]> git.proxmox.com Git - qemu.git/blame - tests/rtc-test.c
qapi-schema: Update description for NewImageMode
[qemu.git] / tests / rtc-test.c
CommitLineData
d1aaf543
AL
1/*
2 * QTest testcase for the MC146818 real-time clock
3 *
4 * Copyright IBM, Corp. 2012
5 *
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13#include "libqtest.h"
0d09e41a 14#include "hw/timer/mc146818rtc_regs.h"
d1aaf543
AL
15
16#include <glib.h>
17#include <stdio.h>
18#include <string.h>
19#include <stdlib.h>
20#include <unistd.h>
21
22static uint8_t base = 0x70;
23
24static int bcd2dec(int value)
25{
26 return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
27}
28
d1aaf543
AL
29static uint8_t cmos_read(uint8_t reg)
30{
31 outb(base + 0, reg);
32 return inb(base + 1);
33}
34
35static void cmos_write(uint8_t reg, uint8_t val)
36{
37 outb(base + 0, reg);
38 outb(base + 1, val);
39}
40
41static int tm_cmp(struct tm *lhs, struct tm *rhs)
42{
43 time_t a, b;
44 struct tm d1, d2;
45
46 memcpy(&d1, lhs, sizeof(d1));
47 memcpy(&d2, rhs, sizeof(d2));
48
49 a = mktime(&d1);
50 b = mktime(&d2);
51
52 if (a < b) {
53 return -1;
54 } else if (a > b) {
55 return 1;
56 }
57
58 return 0;
59}
60
61#if 0
62static void print_tm(struct tm *tm)
63{
64 printf("%04d-%02d-%02d %02d:%02d:%02d\n",
65 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
66 tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
67}
68#endif
69
70static void cmos_get_date_time(struct tm *date)
71{
72 int base_year = 2000, hour_offset;
73 int sec, min, hour, mday, mon, year;
74 time_t ts;
75 struct tm dummy;
76
77 sec = cmos_read(RTC_SECONDS);
78 min = cmos_read(RTC_MINUTES);
79 hour = cmos_read(RTC_HOURS);
80 mday = cmos_read(RTC_DAY_OF_MONTH);
81 mon = cmos_read(RTC_MONTH);
82 year = cmos_read(RTC_YEAR);
83
84 if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
85 sec = bcd2dec(sec);
86 min = bcd2dec(min);
87 hour = bcd2dec(hour);
88 mday = bcd2dec(mday);
89 mon = bcd2dec(mon);
90 year = bcd2dec(year);
91 hour_offset = 80;
92 } else {
93 hour_offset = 0x80;
94 }
95
96 if ((cmos_read(0x0B) & REG_B_24H) == 0) {
97 if (hour >= hour_offset) {
98 hour -= hour_offset;
99 hour += 12;
100 }
101 }
102
103 ts = time(NULL);
104 localtime_r(&ts, &dummy);
105
106 date->tm_isdst = dummy.tm_isdst;
107 date->tm_sec = sec;
108 date->tm_min = min;
109 date->tm_hour = hour;
110 date->tm_mday = mday;
111 date->tm_mon = mon - 1;
112 date->tm_year = base_year + year - 1900;
a05ddd92 113#ifndef __sun__
d1aaf543 114 date->tm_gmtoff = 0;
a05ddd92 115#endif
d1aaf543
AL
116
117 ts = mktime(date);
118}
119
120static void check_time(int wiggle)
121{
122 struct tm start, date[4], end;
123 struct tm *datep;
124 time_t ts;
125
126 /*
127 * This check assumes a few things. First, we cannot guarantee that we get
128 * a consistent reading from the wall clock because we may hit an edge of
129 * the clock while reading. To work around this, we read four clock readings
130 * such that at least two of them should match. We need to assume that one
131 * reading is corrupt so we need four readings to ensure that we have at
132 * least two consecutive identical readings
133 *
134 * It's also possible that we'll cross an edge reading the host clock so
135 * simply check to make sure that the clock reading is within the period of
136 * when we expect it to be.
