]> git.proxmox.com Git - qemu.git/blame_incremental - exec.c
Fix userspace breakpoint invalidation
[qemu.git] / exec.c
... / ...
CommitLineData
1/*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19#include "config.h"
20#ifdef _WIN32
21#include <windows.h>
22#else
23#include <sys/types.h>
24#include <sys/mman.h>
25#endif
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
34#include "cpu.h"
35#include "exec-all.h"
36#include "qemu-common.h"
37#include "tcg.h"
38#include "hw/hw.h"
39#include "osdep.h"
40#include "kvm.h"
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
43#include <signal.h>
44#endif
45
46//#define DEBUG_TB_INVALIDATE
47//#define DEBUG_FLUSH
48//#define DEBUG_TLB
49//#define DEBUG_UNASSIGNED
50
51/* make various TB consistency checks */
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
54
55//#define DEBUG_IOPORT
56//#define DEBUG_SUBPAGE
57
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
63#define SMC_BITMAP_USE_THRESHOLD 10
64
65#if defined(TARGET_SPARC64)
66#define TARGET_PHYS_ADDR_SPACE_BITS 41
67#elif defined(TARGET_SPARC)
68#define TARGET_PHYS_ADDR_SPACE_BITS 36
69#elif defined(TARGET_ALPHA)
70#define TARGET_PHYS_ADDR_SPACE_BITS 42
71#define TARGET_VIRT_ADDR_SPACE_BITS 42
72#elif defined(TARGET_PPC64)
73#define TARGET_PHYS_ADDR_SPACE_BITS 42
74#elif defined(TARGET_X86_64)
75#define TARGET_PHYS_ADDR_SPACE_BITS 42
76#elif defined(TARGET_I386)
77#define TARGET_PHYS_ADDR_SPACE_BITS 36
78#else
79#define TARGET_PHYS_ADDR_SPACE_BITS 32
80#endif
81
82static TranslationBlock *tbs;
83int code_gen_max_blocks;
84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85static int nb_tbs;
86/* any access to the tbs or the page table must use this lock */
87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
108/* threshold to flush the translated code buffer */
109static unsigned long code_gen_buffer_max_size;
110uint8_t *code_gen_ptr;
111
112#if !defined(CONFIG_USER_ONLY)
113int phys_ram_fd;
114uint8_t *phys_ram_dirty;
115static int in_migration;
116
117typedef struct RAMBlock {
118 uint8_t *host;
119 ram_addr_t offset;
120 ram_addr_t length;
121 struct RAMBlock *next;
122} RAMBlock;
123
124static RAMBlock *ram_blocks;
125/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
126 then we can no longer assume contiguous ram offsets, and external uses
127 of this variable will break. */
128ram_addr_t last_ram_offset;
129#endif
130
131CPUState *first_cpu;
132/* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
134CPUState *cpu_single_env;
135/* 0 = Do not count executed instructions.
136 1 = Precise instruction counting.
137 2 = Adaptive rate instruction counting. */
138int use_icount = 0;
139/* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141int64_t qemu_icount;
142
143typedef struct PageDesc {
144 /* list of TBs intersecting this ram page */
145 TranslationBlock *first_tb;
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150#if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152#endif
153} PageDesc;
154
155typedef struct PhysPageDesc {
156 /* offset in host memory of the page + io_index in the low bits */
157 ram_addr_t phys_offset;
158 ram_addr_t region_offset;
159} PhysPageDesc;
160
161#define L2_BITS 10
162#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163/* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
166 */
167#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168#else
169#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
170#endif
171
172#define L1_SIZE (1 << L1_BITS)
173#define L2_SIZE (1 << L2_BITS)
174
175unsigned long qemu_real_host_page_size;
176unsigned long qemu_host_page_bits;
177unsigned long qemu_host_page_size;
178unsigned long qemu_host_page_mask;
179
180/* XXX: for system emulation, it could just be an array */
181static PageDesc *l1_map[L1_SIZE];
182static PhysPageDesc **l1_phys_map;
183
184#if !defined(CONFIG_USER_ONLY)
185static void io_mem_init(void);
186
187/* io memory support */
188CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
189CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
190void *io_mem_opaque[IO_MEM_NB_ENTRIES];
191static char io_mem_used[IO_MEM_NB_ENTRIES];
192static int io_mem_watch;
193#endif
194
195/* log support */
196#ifdef WIN32
197static const char *logfilename = "qemu.log";
198#else
199static const char *logfilename = "/tmp/qemu.log";
200#endif
201FILE *logfile;
202int loglevel;
203static int log_append = 0;
204
205/* statistics */
206static int tlb_flush_count;
207static int tb_flush_count;
208static int tb_phys_invalidate_count;
209
210#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
211typedef struct subpage_t {
212 target_phys_addr_t base;
213 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
214 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
215 void *opaque[TARGET_PAGE_SIZE][2][4];
216 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
217} subpage_t;
218
219#ifdef _WIN32
220static void map_exec(void *addr, long size)
221{
222 DWORD old_protect;
223 VirtualProtect(addr, size,
224 PAGE_EXECUTE_READWRITE, &old_protect);
225
226}
227#else
228static void map_exec(void *addr, long size)
229{
230 unsigned long start, end, page_size;
231
232 page_size = getpagesize();
233 start = (unsigned long)addr;
234 start &= ~(page_size - 1);
235
236 end = (unsigned long)addr + size;
237 end += page_size - 1;
238 end &= ~(page_size - 1);
239
240 mprotect((void *)start, end - start,
241 PROT_READ | PROT_WRITE | PROT_EXEC);
242}
243#endif
244
245static void page_init(void)
246{
247 /* NOTE: we can always suppose that qemu_host_page_size >=
248 TARGET_PAGE_SIZE */
249#ifdef _WIN32
250 {
251 SYSTEM_INFO system_info;
252
253 GetSystemInfo(&system_info);
254 qemu_real_host_page_size = system_info.dwPageSize;
255 }
256#else
257 qemu_real_host_page_size = getpagesize();
258#endif
259 if (qemu_host_page_size == 0)
260 qemu_host_page_size = qemu_real_host_page_size;
261 if (qemu_host_page_size < TARGET_PAGE_SIZE)
262 qemu_host_page_size = TARGET_PAGE_SIZE;
263 qemu_host_page_bits = 0;
264 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
265 qemu_host_page_bits++;
266 qemu_host_page_mask = ~(qemu_host_page_size - 1);
267 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
268 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
269
270#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
271 {
272 long long startaddr, endaddr;
273 FILE *f;
274 int n;
275
276 mmap_lock();
277 last_brk = (unsigned long)sbrk(0);
278 f = fopen("/proc/self/maps", "r");
279 if (f) {
280 do {
281 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
282 if (n == 2) {
283 startaddr = MIN(startaddr,
284 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
285 endaddr = MIN(endaddr,
286 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
287 page_set_flags(startaddr & TARGET_PAGE_MASK,
288 TARGET_PAGE_ALIGN(endaddr),
289 PAGE_RESERVED);
290 }
291 } while (!feof(f));
292 fclose(f);
293 }
294 mmap_unlock();
295 }
296#endif
297}
298
299static inline PageDesc **page_l1_map(target_ulong index)
300{
301#if TARGET_LONG_BITS > 32
302 /* