]> git.proxmox.com Git - qemu.git/blame - target-i386/kvm.c
monitor: fix build breakage for !CONFIG_VNC
[qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
24#include "sysemu.h"
25#include "kvm.h"
26#include "cpu.h"
e22a25c9 27#include "gdbstub.h"
0e607a80 28#include "host-utils.h"
4c5b10b7 29#include "hw/pc.h"
408392b3 30#include "hw/apic.h"
35bed8ee 31#include "ioport.h"
05330448
AL
32
33//#define DEBUG_KVM
34
35#ifdef DEBUG_KVM
8c0d577e 36#define DPRINTF(fmt, ...) \
05330448
AL
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38#else
8c0d577e 39#define DPRINTF(fmt, ...) \
05330448
AL
40 do { } while (0)
41#endif
42
1a03675d
GC
43#define MSR_KVM_WALL_CLOCK 0x11
44#define MSR_KVM_SYSTEM_TIME 0x12
45
c0532a76
MT
46#ifndef BUS_MCEERR_AR
47#define BUS_MCEERR_AR 4
48#endif
49#ifndef BUS_MCEERR_AO
50#define BUS_MCEERR_AO 5
51#endif
52
94a8d39a
JK
53const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
54 KVM_CAP_INFO(SET_TSS_ADDR),
55 KVM_CAP_INFO(EXT_CPUID),
56 KVM_CAP_INFO(MP_STATE),
57 KVM_CAP_LAST_INFO
58};
25d2e361 59
c3a3a7d3
JK
60static bool has_msr_star;
61static bool has_msr_hsave_pa;
c5999bfc 62static bool has_msr_async_pf_en;
25d2e361 63static int lm_capable_kernel;
b827df58
AK
64
65static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
66{
67 struct kvm_cpuid2 *cpuid;
68 int r, size;
69
70 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
71 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
72 cpuid->nent = max;
73 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
74 if (r == 0 && cpuid->nent >= max) {
75 r = -E2BIG;
76 }
b827df58
AK
77 if (r < 0) {
78 if (r == -E2BIG) {
79 qemu_free(cpuid);
80 return NULL;
81 } else {
82 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
83 strerror(-r));
84 exit(1);
85 }
86 }
87 return cpuid;
88}
89
0c31b744
GC
90struct kvm_para_features {
91 int cap;
92 int feature;
93} para_features[] = {
94 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
95 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
96 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 97 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
98 { -1, -1 }
99};
100
ba9bc59e 101static int get_para_features(KVMState *s)
0c31b744
GC
102{
103 int i, features = 0;
104
105 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
ba9bc59e 106 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
107 features |= (1 << para_features[i].feature);
108 }
109 }
110
111 return features;
112}
0c31b744
GC
113
114
ba9bc59e 115uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 116 uint32_t index, int reg)
b827df58
AK
117{
118 struct kvm_cpuid2 *cpuid;
119 int i, max;
120 uint32_t ret = 0;
121 uint32_t cpuid_1_edx;
0c31b744 122 int has_kvm_features = 0;
b827df58 123
b827df58 124 max = 1;
ba9bc59e 125 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
b827df58
AK
126 max *= 2;
127 }
128
129 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
130 if (cpuid->entries[i].function == function &&
131 cpuid->entries[i].index == index) {
0c31b744
GC
132 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
133 has_kvm_features = 1;
134 }
b827df58
AK
135 switch (reg) {
136 case R_EAX:
137 ret = cpuid->entries[i].eax;
138 break;
139 case R_EBX:
140 ret = cpuid->entries[i].ebx;
141 break;
142 case R_ECX:
143 ret = cpuid->entries[i].ecx;
144 break;
145 case R_EDX:
146 ret = cpuid->entries[i].edx;
19ccb8ea
JK
147 switch (function) {
148 case 1:
149 /* KVM before 2.6.30 misreports the following features */
150 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
151 break;
152 case 0x80000001:
b827df58
AK
153 /* On Intel, kvm returns cpuid according to the Intel spec,
154 * so add missing bits according to the AMD spec:
155 */
ba9bc59e 156 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
c1667e40 157 ret |= cpuid_1_edx & 0x183f7ff;
19ccb8ea 158 break;
b827df58
AK
159 }
160 break;
161 }
162 }
163 }
164
165 qemu_free(cpuid);
166
0c31b744
GC
167 /* fallback for older kernels */
168 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
ba9bc59e 169 ret = get_para_features(s);
b9bec74b 170 }
0c31b744
GC
171
172 return ret;
bb0300dc 173}
bb0300dc 174
3c85e74f
HY
175typedef struct HWPoisonPage {
176 ram_addr_t ram_addr;
177 QLIST_ENTRY(HWPoisonPage) list;
178} HWPoisonPage;
179
180static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
181 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
182
183static void kvm_unpoison_all(void *param)
184{
185 HWPoisonPage *page, *next_page;
186
187 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
188 QLIST_REMOVE(page, list);
189 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
190 qemu_free(page);
191 }
192}
193
3c85e74f
HY
194static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
195{
196 HWPoisonPage *page;
197
198 QLIST_FOREACH(page, &hwpoison_page_list, list) {
199 if (page->ram_addr == ram_addr) {
200 return;
201 }
202 }
203 page = qemu_malloc(sizeof(HWPoisonPage));
204 page->ram_addr = ram_addr;
205 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
206}
207
e7701825
MT
208static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
209 int *max_banks)
210{
211 int r;
212
14a09518 213 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
214 if (r > 0) {
215 *max_banks = r;
216 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
217 }
218 return -ENOSYS;
219}
220
c34d440a 221static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
e7701825 222{
c34d440a
JK
223 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
224 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
225 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 226
c34d440a
JK
227 if (code == BUS_MCEERR_AR) {
228 status |= MCI_STATUS_AR | 0x134;
229 mcg_status |= MCG_STATUS_EIPV;
230 } else {
231 status |= 0xc0;
232 mcg_status |= MCG_STATUS_RIPV;
419fb20a 233 }
c34d440a
JK
234 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
235 (MCM_ADDR_PHYS << 6) | 0xc,
236 cpu_x86_support_mca_broadcast(env) ?
237 MCE_INJECT_BROADCAST : 0);
419fb20a 238}
419fb20a
JK
239
240static void hardware_memory_error(void)
241{
242 fprintf(stderr, "Hardware memory error!\n");
243 exit(1);
244}
245
246int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
247{
419fb20a
JK
248 ram_addr_t ram_addr;
249 target_phys_addr_t paddr;
250
251 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a
JK
252 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
253 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
254 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
255 &paddr)) {
419fb20a
JK
256 fprintf(stderr, "Hardware memory error for memory used by "
257 "QEMU itself instead of guest system!\n");
258 /* Hope we are lucky for AO MCE */
259 if (code == BUS_MCEERR_AO) {
260 return 0;
261 } else {
262 hardware_memory_error();
263 }
264 }
3c85e74f 265 kvm_hwpoison_page_add(ram_addr);
c34d440a 266 kvm_mce_inject(env, paddr, code);
e56ff191 267 } else {
419fb20a
JK
268 if (code == BUS_MCEERR_AO) {
269 return 0;
270 } else if (code == BUS_MCEERR_AR) {
271 hardware_memory_error();
272 } else {
273 return 1;
274 }
275 }
276 return 0;
277}
278
279int kvm_arch_on_sigbus(int code, void *addr)
280{
419fb20a 281 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a
JK
282 ram_addr_t ram_addr;
283 target_phys_addr_t paddr;
284
285 /* Hope we are lucky for AO MCE */
c34d440a 286 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
419fb20a
JK
287 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
288 &paddr)) {
289 fprintf(stderr, "Hardware memory error for memory used by "
290 "QEMU itself instead of guest system!: %p\n", addr);
291 return 0;
292 }
3c85e74f 293 kvm_hwpoison_page_add(ram_addr);
c34d440a 294 kvm_mce_inject(first_cpu, paddr, code);
e56ff191 295 } else {
419fb20a
JK
296 if (code == BUS_MCEERR_AO) {
297 return 0;
298 } else if (code == BUS_MCEERR_AR) {
299 hardware_memory_error();
300 } else {
301 return 1;
302 }
303 }
304 return 0;
305}
e7701825 306
ab443475
JK
307static int kvm_inject_mce_oldstyle(CPUState *env)
308{
ab443475
JK
309 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
310 unsigned int bank, bank_num = env->mcg_cap & 0xff;
311 struct kvm_x86_mce mce;
312
313 env->exception_injected = -1;
314
315 /*
316 * There must be at least one bank in use if an MCE is pending.
317 * Find it and use its values for the event injection.
318 */
319 for (bank = 0; bank < bank_num; bank++) {
320 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
321 break;
322 }
323 }
324 assert(bank < bank_num);
325
326 mce.bank = bank;
327 mce.status = env->mce_banks[bank * 4 + 1];
328 mce.mcg_status = env->mcg_status;
329 mce.addr = env->mce_banks[bank * 4 + 2];
330 mce.misc = env->mce_banks[bank * 4 + 3];
331
332 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
333 }
ab443475
JK
334 return 0;
335}
336
b8cc45d6
GC
337static void cpu_update_state(void *opaque, int running, int reason)
338{
339 CPUState *env = opaque;
340
341 if (running) {
342 env->tsc_valid = false;
343 }
344}
345
05330448
AL
346int kvm_arch_init_vcpu(CPUState *env)
347{
348 struct {
486bd5a2
AL
349 struct kvm_cpuid2 cpuid;
350 struct kvm_cpuid_entry2 entries[100];
05330448 351 } __attribute__((packed)) cpuid_data;
ba9bc59e 352 KVMState *s = env->kvm_state;
486bd5a2 353 uint32_t limit, i, j, cpuid_i;
a33609ca 354 uint32_t unused;
bb0300dc 355 struct kvm_cpuid_entry2 *c;
bb0300dc 356 uint32_t signature[3];
05330448 357
ba9bc59e 358 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
6c0d7ee8
AP
359
360 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
ba9bc59e 361 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
6c0d7ee8
AP
362 env->cpuid_ext_features |= i;
363
ba9bc59e 364 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 365 0, R_EDX);
ba9bc59e 366 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 367 0, R_ECX);
ba9bc59e 368 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
296acb64
JR
369 0, R_EDX);
370
05330448
AL
371 cpuid_i = 0;
372
bb0300dc
GN
373 /* Paravirtualization CPUIDs */
374 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
375 c = &cpuid_data.entries[cpuid_i++];
376 memset(c, 0, sizeof(*c));
377 c->function = KVM_CPUID_SIGNATURE;
378 c->eax = 0;
379 c->ebx = signature[0];
380 c->ecx = signature[1];
381 c->edx = signature[2];
382
383 c = &cpuid_data.entries[cpuid_i++];
384 memset(c, 0, sizeof(*c));
385 c->function = KVM_CPUID_FEATURES;
ba9bc59e
JK
386 c->eax = env->cpuid_kvm_features &
387 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
0c31b744 388
0c31b744 389 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 390
a33609ca 391 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
392
393 for (i = 0; i <= limit; i++) {
bb0300dc 394 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
395
396 switch (i) {
a36b1029
AL
397 case 2: {
398 /* Keep reading function 2 till all the input is received */
399 int times;
400
a36b1029 401 c->function = i;
a33609ca
AL
402 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
403 KVM_CPUID_FLAG_STATE_READ_NEXT;
404 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
405 times = c->eax & 0xff;
a36b1029
AL
406
407 for (j = 1; j < times; ++j) {
a33609ca 408 c = &cpuid_data.entries[cpuid_i++];
a36b1029 409 c->function = i;
a33609ca
AL
410 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
411 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
412 }
413 break;
414 }
486bd5a2
AL
415 case 4:
416 case 0xb:
417 case 0xd:
418 for (j = 0; ; j++) {
31e8c696
AP
419 if (i == 0xd && j == 64) {
420 break;
421 }
486bd5a2
AL
422 c->function = i;
423 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
424 c->index = j;
a33609ca 425 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 426
b9bec74b 427 if (i == 4 && c->eax == 0) {
486bd5a2 428 break;
b9bec74b
JK
429 }
430 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 431 break;
b9bec74b
JK
432 }
433 if (i == 0xd && c->eax == 0) {
31e8c696 434 continue;
b9bec74b 435 }
a33609ca 436 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
437 }
438 break;
439 default:
486bd5a2 440 c->function = i;
a33609ca
AL
441 c->flags = 0;
442 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
443 break;
444 }
05330448 445 }
a33609ca 446 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
447
448 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 449 c = &cpuid_data.entries[cpuid_i++];
05330448 450
05330448 451 c->function = i;
a33609ca
AL
452 c->flags = 0;
453 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
454 }
455
b3baa152 456 /* Call Centaur's CPUID instructions they are supported. */
457 if (env->cpuid_xlevel2 > 0) {
458 env->cpuid_ext4_features &=
ba9bc59e 459 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
b3baa152 460 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
461
462 for (i = 0xC0000000; i <= limit; i++) {
463 c = &cpuid_data.entries[cpuid_i++];
464