137 */
138
139 ts = time(NULL);
140 gmtime_r(&ts, &start);
141
142 cmos_get_date_time(&date[0]);
143 cmos_get_date_time(&date[1]);
144 cmos_get_date_time(&date[2]);
145 cmos_get_date_time(&date[3]);
146
147 ts = time(NULL);
148 gmtime_r(&ts, &end);
149
150 if (tm_cmp(&date[0], &date[1]) == 0) {
151 datep = &date[0];
152 } else if (tm_cmp(&date[1], &date[2]) == 0) {
153 datep = &date[1];
154 } else if (tm_cmp(&date[2], &date[3]) == 0) {
155 datep = &date[2];
156 } else {
157 g_assert_not_reached();
158 }
159
160 if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
02b3efcb 161 long t, s;
d1aaf543
AL
162
163 start.tm_isdst = datep->tm_isdst;
164
02b3efcb
BS
165 t = (long)mktime(datep);
166 s = (long)mktime(&start);
d1aaf543
AL
167 if (t < s) {
168 g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t));
169 } else {
170 g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s));
171 }
172
173 g_assert_cmpint(ABS(t - s), <=, wiggle);
174 }
175}
176
177static int wiggle = 2;
178
b8994faf 179static void set_year_20xx(void)
b6db4aca
PB
180{
181 /* Set BCD mode */
f9b3ed40 182 cmos_write(RTC_REG_B, REG_B_24H);
b6db4aca
PB
183 cmos_write(RTC_REG_A, 0x76);
184 cmos_write(RTC_YEAR, 0x11);
b8994faf 185 cmos_write(RTC_CENTURY, 0x20);
b6db4aca
PB
186 cmos_write(RTC_MONTH, 0x02);
187 cmos_write(RTC_DAY_OF_MONTH, 0x02);
188 cmos_write(RTC_HOURS, 0x02);
189 cmos_write(RTC_MINUTES, 0x04);
190 cmos_write(RTC_SECONDS, 0x58);
191 cmos_write(RTC_REG_A, 0x26);
192
193 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
194 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
195 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
196 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
197 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
198 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
b8994faf 199 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
b6db4aca 200
4e45deed
GH
201 if (sizeof(time_t) == 4) {
202 return;
203 }
204
b6db4aca
PB
205 /* Set a date in 2080 to ensure there is no year-2038 overflow. */
206 cmos_write(RTC_REG_A, 0x76);
207 cmos_write(RTC_YEAR, 0x80);
208 cmos_write(RTC_REG_A, 0x26);
209
210 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
211 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
212 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
213 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
214 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
215 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
b8994faf 216 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
b6db4aca
PB
217
218 cmos_write(RTC_REG_A, 0x76);
219 cmos_write(RTC_YEAR, 0x11);
220 cmos_write(RTC_REG_A, 0x26);
221
222 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
223 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
224 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
225 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
226 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
227 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
b8994faf
PB
228 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
229}
230
231static void set_year_1980(void)
232{
233 /* Set BCD mode */
f9b3ed40 234 cmos_write(RTC_REG_B, REG_B_24H);
b8994faf
PB
235 cmos_write(RTC_REG_A, 0x76);
236 cmos_write(RTC_YEAR, 0x80);
237 cmos_write(RTC_CENTURY, 0x19);
238 cmos_write(RTC_MONTH, 0x02);
239 cmos_write(RTC_DAY_OF_MONTH, 0x02);
240 cmos_write(RTC_HOURS, 0x02);
241 cmos_write(RTC_MINUTES, 0x04);
242 cmos_write(RTC_SECONDS, 0x58);
243 cmos_write(RTC_REG_A, 0x26);
244
245 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
246 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
247 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
248 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
249 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
250 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
251 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
b6db4aca
PB
252}
253
d1aaf543
AL
254static void bcd_check_time(void)
255{
256 /* Set BCD mode */
f9b3ed40 257 cmos_write(RTC_REG_B, REG_B_24H);
d1aaf543
AL
258 check_time(wiggle);
259}
260
261static void dec_check_time(void)
262{
263 /* Set DEC mode */
f9b3ed40 264 cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
d1aaf543
AL
265 check_time(wiggle);
266}
267
d1aaf543
AL
268static void alarm_time(void)
269{
270 struct tm now;
271 time_t ts;
272 int i;
273
274 ts = time(NULL);
275 gmtime_r(&ts, &now);
276
277 /* set DEC mode */
f9b3ed40 278 cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
d1aaf543
AL
279
280 g_assert(!get_irq(RTC_ISA_IRQ));
281 cmos_read(RTC_REG_C);
282
283 now.tm_sec = (now.tm_sec + 2) % 60;
f9b3ed40
PB
284 cmos_write(RTC_SECONDS_ALARM, now.tm_sec);
