]> git.proxmox.com Git - qemu.git/blame - vl.c
allow up to 256 MB of ram
[qemu.git] / vl.c
CommitLineData
0824d6fc 1/*
1df912cf 2 * QEMU PC System Emulator
0824d6fc 3 *
1df912cf 4 * Copyright (c) 2003 Fabrice Bellard
0824d6fc 5 *
1df912cf
FB
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
0824d6fc
FB
23 */
24#include <stdlib.h>
25#include <stdio.h>
1df912cf 26#include <stdarg.h>
0824d6fc
FB
27#include <string.h>
28#include <getopt.h>
29#include <inttypes.h>
30#include <unistd.h>
31#include <sys/mman.h>
32#include <fcntl.h>
33#include <signal.h>
34#include <time.h>
35#include <sys/time.h>
36#include <malloc.h>
37#include <termios.h>
38#include <sys/poll.h>
39#include <errno.h>
f1510b2c
FB
40#include <sys/wait.h>
41
42#include <sys/ioctl.h>
43#include <sys/socket.h>
44#include <linux/if.h>
45#include <linux/if_tun.h>
0824d6fc
FB
46
47#include "cpu-i386.h"
48#include "disas.h"
fc01f7e7
FB
49#include "thunk.h"
50
51#include "vl.h"
0824d6fc
FB
52
53#define DEBUG_LOGFILE "/tmp/vl.log"
f1510b2c
FB
54#define DEFAULT_NETWORK_SCRIPT "/etc/vl-ifup"
55
0824d6fc 56//#define DEBUG_UNUSED_IOPORT
c9159e53 57//#define DEBUG_IRQ_LATENCY
0824d6fc 58
7916e224
FB
59#define PHYS_RAM_BASE 0xac000000
60#define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
61
0824d6fc
FB
62#define KERNEL_LOAD_ADDR 0x00100000
63#define INITRD_LOAD_ADDR 0x00400000
64#define KERNEL_PARAMS_ADDR 0x00090000
65
66/* from plex86 (BSD license) */
67struct __attribute__ ((packed)) linux_params {
68 // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
69 // I just padded out the VESA parts, rather than define them.
70
71 /* 0x000 */ uint8_t orig_x;
72 /* 0x001 */ uint8_t orig_y;
73 /* 0x002 */ uint16_t ext_mem_k;
74 /* 0x004 */ uint16_t orig_video_page;
75 /* 0x006 */ uint8_t orig_video_mode;
76 /* 0x007 */ uint8_t orig_video_cols;
77 /* 0x008 */ uint16_t unused1;
78 /* 0x00a */ uint16_t orig_video_ega_bx;
79 /* 0x00c */ uint16_t unused2;
80 /* 0x00e */ uint8_t orig_video_lines;
81 /* 0x00f */ uint8_t orig_video_isVGA;
82 /* 0x010 */ uint16_t orig_video_points;
83 /* 0x012 */ uint8_t pad0[0x20 - 0x12]; // VESA info.
84 /* 0x020 */ uint16_t cl_magic; // Commandline magic number (0xA33F)
85 /* 0x022 */ uint16_t cl_offset; // Commandline offset. Address of commandline
86 // is calculated as 0x90000 + cl_offset, bu
87 // only if cl_magic == 0xA33F.
88 /* 0x024 */ uint8_t pad1[0x40 - 0x24]; // VESA info.
89
90 /* 0x040 */ uint8_t apm_bios_info[20]; // struct apm_bios_info
91 /* 0x054 */ uint8_t pad2[0x80 - 0x54];
92
93 // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
94 // Might be truncated?
95 /* 0x080 */ uint8_t hd0_info[16]; // hd0-disk-parameter from intvector 0x41
96 /* 0x090 */ uint8_t hd1_info[16]; // hd1-disk-parameter from intvector 0x46
97
98 // System description table truncated to 16 bytes
99 // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
100 /* 0x0a0 */ uint16_t sys_description_len;
101 /* 0x0a2 */ uint8_t sys_description_table[14];
102 // [0] machine id
103 // [1] machine submodel id
104 // [2] BIOS revision
105 // [3] bit1: MCA bus
106
107 /* 0x0b0 */ uint8_t pad3[0x1e0 - 0xb0];
108 /* 0x1e0 */ uint32_t alt_mem_k;
109 /* 0x1e4 */ uint8_t pad4[4];
110 /* 0x1e8 */ uint8_t e820map_entries;
111 /* 0x1e9 */ uint8_t eddbuf_entries; // EDD_NR
112 /* 0x1ea */ uint8_t pad5[0x1f1 - 0x1ea];
113 /* 0x1f1 */ uint8_t setup_sects; // size of setup.S, number of sectors
114 /* 0x1f2 */ uint16_t mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
115 /* 0x1f4 */ uint16_t sys_size; // size of compressed kernel-part in the
116 // (b)zImage-file (in 16 byte units, rounded up)
117 /* 0x1f6 */ uint16_t swap_dev; // (unused AFAIK)
118 /* 0x1f8 */ uint16_t ramdisk_flags;
119 /* 0x1fa */ uint16_t vga_mode; // (old one)
120 /* 0x1fc */ uint16_t orig_root_dev; // (high=Major, low=minor)
121 /* 0x1fe */ uint8_t pad6[1];
122 /* 0x1ff */ uint8_t aux_device_info;
123 /* 0x200 */ uint16_t jump_setup; // Jump to start of setup code,
124 // aka "reserved" field.
125 /* 0x202 */ uint8_t setup_signature[4]; // Signature for SETUP-header, ="HdrS"
126 /* 0x206 */ uint16_t header_format_version; // Version number of header format;
127 /* 0x208 */ uint8_t setup_S_temp0[8]; // Used by setup.S for communication with
128 // boot loaders, look there.
129 /* 0x210 */ uint8_t loader_type;
130 // 0 for old one.
131 // else 0xTV:
132 // T=0: LILO
133 // T=1: Loadlin
134 // T=2: bootsect-loader
135 // T=3: SYSLINUX
136 // T=4: ETHERBOOT
137 // V=version
138 /* 0x211 */ uint8_t loadflags;
139 // bit0 = 1: kernel is loaded high (bzImage)
140 // bit7 = 1: Heap and pointer (see below) set by boot
141 // loader.
142 /* 0x212 */ uint16_t setup_S_temp1;
143 /* 0x214 */ uint32_t kernel_start;
144 /* 0x218 */ uint32_t initrd_start;
145 /* 0x21c */ uint32_t initrd_size;
146 /* 0x220 */ uint8_t setup_S_temp2[4];
147 /* 0x224 */ uint16_t setup_S_heap_end_pointer;
148 /* 0x226 */ uint8_t pad7[0x2d0 - 0x226];
149
150 /* 0x2d0 : Int 15, ax=e820 memory map. */
151 // (linux/include/asm-i386/e820.h, 'struct e820entry')
152#define E820MAX 32
153#define E820_RAM 1
154#define E820_RESERVED 2
155#define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
156#define E820_NVS 4
157 struct {
158 uint64_t addr;
159 uint64_t size;
160 uint32_t type;
161 } e820map[E820MAX];
162
163 /* 0x550 */ uint8_t pad8[0x600 - 0x550];
164
165 // BIOS Enhanced Disk Drive Services.
166 // (From linux/include/asm-i386/edd.h, 'struct edd_info')
167 // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
168 /* 0x600 */ uint8_t eddbuf[0x7d4 - 0x600];
169
170 /* 0x7d4 */ uint8_t pad9[0x800 - 0x7d4];
171 /* 0x800 */ uint8_t commandline[0x800];
172
173 /* 0x1000 */
174 uint64_t gdt_table[256];
175 uint64_t idt_table[48];
176};
177
178#define KERNEL_CS 0x10
179#define KERNEL_DS 0x18
180
181typedef void (IOPortWriteFunc)(CPUX86State *env, uint32_t address, uint32_t data);
182typedef uint32_t (IOPortReadFunc)(CPUX86State *env, uint32_t address);
183
fc01f7e7 184#define MAX_IOPORTS 4096
0824d6fc
FB
185
186char phys_ram_file[1024];
187CPUX86State *global_env;
1df912cf 188CPUX86State *cpu_single_env;
0824d6fc
FB
189FILE *logfile = NULL;
190int loglevel;
fc01f7e7
FB
191IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
192IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
0824d6fc
FB
193
194/***********************************************************/
195/* x86 io ports */
196
197uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
198{
199#ifdef DEBUG_UNUSED_IOPORT
200 fprintf(stderr, "inb: port=0x%04x\n", address);
201#endif
fc01f7e7 202 return 0xff;
0824d6fc
FB
203}
204
205void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
206{
207#ifdef DEBUG_UNUSED_IOPORT
208 fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
209#endif
210}
211
212/* default is to make two byte accesses */
213uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
214{
215 uint32_t data;
fc01f7e7
FB
216 data = ioport_read_table[0][address](env, address);
217 data |= ioport_read_table[0][address + 1](env, address + 1) << 8;
0824d6fc
FB
218 return data;
219}
220
221void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
222{
fc01f7e7
FB
223 ioport_write_table[0][address](env, address, data & 0xff);
224 ioport_write_table[0][address + 1](env, address + 1, (data >> 8) & 0xff);
0824d6fc
FB
225}
226
fc01f7e7 227uint32_t default_ioport_readl(CPUX86State *env, uint32_t address)
0824d6fc 228{
fc01f7e7
FB
229#ifdef DEBUG_UNUSED_IOPORT
230 fprintf(stderr, "inl: port=0x%04x\n", address);
231#endif
232 return 0xffffffff;
0824d6fc
FB
233}
234
fc01f7e7 235void default_ioport_writel(CPUX86State *env, uint32_t address, uint32_t data)
0824d6fc 236{
fc01f7e7
FB
237#ifdef DEBUG_UNUSED_IOPORT
238 fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
239#endif
0824d6fc
FB
240}
241
fc01f7e7 242void init_ioports(void)
0824d6fc
FB
243{
244 int i;
245
fc01f7e7
FB
246 for(i = 0; i < MAX_IOPORTS; i++) {
247 ioport_read_table[0][i] = default_ioport_readb;
248 ioport_write_table[0][i] = default_ioport_writeb;
249 ioport_read_table[1][i] = default_ioport_readw;
250 ioport_write_table[1][i] = default_ioport_writew;
251 ioport_read_table[2][i] = default_ioport_readl;
252 ioport_write_table[2][i] = default_ioport_writel;
253 }
0824d6fc
FB
254}
255
fc01f7e7
FB
256/* size is the word size in byte */
257int register_ioport_read(int start, int length, IOPortReadFunc *func, int size)
f1510b2c 258{
fc01f7e7 259 int i, bsize;
f1510b2c 260
fc01f7e7
FB
261 if (size == 1)
262 bsize = 0;
263 else if (size == 2)
264 bsize = 1;
265 else if (size == 4)
266 bsize = 2;
267 else
268 return -1;
269 for(i = start; i < start + length; i += size)
270 ioport_read_table[bsize][i] = func;
f1510b2c
FB
271 return 0;
272}
273
fc01f7e7
FB
274/* size is the word size in byte */
275int register_ioport_write(int start, int length, IOPortWriteFunc *func, int size)
f1510b2c 276{
fc01f7e7 277 int i, bsize;
f1510b2c 278
fc01f7e7
FB
279 if (size == 1)
280 bsize = 0;
281 else if (size == 2)
282 bsize = 1;
283 else if (size == 4)
284 bsize = 2;
285 else
286 return -1;
287 for(i = start; i < start + length; i += size)
288 ioport_write_table[bsize][i] = func;
f1510b2c
FB
289 return 0;
290}
291
0824d6fc
FB
292void pstrcpy(char *buf, int buf_size, const char *str)
293{
294 int c;
295 char *q = buf;
296
297 if (buf_size <= 0)
298 return;
299
300 for(;;) {
301 c = *str++;
302 if (c == 0 || q >= buf + buf_size - 1)
303 break;
304 *q++ = c;
305 }
306 *q = '\0';
307}
308
309/* strcat and truncate. */
310char *pstrcat(char *buf, int buf_size, const char *s)
311{
312 int len;
313 len = strlen(buf);
314 if (len < buf_size)
315 pstrcpy(buf + len, buf_size - len, s);
316 return buf;
317}
318
319int load_kernel(const char *filename, uint8_t *addr)
320{
321 int fd, size, setup_sects;
322 uint8_t bootsect[512];
323
324 fd = open(filename, O_RDONLY);
325 if (fd < 0)
326 return -1;
327 if (read(fd, bootsect, 512) != 512)
328 goto fail;
329 setup_sects = bootsect[0x1F1];
330 if (!setup_sects)
331 setup_sects = 4;
332 /* skip 16 bit setup code */
333 lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
334 size = read(fd, addr, 16 * 1024 * 1024);
335 if (size < 0)
336 goto fail;
337 close(fd);
338 return size;
339 fail:
340 close(fd);
341 return -1;
342}
343
344/* return the size or -1 if error */
345int load_image(const char *filename, uint8_t *addr)
346{
347 int fd, size;
348 fd = open(filename, O_RDONLY);
349 if (fd < 0)
350 return -1;
351 size = lseek(fd, 0, SEEK_END);
352 lseek(fd, 0, SEEK_SET);
353 if (read(fd, addr, size) != size) {
354 close(fd);
355 return -1;
356 }
357 close(fd);
358 return size;
359}
360
361void cpu_x86_outb(CPUX86State *env, int addr, int val)
362{
fc01f7e7 363 ioport_write_table[0][addr & (MAX_IOPORTS - 1)](env, addr, val);
0824d6fc
FB
364}
365
366void cpu_x86_outw(CPUX86State *env, int addr, int val)
367{
fc01f7e7 368 ioport_write_table[1][addr & (MAX_IOPORTS - 1)](env, addr, val);
0824d6fc
FB
369}
370
371void cpu_x86_outl(CPUX86State *env, int addr, int val)
372{
fc01f7e7 373 ioport_write_table[2][addr & (MAX_IOPORTS - 1)](env, addr, val);
0824d6fc
FB
374}
375
376int cpu_x86_inb(CPUX86State *env, int addr)
377{
fc01f7e7 378 return ioport_read_table[0][addr & (MAX_IOPORTS - 1)](env, addr);
0824d6fc
FB
379}
380
381int cpu_x86_inw(CPUX86State *env, int addr)
382{
fc01f7e7 383 return ioport_read_table[1][addr & (MAX_IOPORTS - 1)](env, addr);
0824d6fc
FB
384}
385
386int cpu_x86_inl(CPUX86State *env, int addr)
387{
fc01f7e7 388 return ioport_read_table[2][addr & (MAX_IOPORTS - 1)](env, addr);
0824d6fc
FB
389}
390
391/***********************************************************/
392void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
393{
394}
395
396void hw_error(const char *fmt, ...)