465 c->function = i;
466 c->flags = 0;
467 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
468 }
469 }
470
05330448
AL
471 cpuid_data.cpuid.nent = cpuid_i;
472
e7701825
MT
473 if (((env->cpuid_version >> 8)&0xF) >= 6
474 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
475 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
476 uint64_t mcg_cap;
477 int banks;
32a42024 478 int ret;
e7701825 479
75d49497
JK
480 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
481 if (ret < 0) {
482 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
483 return ret;
e7701825 484 }
75d49497
JK
485
486 if (banks > MCE_BANKS_DEF) {
487 banks = MCE_BANKS_DEF;
488 }
489 mcg_cap &= MCE_CAP_DEF;
490 mcg_cap |= banks;
491 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
492 if (ret < 0) {
493 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
494 return ret;
495 }
496
497 env->mcg_cap = mcg_cap;
e7701825 498 }
e7701825 499
b8cc45d6
GC
500 qemu_add_vm_change_state_handler(cpu_update_state, env);
501
486bd5a2 502 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
05330448
AL
503}
504
caa5af0f
JK
505void kvm_arch_reset_vcpu(CPUState *env)
506{
e73223a5 507 env->exception_injected = -1;
0e607a80 508 env->interrupt_injected = -1;
1a5e9d2f 509 env->xcr0 = 1;
ddced198
MT
510 if (kvm_irqchip_in_kernel()) {
511 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
512 KVM_MP_STATE_UNINITIALIZED;
513 } else {
514 env->mp_state = KVM_MP_STATE_RUNNABLE;
515 }
caa5af0f
JK
516}
517
c3a3a7d3 518static int kvm_get_supported_msrs(KVMState *s)
05330448 519{
75b10c43 520 static int kvm_supported_msrs;
c3a3a7d3 521 int ret = 0;
05330448
AL
522
523 /* first time */
75b10c43 524 if (kvm_supported_msrs == 0) {
05330448
AL
525 struct kvm_msr_list msr_list, *kvm_msr_list;
526
75b10c43 527 kvm_supported_msrs = -1;
05330448
AL
528
529 /* Obtain MSR list from KVM. These are the MSRs that we must
530 * save/restore */
4c9f7372 531 msr_list.nmsrs = 0;
c3a3a7d3 532 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 533 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 534 return ret;
6fb6d245 535 }
d9db889f
JK
536 /* Old kernel modules had a bug and could write beyond the provided
537 memory. Allocate at least a safe amount of 1K. */
538 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
539 msr_list.nmsrs *
540 sizeof(msr_list.indices[0])));
05330448 541
55308450 542 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 543 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
544 if (ret >= 0) {
545 int i;
546
547 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
548 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 549 has_msr_star = true;
75b10c43
MT
550 continue;
551 }
552 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 553 has_msr_hsave_pa = true;
75b10c43 554 continue;
05330448
AL
555 }
556 }
557 }
558
4a043713 559 qemu_free(kvm_msr_list);
05330448
AL
560 }
561
c3a3a7d3 562 return ret;
05330448
AL
563}
564
cad1e282 565int kvm_arch_init(KVMState *s)
20420430 566{
11076198 567 uint64_t identity_base = 0xfffbc000;
20420430 568 int ret;
25d2e361 569 struct utsname utsname;
20420430 570
c3a3a7d3 571 ret = kvm_get_supported_msrs(s);
20420430 572 if (ret < 0) {
20420430
SY
573 return ret;
574 }
25d2e361
MT
575
576 uname(&utsname);
577 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
578
4c5b10b7 579 /*
11076198
JK
580 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
581 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
582 * Since these must be part of guest physical memory, we need to allocate
583 * them, both by setting their start addresses in the kernel and by
584 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
585 *
586 * Older KVM versions may not support setting the identity map base. In
587 * that case we need to stick with the default, i.e. a 256K maximum BIOS
588 * size.
4c5b10b7 589 */
11076198
JK
590 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
591 /* Allows up to 16M BIOSes. */
592 identity_base = 0xfeffc000;
593
594 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
595 if (ret < 0) {
596 return ret;
597 }
4c5b10b7 598 }
e56ff191 599
11076198
JK
600 /* Set TSS base one page after EPT identity map. */
601 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
602 if (ret < 0) {
603 return ret;
604 }
605
11076198
JK
606 /* Tell fw_cfg to notify the BIOS to reserve the range. */
607 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 608 if (ret < 0) {
11076198 609 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
610 return ret;
611 }
3c85e74f 612 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 613
11076198 614 return 0;
05330448 615}
b9bec74b 616
05330448
AL
617static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
618{
619 lhs->selector = rhs->selector;
620 lhs->base = rhs->base;
621 lhs->limit = rhs->limit;
622 lhs->type = 3;
623 lhs->present = 1;
624 lhs->dpl = 3;
625 lhs->db = 0;
626 lhs->s = 1;
627 lhs->l = 0;
628 lhs->g = 0;
629 lhs->avl = 0;
630 lhs->unusable = 0;
631}
632
633static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
634{
635 unsigned flags = rhs->flags;
636 lhs->selector = rhs->selector;
637 lhs->base = rhs->base;
638 lhs->limit = rhs->limit;
639 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
640 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 641 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
642 lhs->db = (flags >> DESC_B_SHIFT) & 1;
643 lhs->s = (flags & DESC_S_MASK) != 0;
644 lhs->l = (flags >> DESC_L_SHIFT) & 1;
645 lhs->g = (flags & DESC_G_MASK) != 0;
646 lhs->avl = (flags & DESC_AVL_MASK) != 0;
647 lhs->unusable = 0;
648}
649
650static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
651{
652 lhs->selector = rhs->selector;
653 lhs->base = rhs->base;
654 lhs->limit = rhs->limit;
b9bec74b
JK
655 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
656 (rhs->present * DESC_P_MASK) |
657 (rhs->dpl << DESC_DPL_SHIFT) |
658 (rhs->db << DESC_B_SHIFT) |
659 (rhs->s * DESC_S_MASK) |
660 (rhs->l << DESC_L_SHIFT) |
661 (rhs->g * DESC_G_MASK) |
662 (rhs->avl * DESC_AVL_MASK);
05330448
AL
663}
664
665static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
666{
b9bec74b 667 if (set) {
05330448 668 *kvm_reg = *qemu_reg;
b9bec74b 669 } else {
05330448 670 *qemu_reg = *kvm_reg;
b9bec74b 671 }
05330448
AL
672}
673
674static int kvm_getput_regs(CPUState *env, int set)
675{
676 struct kvm_regs regs;
677 int ret = 0;
678
679 if (!set) {
680 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 681 if (ret < 0) {
05330448 682 return ret;
b9bec74b 683 }
05330448
AL
684 }
685
686 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
687 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
688 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
689 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
690 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
691 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
692 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
693 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
694#ifdef TARGET_X86_64
695 kvm_getput_reg(&regs.r8, &env->regs[8], set);
696 kvm_getput_reg(&regs.r9, &env->regs[9], set);
697 kvm_getput_reg(&regs.r10, &env->regs[10], set);
698 kvm_getput_reg(&regs.r11, &env->regs[11], set);
699 kvm_getput_reg(&regs.r12, &env->regs[12], set);
700 kvm_getput_reg(&regs.r13, &env->regs[13], set);
701 kvm_getput_reg(&regs.r14, &env->regs[14], set);
702 kvm_getput_reg(&regs.r15, &env->regs[15], set);
703#endif
704
705 kvm_getput_reg(&regs.rflags, &env->eflags, set);
706 kvm_getput_reg(&regs.rip, &env->eip, set);
707
b9bec74b 708 if (set) {
05330448 709 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 710 }
05330448
AL
711
712 return ret;
713}
714
715static int kvm_put_fpu(CPUState *env)
716{
717 struct kvm_fpu fpu;
718 int i;
719
720 memset(&fpu, 0, sizeof fpu);
721 fpu.fsw = env->fpus & ~(7 << 11);
722 fpu.fsw |= (env->fpstt & 7) << 11;
723 fpu.fcw = env->fpuc;
42cc8fa6
JK
724 fpu.last_opcode = env->fpop;
725 fpu.last_ip = env->fpip;
726 fpu.last_dp = env->fpdp;
b9bec74b
JK
727 for (i = 0; i < 8; ++i) {
728 fpu.ftwx |= (!env->fptags[i]) << i;
729 }
05330448
AL
730 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
731 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
732 fpu.mxcsr = env->mxcsr;
733
734 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
735}
736
f1665b21
SY
737#define XSAVE_CWD_RIP 2
738#define XSAVE_CWD_RDP 4
739#define XSAVE_MXCSR 6
740#define XSAVE_ST_SPACE 8
741#define XSAVE_XMM_SPACE 40
742#define XSAVE_XSTATE_BV 128
743#define XSAVE_YMMH_SPACE 144
f1665b21
SY
744
745static int kvm_put_xsave(CPUState *env)
746{
0f53994f 747 int i, r;
f1665b21 748 struct kvm_xsave* xsave;
42cc8fa6 749 uint16_t cwd, swd, twd;
f1665b21 750
b9bec74b 751 if (!kvm_has_xsave()) {
f1665b21 752 return kvm_put_fpu(env);
b9bec74b 753 }
f1665b21
SY
754
755 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
756 memset(xsave, 0, sizeof(struct kvm_xsave));
42cc8fa6 757 cwd = swd = twd = 0;
f1665b21
SY
758 swd = env->fpus & ~(7 << 11);
759 swd |= (env->fpstt & 7) << 11;
760 cwd = env->fpuc;
b9bec74b 761 for (i = 0; i < 8; ++i) {
f1665b21 762 twd |= (!env->fptags[i]) << i;
b9bec74b 763 }
f1665b21 764 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
42cc8fa6
JK
765 xsave->region[1] = (uint32_t)(env->fpop << 16) + twd;
766 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
767 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
768 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
769 sizeof env->fpregs);
770 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
771 sizeof env->xmm_regs);
772 xsave->region[XSAVE_MXCSR] = env->mxcsr;
773 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
774 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
775 sizeof env->ymmh_regs);
0f53994f
MT
776 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
777 qemu_free(xsave);
778 return r;
f1665b21
SY
779}
780
781static int kvm_put_xcrs(CPUState *env)
782{
f1665b21
SY
783 struct kvm_xcrs xcrs;
784
b9bec74b 785 if (!kvm_has_xcrs()) {
f1665b21 786 return 0;
b9bec74b 787 }
f1665b21
SY
788
789 xcrs.nr_xcrs = 1;
790 xcrs.flags = 0;
791 xcrs.xcrs[0].xcr = 0;
792 xcrs.xcrs[0].value = env->xcr0;
793 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
f1665b21
SY
794}
795
05330448
AL
796static int kvm_put_sregs(CPUState *env)
797{
798 struct kvm_sregs sregs;
799
0e607a80
JK
800 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
801 if (env->interrupt_injected >= 0) {
802 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
803 (uint64_t)1 << (env->interrupt_injected % 64);
804 }
05330448
AL
805
806 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
807 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
808 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
809 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
810 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
811 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
812 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 813 } else {
b9bec74b
JK
814 set_seg(&sregs.cs, &env->segs[R_CS]);
815 set_seg(&sregs.ds, &env->segs[R_DS]);
816 set_seg(&sregs.es, &env->segs[R_ES]);
817 set_seg(&sregs.fs, &env->segs[R_FS]);
818 set_seg(&sregs.gs, &env->segs[R_GS]);
819 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
820 }
821
822 set_seg(&sregs.tr, &env->tr);
823 set_seg(&sregs.ldt, &env->ldt);
824
825 sregs.idt.limit = env->idt.limit;
826 sregs.idt.base = env->idt.base;
827 sregs.gdt.limit = env->gdt.limit;
828 sregs.gdt.base = env->gdt.base;
829
830 sregs.cr0 = env->cr[0];
831 sregs.cr2 = env->cr[2];
832 sregs.cr3 = env->cr[3];
833 sregs.cr4 = env->cr[4];
834
4a942cea
BS
835 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
836 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
837
838 sregs.efer = env->efer;
839
840 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
841}
842
843static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
844 uint32_t index, uint64_t value)
845{
846 entry->index = index;
847 entry->data = value;
848}
849
ea643051 850static int kvm_put_msrs(CPUState *env, int level)
05330448
AL
851{
852 struct {
853 struct kvm_msrs info;
854 struct kvm_msr_entry entries[100];
855 } msr_data;
856 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 857 int n = 0;
05330448
AL
858
859 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
860 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
861 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 862 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 863 if (has_msr_star) {
b9bec74b
JK
864 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
865 }
c3a3a7d3 866 if (has_msr_hsave_pa) {
75b10c43 867 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 868 }
05330448 869#ifdef TARGET_X86_64
25d2e361
MT
870 if (lm_capable_kernel) {
871 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
872 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
873 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
874 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
875 }
05330448 876#endif
ea643051 877 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
878 /*
879 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
880 * writeback. Until this is fixed, we only write the offset to SMP
881 * guests after migration, desynchronizing the VCPUs, but avoiding
882 * huge jump-backs that would occur without any writeback at all.
883 */
884 if (smp_cpus == 1 || env->tsc != 0) {
885 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
886 }
ff5c186b
JK
887 }
888 /*
889 * The following paravirtual MSRs have side effects on the guest or are
890 * too heavy for normal writeback. Limit them to reset or full state
891 * updates.
892 */
893 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
894 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
895 env->system_time_msr);
896 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
897 if (has_msr_async_pf_en) {
898 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
899 env->async_pf_en_msr);
900 }
ea643051 901 }
57780495 902 if (env->mcg_cap) {
d8da8574 903 int i;
b9bec74b 904
c34d440a
JK
905 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
906 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
907 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
908 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
909 }
910 }
1a03675d 911
05330448
AL
912 msr_data.info.nmsrs = n;
913
914 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
915
916}
917
918
919static int kvm_get_fpu(CPUState *env)
920{
921 struct kvm_fpu fpu;
922 int i, ret;
923
924 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 925 if (ret < 0) {
05330448 926 return ret;
b9bec74b 927 }
05330448
AL
928
929 env->fpstt = (fpu.fsw >> 11) & 7;
930 env->fpus = fpu.fsw;
931 env->fpuc = fpu.fcw;
42cc8fa6
JK
932 env->fpop = fpu.last_opcode;
933 env->fpip = fpu.last_ip;
934 env->fpdp = fpu.last_dp;
b9bec74b
JK
935 for (i = 0; i < 8; ++i) {
936 env->fptags[i] = !((fpu.ftwx >> i) & 1);
937 }
05330448
AL
938 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
939 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
940 env->mxcsr = fpu.mxcsr;
941
942 return 0;
943}
944
f1665b21
SY
945static int kvm_get_xsave(CPUState *env)
946{
f1665b21
SY
947 struct kvm_xsave* xsave;
948 int ret, i;
42cc8fa6 949 uint16_t cwd, swd, twd;
f1665b21 950
b9bec74b 951 if (!kvm_has_xsave()) {
f1665b21 952 return kvm_get_fpu(env);
b9bec74b 953 }
f1665b21
SY
954
955 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
956 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f
MT
957 if (ret < 0) {
958 qemu_free(xsave);
f1665b21 959 return ret;
0f53994f 960 }
f1665b21
SY
961
962 cwd = (uint16_t)xsave->region[0];
963 swd = (uint16_t)(xsave->region[0] >> 16);
964 twd = (uint16_t)xsave->region[1];
42cc8fa6 965 env->fpop = (uint16_t)(xsave->region[1] >> 16);
f1665b21
SY
966 env->fpstt = (swd >> 11) & 7;
967 env->fpus = swd;
968 env->fpuc = cwd;
b9bec74b 969 for (i = 0; i < 8; ++i) {
f1665b21 970 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 971 }
42cc8fa6
JK
972 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
973 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
974 env->mxcsr = xsave->region[XSAVE_MXCSR];
975 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
976 sizeof env->fpregs);
977 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
978 sizeof env->xmm_regs);
979 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
980 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
981 sizeof env->ymmh_regs);
0f53994f 982 qemu_free(xsave);
f1665b21 983 return 0;
f1665b21
SY
984}
985
986static int kvm_get_xcrs(CPUState *env)
987{
f1665b21
SY
988 int i, ret;
989 struct kvm_xcrs xcrs;
990
b9bec74b 991 if (!kvm_has_xcrs()) {
f1665b21 992 return 0;
b9bec74b 993 }
f1665b21
SY
994
995 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 996 if (ret < 0) {
f1665b21 997 return ret;
b9bec74b 998 }
f1665b21 999
b9bec74b 1000 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
1001 /* Only support xcr0 now */
1002 if (xcrs.xcrs[0].xcr == 0) {
1003 env->xcr0 = xcrs.xcrs[0].value;
1004 break;
1005 }
b9bec74b 1006 }
f1665b21 1007 return 0;
f1665b21
SY
1008}
1009
05330448
AL
1010static int kvm_get_sregs(CPUState *env)
1011{
1012 struct kvm_sregs sregs;
1013 uint32_t hflags;
0e607a80 1014 int bit, i, ret;
05330448
AL
1015
1016 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 1017 if (ret < 0) {
05330448 1018 return ret;
b9bec74b 1019 }
05330448 1020
0e607a80
JK
1021 /* There can only be one pending IRQ set in the bitmap at a time, so try
1022 to find it and save its number instead (-1 for none). */
1023 env->interrupt_injected = -1;
1024 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1025 if (sregs.interrupt_bitmap[i]) {
1026 bit = ctz64(sregs.interrupt_bitmap[i]);
1027 env->interrupt_injected = i * 64 + bit;
1028 break;
1029 }
1030 }
05330448
AL
1031
1032 get_seg(&env->segs[R_CS], &sregs.cs);
1033 get_seg(&env->segs[R_DS], &sregs.ds);
1034 get_seg(&env->segs[R_ES], &sregs.es);
1035 get_seg(&env->segs[R_FS], &sregs.fs);
1036 get_seg(&env->segs[R_GS], &sregs.gs);
1037 get_seg(&env->segs[R_SS], &sregs.ss);
1038
1039 get_seg(&env->tr, &sregs.tr);
1040 get_seg(&env->ldt, &sregs.ldt);
1041
1042 env->idt.limit = sregs.idt.limit;
1043 env->idt.base = sregs.idt.base;
1044 env->gdt.limit = sregs.gdt.limit;
1045 env->gdt.base = sregs.gdt.base;
1046
1047 env->cr[0] = sregs.cr0;
1048 env->cr[2] = sregs.cr2;
1049 env->cr[3] = sregs.cr3;
1050 env->cr[4] = sregs.cr4;
1051
4a942cea 1052 cpu_set_apic_base(env->apic_state, sregs.apic_base);
05330448
AL
1053
1054 env->efer = sregs.efer;
4a942cea 1055 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
05330448 1056
b9bec74b
JK
1057#define HFLAG_COPY_MASK \
1058 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1059 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1060 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1061 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1062
1063 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1064 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1065 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1066 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1067 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1068 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1069 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1070
1071 if (env->efer & MSR_EFER_LMA) {
1072 hflags |= HF_LMA_MASK;
1073 }
1074
1075 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1076 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1077 } else {
1078 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1079 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1080 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1081 (DESC_B_SHIFT - HF_SS32_SHIFT);
1082 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1083 !(hflags & HF_CS32_MASK)) {
1084 hflags |= HF_ADDSEG_MASK;
1085 } else {
1086 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1087 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1088 }
05330448
AL
1089 }
1090 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1091
1092 return 0;
1093}
1094
1095static int kvm_get_msrs(CPUState *env)
1096{
1097 struct {
1098 struct kvm_msrs info;
1099 struct kvm_msr_entry entries[100];
1100 } msr_data;