285 cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
286 cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
d1aaf543
AL
287 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
288
289 for (i = 0; i < 2 + wiggle; i++) {
290 if (get_irq(RTC_ISA_IRQ)) {
291 break;
292 }
293
294 clock_step(1000000000);
295 }
296
297 g_assert(get_irq(RTC_ISA_IRQ));
298 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
299 g_assert(cmos_read(RTC_REG_C) == 0);
300}
301
cc2832a5
PB
302static void set_time(int mode, int h, int m, int s)
303{
304 /* set BCD 12 hour mode */
305 cmos_write(RTC_REG_B, mode);
306
307 cmos_write(RTC_REG_A, 0x76);
308 cmos_write(RTC_HOURS, h);
309 cmos_write(RTC_MINUTES, m);
310 cmos_write(RTC_SECONDS, s);
311 cmos_write(RTC_REG_A, 0x26);
312}
313
314#define assert_time(h, m, s) \
315 do { \
316 g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
317 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
318 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
319 } while(0)
320
321static void basic_12h_bcd(void)
322{
323 /* set BCD 12 hour mode */
324 set_time(0, 0x81, 0x59, 0x00);
325 clock_step(1000000000LL);
326 assert_time(0x81, 0x59, 0x01);
327 clock_step(59000000000LL);
328 assert_time(0x82, 0x00, 0x00);
329
330 /* test BCD wraparound */
331 set_time(0, 0x09, 0x59, 0x59);
332 clock_step(60000000000LL);
333 assert_time(0x10, 0x00, 0x59);
334
335 /* 12 AM -> 1 AM */
336 set_time(0, 0x12, 0x59, 0x59);
337 clock_step(1000000000LL);
338 assert_time(0x01, 0x00, 0x00);
339
340 /* 12 PM -> 1 PM */
341 set_time(0, 0x92, 0x59, 0x59);
342 clock_step(1000000000LL);
343 assert_time(0x81, 0x00, 0x00);
344
345 /* 11 AM -> 12 PM */
346 set_time(0, 0x11, 0x59, 0x59);
347 clock_step(1000000000LL);
348 assert_time(0x92, 0x00, 0x00);
349 /* TODO: test day wraparound */
350
351 /* 11 PM -> 12 AM */
352 set_time(0, 0x91, 0x59, 0x59);
353 clock_step(1000000000LL);
354 assert_time(0x12, 0x00, 0x00);
355 /* TODO: test day wraparound */
356}
357
358static void basic_12h_dec(void)
359{
360 /* set decimal 12 hour mode */
361 set_time(REG_B_DM, 0x81, 59, 0);
362 clock_step(1000000000LL);
363 assert_time(0x81, 59, 1);
364 clock_step(59000000000LL);
365 assert_time(0x82, 0, 0);
366
367 /* 12 PM -> 1 PM */
368 set_time(REG_B_DM, 0x8c, 59, 59);
369 clock_step(1000000000LL);
370 assert_time(0x81, 0, 0);
371
372 /* 12 AM -> 1 AM */
373 set_time(REG_B_DM, 0x0c, 59, 59);
374 clock_step(1000000000LL);
375 assert_time(0x01, 0, 0);
376
377 /* 11 AM -> 12 PM */
378 set_time(REG_B_DM, 0x0b, 59, 59);
379 clock_step(1000000000LL);
380 assert_time(0x8c, 0, 0);
381
382 /* 11 PM -> 12 AM */
383 set_time(REG_B_DM, 0x8b, 59, 59);
384 clock_step(1000000000LL);
385 assert_time(0x0c, 0, 0);
386 /* TODO: test day wraparound */
387}
388
389static void basic_24h_bcd(void)
390{
391 /* set BCD 24 hour mode */
392 set_time(REG_B_24H, 0x09, 0x59, 0x00);
393 clock_step(1000000000LL);
394 assert_time(0x09, 0x59, 0x01);
395 clock_step(59000000000LL);
396 assert_time(0x10, 0x00, 0x00);
397
398 /* test BCD wraparound */
399 set_time(REG_B_24H, 0x09, 0x59, 0x00);
400 clock_step(60000000000LL);
401 assert_time(0x10, 0x00, 0x00);
402
403 /* TODO: test day wraparound */
404 set_time(REG_B_24H, 0x23, 0x59, 0x00);
405 clock_step(60000000000LL);
406 assert_time(0x00, 0x00, 0x00);
407}
408
409static void basic_24h_dec(void)
410{
411 /* set decimal 24 hour mode */
412 set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
413 clock_step(1000000000LL);
414 assert_time(9, 59, 1);
415 clock_step(59000000000LL);
416 assert_time(10, 0, 0);
417
418 /* test BCD wraparound */
419 set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
420 clock_step(60000000000LL);
421 assert_time(10, 0, 0);
422
423 /* TODO: test day wraparound */
424 set_time(REG_B_24H | REG_B_DM, 23, 59, 0);
425 clock_step(60000000000LL);
426 assert_time(0, 0, 0);
427}
428
429static void am_pm_alarm(void)
430{
431 cmos_write(RTC_MINUTES_ALARM, 0xC0);
432 cmos_write(RTC_SECONDS_ALARM, 0xC0);
433
434 /* set BCD 12 hour mode */
435 cmos_write(RTC_REG_B, 0);
436
437 /* Set time and alarm hour. */
438 cmos_write(RTC_REG_A, 0x76);
439 cmos_write(RTC_HOURS_ALARM, 0x82);
440 cmos_write(RTC_HOURS, 0x81);
441 cmos_write(RTC_MINUTES, 0x59);
442 cmos_write(RTC_SECONDS, 0x00);
443 cmos_read(RTC_REG_C);
444 cmos_write(RTC_REG_A, 0x26);
445
446 /* Check that alarm triggers when AM/PM is set. */
447 clock_step(60000000000LL);
448 g_assert(cmos_read(RTC_HOURS) == 0x82);
449 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
450
451 /*
452 * Each of the following two tests takes over 60 seconds due to the time
453 * needed to report the PIT interrupts. Unfortunately, our PIT device
454 * model keeps counting even when GATE=0, so we cannot simply disable
455 * it in main().