397{
398 va_list ap;
399
400 va_start(ap, fmt);
401 fprintf(stderr, "qemu: hardware error: ");
402 vfprintf(stderr, fmt, ap);
403 fprintf(stderr, "\n");
404#ifdef TARGET_I386
405 cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
406#endif
407 va_end(ap);
408 abort();
409}
410
411/***********************************************************/
412/* vga emulation */
413static uint8_t vga_index;
414static uint8_t vga_regs[256];
415static int last_cursor_pos;
416
417void update_console_messages(void)
418{
419 int c, i, cursor_pos, eol;
420
421 cursor_pos = vga_regs[0x0f] | (vga_regs[0x0e] << 8);
422 eol = 0;
423 for(i = last_cursor_pos; i < cursor_pos; i++) {
424 c = phys_ram_base[0xb8000 + (i) * 2];
425 if (c >= ' ') {
426 putchar(c);
427 eol = 0;
428 } else {
429 if (!eol)
430 putchar('\n');
431 eol = 1;
432 }
433 }
434 fflush(stdout);
435 last_cursor_pos = cursor_pos;
436}
437
438/* just to see first Linux console messages, we intercept cursor position */
439void vga_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
440{
441 switch(addr) {
442 case 0x3d4:
443 vga_index = data;
444 break;
445 case 0x3d5:
446 vga_regs[vga_index] = data;
447 if (vga_index == 0x0f)
448 update_console_messages();
449 break;
450 }
451
452}
453
454/***********************************************************/
455/* cmos emulation */
456
457#define RTC_SECONDS 0
458#define RTC_SECONDS_ALARM 1
459#define RTC_MINUTES 2
460#define RTC_MINUTES_ALARM 3
461#define RTC_HOURS 4
462#define RTC_HOURS_ALARM 5
463#define RTC_ALARM_DONT_CARE 0xC0
464
465#define RTC_DAY_OF_WEEK 6
466#define RTC_DAY_OF_MONTH 7
467#define RTC_MONTH 8
468#define RTC_YEAR 9
469
470#define RTC_REG_A 10
471#define RTC_REG_B 11
472#define RTC_REG_C 12
473#define RTC_REG_D 13
474
475/* PC cmos mappings */
476#define REG_EQUIPMENT_BYTE 0x14
477
478uint8_t cmos_data[128];
479uint8_t cmos_index;
480
481void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
482{
483 if (addr == 0x70) {
484 cmos_index = data & 0x7f;
485 }
486}
487
488uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
489{
490 int ret;
491
492 if (addr == 0x70) {
493 return 0xff;
494 } else {
495 /* toggle update-in-progress bit for Linux (same hack as
496 plex86) */
497 ret = cmos_data[cmos_index];
498 if (cmos_index == RTC_REG_A)
499 cmos_data[RTC_REG_A] ^= 0x80;
500 else if (cmos_index == RTC_REG_C)
501 cmos_data[RTC_REG_C] = 0x00;
502 return ret;
503 }
504}
505
506
507static inline int to_bcd(int a)
508{
509 return ((a / 10) << 4) | (a % 10);
510}
511
512void cmos_init(void)
513{
514 struct tm *tm;
515 time_t ti;
516
517 ti = time(NULL);
518 tm = gmtime(&ti);
519 cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
520 cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
521 cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
522 cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
523 cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
abd0aaff 524 cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon + 1);
0824d6fc
FB
525 cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
526
527 cmos_data[RTC_REG_A] = 0x26;
528 cmos_data[RTC_REG_B] = 0x02;
529 cmos_data[RTC_REG_C] = 0x00;
530 cmos_data[RTC_REG_D] = 0x80;
531
532 cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
533
fc01f7e7
FB
534 register_ioport_write(0x70, 2, cmos_ioport_write, 1);
535 register_ioport_read(0x70, 2, cmos_ioport_read, 1);
0824d6fc
FB
536}
537
538/***********************************************************/
539/* 8259 pic emulation */
540
b118d61e
FB
541//#define DEBUG_PIC
542
0824d6fc
FB
543typedef struct PicState {
544 uint8_t last_irr; /* edge detection */
545 uint8_t irr; /* interrupt request register */
546 uint8_t imr; /* interrupt mask register */
547 uint8_t isr; /* interrupt service register */
548 uint8_t priority_add; /* used to compute irq priority */
549 uint8_t irq_base;
550 uint8_t read_reg_select;
551 uint8_t special_mask;
552 uint8_t init_state;
553 uint8_t auto_eoi;
554 uint8_t rotate_on_autoeoi;
555 uint8_t init4; /* true if 4 byte init */
556} PicState;
557
558/* 0 is master pic, 1 is slave pic */
559PicState pics[2];
560int pic_irq_requested;
561
562/* set irq level. If an edge is detected, then the IRR is set to 1 */
563static inline void pic_set_irq1(PicState *s, int irq, int level)
564{
565 int mask;
566 mask = 1 << irq;
567 if (level) {
568 if ((s->last_irr & mask) == 0)
569 s->irr |= mask;
570 s->last_irr |= mask;
571 } else {
572 s->last_irr &= ~mask;
573 }
574}
575
576static inline int get_priority(PicState *s, int mask)
577{
578 int priority;
579 if (mask == 0)
580 return -1;
581 priority = 7;
582 while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
583 priority--;
584 return priority;
585}
586
587/* return the pic wanted interrupt. return -1 if none */
588static int pic_get_irq(PicState *s)
589{
590 int mask, cur_priority, priority;
591
592 mask = s->irr & ~s->imr;
593 priority = get_priority(s, mask);
594 if (priority < 0)
595 return -1;
596 /* compute current priority */
597 cur_priority = get_priority(s, s->isr);
598 if (priority > cur_priority) {
599 /* higher priority found: an irq should be generated */
600 return priority;
601 } else {
602 return -1;
603 }
604}
605
c9159e53
FB
606/* raise irq to CPU if necessary. must be called every time the active
607 irq may change */
608static void pic_update_irq(void)
0824d6fc
FB
609{
610 int irq2, irq;
611
612 /* first look at slave pic */
613 irq2 = pic_get_irq(&pics[1]);
614 if (irq2 >= 0) {
615 /* if irq request by slave pic, signal master PIC */
616 pic_set_irq1(&pics[0], 2, 1);
617 pic_set_irq1(&pics[0], 2, 0);
618 }
619 /* look at requested irq */
620 irq = pic_get_irq(&pics[0]);
621 if (irq >= 0) {
622 if (irq == 2) {
623 /* from slave pic */
624 pic_irq_requested = 8 + irq2;
625 } else {
626 /* from master pic */
627 pic_irq_requested = irq;
628 }
c9159e53 629 cpu_x86_interrupt(global_env, CPU_INTERRUPT_HARD);
0824d6fc
FB
630 }
631}
632
c9159e53
FB
633#ifdef DEBUG_IRQ_LATENCY
634int64_t irq_time[16];
635int64_t cpu_get_ticks(void);
636#endif
b118d61e
FB
637#ifdef DEBUG_PIC
638int irq_level[16];
639#endif
c9159e53
FB
640
641void pic_set_irq(int irq, int level)
642{
b118d61e
FB
643#ifdef DEBUG_PIC
644 if (level != irq_level[irq]) {
645 printf("pic_set_irq: irq=%d level=%d\n", irq, level);
646 irq_level[irq] = level;
647 }
648#endif
c9159e53
FB
649#ifdef DEBUG_IRQ_LATENCY
650 if (level) {
651 irq_time[irq] = cpu_get_ticks();
652 }
653#endif
654 pic_set_irq1(&pics[irq >> 3], irq & 7, level);
655 pic_update_irq();
656}
657
0824d6fc
FB
658int cpu_x86_get_pic_interrupt(CPUX86State *env)
659{
660 int irq, irq2, intno;
661
662 /* signal the pic that the irq was acked by the CPU */
663 irq = pic_irq_requested;
c9159e53
FB
664#ifdef DEBUG_IRQ_LATENCY
665 printf("IRQ%d latency=%Ld\n", irq, cpu_get_ticks() - irq_time[irq]);
666#endif
b118d61e
FB
667#ifdef DEBUG_PIC
668 printf("pic_interrupt: irq=%d\n", irq);
669#endif
c9159e53 670
0824d6fc
FB
671 if (irq >= 8) {
672 irq2 = irq & 7;
673 pics[1].isr |= (1 << irq2);
674 pics[1].irr &= ~(1 << irq2);
675 irq = 2;
676 intno = pics[1].irq_base + irq2;
677 } else {
678 intno = pics[0].irq_base + irq;
679 }
680 pics[0].isr |= (1 << irq);
681 pics[0].irr &= ~(1 << irq);
682 return intno;
683}
684
685void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
686{
687 PicState *s;
688 int priority;
689
b118d61e
FB
690#ifdef DEBUG_PIC
691 printf("pic_write: addr=0x%02x val=0x%02x\n", addr, val);
692#endif
0824d6fc
FB
693 s = &pics[addr >> 7];
694 addr &= 1;
695 if (addr == 0) {
696 if (val & 0x10) {
697 /* init */
698 memset(s, 0, sizeof(PicState));
699 s->init_state = 1;
700 s->init4 = val & 1;
701 if (val & 0x02)
702 hw_error("single mode not supported");
703 if (val & 0x08)
704 hw_error("level sensitive irq not supported");
705 } else if (val & 0x08) {
706 if (val & 0x02)
707 s->read_reg_select = val & 1;
708 if (val & 0x40)
709 s->special_mask = (val >> 5) & 1;
710 } else {
711 switch(val) {
712 case 0x00:
713 case 0x80:
714 s->rotate_on_autoeoi = val >> 7;
715 break;
716 case 0x20: /* end of interrupt */
717 case 0xa0:
718 priority = get_priority(s, s->isr);
719 if (priority >= 0) {
720 s->isr &= ~(1 << ((priority + s->priority_add) & 7));
721 }
722 if (val == 0xa0)
723 s->priority_add = (s->priority_add + 1) & 7;
724 break;
725 case 0x60 ... 0x67:
726 priority = val & 7;
727 s->isr &= ~(1 << priority);
728 break;
729 case 0xc0 ... 0xc7:
730 s->priority_add = (val + 1) & 7;
731 break;
732 case 0xe0 ... 0xe7:
733 priority = val & 7;
734 s->isr &= ~(1 << priority);
735 s->priority_add = (priority + 1) & 7;
736 break;
737 }
738 }
739 } else {
740 switch(s->init_state) {
741 case 0:
742 /* normal mode */
743 s->imr = val;
c9159e53 744 pic_update_irq();
0824d6fc
FB
745 break;
746 case 1:
747 s->irq_base = val & 0xf8;
748 s->init_state = 2;
749 break;
750 case 2:
751 if (s->init4) {
752 s->init_state = 3;
753 } else {
754 s->init_state = 0;
755 }
756 break;
757 case 3:
758 s->auto_eoi = (val >> 1) & 1;
759 s->init_state = 0;
760 break;
761 }
762 }
763}
764
b118d61e 765uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr1)
0824d6fc
FB
766{
767 PicState *s;
b118d61e
FB
768 unsigned int addr;
769 int ret;
770
771 addr = addr1;
0824d6fc
FB
772 s = &pics[addr >> 7];
773 addr &= 1;
774 if (addr == 0) {
775 if (s->read_reg_select)
b118d61e 776 ret = s->isr;
0824d6fc 777 else
b118d61e 778 ret = s->irr;
0824d6fc 779 } else {
b118d61e 780 ret = s->imr;
0824d6fc 781 }
b118d61e
FB
782#ifdef DEBUG_PIC
783 printf("pic_read: addr=0x%02x val=0x%02x\n", addr1, ret);
784#endif
785 return ret;
0824d6fc
FB
786}
787
788void pic_init(void)
789{
fc01f7e7
FB
790 register_ioport_write(0x20, 2, pic_ioport_write, 1);
791 register_ioport_read(0x20, 2, pic_ioport_read, 1);
792 register_ioport_write(0xa0, 2, pic_ioport_write, 1);
793 register_ioport_read(0xa0, 2, pic_ioport_read, 1);
0824d6fc
FB
794}
795
796/***********************************************************/
797/* 8253 PIT emulation */
798
799#define PIT_FREQ 1193182
800
801#define RW_STATE_LSB 0
802#define RW_STATE_MSB 1
803#define RW_STATE_WORD0 2
804#define RW_STATE_WORD1 3
805#define RW_STATE_LATCHED_WORD0 4
806#define RW_STATE_LATCHED_WORD1 5
807
808typedef struct PITChannelState {
87858c89 809 int count; /* can be 65536 */
0824d6fc
FB
810 uint16_t latched_count;
811 uint8_t rw_state;
812 uint8_t mode;
813 uint8_t bcd; /* not supported */
814 uint8_t gate; /* timer start */
815 int64_t count_load_time;
87858c89 816 int64_t count_last_edge_check_time;
0824d6fc
FB
817} PITChannelState;
818
819PITChannelState pit_channels[3];
820int speaker_data_on;
87858c89 821int pit_min_timer_count = 0;
0824d6fc
FB
822
823int64_t ticks_per_sec;
824
825int64_t get_clock(void)
826{
827 struct timeval tv;
828 gettimeofday(&tv, NULL);
829 return tv.tv_sec * 1000000LL + tv.tv_usec;
830}
831
832int64_t cpu_get_ticks(void)
833{
834 int64_t val;
835 asm("rdtsc" : "=A" (val));
836 return val;
837}
838
839void cpu_calibrate_ticks(void)
840{
841 int64_t usec, ticks;
842
843 usec = get_clock();
844 ticks = cpu_get_ticks();
845 usleep(50 * 1000);
846 usec = get_clock() - usec;
847 ticks = cpu_get_ticks() - ticks;
848 ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
849}
850
87858c89
FB
851/* compute with 96 bit intermediate result: (a*b)/c */
852static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
853{
854 union {
855 uint64_t ll;
856 struct {
857#ifdef WORDS_BIGENDIAN
858 uint32_t high, low;
859#else
860 uint32_t low, high;
861#endif
862 } l;
863 } u, res;
864 uint64_t rl, rh;
865
866 u.ll = a;
867 rl = (uint64_t)u.l.low * (uint64_t)b;
868 rh = (uint64_t)u.l.high * (uint64_t)b;
869 rh += (rl >> 32);
870 res.l.high = rh / c;
871 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
872 return res.ll;
873}
874
0824d6fc
FB
875static int pit_get_count(PITChannelState *s)
876{
87858c89 877 uint64_t d;
0824d6fc
FB
878 int counter;
879
87858c89 880 d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
0824d6fc
FB
881 switch(s->mode) {
882 case 0:
883 case 1:
884 case 4:
885 case 5:
886 counter = (s->count - d) & 0xffff;
887 break;
888 default:
889 counter = s->count - (d % s->count);
890 break;
891 }
892 return counter;
893}
894
895/* get pit output bit */
896static int pit_get_out(PITChannelState *s)
897{
87858c89 898 uint64_t d;
0824d6fc
FB
899 int out;
900
87858c89 901 d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
0824d6fc
FB
902 switch(s->mode) {
903 default:
904 case 0:
905 out = (d >= s->count);
906 break;
907 case 1:
908 out = (d < s->count);
909 break;
910 case 2:
911 if ((d % s->count) == 0 && d != 0)
912 out = 1;
913 else
914 out = 0;
915 break;
916 case 3:
917 out = (d % s->count) < (s->count >> 1);
918 break;
919 case 4:
920 case 5:
921 out = (d == s->count);
922 break;
923 }
924 return out;
925}
926
87858c89
FB
927/* get the number of 0 to 1 transitions we had since we call this
928 function */
929/* XXX: maybe better to use ticks precision to avoid getting edges
930 twice if checks are done at very small intervals */
931static int pit_get_out_edges(PITChannelState *s)
932{
933 uint64_t d1, d2;
934 int64_t ticks;
935 int ret, v;
936
937 ticks = cpu_get_ticks();
938 d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time,
939 PIT_FREQ, ticks_per_sec);
940 d2 = muldiv64(ticks - s->count_load_time,
941 PIT_FREQ, ticks_per_sec);
942 s->count_last_edge_check_time = ticks;
943 switch(s->mode) {
944 default:
945 case 0:
946 if (d1 < s->count && d2 >= s->count)
947 ret = 1;
948 else
949 ret = 0;
950 break;
951 case 1:
952 ret = 0;
953 break;
954 case 2:
955 d1 /= s->count;
956 d2 /= s->count;
957 ret = d2 - d1;
958 break;
959 case 3:
960 v = s->count - (s->count >> 1);
961 d1 = (d1 + v) / s->count;
962 d2 = (d2 + v) / s->count;
963 ret = d2 - d1;
964 break;
965 case 4:
966 case 5:
967 if (d1 < s->count && d2 >= s->count)
968 ret = 1;
969 else
970 ret = 0;
971 break;
972 }
973 return ret;
974}
975
976static inline void pit_load_count(PITChannelState *s, int val)
977{
978 if (val == 0)
979 val = 0x10000;
980 s->count_load_time = cpu_get_ticks();
981 s->count_last_edge_check_time = s->count_load_time;
982 s->count = val;
983 if (s == &pit_channels[0] && val <= pit_min_timer_count) {
984 fprintf(stderr,
985 "\nWARNING: vl: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.5.xx Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n",
986 PIT_FREQ / pit_min_timer_count);
987 }
988}
989
0824d6fc
FB
990void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
991{
992 int channel, access;
993 PITChannelState *s;
87858c89 994
0824d6fc
FB
995 addr &= 3;
996 if (addr == 3) {
997 channel = val >> 6;
998 if (channel == 3)
999 return;
1000 s = &pit_channels[channel];
1001 access = (val >> 4) & 3;
1002 switch(access) {
1003 case 0:
1004 s->latched_count = pit_get_count(s);
1005 s->rw_state = RW_STATE_LATCHED_WORD0;
1006 break;
1007 default:
87858c89
FB
1008 s->mode = (val >> 1) & 7;
1009 s->bcd = val & 1;
0824d6fc
FB
1010 s->rw_state = access - 1 + RW_STATE_LSB;
1011 break;
1012 }
0824d6fc
FB
1013 } else {
1014 s = &pit_channels[addr];
1015 switch(s->rw_state) {
1016 case RW_STATE_LSB:
87858c89 1017 pit_load_count(s, val);
0824d6fc
FB
1018 break;
1019 case RW_STATE_MSB:
87858c89 1020 pit_load_count(s, val << 8);
0824d6fc
FB
1021 break;
1022 case RW_STATE_WORD0:
1023 case RW_STATE_WORD1:
1024 if (s->rw_state & 1) {
87858c89 1025 pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
0824d6fc
FB
1026 } else {
1027 s->latched_count = val;
1028 }
1029 s->rw_state ^= 1;
1030 break;
1031 }
1032 }
1033}
1034
1035uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
1036{
1037 int ret, count;
1038 PITChannelState *s;
1039
1040 addr &= 3;
1041 s = &pit_channels[addr];
1042 switch(s->rw_state) {
1043 case RW_STATE_LSB:
1044 case RW_STATE_MSB:
1045 case RW_STATE_WORD0:
1046 case RW_STATE_WORD1:
1047 count = pit_get_count(s);
1048 if (s->rw_state & 1)
1049 ret = (count >> 8) & 0xff;
1050 else
1051 ret = count & 0xff;
1052 if (s->rw_state & 2)
1053 s->rw_state ^= 1;
1054 break;
1055 default:
1056 case RW_STATE_LATCHED_WORD0:
1057 case RW_STATE_LATCHED_WORD1:
1058 if (s->rw_state & 1)
1059 ret = s->latched_count >> 8;
1060 else
1061 ret = s->latched_count & 0xff;
1062 s->rw_state ^= 1;
1063 break;
1064 }
1065 return ret;
1066}
1067
1068void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1069{
1070 speaker_data_on = (val >> 1) & 1;
1071 pit_channels[2].gate = val & 1;
1072}
1073
1074uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
1075{
1076 int out;
1077 out = pit_get_out(&pit_channels[2]);
1078 return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5);
1079}
1080
1081void pit_init(void)
1082{
87858c89
FB
1083 PITChannelState *s;
1084 int i;
1085
1086 cpu_calibrate_ticks();
1087
1088 for(i = 0;i < 3; i++) {
1089 s = &pit_channels[i];
1090 s->mode = 3;
1091 s->gate = (i != 2);
1092 pit_load_count(s, 0);
1093 }
1094
fc01f7e7
FB
1095 register_ioport_write(0x40, 4, pit_ioport_write, 1);
1096 register_ioport_read(0x40, 3, pit_ioport_read, 1);
0824d6fc 1097
fc01f7e7
FB
1098 register_ioport_read(0x61, 1, speaker_ioport_read, 1);
1099 register_ioport_write(0x61, 1, speaker_ioport_write, 1);
0824d6fc
FB
1100}
1101
1102/***********************************************************/
1103/* serial port emulation */
1104
1105#define UART_IRQ 4
1106
1107#define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
1108
1109#define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
1110#define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
1111#define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
1112#define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
1113
1114#define UART_IIR_NO_INT 0x01 /* No interrupts pending */
1115#define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
1116
1117#define UART_IIR_MSI 0x00 /* Modem status interrupt */
1118#define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
1119#define UART_IIR_RDI 0x04 /* Receiver data interrupt */
1120#define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
1121
1122#define UART_LSR_TEMT 0x40 /* Transmitter empty */
1123#define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
1124#define UART_LSR_BI 0x10 /* Break interrupt indicator */
1125#define UART_LSR_FE 0x08 /* Frame error indicator */
1126#define UART_LSR_PE 0x04 /* Parity error indicator */
1127#define UART_LSR_OE 0x02 /* Overrun error indicator */
1128#define UART_LSR_DR 0x01 /* Receiver data ready */
1129
1130typedef struct SerialState {
1131 uint8_t divider;
1132 uint8_t rbr; /* receive register */
1133 uint8_t ier;
1134 uint8_t iir; /* read only */
1135 uint8_t lcr;
1136 uint8_t mcr;
1137 uint8_t lsr; /* read only */
1138 uint8_t msr;
1139 uint8_t scr;
1140} SerialState;
1141
1142SerialState serial_ports[1];
1143
1144void serial_update_irq(void)
1145{
1146 SerialState *s = &serial_ports[0];
1147
1148 if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
1149 s->iir = UART_IIR_RDI;