1101 struct kvm_msr_entry *msrs = msr_data.entries;
1102 int ret, i, n;
1103
1104 n = 0;
1105 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1106 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1107 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1108 msrs[n++].index = MSR_PAT;
c3a3a7d3 1109 if (has_msr_star) {
b9bec74b
JK
1110 msrs[n++].index = MSR_STAR;
1111 }
c3a3a7d3 1112 if (has_msr_hsave_pa) {
75b10c43 1113 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1114 }
b8cc45d6
GC
1115
1116 if (!env->tsc_valid) {
1117 msrs[n++].index = MSR_IA32_TSC;
1118 env->tsc_valid = !vm_running;
1119 }
1120
05330448 1121#ifdef TARGET_X86_64
25d2e361
MT
1122 if (lm_capable_kernel) {
1123 msrs[n++].index = MSR_CSTAR;
1124 msrs[n++].index = MSR_KERNELGSBASE;
1125 msrs[n++].index = MSR_FMASK;
1126 msrs[n++].index = MSR_LSTAR;
1127 }
05330448 1128#endif
1a03675d
GC
1129 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1130 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1131 if (has_msr_async_pf_en) {
1132 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1133 }
1a03675d 1134
57780495
MT
1135 if (env->mcg_cap) {
1136 msrs[n++].index = MSR_MCG_STATUS;
1137 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1138 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1139 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1140 }
57780495 1141 }
57780495 1142
05330448
AL
1143 msr_data.info.nmsrs = n;
1144 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1145 if (ret < 0) {
05330448 1146 return ret;
b9bec74b 1147 }
05330448
AL
1148
1149 for (i = 0; i < ret; i++) {
1150 switch (msrs[i].index) {
1151 case MSR_IA32_SYSENTER_CS:
1152 env->sysenter_cs = msrs[i].data;
1153 break;
1154 case MSR_IA32_SYSENTER_ESP:
1155 env->sysenter_esp = msrs[i].data;
1156 break;
1157 case MSR_IA32_SYSENTER_EIP:
1158 env->sysenter_eip = msrs[i].data;
1159 break;
0c03266a
JK
1160 case MSR_PAT:
1161 env->pat = msrs[i].data;
1162 break;
05330448
AL
1163 case MSR_STAR:
1164 env->star = msrs[i].data;
1165 break;
1166#ifdef TARGET_X86_64
1167 case MSR_CSTAR:
1168 env->cstar = msrs[i].data;
1169 break;
1170 case MSR_KERNELGSBASE:
1171 env->kernelgsbase = msrs[i].data;
1172 break;
1173 case MSR_FMASK:
1174 env->fmask = msrs[i].data;
1175 break;
1176 case MSR_LSTAR:
1177 env->lstar = msrs[i].data;
1178 break;
1179#endif
1180 case MSR_IA32_TSC:
1181 env->tsc = msrs[i].data;
1182 break;
aa851e36
MT
1183 case MSR_VM_HSAVE_PA:
1184 env->vm_hsave = msrs[i].data;
1185 break;
1a03675d
GC
1186 case MSR_KVM_SYSTEM_TIME:
1187 env->system_time_msr = msrs[i].data;
1188 break;
1189 case MSR_KVM_WALL_CLOCK:
1190 env->wall_clock_msr = msrs[i].data;
1191 break;
57780495
MT
1192 case MSR_MCG_STATUS:
1193 env->mcg_status = msrs[i].data;
1194 break;
1195 case MSR_MCG_CTL:
1196 env->mcg_ctl = msrs[i].data;
1197 break;
57780495 1198 default:
57780495
MT
1199 if (msrs[i].index >= MSR_MC0_CTL &&
1200 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1201 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 1202 }
d8da8574 1203 break;
f6584ee2
GN
1204 case MSR_KVM_ASYNC_PF_EN:
1205 env->async_pf_en_msr = msrs[i].data;
1206 break;
05330448
AL
1207 }
1208 }
1209
1210 return 0;
1211}
1212
9bdbe550
HB
1213static int kvm_put_mp_state(CPUState *env)
1214{
1215 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1216
1217 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1218}
1219
1220static int kvm_get_mp_state(CPUState *env)
1221{
1222 struct kvm_mp_state mp_state;
1223 int ret;
1224
1225 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1226 if (ret < 0) {
1227 return ret;
1228 }
1229 env->mp_state = mp_state.mp_state;
c14750e8
JK
1230 if (kvm_irqchip_in_kernel()) {
1231 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1232 }
9bdbe550
HB
1233 return 0;
1234}
1235
ea643051 1236static int kvm_put_vcpu_events(CPUState *env, int level)
a0fb002c 1237{
a0fb002c
JK
1238 struct kvm_vcpu_events events;
1239
1240 if (!kvm_has_vcpu_events()) {
1241 return 0;
1242 }
1243
31827373
JK
1244 events.exception.injected = (env->exception_injected >= 0);
1245 events.exception.nr = env->exception_injected;
a0fb002c
JK
1246 events.exception.has_error_code = env->has_error_code;
1247 events.exception.error_code = env->error_code;
1248
1249 events.interrupt.injected = (env->interrupt_injected >= 0);
1250 events.interrupt.nr = env->interrupt_injected;
1251 events.interrupt.soft = env->soft_interrupt;
1252
1253 events.nmi.injected = env->nmi_injected;
1254 events.nmi.pending = env->nmi_pending;
1255 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1256
1257 events.sipi_vector = env->sipi_vector;
1258
ea643051
JK
1259 events.flags = 0;
1260 if (level >= KVM_PUT_RESET_STATE) {
1261 events.flags |=
1262 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1263 }
aee028b9 1264
a0fb002c 1265 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
1266}
1267
1268static int kvm_get_vcpu_events(CPUState *env)
1269{
a0fb002c
JK
1270 struct kvm_vcpu_events events;
1271 int ret;
1272
1273 if (!kvm_has_vcpu_events()) {
1274 return 0;
1275 }
1276
1277 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1278 if (ret < 0) {
1279 return ret;
1280 }
31827373 1281 env->exception_injected =
a0fb002c
JK
1282 events.exception.injected ? events.exception.nr : -1;
1283 env->has_error_code = events.exception.has_error_code;
1284 env->error_code = events.exception.error_code;
1285
1286 env->interrupt_injected =
1287 events.interrupt.injected ? events.interrupt.nr : -1;
1288 env->soft_interrupt = events.interrupt.soft;
1289
1290 env->nmi_injected = events.nmi.injected;
1291 env->nmi_pending = events.nmi.pending;
1292 if (events.nmi.masked) {
1293 env->hflags2 |= HF2_NMI_MASK;
1294 } else {
1295 env->hflags2 &= ~HF2_NMI_MASK;
1296 }
1297
1298 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
1299
1300 return 0;
1301}
1302
b0b1d690
JK
1303static int kvm_guest_debug_workarounds(CPUState *env)
1304{
1305 int ret = 0;
b0b1d690
JK
1306 unsigned long reinject_trap = 0;
1307
1308 if (!kvm_has_vcpu_events()) {
1309 if (env->exception_injected == 1) {
1310 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1311 } else if (env->exception_injected == 3) {
1312 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1313 }
1314 env->exception_injected = -1;
1315 }
1316
1317 /*
1318 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1319 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1320 * by updating the debug state once again if single-stepping is on.
1321 * Another reason to call kvm_update_guest_debug here is a pending debug
1322 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1323 * reinject them via SET_GUEST_DEBUG.
