neon) which the architecture defines
249 * as controlled by the standard FPSCR value rather than the FPSCR.
250 *
251 * To avoid having to transfer exception bits around, we simply
252 * say that the FPSCR cumulative exception flags are the logical
253 * OR of the flags in the two fp statuses. This relies on the
254 * only thing which needs to read the exception flags being
255 * an explicit FPSCR read.
256 */
53cd6637 257 float_status fp_status;
3a492f3a 258 float_status standard_fp_status;
b7bcbe95 259 } vfp;
426f5abc
PB
260 uint32_t exclusive_addr;
261 uint32_t exclusive_val;
262 uint32_t exclusive_high;
9ee6e8bb 263#if defined(CONFIG_USER_ONLY)
426f5abc
PB
264 uint32_t exclusive_test;
265 uint32_t exclusive_info;
9ee6e8bb 266#endif
b7bcbe95 267
18c9b560
AZ
268 /* iwMMXt coprocessor state. */
269 struct {
270 uint64_t regs[16];
271 uint64_t val;
272
273 uint32_t cregs[16];
274 } iwmmxt;
275
d8fd2954
PB
276 /* For mixed endian mode. */
277 bool bswap_code;
278
ce4defa0
PB
279#if defined(CONFIG_USER_ONLY)
280 /* For usermode syscall translation. */
281 int eabi;
282#endif
283
a316d335
FB
284 CPU_COMMON
285
9d551997 286 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 287
581be094 288 /* Internal CPU feature flags. */
918f5dca 289 uint64_t features;
581be094 290
983fe826 291 void *nvic;
462a8bc6 292 const struct arm_boot_info *boot_info;
2c0262af
FB
293} CPUARMState;
294
778c3a06
AF
295#include "cpu-qom.h"
296
297ARMCPU *cpu_arm_init(const char *cpu_model);
b26eefb6 298void arm_translate_init(void);
14969266 299void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
2c0262af 300int cpu_arm_exec(CPUARMState *s);
494b00c7 301int bank_number(int mode);
b5ff1b31 302void switch_mode(CPUARMState *, int);
9ee6e8bb 303uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 304
3926cc84
AG
305static inline bool is_a64(CPUARMState *env)
306{
307 return env->aarch64;
308}
309
310#define PSTATE_N_SHIFT 3
311#define PSTATE_N (1 << PSTATE_N_SHIFT)
312#define PSTATE_Z_SHIFT 2
313#define PSTATE_Z (1 << PSTATE_Z_SHIFT)
314#define PSTATE_C_SHIFT 1
315#define PSTATE_C (1 << PSTATE_C_SHIFT)
316#define PSTATE_V_SHIFT 0
317#define PSTATE_V (1 << PSTATE_V_SHIFT)
318
2c0262af
FB
319/* you can call this signal handler from your SIGBUS and SIGSEGV
320 signal handlers to inform the virtual CPU of exceptions. non zero
321 is returned if the signal was handled by the virtual CPU. */
5fafdf24 322int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 323 void *puc);
84a031c6 324int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 325 int mmu_idx);
0b5c1ce8 326#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
2c0262af 327
78dbbbe4
PM
328#define CPSR_M (0x1fU)
329#define CPSR_T (1U << 5)
330#define CPSR_F (1U << 6)
331#define CPSR_I (1U << 7)
332#define CPSR_A (1U << 8)
333#define CPSR_E (1U << 9)
334#define CPSR_IT_2_7 (0xfc00U)
335#define CPSR_GE (0xfU << 16)
336#define CPSR_RESERVED (0xfU << 20)
337#define CPSR_J (1U << 24)
338#define CPSR_IT_0_1 (3U << 25)
339#define CPSR_Q (1U << 27)
340#define CPSR_V (1U << 28)