1150 } else if ((s->lsr & UART_LSR_THRE) && (s->ier & UART_IER_THRI)) {
1151 s->iir = UART_IIR_THRI;
1152 } else {
1153 s->iir = UART_IIR_NO_INT;
1154 }
1155 if (s->iir != UART_IIR_NO_INT) {
1156 pic_set_irq(UART_IRQ, 1);
1157 } else {
1158 pic_set_irq(UART_IRQ, 0);
1159 }
1160}
1161
1162void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1163{
1164 SerialState *s = &serial_ports[0];
1165 unsigned char ch;
1166 int ret;
1167
1168 addr &= 7;
1169 switch(addr) {
1170 default:
1171 case 0:
1172 if (s->lcr & UART_LCR_DLAB) {
1173 s->divider = (s->divider & 0xff00) | val;
1174 } else {
1175 s->lsr &= ~UART_LSR_THRE;
1176 serial_update_irq();
1177
1178 ch = val;
1179 do {
1180 ret = write(1, &ch, 1);
1181 } while (ret != 1);
1182 s->lsr |= UART_LSR_THRE;
1183 s->lsr |= UART_LSR_TEMT;
1184 serial_update_irq();
1185 }
1186 break;
1187 case 1:
1188 if (s->lcr & UART_LCR_DLAB) {
1189 s->divider = (s->divider & 0x00ff) | (val << 8);
1190 } else {
1191 s->ier = val;
1192 serial_update_irq();
1193 }
1194 break;
1195 case 2:
1196 break;
1197 case 3:
1198 s->lcr = val;
1199 break;
1200 case 4:
1201 s->mcr = val;
1202 break;
1203 case 5:
1204 break;
1205 case 6:
1206 s->msr = val;
1207 break;
1208 case 7:
1209 s->scr = val;
1210 break;
1211 }
1212}
1213
1214uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
1215{
1216 SerialState *s = &serial_ports[0];
1217 uint32_t ret;
1218
1219 addr &= 7;
1220 switch(addr) {
1221 default:
1222 case 0:
1223 if (s->lcr & UART_LCR_DLAB) {
1224 ret = s->divider & 0xff;
1225 } else {
1226 ret = s->rbr;
1227 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
1228 serial_update_irq();
1229 }
1230 break;
1231 case 1:
1232 if (s->lcr & UART_LCR_DLAB) {
1233 ret = (s->divider >> 8) & 0xff;
1234 } else {
1235 ret = s->ier;
1236 }
1237 break;
1238 case 2:
1239 ret = s->iir;
1240 break;
1241 case 3:
1242 ret = s->lcr;
1243 break;
1244 case 4:
1245 ret = s->mcr;
1246 break;
1247 case 5:
1248 ret = s->lsr;
1249 break;
1250 case 6:
1251 ret = s->msr;
1252 break;
1253 case 7:
1254 ret = s->scr;
1255 break;
1256 }
1257 return ret;
1258}
1259
1260#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1261static int term_got_escape;
1262
1263void term_print_help(void)
1264{
1265 printf("\n"
1266 "C-a h print this help\n"
1267 "C-a x exit emulatior\n"
1268 "C-a b send break (magic sysrq)\n"
1269 "C-a C-a send C-a\n"
1270 );
1271}
1272
1273/* called when a char is received */
1274void serial_received_byte(SerialState *s, int ch)
1275{
1276 if (term_got_escape) {
1277 term_got_escape = 0;
1278 switch(ch) {
1279 case 'h':
1280 term_print_help();
1281 break;
1282 case 'x':
1283 exit(0);
1284 break;
1285 case 'b':
1286 /* send break */
1287 s->rbr = 0;
1288 s->lsr |= UART_LSR_BI | UART_LSR_DR;
1289 serial_update_irq();
1290 break;
1291 case TERM_ESCAPE:
1292 goto send_char;
1293 }
1294 } else if (ch == TERM_ESCAPE) {
1295 term_got_escape = 1;
1296 } else {
1297 send_char:
1298 s->rbr = ch;
1299 s->lsr |= UART_LSR_DR;
1300 serial_update_irq();
1301 }
1302}
1303
1304/* init terminal so that we can grab keys */
1305static struct termios oldtty;
1306
1307static void term_exit(void)
1308{
1309 tcsetattr (0, TCSANOW, &oldtty);
1310}
1311
1312static void term_init(void)
1313{
1314 struct termios tty;
1315
1316 tcgetattr (0, &tty);
1317 oldtty = tty;
1318
1319 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1320 |INLCR|IGNCR|ICRNL|IXON);
1321 tty.c_oflag |= OPOST;
1322 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1323 tty.c_cflag &= ~(CSIZE|PARENB);
1324 tty.c_cflag |= CS8;
1325 tty.c_cc[VMIN] = 1;
1326 tty.c_cc[VTIME] = 0;
1327
1328 tcsetattr (0, TCSANOW, &tty);
1329
1330 atexit(term_exit);
1331
1332 fcntl(0, F_SETFL, O_NONBLOCK);
1333}
1334
1335void serial_init(void)
1336{
1337 SerialState *s = &serial_ports[0];
1338
1339 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
1340
fc01f7e7
FB
1341 register_ioport_write(0x3f8, 8, serial_ioport_write, 1);
1342 register_ioport_read(0x3f8, 8, serial_ioport_read, 1);
0824d6fc
FB
1343
1344 term_init();
1345}
1346
f1510b2c
FB
1347/***********************************************************/
1348/* ne2000 emulation */
1349
1350//#define DEBUG_NE2000
1351
1352#define NE2000_IOPORT 0x300
1353#define NE2000_IRQ 9
1354
1355#define MAX_ETH_FRAME_SIZE 1514
1356
1357#define E8390_CMD 0x00 /* The command register (for all pages) */
1358/* Page 0 register offsets. */
1359#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
1360#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
1361#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
1362#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
1363#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
1364#define EN0_TSR 0x04 /* Transmit status reg RD */
1365#define EN0_TPSR 0x04 /* Transmit starting page WR */
1366#define EN0_NCR 0x05 /* Number of collision reg RD */
1367#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
1368#define EN0_FIFO 0x06 /* FIFO RD */
1369#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
1370#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
1371#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
1372#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
1373#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
1374#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
1375#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
1376#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
1377#define EN0_RSR 0x0c /* rx status reg RD */
1378#define EN0_RXCR 0x0c /* RX configuration reg WR */
1379#define EN0_TXCR 0x0d /* TX configuration reg WR */
1380#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
1381#define EN0_DCFG 0x0e /* Data configuration reg WR */
1382#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
1383#define EN0_IMR 0x0f /* Interrupt mask reg WR */
1384#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
1385
1386#define EN1_PHYS 0x11
1387#define EN1_CURPAG 0x17
1388#define EN1_MULT 0x18
1389
1390/* Register accessed at EN_CMD, the 8390 base addr. */
1391#define E8390_STOP 0x01 /* Stop and reset the chip */
1392#define E8390_START 0x02 /* Start the chip, clear reset */
1393#define E8390_TRANS 0x04 /* Transmit a frame */
1394#define E8390_RREAD 0x08 /* Remote read */
1395#define E8390_RWRITE 0x10 /* Remote write */
1396#define E8390_NODMA 0x20 /* Remote DMA */
1397#define E8390_PAGE0 0x00 /* Select page chip registers */
1398#define E8390_PAGE1 0x40 /* using the two high-order bits */
1399#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
1400
1401/* Bits in EN0_ISR - Interrupt status register */
1402#define ENISR_RX 0x01 /* Receiver, no error */
1403#define ENISR_TX 0x02 /* Transmitter, no error */
1404#define ENISR_RX_ERR 0x04 /* Receiver, with error */
1405#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
1406#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
1407#define ENISR_COUNTERS 0x20 /* Counters need emptying */
1408#define ENISR_RDC 0x40 /* remote dma complete */
1409#define ENISR_RESET 0x80 /* Reset completed */
1410#define ENISR_ALL 0x3f /* Interrupts we will enable */
1411
1412/* Bits in received packet status byte and EN0_RSR*/
1413#define ENRSR_RXOK 0x01 /* Received a good packet */
1414#define ENRSR_CRC 0x02 /* CRC error */
1415#define ENRSR_FAE 0x04 /* frame alignment error */
1416#define ENRSR_FO 0x08 /* FIFO overrun */
1417#define ENRSR_MPA 0x10 /* missed pkt */
1418#define ENRSR_PHY 0x20 /* physical/multicast address */
1419#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
1420#define ENRSR_DEF 0x80 /* deferring */
1421
1422/* Transmitted packet status, EN0_TSR. */
1423#define ENTSR_PTX 0x01 /* Packet transmitted without error */
1424#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
1425#define ENTSR_COL 0x04 /* The transmit collided at least once. */
1426#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
1427#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
1428#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
1429#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
1430#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
1431
1432#define NE2000_MEM_SIZE 32768
1433
1434typedef struct NE2000State {
1435 uint8_t cmd;
1436 uint32_t start;
1437 uint32_t stop;
1438 uint8_t boundary;
1439 uint8_t tsr;
1440 uint8_t tpsr;
1441 uint16_t tcnt;
1442 uint16_t rcnt;
1443 uint32_t rsar;
1444 uint8_t isr;
1445 uint8_t dcfg;
1446 uint8_t imr;
1447 uint8_t phys[6]; /* mac address */
1448 uint8_t curpag;
1449 uint8_t mult[8]; /* multicast mask array */
1450 uint8_t mem[NE2000_MEM_SIZE];
1451} NE2000State;
1452
1453NE2000State ne2000_state;
1454int net_fd = -1;
1455char network_script[1024];
1456
1457void ne2000_reset(void)
1458{
1459 NE2000State *s = &ne2000_state;
1460 int i;
1461
1462 s->isr = ENISR_RESET;
1463 s->mem[0] = 0x52;
1464 s->mem[1] = 0x54;
1465 s->mem[2] = 0x00;
1466 s->mem[3] = 0x12;
1467 s->mem[4] = 0x34;
1468 s->mem[5] = 0x56;
1469 s->mem[14] = 0x57;
1470 s->mem[15] = 0x57;
1471
1472 /* duplicate prom data */
1473 for(i = 15;i >= 0; i--) {
1474 s->mem[2 * i] = s->mem[i];
1475 s->mem[2 * i + 1] = s->mem[i];
1476 }
1477}
1478
1479void ne2000_update_irq(NE2000State *s)
1480{
1481 int isr;
1482 isr = s->isr & s->imr;
1483 if (isr)
1484 pic_set_irq(NE2000_IRQ, 1);
1485 else
1486 pic_set_irq(NE2000_IRQ, 0);
1487}
1488
1489int net_init(void)
1490{
1491 struct ifreq ifr;
1492 int fd, ret, pid, status;
1493
1494 fd = open("/dev/net/tun", O_RDWR);
1495 if (fd < 0) {
1496 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1497 return -1;
1498 }
1499 memset(&ifr, 0, sizeof(ifr));
1500 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1501 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1502 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1503 if (ret != 0) {
1504 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1505 close(fd);
1506 return -1;
1507 }
fc01f7e7 1508 printf("Connected to host network interface: %s\n", ifr.ifr_name);
f1510b2c
FB
1509 fcntl(fd, F_SETFL, O_NONBLOCK);
1510 net_fd = fd;
1511
1512 /* try to launch network init script */
1513 pid = fork();
1514 if (pid >= 0) {
1515 if (pid == 0) {
1516 execl(network_script, network_script, ifr.ifr_name, NULL);
1517 exit(1);
1518 }
1519 while (waitpid(pid, &status, 0) != pid);
1520 if (!WIFEXITED(status) ||
1521 WEXITSTATUS(status) != 0) {
1522 fprintf(stderr, "%s: could not launch network script for '%s'\n",
1523 network_script, ifr.ifr_name);
1524 }
1525 }
1526 return 0;
1527}
1528
1529void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
1530{
1531#ifdef DEBUG_NE2000
1532 printf("NE2000: sending packet size=%d\n", size);
1533#endif
1534 write(net_fd, buf, size);
1535}
1536
1537/* return true if the NE2000 can receive more data */
1538int ne2000_can_receive(NE2000State *s)
1539{
1540 int avail, index, boundary;
1541
1542 if (s->cmd & E8390_STOP)
1543 return 0;
1544 index = s->curpag << 8;
1545 boundary = s->boundary << 8;
1546 if (index < boundary)
1547 avail = boundary - index;
1548 else
1549 avail = (s->stop - s->start) - (index - boundary);
1550 if (avail < (MAX_ETH_FRAME_SIZE + 4))
1551 return 0;
1552 return 1;
1553}
1554
1555void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
1556{
1557 uint8_t *p;
1558 int total_len, next, avail, len, index;
1559
1560#if defined(DEBUG_NE2000)
1561 printf("NE2000: received len=%d\n", size);
1562#endif
1563
1564 index = s->curpag << 8;
1565 /* 4 bytes for header */
1566 total_len = size + 4;
1567 /* address for next packet (4 bytes for CRC) */
1568 next = index + ((total_len + 4 + 255) & ~0xff);
1569 if (next >= s->stop)
1570 next -= (s->stop - s->start);
1571 /* prepare packet header */
1572 p = s->mem + index;
1573 p[0] = ENRSR_RXOK; /* receive status */
1574 p[1] = next >> 8;
1575 p[2] = total_len;
1576 p[3] = total_len >> 8;
1577 index += 4;
1578
1579 /* write packet data */
1580 while (size > 0) {
1581 avail = s->stop - index;
1582 len = size;
1583 if (len > avail)
1584 len = avail;
1585 memcpy(s->mem + index, buf, len);
1586 buf += len;
1587 index += len;
1588 if (index == s->stop)
1589 index = s->start;
1590 size -= len;
1591 }
1592 s->curpag = next >> 8;
1593
1594 /* now we can signal we have receive something */
1595 s->isr |= ENISR_RX;
1596 ne2000_update_irq(s);
1597}
1598
1599void ne2000_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1600{
1601 NE2000State *s = &ne2000_state;
1602 int offset, page;
1603
1604 addr &= 0xf;
1605#ifdef DEBUG_NE2000
1606 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
1607#endif
1608 if (addr == E8390_CMD) {
1609 /* control register */
1610 s->cmd = val;
1611 if (val & E8390_START) {
1612 /* test specific case: zero length transfert */
1613 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
1614 s->rcnt == 0) {
1615 s->isr |= ENISR_RDC;
1616 ne2000_update_irq(s);
1617 }
1618 if (val & E8390_TRANS) {
1619 net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
1620 /* signal end of transfert */
1621 s->tsr = ENTSR_PTX;
1622 s->isr |= ENISR_TX;
1623 ne2000_update_irq(s);
1624 }
1625 }
1626 } else {
1627 page = s->cmd >> 6;
1628 offset = addr | (page << 4);
1629 switch(offset) {
1630 case EN0_STARTPG:
1631 s->start = val << 8;
1632 break;
1633 case EN0_STOPPG:
1634 s->stop = val << 8;
1635 break;
1636 case EN0_BOUNDARY:
1637 s->boundary = val;
1638 break;
1639 case EN0_IMR:
1640 s->imr = val;
1641 ne2000_update_irq(s);
1642 break;
1643 case EN0_TPSR:
1644 s->tpsr = val;
1645 break;
1646 case EN0_TCNTLO:
1647 s->tcnt = (s->tcnt & 0xff00) | val;
1648 break;
1649 case EN0_TCNTHI:
1650 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
1651 break;
1652 case EN0_RSARLO:
1653 s->rsar = (s->rsar & 0xff00) | val;
1654 break;
1655 case EN0_RSARHI:
1656 s->rsar = (s->rsar & 0x00ff) | (val << 8);
1657 break;
1658 case EN0_RCNTLO:
1659 s->rcnt = (s->rcnt & 0xff00) | val;
1660 break;
1661 case EN0_RCNTHI:
1662 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
1663 break;
1664 case EN0_DCFG:
1665 s->dcfg = val;
1666 break;
1667 case EN0_ISR:
1668 s->isr &= ~val;
1669 ne2000_update_irq(s);
1670 break;
1671 case EN1_PHYS ... EN1_PHYS + 5:
1672 s->phys[offset - EN1_PHYS] = val;
1673 break;
1674 case EN1_CURPAG:
1675 s->curpag = val;
1676 break;
1677 case EN1_MULT ... EN1_MULT + 7:
1678 s->mult[offset - EN1_MULT] = val;
1679 break;
1680 }
1681 }
1682}
1683
1684uint32_t ne2000_ioport_read(CPUX86State *env, uint32_t addr)
1685{
1686 NE2000State *s = &ne2000_state;
1687 int offset, page, ret;
1688
1689 addr &= 0xf;
1690 if (addr == E8390_CMD) {
1691 ret = s->cmd;
1692 } else {
1693 page = s->cmd >> 6;
1694 offset = addr | (page << 4);
1695 switch(offset) {
1696 case EN0_TSR:
1697 ret = s->tsr;
1698 break;
1699 case EN0_BOUNDARY:
1700 ret = s->boundary;
1701 break;
1702 case EN0_ISR:
1703 ret = s->isr;
1704 break;
1705 case EN1_PHYS ... EN1_PHYS + 5:
1706 ret = s->phys[offset - EN1_PHYS];
1707 break;
1708 case EN1_CURPAG:
1709 ret = s->curpag;
1710 break;
1711 case EN1_MULT ... EN1_MULT + 7:
1712 ret = s->mult[offset - EN1_MULT];
1713 break;
1714 default:
1715 ret = 0x00;
1716 break;
1717 }
1718 }
1719#ifdef DEBUG_NE2000
1720 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
1721#endif
1722 return ret;
1723}
1724
1725void ne2000_asic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1726{
1727 NE2000State *s = &ne2000_state;
1728 uint8_t *p;
1729
1730#ifdef DEBUG_NE2000
1731 printf("NE2000: asic write val=0x%04x\n", val);
1732#endif
1733 p = s->mem + s->rsar;
1734 if (s->dcfg & 0x01) {
1735 /* 16 bit access */
1736 p[0] = val;
1737 p[1] = val >> 8;
1738 s->rsar += 2;
1739 s->rcnt -= 2;
1740 } else {
1741 /* 8 bit access */
1742 p[0] = val;
1743 s->rsar++;
1744 s->rcnt--;
1745 }
1746 /* wrap */
1747 if (s->rsar == s->stop)
1748 s->rsar = s->start;
1749 if (s->rcnt == 0) {
1750 /* signal end of transfert */
1751 s->isr |= ENISR_RDC;
1752 ne2000_update_irq(s);
1753 }
1754}
1755
1756uint32_t ne2000_asic_ioport_read(CPUX86State *env, uint32_t addr)
1757{
1758 NE2000State *s = &ne2000_state;
1759 uint8_t *p;
1760 int ret;
1761
1762 p = s->mem + s->rsar;
1763 if (s->dcfg & 0x01) {
1764 /* 16 bit access */
1765 ret = p[0] | (p[1] << 8);
1766 s->rsar += 2;
1767 s->rcnt -= 2;
1768 } else {
1769 /* 8 bit access */
1770 ret = p[0];
1771 s->rsar++;
1772 s->rcnt--;
1773 }
1774 /* wrap */
1775 if (s->rsar == s->stop)
1776 s->rsar = s->start;
1777 if (s->rcnt == 0) {
1778 /* signal end of transfert */
1779 s->isr |= ENISR_RDC;
1780 ne2000_update_irq(s);
1781 }
1782#ifdef DEBUG_NE2000
1783 printf("NE2000: asic read val=0x%04x\n", ret);
1784#endif
1785 return ret;
1786}
1787
1788void ne2000_reset_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1789{
1790 /* nothing to do (end of reset pulse) */
1791}
1792
1793uint32_t ne2000_reset_ioport_read(CPUX86State *env, uint32_t addr)
1794{
1795 ne2000_reset();
1796 return 0;
1797}
1798
1799void ne2000_init(void)
1800{
fc01f7e7
FB
1801 register_ioport_write(NE2000_IOPORT, 16, ne2000_ioport_write, 1);
1802 register_ioport_read(NE2000_IOPORT, 16, ne2000_ioport_read, 1);
f1510b2c 1803
fc01f7e7
FB
1804 register_ioport_write(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write, 1);
1805 register_ioport_read(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read, 1);
1806 register_ioport_write(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write, 2);
1807 register_ioport_read(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read, 2);
f1510b2c 1808
fc01f7e7
FB
1809 register_ioport_write(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write, 1);
1810 register_ioport_read(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read, 1);
f1510b2c
FB
1811 ne2000_reset();
1812}
1813
fc01f7e7
FB
1814/***********************************************************/
1815/* ide emulation */
1816
1817//#define DEBUG_IDE
1818
1819/* Bits of HD_STATUS */
1820#define ERR_STAT 0x01
1821#define INDEX_STAT 0x02
1822#define ECC_STAT 0x04 /* Corrected error */
1823#define DRQ_STAT 0x08
1824#define SEEK_STAT 0x10
1825#define SRV_STAT 0x10
1826#define WRERR_STAT 0x20
1827#define READY_STAT 0x40
1828#define BUSY_STAT 0x80
1829
1830/* Bits for HD_ERROR */
1831#define MARK_ERR 0x01 /* Bad address mark */
1832#define TRK0_ERR 0x02 /* couldn't find track 0 */
1833#define ABRT_ERR 0x04 /* Command aborted */
1834#define MCR_ERR 0x08 /* media change request */
1835#define ID_ERR 0x10 /* ID field not found */
1836#define MC_ERR 0x20 /* media changed */
1837#define ECC_ERR 0x40 /* Uncorrectable ECC error */
1838#define BBD_ERR 0x80 /* pre-EIDE meaning: block marked bad */
1839#define ICRC_ERR 0x80 /* new meaning: CRC error during transfer */
1840
1841/* Bits of HD_NSECTOR */
1842#define CD 0x01
1843#define IO 0x02
1844#define REL 0x04
1845#define TAG_MASK 0xf8
1846
1847#define IDE_CMD_RESET 0x04
1848#define IDE_CMD_DISABLE_IRQ 0x02
1849
1850/* ATA/ATAPI Commands pre T13 Spec */
1851#define WIN_NOP 0x00
1852/*
1853 * 0x01->0x02 Reserved
1854 */
1855#define CFA_REQ_EXT_ERROR_CODE 0x03 /* CFA Request Extended Error Code */
1856/*
1857 * 0x04->0x07 Reserved
1858 */
1859#define WIN_SRST 0x08 /* ATAPI soft reset command */
1860#define WIN_DEVICE_RESET 0x08
1861/*
1862 * 0x09->0x0F Reserved
1863 */
1864#define WIN_RECAL 0x10
1865#define WIN_RESTORE WIN_RECAL
1866/*
1867 * 0x10->0x1F Reserved
1868 */
1869#define WIN_READ 0x20 /* 28-Bit */
1870#define WIN_READ_ONCE 0x21 /* 28-Bit without retries */
1871#define WIN_READ_LONG 0x22 /* 28-Bit */
1872#define WIN_READ_LONG_ONCE 0x23 /* 28-Bit without retries */
1873#define WIN_READ_EXT 0x24 /* 48-Bit */
1874#define WIN_READDMA_EXT 0x25 /* 48-Bit */
1875#define WIN_READDMA_QUEUED_EXT 0x26 /* 48-Bit */
1876#define WIN_READ_NATIVE_MAX_EXT 0x27 /* 48-Bit */
1877/*
1878 * 0x28
1879 */
1880#define WIN_MULTREAD_EXT 0x29 /* 48-Bit */
1881/*
1882 * 0x2A->0x2F Reserved
1883 */
1884#define WIN_WRITE 0x30 /* 28-Bit */
1885#define WIN_WRITE_ONCE 0x31 /* 28-Bit without retries */
1886#define WIN_WRITE_LONG 0x32 /* 28-Bit */
1887#define WIN_WRITE_LONG_ONCE 0x33 /* 28-Bit without retries */
1888#define WIN_WRITE_EXT 0x34 /* 48-Bit */
1889#define WIN_WRITEDMA_EXT 0x35 /* 48-Bit */
1890#define WIN_WRITEDMA_QUEUED_EXT 0x36 /* 48-Bit */
1891#define WIN_SET_MAX_EXT 0x37 /* 48-Bit */
1892#define CFA_WRITE_SECT_WO_ERASE 0x38 /* CFA Write Sectors without erase */
1893#define WIN_MULTWRITE_EXT 0x39 /* 48-Bit */
1894/*
1895 * 0x3A->0x3B Reserved
1896 */
1897#define WIN_WRITE_VERIFY 0x3C /* 28-Bit */
1898/*
1899 * 0x3D->0x3F Reserved
1900 */
1901#define WIN_VERIFY 0x40 /* 28-Bit - Read Verify Sectors */
1902#define WIN_VERIFY_ONCE 0x41 /* 28-Bit - without retries */
1903#define WIN_VERIFY_EXT 0x42 /* 48-Bit */
1904/*
1905 * 0x43->0x4F Reserved
1906 */
1907#define WIN_FORMAT 0x50
1908/*
1909 * 0x51->0x5F Reserved
1910 */
1911#define WIN_INIT 0x60
1912/*
1913 * 0x61->0x5F Reserved
1914 */
1915#define WIN_SEEK 0x70 /* 0x70-0x7F Reserved */
1916#define CFA_TRANSLATE_SECTOR 0x87 /* CFA Translate Sector */
1917#define WIN_DIAGNOSE 0x90
1918#define WIN_SPECIFY 0x91 /* set drive geometry translation */
1919#define WIN_DOWNLOAD_MICROCODE 0x92
1920#define WIN_STANDBYNOW2 0x94
1921#define WIN_STANDBY2 0x96
1922#define WIN_SETIDLE2 0x97
1923#define WIN_CHECKPOWERMODE2 0x98
1924#define WIN_SLEEPNOW2 0x99
1925/*
1926 * 0x9A VENDOR
1927 */
1928#define WIN_PACKETCMD 0xA0 /* Send a packet command. */
1929#define WIN_PIDENTIFY 0xA1 /* identify ATAPI device */
1930#define WIN_QUEUED_SERVICE 0xA2
1931#define WIN_SMART 0xB0 /* self-monitoring and reporting */
1932#define CFA_ERASE_SECTORS 0xC0
1933#define WIN_MULTREAD 0xC4 /* read sectors using multiple mode*/
1934#define WIN_MULTWRITE 0xC5 /* write sectors using multiple mode */
1935#define WIN_SETMULT 0xC6 /* enable/disable multiple mode */
1936#define WIN_READDMA_QUEUED 0xC7 /* read sectors using Queued DMA transfers */
1937#define WIN_READDMA 0xC8 /* read sectors using DMA transfers */
1938#define WIN_READDMA_ONCE 0xC9 /* 28-Bit - without retries */
1939#define WIN_WRITEDMA 0xCA /* write sectors using DMA transfers */
1940#define WIN_WRITEDMA_ONCE 0xCB /* 28-Bit - without retries */
1941#define WIN_WRITEDMA_QUEUED 0xCC /* write sectors using Queued DMA transfers */
1942#define CFA_WRITE_MULTI_WO_ERASE 0xCD /* CFA Write multiple without erase */
1943#define WIN_GETMEDIASTATUS 0xDA
1944#define WIN_ACKMEDIACHANGE 0xDB /* ATA-1, ATA-2 vendor */
1945#define WIN_POSTBOOT 0xDC
1946#define WIN_PREBOOT 0xDD
1947#define WIN_DOORLOCK 0xDE /* lock door on removable drives */
1948#define WIN_DOORUNLOCK 0xDF /* unlock door on removable drives */
1949#define WIN_STANDBYNOW1 0xE0
1950#define WIN_IDLEIMMEDIATE 0xE1 /* force drive to become "ready" */
1951#define WIN_STANDBY 0xE2 /* Set device in Standby Mode */
1952#define WIN_SETIDLE1 0xE3
1953#define WIN_READ_BUFFER 0xE4 /* force read only 1 sector */
1954#define WIN_CHECKPOWERMODE1 0xE5
1955#define WIN_SLEEPNOW1 0xE6
1956#define WIN_FLUSH_CACHE 0xE7
1957#define WIN_WRITE_BUFFER 0xE8 /* force write only 1 sector */
1958#define WIN_WRITE_SAME 0xE9 /* read ata-2 to use */
1959 /* SET_FEATURES 0x22 or 0xDD */
1960#define WIN_FLUSH_CACHE_EXT 0xEA /* 48-Bit */
1961#define WIN_IDENTIFY 0xEC /* ask drive to identify itself */
1962#define WIN_MEDIAEJECT 0xED
1963#define WIN_IDENTIFY_DMA 0xEE /* same as WIN_IDENTIFY, but DMA */
1964#define WIN_SETFEATURES 0xEF /* set special drive features */
1965#define EXABYTE_ENABLE_NEST 0xF0
1966#define WIN_SECURITY_SET_PASS 0xF1
1967#define WIN_SECURITY_UNLOCK 0xF2
1968#define WIN_SECURITY_ERASE_PREPARE 0xF3
1969#define WIN_SECURITY_ERASE_UNIT 0xF4
1970#define WIN_SECURITY_FREEZE_LOCK 0xF5
1971#define WIN_SECURITY_DISABLE 0xF6
1972#define WIN_READ_NATIVE_MAX 0xF8 /* return the native maximum address */
1973#define WIN_SET_MAX 0xF9
1974#define DISABLE_SEAGATE 0xFB
1975
c9159e53
FB
1976/* set to 1 set disable mult support */
1977#define MAX_MULT_SECTORS 8
fc01f7e7
FB
1978
1979#define MAX_DISKS 2
1980
1981struct IDEState;
1982
1983typedef void EndTransferFunc(struct IDEState *);
1984
1985typedef struct IDEState {
1986 /* ide config */
1987 int cylinders, heads, sectors;
1988 int64_t nb_sectors;
1989 int mult_sectors;
1990 int irq;
1991 /* ide regs */
1992 uint8_t feature;
1993 uint8_t error;
c9159e53 1994 uint16_t nsector; /* 0 is 256 to ease computations */
fc01f7e7
FB
1995 uint8_t sector;
1996 uint8_t lcyl;
1997 uint8_t hcyl;
1998 uint8_t select;
1999 uint8_t status;
2000 /* 0x3f6 command, only meaningful for drive 0 */
2001 uint8_t cmd;
2002 /* depends on bit 4 in select, only meaningful for drive 0 */
2003 struct IDEState *cur_drive;
2004 BlockDriverState *bs;
c9159e53 2005 int req_nb_sectors; /* number of sectors per interrupt */
fc01f7e7
FB
2006 EndTransferFunc *end_transfer_func;
2007 uint8_t *data_ptr;
2008 uint8_t *data_end;
2009 uint8_t io_buffer[MAX_MULT_SECTORS*512 + 4];
2010} IDEState;
2011
2012BlockDriverState *bs_table[MAX_DISKS];
2013IDEState ide_state[MAX_DISKS];
2014
2015static void padstr(char *str, const char *src, int len)
2016{
2017 int i, v;
2018 for(i = 0; i < len; i++) {
2019 if (*src)
2020 v = *src++;
2021 else
2022 v = ' ';
2023 *(char *)((long)str ^ 1) = v;
2024 str++;
2025 }
2026}
2027
2028static void ide_identify(IDEState *s)
2029{
2030 uint16_t *p;
2031 unsigned int oldsize;
2032
2033 memset(s->io_buffer, 0, 512);
2034 p = (uint16_t *)s->io_buffer;
2035 stw(p + 0, 0x0040);
2036 stw(p + 1, s->cylinders);
2037 stw(p + 3, s->heads);
2038 stw(p + 4, 512 * s->sectors); /* sectors */
2039 stw(p + 5, 512); /* sector size */
2040 stw(p + 6, s->sectors);
2041 stw(p + 20, 3); /* buffer type */
2042 stw(p + 21, 512); /* cache size in sectors */
2043 stw(p + 22, 4); /* ecc bytes */
2044 padstr((uint8_t *)(p + 27), "QEMU HARDDISK", 40);
c9159e53
FB
2045#if MAX_MULT_SECTORS > 1
2046 stw(p + 47, MAX_MULT_SECTORS);
2047#endif
fc01f7e7
FB
2048 stw(p + 48, 1); /* dword I/O */
2049 stw(p + 49, 1 << 9); /* LBA supported, no DMA */
2050 stw(p + 51, 0x200); /* PIO transfer cycle */
2051 stw(p + 52, 0x200); /* DMA transfer cycle */
2052 stw(p + 54, s->cylinders);
2053 stw(p + 55, s->heads);
2054 stw(p + 56, s->sectors);
2055 oldsize = s->cylinders * s->heads * s->sectors;
2056 stw(p + 57, oldsize);
2057 stw(p + 58, oldsize >> 16);
2058 if (s->mult_sectors)
2059 stw(p + 59, 0x100 | s->mult_sectors);
2060 stw(p + 60, s->nb_sectors);
2061 stw(p + 61, s->nb_sectors >> 16);
2062 stw(p + 80, (1 << 1) | (1 << 2));
2063 stw(p + 82, (1 << 14));
2064 stw(p + 83, (1 << 14));
2065 stw(p + 84, (1 << 14));
2066 stw(p + 85, (1 << 14));
2067 stw(p + 86, 0);
2068 stw(p + 87, (1 << 14));
2069}
2070
2071static inline void ide_abort_command(IDEState *s)
2072{
2073 s->status = READY_STAT | ERR_STAT;
2074 s->error = ABRT_ERR;
2075}
2076
2077static inline void ide_set_irq(IDEState *s)
2078{
2079 if (!(ide_state[0].cmd & IDE_CMD_DISABLE_IRQ)) {
2080 pic_set_irq(s->irq, 1);
fc01f7e7
FB
2081 }
2082}
2083
2084/* prepare data transfer and tell what to do after */
2085static void ide_transfer_start(IDEState *s, int size,
2086 EndTransferFunc *end_transfer_func)
2087{
2088 s->end_transfer_func = end_transfer_func;
2089 s->data_ptr = s->io_buffer;
2090 s->data_end = s->io_buffer + size;
2091 s->status |= DRQ_STAT;
2092}
2093
2094static void ide_transfer_stop(IDEState *s)
2095{
2096 s->end_transfer_func = ide_transfer_stop;
2097 s->data_ptr = s->io_buffer;
2098 s->data_end = s->io_buffer;
2099 s->status &= ~DRQ_STAT;
2100}
2101
2102static int64_t ide_get_sector(IDEState *s)
2103{
2104 int64_t sector_num;
2105 if (s->select & 0x40) {
2106 /* lba */
2107 sector_num = ((s->select & 0x0f) << 24) | (s->hcyl << 16) |
2108 (s->lcyl << 8) | s->sector;
2109 } else {
2110 sector_num = ((s->hcyl << 8) | s->lcyl) * s->heads * s->sectors +
2111 (s->select & 0x0f) * s->sectors +
2112 (s->sector - 1);
2113 }
2114 return sector_num;
2115}
2116
2117static void ide_set_sector(IDEState *s, int64_t sector_num)
2118{
2119 unsigned int cyl, r;
2120 if (s->select & 0x40) {
2121 s->select = (s->select & 0xf0) | (sector_num >> 24);
2122 s->hcyl = (sector_num >> 16);
2123 s->lcyl = (sector_num >> 8);
2124 s->sector = (sector_num);
2125 } else {
2126 cyl = sector_num / (s->heads * s->sectors);
2127 r = sector_num % (s->heads * s->sectors);
2128 s->hcyl = cyl >> 8;
2129 s->lcyl = cyl;
2130 s->select = (s->select & 0xf0) | (r / s->sectors);
2131 s->sector = (r % s->sectors) + 1;
2132 }
2133}
2134
2135static void ide_sector_read(IDEState *s)
2136{
2137 int64_t sector_num;
c9159e53 2138 int ret, n;
fc01f7e7
FB
2139
2140 s->status = READY_STAT | SEEK_STAT;
2141 sector_num = ide_get_sector(s);