1324 */
1325 if (reinject_trap ||
1326 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1327 ret = kvm_update_guest_debug(env, reinject_trap);
1328 }
b0b1d690
JK
1329 return ret;
1330}
1331
ff44f1a3
JK
1332static int kvm_put_debugregs(CPUState *env)
1333{
ff44f1a3
JK
1334 struct kvm_debugregs dbgregs;
1335 int i;
1336
1337 if (!kvm_has_debugregs()) {
1338 return 0;
1339 }
1340
1341 for (i = 0; i < 4; i++) {
1342 dbgregs.db[i] = env->dr[i];
1343 }
1344 dbgregs.dr6 = env->dr[6];
1345 dbgregs.dr7 = env->dr[7];
1346 dbgregs.flags = 0;
1347
1348 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
1349}
1350
1351static int kvm_get_debugregs(CPUState *env)
1352{
ff44f1a3
JK
1353 struct kvm_debugregs dbgregs;
1354 int i, ret;
1355
1356 if (!kvm_has_debugregs()) {
1357 return 0;
1358 }
1359
1360 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1361 if (ret < 0) {
b9bec74b 1362 return ret;
ff44f1a3
JK
1363 }
1364 for (i = 0; i < 4; i++) {
1365 env->dr[i] = dbgregs.db[i];
1366 }
1367 env->dr[4] = env->dr[6] = dbgregs.dr6;
1368 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
1369
1370 return 0;
1371}
1372
ea375f9a 1373int kvm_arch_put_registers(CPUState *env, int level)
05330448
AL
1374{
1375 int ret;
1376
b7680cb6 1377 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1378
05330448 1379 ret = kvm_getput_regs(env, 1);
b9bec74b 1380 if (ret < 0) {
05330448 1381 return ret;
b9bec74b 1382 }
f1665b21 1383 ret = kvm_put_xsave(env);
b9bec74b 1384 if (ret < 0) {
f1665b21 1385 return ret;
b9bec74b 1386 }
f1665b21 1387 ret = kvm_put_xcrs(env);
b9bec74b 1388 if (ret < 0) {
05330448 1389 return ret;
b9bec74b 1390 }
05330448 1391 ret = kvm_put_sregs(env);
b9bec74b 1392 if (ret < 0) {
05330448 1393 return ret;
b9bec74b 1394 }
ab443475
JK
1395 /* must be before kvm_put_msrs */
1396 ret = kvm_inject_mce_oldstyle(env);
1397 if (ret < 0) {
1398 return ret;
1399 }
ea643051 1400 ret = kvm_put_msrs(env, level);
b9bec74b 1401 if (ret < 0) {
05330448 1402 return ret;
b9bec74b 1403 }
ea643051
JK
1404 if (level >= KVM_PUT_RESET_STATE) {
1405 ret = kvm_put_mp_state(env);
b9bec74b 1406 if (ret < 0) {
ea643051 1407 return ret;
b9bec74b 1408 }
ea643051 1409 }
ea643051 1410 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1411 if (ret < 0) {
a0fb002c 1412 return ret;
b9bec74b 1413 }
0d75a9ec 1414 ret = kvm_put_debugregs(env);
b9bec74b 1415 if (ret < 0) {
b0b1d690 1416 return ret;
b9bec74b 1417 }
b0b1d690
JK
1418 /* must be last */
1419 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1420 if (ret < 0) {
ff44f1a3 1421 return ret;
b9bec74b 1422 }
05330448
AL
1423 return 0;
1424}
1425
1426int kvm_arch_get_registers(CPUState *env)
1427{
1428 int ret;
1429
b7680cb6 1430 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1431
05330448 1432 ret = kvm_getput_regs(env, 0);
b9bec74b 1433 if (ret < 0) {
05330448 1434 return ret;
b9bec74b 1435 }
f1665b21 1436 ret = kvm_get_xsave(env);
b9bec74b 1437 if (ret < 0) {
f1665b21 1438 return ret;
b9bec74b 1439 }
f1665b21 1440 ret = kvm_get_xcrs(env);
b9bec74b 1441 if (ret < 0) {
05330448 1442 return ret;
b9bec74b 1443 }
05330448 1444 ret = kvm_get_sregs(env);
b9bec74b 1445 if (ret < 0) {
05330448 1446 return ret;
b9bec74b 1447 }
05330448 1448 ret = kvm_get_msrs(env);
b9bec74b 1449 if (ret < 0) {
05330448 1450 return ret;
b9bec74b 1451 }
5a2e3c2e 1452 ret = kvm_get_mp_state(env);
b9bec74b 1453 if (ret < 0) {
5a2e3c2e 1454 return ret;
b9bec74b 1455 }
a0fb002c 1456 ret = kvm_get_vcpu_events(env);
b9bec74b 1457 if (ret < 0) {
a0fb002c 1458 return ret;
b9bec74b 1459 }
ff44f1a3 1460 ret = kvm_get_debugregs(env);
b9bec74b 1461 if (ret < 0) {
ff44f1a3 1462 return ret;
b9bec74b 1463 }
05330448
AL
1464 return 0;
1465}
1466
7a39fe58 1467void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
05330448 1468{
ce377af3
JK
1469 int ret;
1470
276ce815
LJ
1471 /* Inject NMI */
1472 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1473 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1474 DPRINTF("injected NMI\n");
ce377af3
JK
1475 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1476 if (ret < 0) {
1477 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1478 strerror(-ret));
1479 }
276ce815
LJ
1480 }
1481
db1669bc
JK
1482 if (!kvm_irqchip_in_kernel()) {
1483 /* Force the VCPU out of its inner loop to process the INIT request */
1484 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1485 env->exit_request = 1;
05330448 1486 }
05330448 1487
db1669bc
JK
1488 /* Try to inject an interrupt if the guest can accept it */
1489 if (run->ready_for_interrupt_injection &&
1490 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1491 (env->eflags & IF_MASK)) {
1492 int irq;
1493
1494 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1495 irq = cpu_get_pic_interrupt(env);
1496 if (irq >= 0) {
1497 struct kvm_interrupt intr;
1498
1499 intr.irq = irq;
db1669bc 1500 DPRINTF("injected interrupt %d\n", irq);
ce377af3
JK
1501 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1502 if (ret < 0) {
1503 fprintf(stderr,
1504 "KVM: injection failed, interrupt lost (%s)\n",
1505 strerror(-ret));
1506 }
db1669bc
JK
1507 }
1508 }
05330448 1509
db1669bc
JK
1510 /* If we have an interrupt but the guest is not ready to receive an
1511 * interrupt, request an interrupt window exit. This will
1512 * cause a return to userspace as soon as the guest is ready to
1513 * receive interrupts. */
1514 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1515 run->request_interrupt_window = 1;
1516 } else {
1517 run->request_interrupt_window = 0;
1518 }
1519
1520 DPRINTF("setting tpr\n");
1521 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1522 }
05330448
AL
1523}
1524
7a39fe58 1525void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
05330448 1526{
b9bec74b 1527 if (run->if_flag) {
05330448 1528 env->eflags |= IF_MASK;
b9bec74b 1529 } else {
05330448 1530 env->eflags &= ~IF_MASK;
b9bec74b 1531 }
4a942cea
BS
1532 cpu_set_apic_tpr(env->apic_state, run->cr8);
1533 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1534}
1535
99036865 1536int kvm_arch_process_async_events(CPUState *env)
0af691d7 1537{
ab443475
JK
1538 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1539 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1540 assert(env->mcg_cap);
1541
1542 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1543
1544 kvm_cpu_synchronize_state(env);
1545
1546 if (env->exception_injected == EXCP08_DBLE) {
1547 /* this means triple fault */
1548 qemu_system_reset_request();
1549 env->exit_request = 1;
1550 return 0;
1551 }
1552 env->exception_injected = EXCP12_MCHK;
1553 env->has_error_code = 0;
1554
1555 env->halted = 0;
1556 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1557 env->mp_state = KVM_MP_STATE_RUNNABLE;
1558 }
1559 }
1560
db1669bc
JK
1561 if (kvm_irqchip_in_kernel()) {
1562 return 0;
1563 }
1564
4601f7b0
JK
1565 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1566 (env->eflags & IF_MASK)) ||
1567 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
6792a57b
JK
1568 env->halted = 0;
1569 }
0af691d7
MT
1570 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1571 kvm_cpu_synchronize_state(env);
1572 do_cpu_init(env);
0af691d7 1573 }
0af691d7
MT
1574 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1575 kvm_cpu_synchronize_state(env);