341#define CPSR_C (1U << 29)
342#define CPSR_Z (1U << 30)
343#define CPSR_N (1U << 31)
9ee6e8bb
PB
344#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
345
346#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
347#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
348/* Bits writable in user mode. */
349#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
350/* Execution state bits. MRS read as zero, MSR writes ignored. */
351#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
b5ff1b31 352
b5ff1b31 353/* Return the current CPSR value. */
2f4a40e5
AZ
354uint32_t cpsr_read(CPUARMState *env);
355/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
356void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
357
358/* Return the current xPSR value. */
359static inline uint32_t xpsr_read(CPUARMState *env)
360{
361 int ZF;
6fbe23d5
PB
362 ZF = (env->ZF == 0);
363 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
364 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
365 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
366 | ((env->condexec_bits & 0xfc) << 8)
367 | env->v7m.exception;
b5ff1b31
FB
368}
369
9ee6e8bb
PB
370/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
371static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
372{
9ee6e8bb 373 if (mask & CPSR_NZCV) {
6fbe23d5
PB
374 env->ZF = (~val) & CPSR_Z;
375 env->NF = val;
9ee6e8bb
PB
376 env->CF = (val >> 29) & 1;
377 env->VF = (val << 3) & 0x80000000;
378 }
379 if (mask & CPSR_Q)
380 env->QF = ((val & CPSR_Q) != 0);
381 if (mask & (1 << 24))
382 env->thumb = ((val & (1 << 24)) != 0);
383 if (mask & CPSR_IT_0_1) {
384 env->condexec_bits &= ~3;
385 env->condexec_bits |= (val >> 25) & 3;
386 }
387 if (mask & CPSR_IT_2_7) {
388 env->condexec_bits &= 3;
389 env->condexec_bits |= (val >> 8) & 0xfc;
390 }
391 if (mask & 0x1ff) {
392 env->v7m.exception = val & 0x1ff;
393 }
394}
395
01653295
PM
396/* Return the current FPSCR value. */
397uint32_t vfp_get_fpscr(CPUARMState *env);
398void vfp_set_fpscr(CPUARMState *env, uint32_t val);
399
b5ff1b31
FB
400enum arm_cpu_mode {
401 ARM_CPU_MODE_USR = 0x10,
402 ARM_CPU_MODE_FIQ = 0x11,
403 ARM_CPU_MODE_IRQ = 0x12,
404 ARM_CPU_MODE_SVC = 0x13,
405 ARM_CPU_MODE_ABT = 0x17,
406 ARM_CPU_MODE_UND = 0x1b,
407 ARM_CPU_MODE_SYS = 0x1f
408};
409
40f137e1
PB
410/* VFP system registers. */
411#define ARM_VFP_FPSID 0
412#define ARM_VFP_FPSCR 1
9ee6e8bb
PB
413#define ARM_VFP_MVFR1 6
414#define ARM_VFP_MVFR0 7
40f137e1
PB
415#define ARM_VFP_FPEXC 8
416#define ARM_VFP_FPINST 9
417#define ARM_VFP_FPINST2 10
418
18c9b560
AZ
419/* iwMMXt coprocessor control registers. */
420#define ARM_IWMMXT_wCID 0
421#define ARM_IWMMXT_wCon 1
422#define ARM_IWMMXT_wCSSF 2
423#define ARM_IWMMXT_wCASF 3
424#define ARM_IWMMXT_wCGR0 8
425#define ARM_IWMMXT_wCGR1 9
426#define ARM_IWMMXT_wCGR2 10
427#define ARM_IWMMXT_wCGR3 11
428
ce854d7c
BC
429/* If adding a feature bit which corresponds to a Linux ELF
430 * HWCAP bit, remember to update the feature-bit-to-hwcap
431 * mapping in linux-user/elfload.c:get_elf_hwcap().
432 */
40f137e1
PB
433enum arm_features {
434 ARM_FEATURE_VFP,
c1713132
AZ
435 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
436 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 437 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
438 ARM_FEATURE_V6,
439 ARM_FEATURE_V6K,
440 ARM_FEATURE_V7,
441 ARM_FEATURE_THUMB2,
c3d2689d 442 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 443 ARM_FEATURE_VFP3,
60011498 444 ARM_FEATURE_VFP_FP16,
9ee6e8bb 445 ARM_FEATURE_NEON,
47789990 446 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 447 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 448 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 449 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
450 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
451 ARM_FEATURE_V4T,
452 ARM_FEATURE_V5,
5bc95aa2 453 ARM_FEATURE_STRONGARM,
906879a9 454 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 455 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 456 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 457 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 458 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 459 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
460 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
461 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
462 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 463 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
464 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
465 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 466 ARM_FEATURE_V8,
3926cc84 467 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
40f137e1
PB
468};
469
470static inline int arm_feature(CPUARMState *env, int feature)
471{
918f5dca 472 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
473}
474
9a78eead 475void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
40f137e1 476
9ee6e8bb
PB
477/* Interface between CPU and Interrupt controller. */
478void armv7m_nvic_set_pending(void *opaque, int irq);
479int armv7m_nvic_acknowledge_irq(void *opaque);
480void armv7m_nvic_complete_irq(void *opaque, int irq);
481
4b6a83fb
PM
482/* Interface for defining coprocessor registers.
483 * Registers are defined in tables of arm_cp_reginfo structs
484 * which are passed to define_arm_cp_regs().
485 */
486
487/* When looking up a coprocessor register we look for it
488 * via an integer which encodes all of:
489 * coprocessor number
490 * Crn, Crm, opc1, opc2 fields
491 * 32 or 64 bit register (ie is it accessed via MRC/MCR
492 * or via MRRC/MCRR?)
493 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
494 * (In this case crn and opc2 should be zero.)
495 */
496#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
497 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
498 ((crm) << 7) | ((opc1) << 3) | (opc2))
499
721fae12
PM
500/* Note that these must line up with the KVM/ARM register
501 * ID field definitions (kvm.c will check this, but we
502 * can't just use the KVM defines here as the kvm headers
503 * are unavailable to non-KVM-specific files)
504 */
505#define CP_REG_SIZE_SHIFT 52
506#define CP_REG_SIZE_MASK 0x00f0000000000000ULL
507#define CP_REG_SIZE_U32 0x0020000000000000ULL
508#define CP_REG_SIZE_U64 0x0030000000000000ULL
509#define CP_REG_ARM 0x4000000000000000ULL
510
511/* Convert a full 64 bit KVM register ID to the truncated 32 bit
512 * version used as a key for the coprocessor register hashtable
513 */
514static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
515{
516 uint32_t cpregid = kvmid;
517 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
518 cpregid |= (1 << 15);
519 }
520 return cpregid;
521}
522
523/* Convert a truncated 32 bit hashtable key into the full
524 * 64 bit KVM register ID.
525 */
526static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
527{
528 uint64_t kvmid = cpregid & ~(1 << 15);
529 if (cpregid & (1 << 15)) {
530 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
531 } else {
532 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
533 }
534 return kvmid;
535}
536
4b6a83fb
PM
537/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
538 * special-behaviour cp reg and bits [15..8] indicate what behaviour
539 * it has. Otherwise it is a simple cp reg, where CONST indicates that
540 * TCG can assume the value to be constant (ie load at translate time)
541 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
542 * indicates that the TB should not be ended after a write to this register
543 * (the default is that the TB ends after cp writes). OVERRIDE permits
544 * a register definition to override a previous definition for the
545 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
546 * old must have the OVERRIDE bit set.
7023ec7e
PM
547 * NO_MIGRATE indicates that this register should be ignored for migration;
548 * (eg because any state is accessed via some other coprocessor register).
2452731c
PM
549 * IO indicates that this register does I/O and therefore its accesses
550 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
551 * registers which implement clocks or timers require this.
4b6a83fb
PM
552 */
553#define ARM_CP_SPECIAL 1
554#define ARM_CP_CONST 2
555#define ARM_CP_64BIT 4
556#define ARM_CP_SUPPRESS_TB_END 8
557#define ARM_CP_OVERRIDE 16
7023ec7e 558#define ARM_CP_NO_MIGRATE 32
2452731c 559#define ARM_CP_IO 64
4b6a83fb
PM
560#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
561#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
562#define ARM_LAST_SPECIAL ARM_CP_WFI
563/* Used only as a terminator for ARMCPRegInfo lists */
564#define ARM_CP_SENTINEL 0xffff
565/* Mask of only the flag bits in a type field */
2452731c 566#define ARM_CP_FLAG_MASK 0x7f
4b6a83fb
PM
567
568/* Return true if cptype is a valid type field. This is used to try to
569 * catch errors where the sentinel has been accidentally left off the end
570 * of a list of registers.
571 */
572static inline bool cptype_valid(int cptype)
573{
574 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
575 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 576 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
577}
578
579/* Access rights:
580 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
581 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
582 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
583 * (ie any of the privileged modes in Secure state, or Monitor mode).
584 * If a register is accessible in one privilege level it's always accessible
585 * in higher privilege levels too. Since "Secure PL1" also follows this rule
586 * (ie anything visible in PL2 is visible in S-PL1, some things are only
587 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
588 * terminology a little and call this PL3.
589 *
590 * If access permissions for a register are more complex than can be
591 * described with these bits, then use a laxer set of restrictions, and
592 * do the more restrictive/complex check inside a helper function.
593 */
594#define PL3_R 0x80
595#define PL3_W 0x40
596#define PL2_R (0x20 | PL3_R)
597#define PL2_W (0x10 | PL3_W)
598#define PL1_R (0x08 | PL2_R)
599#define PL1_W (0x04 | PL2_W)
600#define PL0_R (0x02 | PL1_R)
601#define PL0_W (0x01 | PL1_W)
602
603#define PL3_RW (PL3_R | PL3_W)
604#define PL2_RW (PL2_R | PL2_W)
605#define PL1_RW (PL1_R | PL1_W)
606#define PL0_RW (PL0_R | PL0_W)
607
608static inline int arm_current_pl(CPUARMState *env)
609{
610 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
611 return 0;
612 }
613 /* We don't currently implement the Virtualization or TrustZone
614 * extensions, so PL2 and PL3 don't exist for us.
615 */
616 return 1;
617}
618
619typedef struct ARMCPRegInfo ARMCPRegInfo;
620
621/* Access functions for coprocessor registers. These should return
622 * 0 on success, or one of the EXCP_* constants if access should cause
623 * an exception (in which case *value is not written).
624 */
625typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
626 uint64_t *value);
627typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
628 uint64_t value);
629/* Hook function for register reset */
630typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
631
632#define CP_ANY 0xff
633
634/* Definition of an ARM coprocessor register */
635struct ARMCPRegInfo {
636 /* Name of register (useful mainly for debugging, need not be unique) */
637 const char *name;
638 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
639 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
640 * 'wildcard' field -- any value of that field in the MRC/MCR insn
641 * will be decoded to this register. The register read and write
642 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
643 * used by the program, so it is possible to register a wildcard and
644 * then behave differently on read/write if necessary.
645 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
646 * must both be zero.
647 */
648 uint8_t cp;
649 uint8_t crn;
650 uint8_t crm;
651 uint8_t opc1;
652 uint8_t opc2;
653 /* Register type: ARM_CP_* bits/values */
654 int type;
655 /* Access rights: PL*_[RW] */
656 int access;
657 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
658 * this register was defined: can be used to hand data through to the
659 * register read/write functions, since they are passed the ARMCPRegInfo*.
660 */
661 void *opaque;
662 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
663 * fieldoffset is non-zero, the reset value of the register.
664 */
665 uint64_t resetvalue;
666 /* Offset of the field in CPUARMState for this register. This is not
667 * needed if either:
668 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
669 * 2. both readfn and writefn are specified
670 */
671 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
672 /* Function for handling reads of this register. If NULL, then reads
673 * will be done by loading from the offset into CPUARMState specified
674 * by fieldoffset.
675 */
676 CPReadFn *readfn;
677 /* Function for handling writes of this register. If NULL, then writes
678 * will be done by writing to the offset into CPUARMState specified
679 * by fieldoffset.
680 */
681 CPWriteFn *writefn;
7023ec7e
PM
682 /* Function for doing a "raw" read; used when we need to copy
683 * coprocessor state to the kernel for KVM or out for
684 * migration. This only needs to be provided if there is also a
685 * readfn and it makes an access permission check.