c9159e53
FB
2142 n = s->nsector;
2143 if (n == 0) {
fc01f7e7
FB
2144 /* no more sector to read from disk */
2145 ide_transfer_stop(s);
2146 } else {
2147#if defined(DEBUG_IDE)
2148 printf("read sector=%Ld\n", sector_num);
2149#endif
c9159e53
FB
2150 if (n > s->req_nb_sectors)
2151 n = s->req_nb_sectors;
2152 ret = bdrv_read(s->bs, sector_num, s->io_buffer, n);
2153 ide_transfer_start(s, 512 * n, ide_sector_read);
fc01f7e7 2154 ide_set_irq(s);
c9159e53
FB
2155 ide_set_sector(s, sector_num + n);
2156 s->nsector -= n;
fc01f7e7 2157 }
fc01f7e7
FB
2158}
2159
2160static void ide_sector_write(IDEState *s)
2161{
2162 int64_t sector_num;
c9159e53 2163 int ret, n, n1;
fc01f7e7
FB
2164
2165 s->status = READY_STAT | SEEK_STAT;
2166 sector_num = ide_get_sector(s);
2167#if defined(DEBUG_IDE)
2168 printf("write sector=%Ld\n", sector_num);
2169#endif
c9159e53
FB
2170 n = s->nsector;
2171 if (n > s->req_nb_sectors)
2172 n = s->req_nb_sectors;
2173 ret = bdrv_write(s->bs, sector_num, s->io_buffer, n);
2174 s->nsector -= n;
fc01f7e7
FB
2175 if (s->nsector == 0) {
2176 /* no more sector to write */
2177 ide_transfer_stop(s);
2178 } else {
c9159e53
FB
2179 n1 = s->nsector;
2180 if (n1 > s->req_nb_sectors)
2181 n1 = s->req_nb_sectors;
2182 ide_transfer_start(s, 512 * n1, ide_sector_write);
fc01f7e7 2183 }
c9159e53 2184 ide_set_sector(s, sector_num + n);
fc01f7e7
FB
2185 ide_set_irq(s);
2186}
2187
2188void ide_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
2189{
2190 IDEState *s = ide_state[0].cur_drive;
c9159e53 2191 int unit, n;
fc01f7e7
FB
2192
2193 addr &= 7;
2194#ifdef DEBUG_IDE
2195 printf("IDE: write addr=0x%x val=0x%02x\n", addr, val);
2196#endif
2197 switch(addr) {
2198 case 0:
2199 break;
2200 case 1:
2201 s->feature = val;
2202 break;
2203 case 2:
c9159e53
FB
2204 if (val == 0)
2205 val = 256;
fc01f7e7
FB
2206 s->nsector = val;
2207 break;
2208 case 3:
2209 s->sector = val;
2210 break;
2211 case 4:
2212 s->lcyl = val;
2213 break;
2214 case 5:
2215 s->hcyl = val;
2216 break;
2217 case 6:
2218 /* select drive */
2219 unit = (val >> 4) & 1;
2220 s = &ide_state[unit];
2221 ide_state[0].cur_drive = s;
2222 s->select = val;
2223 break;
2224 default:
2225 case 7:
2226 /* command */
2227#if defined(DEBUG_IDE)
2228 printf("ide: CMD=%02x\n", val);
2229#endif
2230 switch(val) {
2231 case WIN_PIDENTIFY:
2232 case WIN_IDENTIFY:
2233 if (s->bs) {
2234 ide_identify(s);
2235 s->status = READY_STAT;
2236 ide_transfer_start(s, 512, ide_transfer_stop);
2237 } else {
2238 ide_abort_command(s);
2239 }
2240 ide_set_irq(s);
2241 break;
2242 case WIN_SPECIFY:
2243 case WIN_RECAL:
2244 s->status = READY_STAT;
2245 ide_set_irq(s);
2246 break;
2247 case WIN_SETMULT:
2248 if (s->nsector > MAX_MULT_SECTORS ||
2249 s->nsector == 0 ||
2250 (s->nsector & (s->nsector - 1)) != 0) {
2251 ide_abort_command(s);
2252 } else {
2253 s->mult_sectors = s->nsector;
2254 s->status = READY_STAT;
2255 }
2256 ide_set_irq(s);
2257 break;
2258 case WIN_READ:
2259 case WIN_READ_ONCE:
c9159e53 2260 s->req_nb_sectors = 1;
fc01f7e7
FB
2261 ide_sector_read(s);
2262 break;
2263 case WIN_WRITE:
2264 case WIN_WRITE_ONCE:
2265 s->status = SEEK_STAT;
c9159e53 2266 s->req_nb_sectors = 1;
fc01f7e7
FB
2267 ide_transfer_start(s, 512, ide_sector_write);
2268 break;
c9159e53
FB
2269 case WIN_MULTREAD:
2270 if (!s->mult_sectors)
2271 goto abort_cmd;
2272 s->req_nb_sectors = s->mult_sectors;
2273 ide_sector_read(s);
2274 break;
2275 case WIN_MULTWRITE:
2276 if (!s->mult_sectors)
2277 goto abort_cmd;
2278 s->status = SEEK_STAT;
2279 s->req_nb_sectors = s->mult_sectors;
2280 n = s->nsector;
2281 if (n > s->req_nb_sectors)
2282 n = s->req_nb_sectors;
2283 ide_transfer_start(s, 512 * n, ide_sector_write);
2284 break;
fc01f7e7 2285 default:
c9159e53 2286 abort_cmd:
fc01f7e7
FB
2287 ide_abort_command(s);
2288 ide_set_irq(s);
2289 break;
2290 }
2291 }
2292}
2293
2294uint32_t ide_ioport_read(CPUX86State *env, uint32_t addr)
2295{
2296 IDEState *s = ide_state[0].cur_drive;
2297 int ret;
2298
2299 addr &= 7;
2300 switch(addr) {
2301 case 0:
2302 ret = 0xff;
2303 break;
2304 case 1:
2305 ret = s->error;
2306 break;
2307 case 2:
c9159e53 2308 ret = s->nsector & 0xff;
fc01f7e7
FB
2309 break;
2310 case 3:
2311 ret = s->sector;
2312 break;
2313 case 4:
2314 ret = s->lcyl;
2315 break;
2316 case 5:
2317 ret = s->hcyl;
2318 break;
2319 case 6:
2320 ret = s->select;
2321 break;
2322 default:
2323 case 7:
2324 ret = s->status;
2325 pic_set_irq(s->irq, 0);
2326 break;
2327 }
2328#ifdef DEBUG_IDE
2329 printf("ide: read addr=0x%x val=%02x\n", addr, ret);
2330#endif
2331 return ret;
2332}
2333
2334uint32_t ide_status_read(CPUX86State *env, uint32_t addr)
2335{
2336 IDEState *s = ide_state[0].cur_drive;
2337 int ret;
2338 ret = s->status;
2339#ifdef DEBUG_IDE
2340 printf("ide: read addr=0x%x val=%02x\n", addr, ret);
2341#endif
2342 return ret;
2343}
2344
2345void ide_cmd_write(CPUX86State *env, uint32_t addr, uint32_t val)
2346{
2347 IDEState *s = &ide_state[0];
2348 /* common for both drives */
2349 s->cmd = val;
2350}
2351
2352void ide_data_writew(CPUX86State *env, uint32_t addr, uint32_t val)
2353{
2354 IDEState *s = ide_state[0].cur_drive;
2355 uint8_t *p;
2356
2357 p = s->data_ptr;
2358 *(uint16_t *)p = tswap16(val);
2359 p += 2;
2360 s->data_ptr = p;
2361 if (p >= s->data_end)
2362 s->end_transfer_func(s);
2363}
2364
2365uint32_t ide_data_readw(CPUX86State *env, uint32_t addr)
2366{
2367 IDEState *s = ide_state[0].cur_drive;
2368 uint8_t *p;
2369 int ret;
2370
2371 p = s->data_ptr;
2372 ret = tswap16(*(uint16_t *)p);
2373 p += 2;
2374 s->data_ptr = p;
2375 if (p >= s->data_end)
2376 s->end_transfer_func(s);
2377 return ret;
2378}
2379
2380void ide_data_writel(CPUX86State *env, uint32_t addr, uint32_t val)
2381{
2382 IDEState *s = ide_state[0].cur_drive;
2383 uint8_t *p;
2384
2385 p = s->data_ptr;
2386 *(uint32_t *)p = tswap32(val);
2387 p += 4;
2388 s->data_ptr = p;
2389 if (p >= s->data_end)
2390 s->end_transfer_func(s);
2391}
2392
2393uint32_t ide_data_readl(CPUX86State *env, uint32_t addr)
2394{
2395 IDEState *s = ide_state[0].cur_drive;
2396 uint8_t *p;
2397 int ret;
2398
2399 p = s->data_ptr;
2400 ret = tswap32(*(uint32_t *)p);
2401 p += 4;
2402 s->data_ptr = p;
2403 if (p >= s->data_end)
2404 s->end_transfer_func(s);
2405 return ret;
2406}
2407
2408void ide_reset(IDEState *s)
2409{
2410 s->mult_sectors = MAX_MULT_SECTORS;
2411 s->status = READY_STAT;
2412 s->cur_drive = s;
2413 s->select = 0xa0;
2414}
2415
2416void ide_init(void)
2417{
2418 IDEState *s;
2419 int i, cylinders;
2420 int64_t nb_sectors;
2421
2422 for(i = 0; i < MAX_DISKS; i++) {
2423 s = &ide_state[i];
2424 s->bs = bs_table[i];
2425 if (s->bs) {
2426 bdrv_get_geometry(s->bs, &nb_sectors);
2427 cylinders = nb_sectors / (16 * 63);
2428 if (cylinders > 16383)
2429 cylinders = 16383;
2430 else if (cylinders < 2)
2431 cylinders = 2;
2432 s->cylinders = cylinders;
2433 s->heads = 16;
2434 s->sectors = 63;
2435 s->nb_sectors = nb_sectors;
2436 }
2437 s->irq = 14;
2438 ide_reset(s);
2439 }
2440 register_ioport_write(0x1f0, 8, ide_ioport_write, 1);
2441 register_ioport_read(0x1f0, 8, ide_ioport_read, 1);
2442 register_ioport_read(0x3f6, 1, ide_status_read, 1);
2443 register_ioport_write(0x3f6, 1, ide_cmd_write, 1);
2444
2445 /* data ports */
2446 register_ioport_write(0x1f0, 2, ide_data_writew, 2);
2447 register_ioport_read(0x1f0, 2, ide_data_readw, 2);
2448 register_ioport_write(0x1f0, 4, ide_data_writel, 4);
2449 register_ioport_read(0x1f0, 4, ide_data_readl, 4);
2450}
2451
f1510b2c 2452/***********************************************************/
0824d6fc
FB
2453/* cpu signal handler */
2454static void host_segv_handler(int host_signum, siginfo_t *info,
2455 void *puc)
2456{
2457 if (cpu_signal_handler(host_signum, info, puc))
2458 return;
2459 term_exit();
2460 abort();
2461}
2462
2463static int timer_irq_pending;
87858c89 2464static int timer_irq_count;
0824d6fc
FB
2465
2466static void host_alarm_handler(int host_signum, siginfo_t *info,
2467 void *puc)
2468{
87858c89
FB
2469 /* NOTE: since usually the OS asks a 100 Hz clock, there can be
2470 some drift between cpu_get_ticks() and the interrupt time. So
2471 we queue some interrupts to avoid missing some */
2472 timer_irq_count += pit_get_out_edges(&pit_channels[0]);
2473 if (timer_irq_count) {
2474 if (timer_irq_count > 2)
2475 timer_irq_count = 2;
2476 timer_irq_count--;
2477 /* just exit from the cpu to have a chance to handle timers */
c9159e53 2478 cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
87858c89
FB
2479 timer_irq_pending = 1;
2480 }
0824d6fc
FB
2481}
2482
b4608c04
FB
2483/* main execution loop */
2484
2485CPUState *cpu_gdbstub_get_env(void *opaque)
2486{
2487 return global_env;
2488}
2489
2490void main_loop(void *opaque)
2491{
2492 struct pollfd ufds[2], *pf, *serial_ufd, *net_ufd, *gdb_ufd;
2493 int ret, n, timeout;
2494 uint8_t ch;
2495 CPUState *env = global_env;
2496
2497 for(;;) {
2498
2499 ret = cpu_x86_exec(env);
2500
2501 /* if hlt instruction, we wait until the next IRQ */
2502 if (ret == EXCP_HLT)
2503 timeout = 10;
2504 else
2505 timeout = 0;
2506 /* poll any events */
2507 serial_ufd = NULL;
2508 pf = ufds;
2509 if (!(serial_ports[0].lsr & UART_LSR_DR)) {
2510 serial_ufd = pf;
2511 pf->fd = 0;
2512 pf->events = POLLIN;
2513 pf++;
2514 }
2515 net_ufd = NULL;
2516 if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
2517 net_ufd = pf;
2518 pf->fd = net_fd;
2519 pf->events = POLLIN;
2520 pf++;
2521 }
2522 gdb_ufd = NULL;
2523 if (gdbstub_fd > 0) {