456 */
457 if (g_test_quick()) {
458 return;
459 }
460
461 /* set DEC 12 hour mode */
462 cmos_write(RTC_REG_B, REG_B_DM);
463
464 /* Set time and alarm hour. */
465 cmos_write(RTC_REG_A, 0x76);
466 cmos_write(RTC_HOURS_ALARM, 0x82);
467 cmos_write(RTC_HOURS, 3);
468 cmos_write(RTC_MINUTES, 0);
469 cmos_write(RTC_SECONDS, 0);
470 cmos_read(RTC_REG_C);
471 cmos_write(RTC_REG_A, 0x26);
472
473 /* Check that alarm triggers. */
474 clock_step(3600 * 11 * 1000000000LL);
475 g_assert(cmos_read(RTC_HOURS) == 0x82);
476 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
477
478 /* Same as above, with inverted HOURS and HOURS_ALARM. */
479 cmos_write(RTC_REG_A, 0x76);
480 cmos_write(RTC_HOURS_ALARM, 2);
481 cmos_write(RTC_HOURS, 3);
482 cmos_write(RTC_MINUTES, 0);
483 cmos_write(RTC_SECONDS, 0);
484 cmos_read(RTC_REG_C);
485 cmos_write(RTC_REG_A, 0x26);
486
487 /* Check that alarm does not trigger if hours differ only by AM/PM. */
488 clock_step(3600 * 11 * 1000000000LL);
489 g_assert(cmos_read(RTC_HOURS) == 0x82);
490 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0);
491}
492
85215d41
BS
493/* success if no crash or abort */
494static void fuzz_registers(void)
495{
496 unsigned int i;
497
498 for (i = 0; i < 1000; i++) {
499 uint8_t reg, val;
500
501 reg = (uint8_t)g_test_rand_int_range(0, 16);
502 val = (uint8_t)g_test_rand_int_range(0, 256);
503
504 cmos_write(reg, val);
505 cmos_read(reg);
506 }
507}
508
02c6ccc6
AH
509static void register_b_set_flag(void)
510{
511 /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
f9b3ed40 512 cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET);
02c6ccc6
AH
513
514 cmos_write(RTC_REG_A, 0x76);
515 cmos_write(RTC_YEAR, 0x11);
516 cmos_write(RTC_CENTURY, 0x20);
517 cmos_write(RTC_MONTH, 0x02);
518 cmos_write(RTC_DAY_OF_MONTH, 0x02);
519 cmos_write(RTC_HOURS, 0x02);
520 cmos_write(RTC_MINUTES, 0x04);
521 cmos_write(RTC_SECONDS, 0x58);
522 cmos_write(RTC_REG_A, 0x26);
523
524 /* Since SET flag is still enabled, these are equality checks. */
525 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
526 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
527 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, 0x58);
528 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
529 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
530 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
531 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
532
533 /* Disable SET flag in Register B */
534 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
535
536 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
537 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
538
539 /* Since SET flag is disabled, this is an inequality check.
540 * We (reasonably) assume that no (sexagesimal) overflow occurs. */
541 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
542 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
543 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
544 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
545 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
546}
547
d1aaf543
AL
548int main(int argc, char **argv)
549{
550 QTestState *s = NULL;
551 int ret;
552
553 g_test_init(&argc, &argv, NULL);
554
555 s = qtest_start("-display none -rtc clock=vm");
556 qtest_irq_intercept_in(s, "ioapic");
557
cc2832a5
PB
558 qtest_add_func("/rtc/check-time/bcd", bcd_check_time);
559 qtest_add_func("/rtc/check-time/dec", dec_check_time);
560 qtest_add_func("/rtc/alarm/interrupt", alarm_time);
561 qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm);
562 qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec);
563 qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd);
564 qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec);
565 qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd);
b8994faf
PB
566 qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
567 qtest_add_func("/rtc/set-year/1980", set_year_1980);
eeb29fb9
CR
568 qtest_add_func("/rtc/misc/register_b_set_flag", register_b_set_flag);
569 qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers);
d1aaf543
AL
570 ret = g_test_run();
571
572 if (s) {
573 qtest_quit(s);
574 }
575
576 return ret;
577}