686 */
687 CPReadFn *raw_readfn;
688 /* Function for doing a "raw" write; used when we need to copy KVM
689 * kernel coprocessor state into userspace, or for inbound
690 * migration. This only needs to be provided if there is also a
691 * writefn and it makes an access permission check or masks out
692 * "unwritable" bits or has write-one-to-clear or similar behaviour.
693 */
694 CPWriteFn *raw_writefn;
4b6a83fb
PM
695 /* Function for resetting the register. If NULL, then reset will be done
696 * by writing resetvalue to the field specified in fieldoffset. If
697 * fieldoffset is 0 then no reset will be done.
698 */
699 CPResetFn *resetfn;
700};
701
702/* Macros which are lvalues for the field in CPUARMState for the
703 * ARMCPRegInfo *ri.
704 */
705#define CPREG_FIELD32(env, ri) \
706 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
707#define CPREG_FIELD64(env, ri) \
708 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
709
710#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
711
712void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
713 const ARMCPRegInfo *regs, void *opaque);
714void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
715 const ARMCPRegInfo *regs, void *opaque);
716static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
717{
718 define_arm_cp_regs_with_opaque(cpu, regs, 0);
719}
720static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
721{
722 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
723}
724const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
725
726/* CPWriteFn that can be used to implement writes-ignored behaviour */
727int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
728 uint64_t value);
729/* CPReadFn that can be used for read-as-zero behaviour */
730int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
731
732static inline bool cp_access_ok(CPUARMState *env,
733 const ARMCPRegInfo *ri, int isread)
734{
735 return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
736}
737
721fae12
PM
738/**
739 * write_list_to_cpustate
740 * @cpu: ARMCPU
741 *
742 * For each register listed in the ARMCPU cpreg_indexes list, write
743 * its value from the cpreg_values list into the ARMCPUState structure.
744 * This updates TCG's working data structures from KVM data or
745 * from incoming migration state.
746 *
747 * Returns: true if all register values were updated correctly,
748 * false if some register was unknown or could not be written.
749 * Note that we do not stop early on failure -- we will attempt
750 * writing all registers in the list.
751 */
752bool write_list_to_cpustate(ARMCPU *cpu);
753
754/**
755 * write_cpustate_to_list:
756 * @cpu: ARMCPU
757 *
758 * For each register listed in the ARMCPU cpreg_indexes list, write
759 * its value from the ARMCPUState structure into the cpreg_values list.
760 * This is used to copy info from TCG's working data structures into
761 * KVM or for outbound migration.
762 *
763 * Returns: true if all register values were read correctly,
764 * false if some register was unknown or could not be read.
765 * Note that we do not stop early on failure -- we will attempt
766 * reading all registers in the list.
767 */
768bool write_cpustate_to_list(ARMCPU *cpu);
769
9ee6e8bb
PB
770/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
771 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
772 conventional cores (ie. Application or Realtime profile). */
773
774#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 775
9ee6e8bb
PB
776#define ARM_CPUID_TI915T 0x54029152
777#define ARM_CPUID_TI925T 0x54029252
40f137e1 778
b5ff1b31 779#if defined(CONFIG_USER_ONLY)
2c0262af 780#define TARGET_PAGE_BITS 12
b5ff1b31
FB
781#else
782/* The ARM MMU allows 1k pages. */
783/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 784 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
785#define TARGET_PAGE_BITS 10
786#endif
9467d44c 787
3926cc84
AG
788#if defined(TARGET_AARCH64)
789# define TARGET_PHYS_ADDR_SPACE_BITS 48
790# define TARGET_VIRT_ADDR_SPACE_BITS 64
791#else
792# define TARGET_PHYS_ADDR_SPACE_BITS 40
793# define TARGET_VIRT_ADDR_SPACE_BITS 32
794#endif
52705890 795
ad37ad5b
PM
796static inline CPUARMState *cpu_init(const char *cpu_model)
797{
798 ARMCPU *cpu = cpu_arm_init(cpu_model);
799 if (cpu) {
800 return &cpu->env;
801 }
802 return NULL;
803}
804
9467d44c
TS
805#define cpu_exec cpu_arm_exec
806#define cpu_gen_code cpu_arm_gen_code
807#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 808#define cpu_list arm_cpu_list