2524 gdb_ufd = pf;
2525 pf->fd = gdbstub_fd;
2526 pf->events = POLLIN;
2527 pf++;
2528 }
2529
2530 ret = poll(ufds, pf - ufds, timeout);
2531 if (ret > 0) {
2532 if (serial_ufd && (serial_ufd->revents & POLLIN)) {
2533 n = read(0, &ch, 1);
2534 if (n == 1) {
2535 serial_received_byte(&serial_ports[0], ch);
2536 }
2537 }
2538 if (net_ufd && (net_ufd->revents & POLLIN)) {
2539 uint8_t buf[MAX_ETH_FRAME_SIZE];
2540
2541 n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
2542 if (n > 0) {
2543 if (n < 60) {
2544 memset(buf + n, 0, 60 - n);
2545 n = 60;
2546 }
2547 ne2000_receive(&ne2000_state, buf, n);
2548 }
2549 }
2550 if (gdb_ufd && (gdb_ufd->revents & POLLIN)) {
2551 uint8_t buf[1];
2552 /* stop emulation if requested by gdb */
2553 n = read(gdbstub_fd, buf, 1);
2554 if (n == 1)
2555 break;
2556 }
2557 }
2558
2559 /* timer IRQ */
2560 if (timer_irq_pending) {
2561 pic_set_irq(0, 1);
2562 pic_set_irq(0, 0);
2563 timer_irq_pending = 0;
2564 }
b4608c04
FB
2565 }
2566}
2567
0824d6fc
FB
2568void help(void)
2569{
2570 printf("Virtual Linux version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
fc01f7e7 2571 "usage: vl [options] bzImage [kernel parameters...]\n"
0824d6fc
FB
2572 "\n"
2573 "'bzImage' is a Linux kernel image (PAGE_OFFSET must be defined\n"
2574 "to 0x90000000 in asm/page.h and arch/i386/vmlinux.lds)\n"
fc01f7e7
FB
2575 "\n"
2576 "General options:\n"
2577 "-initrd file use 'file' as initial ram disk\n"
2578 "-hda file use 'file' as hard disk 0 image\n"
2579 "-hdb file use 'file' as hard disk 1 image\n"
2580 "-m megs set virtual RAM size to megs MB\n"
2581 "-n script set network init script [default=%s]\n"
2582 "\n"
2583 "Debug options:\n"
2584 "-s wait gdb connection to port %d\n"
2585 "-p port change gdb connection port\n"
2586 "-d output log in /tmp/vl.log\n"
0824d6fc 2587 "\n"
f1510b2c 2588 "During emulation, use C-a h to get terminal commands:\n",
b4608c04 2589 DEFAULT_NETWORK_SCRIPT, DEFAULT_GDBSTUB_PORT);
0824d6fc
FB
2590 term_print_help();
2591 exit(1);
2592}
2593
fc01f7e7
FB
2594struct option long_options[] = {
2595 { "initrd", 1, NULL, 0, },
2596 { "hda", 1, NULL, 0, },
2597 { "hdb", 1, NULL, 0, },
2598 { NULL, 0, NULL, 0 },
2599};
2600
0824d6fc
FB
2601int main(int argc, char **argv)
2602{
fc01f7e7 2603 int c, ret, initrd_size, i, use_gdbstub, gdbstub_port, long_index;
0824d6fc
FB
2604 struct linux_params *params;
2605 struct sigaction act;
2606 struct itimerval itv;
2607 CPUX86State *env;
fc01f7e7
FB
2608 const char *tmpdir, *initrd_filename;
2609 const char *hd_filename[MAX_DISKS];
87858c89 2610
0824d6fc
FB
2611 /* we never want that malloc() uses mmap() */
2612 mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
fc01f7e7
FB
2613 initrd_filename = NULL;
2614 for(i = 0; i < MAX_DISKS; i++)
2615 hd_filename[i] = NULL;
0824d6fc 2616 phys_ram_size = 32 * 1024 * 1024;
f1510b2c 2617 pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
b4608c04
FB
2618 use_gdbstub = 0;
2619 gdbstub_port = DEFAULT_GDBSTUB_PORT;
0824d6fc 2620 for(;;) {
fc01f7e7 2621 c = getopt_long_only(argc, argv, "hm:dn:sp:", long_options, &long_index);
0824d6fc
FB
2622 if (c == -1)
2623 break;
2624 switch(c) {
fc01f7e7
FB
2625 case 0:
2626 switch(long_index) {
2627 case 0:
2628 initrd_filename = optarg;
2629 break;
2630 case 1:
2631 hd_filename[0] = optarg;
2632 break;
2633 case 2:
2634 hd_filename[1] = optarg;
2635 break;
2636 }
2637 break;
0824d6fc
FB
2638 case 'h':
2639 help();
2640 break;
2641 case 'm':
2642 phys_ram_size = atoi(optarg) * 1024 * 1024;
2643 if (phys_ram_size <= 0)
2644 help();
7916e224
FB
2645 if (phys_ram_size > PHYS_RAM_MAX_SIZE) {
2646 fprintf(stderr, "vl: at most %d MB RAM can be simulated\n",
2647 PHYS_RAM_MAX_SIZE / (1024 * 1024));
2648 exit(1);
2649 }
0824d6fc
FB
2650 break;
2651 case 'd':
2652 loglevel = 1;
2653 break;
f1510b2c
FB
2654 case 'n':
2655 pstrcpy(network_script, sizeof(network_script), optarg);
2656 break;
b4608c04
FB
2657 case 's':
2658 use_gdbstub = 1;
2659 break;
2660 case 'p':
2661 gdbstub_port = atoi(optarg);
2662 break;
0824d6fc
FB
2663 }
2664 }
fc01f7e7 2665 if (optind >= argc)
0824d6fc
FB
2666 help();
2667
2668 /* init debug */
b118d61e 2669 setvbuf(stdout, NULL, _IOLBF, 0);
0824d6fc
FB
2670 if (loglevel) {
2671 logfile = fopen(DEBUG_LOGFILE, "w");
2672 if (!logfile) {
2673 perror(DEBUG_LOGFILE);
2674 _exit(1);
2675 }
2676 setvbuf(logfile, NULL, _IOLBF, 0);
2677 }
2678
fc01f7e7
FB
2679 /* open the virtual block devices */
2680 for(i = 0; i < MAX_DISKS; i++) {
2681 if (hd_filename[i]) {
2682 bs_table[i] = bdrv_open(hd_filename[i]);
2683 if (!bs_table[i]) {
2684 fprintf(stderr, "vl: could not open hard disk image '%s\n",
2685 hd_filename[i]);
2686 exit(1);
2687 }
2688 }
2689 }
2690
f1510b2c
FB
2691 /* init network tun interface */
2692 net_init();
2693
0824d6fc 2694 /* init the memory */
87858c89
FB
2695 tmpdir = getenv("VLTMPDIR");
2696 if (!tmpdir)
2697 tmpdir = "/tmp";
2698 snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
0824d6fc 2699 if (mkstemp(phys_ram_file) < 0) {
87858c89
FB
2700 fprintf(stderr, "Could not create temporary memory file '%s'\n",
2701 phys_ram_file);
0824d6fc
FB
2702 exit(1);
2703 }
2704 phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
2705 if (phys_ram_fd < 0) {
87858c89
FB
2706 fprintf(stderr, "Could not open temporary memory file '%s'\n",
2707 phys_ram_file);
0824d6fc
FB
2708 exit(1);
2709 }
2710 ftruncate(phys_ram_fd, phys_ram_size);
2711 unlink(phys_ram_file);
2712 phys_ram_base = mmap((void *)PHYS_RAM_BASE, phys_ram_size,
2713 PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED,
2714 phys_ram_fd, 0);
2715 if (phys_ram_base == MAP_FAILED) {
2716 fprintf(stderr, "Could not map physical memory\n");
2717 exit(1);
2718 }
2719
2720 /* now we can load the kernel */
2721 ret = load_kernel(argv[optind], phys_ram_base + KERNEL_LOAD_ADDR);
2722 if (ret < 0) {
fc01f7e7 2723 fprintf(stderr, "vl: could not load kernel '%s'\n", argv[optind]);
0824d6fc
FB
2724 exit(1);
2725 }
2726
2727 /* load initrd */
fc01f7e7
FB
2728 initrd_size = 0;
2729 if (initrd_filename) {
2730 initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
2731 if (initrd_size < 0) {
2732 fprintf(stderr, "vl: could not load initial ram disk '%s'\n",
2733 initrd_filename);
2734 exit(1);
2735 }
0824d6fc
FB
2736 }
2737
2738 /* init kernel params */
2739 params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
2740 memset(params, 0, sizeof(struct linux_params));
2741 params->mount_root_rdonly = 0;
2742 params->cl_magic = 0xA33F;
2743 params->cl_offset = params->commandline - (uint8_t *)params;
7916e224 2744 params->alt_mem_k = (phys_ram_size / 1024) - 1024;
fc01f7e7
FB
2745 for(i = optind + 1; i < argc; i++) {
2746 if (i != optind + 1)
0824d6fc
FB
2747 pstrcat(params->commandline, sizeof(params->commandline), " ");
2748 pstrcat(params->commandline, sizeof(params->commandline), argv[i]);
2749 }
2750 params->loader_type = 0x01;
2751 if (initrd_size > 0) {
2752 params->initrd_start = INITRD_LOAD_ADDR;
2753 params->initrd_size = initrd_size;
2754 }
2755 params->orig_video_lines = 25;
2756 params->orig_video_cols = 80;
2757
2758 /* init basic PC hardware */
2759 init_ioports();
fc01f7e7 2760 register_ioport_write(0x80, 1, ioport80_write, 1);
0824d6fc 2761
fc01f7e7 2762 register_ioport_write(0x3d4, 2, vga_ioport_write, 1);
0824d6fc
FB
2763
2764 cmos_init();
2765 pic_init();
2766 pit_init();
2767 serial_init();
f1510b2c 2768 ne2000_init();
fc01f7e7 2769 ide_init();
0824d6fc
FB
2770
2771 /* setup cpu signal handlers for MMU / self modifying code handling */
2772 sigfillset(&act.sa_mask);
2773 act.sa_flags = SA_SIGINFO;
2774 act.sa_sigaction = host_segv_handler;
2775 sigaction(SIGSEGV, &act, NULL);
2776 sigaction(SIGBUS, &act, NULL);
2777
2778 act.sa_sigaction = host_alarm_handler;
2779 sigaction(SIGALRM, &act, NULL);
2780
2781 /* init CPU state */
2782 env = cpu_init();
2783 global_env = env;
1df912cf 2784 cpu_single_env = env;
0824d6fc
FB
2785
2786 /* setup basic memory access */
2787 env->cr[0] = 0x00000033;
2788 cpu_x86_init_mmu(env);
2789
2790 memset(params->idt_table, 0, sizeof(params->idt_table));
2791
2792 params->gdt_table[2] = 0x00cf9a000000ffffLL; /* KERNEL_CS */
2793 params->gdt_table[3] = 0x00cf92000000ffffLL; /* KERNEL_DS */
2794
2795 env->idt.base = (void *)params->idt_table;
2796 env->idt.limit = sizeof(params->idt_table) - 1;
2797 env->gdt.base = (void *)params->gdt_table;
2798 env->gdt.limit = sizeof(params->gdt_table) - 1;
2799
2800 cpu_x86_load_seg(env, R_CS, KERNEL_CS);
2801 cpu_x86_load_seg(env, R_DS, KERNEL_DS);
2802 cpu_x86_load_seg(env, R_ES, KERNEL_DS);
2803 cpu_x86_load_seg(env, R_SS, KERNEL_DS);
2804 cpu_x86_load_seg(env, R_FS, KERNEL_DS);
2805 cpu_x86_load_seg(env, R_GS, KERNEL_DS);
2806
2807 env->eip = KERNEL_LOAD_ADDR;
2808 env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
2809 env->eflags = 0x2;
2810
2811 itv.it_interval.tv_sec = 0;
87858c89 2812 itv.it_interval.tv_usec = 1000;
0824d6fc
FB
2813 itv.it_value.tv_sec = 0;
2814 itv.it_value.tv_usec = 10 * 1000;
2815 setitimer(ITIMER_REAL, &itv, NULL);
87858c89
FB
2816 /* we probe the tick duration of the kernel to inform the user if
2817 the emulated kernel requested a too high timer frequency */
2818 getitimer(ITIMER_REAL, &itv);
2819 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) /
2820 1000000;
b4608c04
FB
2821
2822 if (use_gdbstub) {
2823 cpu_gdbstub(NULL, main_loop, gdbstub_port);
2824 } else {
2825 main_loop(NULL);
0824d6fc 2826 }
0824d6fc
FB
2827 return 0;
2828}