1576 do_cpu_sipi(env);
1577 }
1578
1579 return env->halted;
1580}
1581
05330448
AL
1582static int kvm_handle_halt(CPUState *env)
1583{
1584 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1585 (env->eflags & IF_MASK)) &&
1586 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1587 env->halted = 1;
bb4ea393 1588 return EXCP_HLT;
05330448
AL
1589 }
1590
bb4ea393 1591 return 0;
05330448
AL
1592}
1593
e22a25c9
AL
1594int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1595{
38972938 1596 static const uint8_t int3 = 0xcc;
64bf3f4e 1597
e22a25c9 1598 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1599 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1600 return -EINVAL;
b9bec74b 1601 }
e22a25c9
AL
1602 return 0;
1603}
1604
1605int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1606{
1607 uint8_t int3;
1608
1609 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1610 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1611 return -EINVAL;
b9bec74b 1612 }
e22a25c9
AL
1613 return 0;
1614}
1615
1616static struct {
1617 target_ulong addr;
1618 int len;
1619 int type;
1620} hw_breakpoint[4];
1621
1622static int nb_hw_breakpoint;
1623
1624static int find_hw_breakpoint(target_ulong addr, int len, int type)
1625{
1626 int n;
1627
b9bec74b 1628 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1629 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1630 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1631 return n;
b9bec74b
JK
1632 }
1633 }
e22a25c9
AL
1634 return -1;
1635}
1636
1637int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1638 target_ulong len, int type)
1639{
1640 switch (type) {
1641 case GDB_BREAKPOINT_HW:
1642 len = 1;
1643 break;
1644 case GDB_WATCHPOINT_WRITE:
1645 case GDB_WATCHPOINT_ACCESS:
1646 switch (len) {
1647 case 1:
1648 break;
1649 case 2:
1650 case 4:
1651 case 8:
b9bec74b 1652 if (addr & (len - 1)) {
e22a25c9 1653 return -EINVAL;
b9bec74b 1654 }
e22a25c9
AL
1655 break;
1656 default:
1657 return -EINVAL;
1658 }
1659 break;
1660 default:
1661 return -ENOSYS;
1662 }
1663
b9bec74b 1664 if (nb_hw_breakpoint == 4) {
e22a25c9 1665 return -ENOBUFS;
b9bec74b
JK
1666 }
1667 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1668 return -EEXIST;
b9bec74b 1669 }
e22a25c9
AL
1670 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1671 hw_breakpoint[nb_hw_breakpoint].len = len;
1672 hw_breakpoint[nb_hw_breakpoint].type = type;
1673 nb_hw_breakpoint++;
1674
1675 return 0;
1676}
1677
1678int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1679 target_ulong len, int type)
1680{
1681 int n;
1682
1683 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1684 if (n < 0) {
e22a25c9 1685 return -ENOENT;
b9bec74b 1686 }
e22a25c9
AL
1687 nb_hw_breakpoint--;
1688 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1689
1690 return 0;
1691}
1692
1693void kvm_arch_remove_all_hw_breakpoints(void)
1694{
1695 nb_hw_breakpoint = 0;
1696}
1697
1698static CPUWatchpoint hw_watchpoint;
1699
f2574737 1700static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
e22a25c9 1701{
f2574737 1702 int ret = 0;
e22a25c9
AL
1703 int n;
1704
1705 if (arch_info->exception == 1) {
1706 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1707 if (cpu_single_env->singlestep_enabled) {
f2574737 1708 ret = EXCP_DEBUG;
b9bec74b 1709 }
e22a25c9 1710 } else {
b9bec74b
JK
1711 for (n = 0; n < 4; n++) {
1712 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1713 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1714 case 0x0:
f2574737 1715 ret = EXCP_DEBUG;
e22a25c9
AL
1716 break;
1717 case 0x1:
f2574737 1718 ret = EXCP_DEBUG;
e22a25c9
AL
1719 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1720 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1721 hw_watchpoint.flags = BP_MEM_WRITE;
1722 break;
1723 case 0x3:
f2574737 1724 ret = EXCP_DEBUG;
e22a25c9
AL
1725 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1726 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1727 hw_watchpoint.flags = BP_MEM_ACCESS;
1728 break;
1729 }
b9bec74b
JK
1730 }
1731 }
e22a25c9 1732 }
b9bec74b 1733 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
f2574737 1734 ret = EXCP_DEBUG;
b9bec74b 1735 }
f2574737 1736 if (ret == 0) {
b0b1d690
JK
1737 cpu_synchronize_state(cpu_single_env);
1738 assert(cpu_single_env->exception_injected == -1);
1739
f2574737 1740 /* pass to guest */
b0b1d690
JK
1741 cpu_single_env->exception_injected = arch_info->exception;
1742 cpu_single_env->has_error_code = 0;
1743 }
e22a25c9 1744
f2574737 1745 return ret;
e22a25c9
AL
1746}
1747
1748void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1749{
1750 const uint8_t type_code[] = {
1751 [GDB_BREAKPOINT_HW] = 0x0,
1752 [GDB_WATCHPOINT_WRITE] = 0x1,
1753 [GDB_WATCHPOINT_ACCESS] = 0x3
1754 };
1755 const uint8_t len_code[] = {
1756 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1757 };
1758 int n;
1759
b9bec74b 1760 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 1761 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 1762 }
e22a25c9
AL
1763 if (nb_hw_breakpoint > 0) {
1764 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1765 dbg->arch.debugreg[7] = 0x0600;
1766 for (n = 0; n < nb_hw_breakpoint; n++) {
1767 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1768 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1769 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 1770 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
1771 }
1772 }
1773}
4513d923 1774
2a4dac83
JK
1775static bool host_supports_vmx(void)
1776{
1777 uint32_t ecx, unused;
1778
1779 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1780 return ecx & CPUID_EXT_VMX;
1781}
1782
1783#define VMX_INVALID_GUEST_STATE 0x80000021
1784
1785int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1786{
1787 uint64_t code;
1788 int ret;
1789
1790 switch (run->exit_reason) {
1791 case KVM_EXIT_HLT:
1792 DPRINTF("handle_hlt\n");
1793 ret = kvm_handle_halt(env);
1794 break;
1795 case KVM_EXIT_SET_TPR:
1796 ret = 0;
1797 break;
1798 case KVM_EXIT_FAIL_ENTRY:
1799 code = run->fail_entry.hardware_entry_failure_reason;
1800 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1801 code);
1802 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1803 fprintf(stderr,
1804 "\nIf you're runnning a guest on an Intel machine without "
1805 "unrestricted mode\n"
1806 "support, the failure can be most likely due to the guest "
1807 "entering an invalid\n"
1808 "state for Intel VT. For example, the guest maybe running "
1809 "in big real mode\n"
1810 "which is not supported on less recent Intel processors."
1811 "\n\n");
1812 }
1813 ret = -1;
1814 break;
1815 case KVM_EXIT_EXCEPTION:
1816 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1817 run->ex.exception, run->ex.error_code);
1818 ret = -1;
1819 break;
f2574737
JK
1820 case KVM_EXIT_DEBUG:
1821 DPRINTF("kvm_exit_debug\n");
1822 ret = kvm_handle_debug(&run->debug.arch);
1823 break;
2a4dac83
JK
1824 default:
1825 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1826 ret = -1;
1827 break;
1828 }
1829
1830 return ret;
1831}
1832
4513d923
GN
1833bool kvm_arch_stop_on_emulation_error(CPUState *env)
1834{
b9bec74b
JK
1835 return !(env->cr[0] & CR0_PE_MASK) ||
1836 ((env->segs[R_CS].selector & 3) != 3);
4513d923 1837}