9467d44c 809
6ebbf390
JM
810/* MMU modes definitions */
811#define MMU_MODE0_SUFFIX _kernel
812#define MMU_MODE1_SUFFIX _user
813#define MMU_USER_IDX 1
0ecb72a5 814static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390
JM
815{
816 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
817}
818
022c62cb 819#include "exec/cpu-all.h"
622ed360 820
3926cc84
AG
821/* Bit usage in the TB flags field: bit 31 indicates whether we are
822 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
823 */
824#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
825#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
826
827/* Bit usage when in AArch32 state: */
a1705768
PM
828#define ARM_TBFLAG_THUMB_SHIFT 0
829#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
830#define ARM_TBFLAG_VECLEN_SHIFT 1
831#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
832#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
833#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
834#define ARM_TBFLAG_PRIV_SHIFT 6
835#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
836#define ARM_TBFLAG_VFPEN_SHIFT 7
837#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
838#define ARM_TBFLAG_CONDEXEC_SHIFT 8
839#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
840#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
841#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
3926cc84
AG
842
843/* Bit usage when in AArch64 state: currently no bits defined */
a1705768
PM
844
845/* some convenience accessor macros */
3926cc84
AG
846#define ARM_TBFLAG_AARCH64_STATE(F) \
847 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
a1705768
PM
848#define ARM_TBFLAG_THUMB(F) \
849 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
850#define ARM_TBFLAG_VECLEN(F) \
851 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
852#define ARM_TBFLAG_VECSTRIDE(F) \
853 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
854#define ARM_TBFLAG_PRIV(F) \
855 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
856#define ARM_TBFLAG_VFPEN(F) \
857 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
858#define ARM_TBFLAG_CONDEXEC(F) \
859 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
860#define ARM_TBFLAG_BSWAP_CODE(F) \
861 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
a1705768 862
0ecb72a5 863static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
864 target_ulong *cs_base, int *flags)
865{
3926cc84
AG
866 if (is_a64(env)) {
867 *pc = env->pc;
868 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
05ed9a99 869 } else {
3926cc84
AG
870 int privmode;
871 *pc = env->regs[15];
872 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
873 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
874 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
875 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
876 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
877 if (arm_feature(env, ARM_FEATURE_M)) {
878 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
879 } else {
880 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
881 }
882 if (privmode) {
883 *flags |= ARM_TBFLAG_PRIV_MASK;
884 }
885 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
886 *flags |= ARM_TBFLAG_VFPEN_MASK;
887 }
a1705768 888 }
3926cc84
AG
889
890 *cs_base = 0;
6b917547
AL
891}
892
3993c6bd 893static inline bool cpu_has_work(CPUState *cpu)
f081c76c 894{
259186a7 895 return cpu->interrupt_request &
f081c76c
BS
896 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
897}
898
022c62cb 899#include "exec/exec-all.h"
f081c76c 900
3926cc84
AG
901static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
902{
903 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
904 env->pc = tb->pc;
905 } else {
906 env->regs[15] = tb->pc;
907 }
908}
909
d8fd2954 910/* Load an instruction and return it in the standard little-endian order */
0a2461fa 911static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
d31dd73e 912 bool do_swap)
d8fd2954 913{
d31dd73e 914 uint32_t insn = cpu_ldl_code(env, addr);
d8fd2954
PB
915 if (do_swap) {
916 return bswap32(insn);
917 }
918 return insn;
919}
920
921/* Ditto, for a halfword (Thumb) instruction */
0a2461fa 922static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
d31dd73e 923 bool do_swap)
d8fd2954 924{
d31dd73e 925 uint16_t insn = cpu_lduw_code(env, addr);
d8fd2954
PB
926 if (do_swap) {
927 return bswap16(insn);
928 }
929 return insn;
930}
931
2c0262af 932#endif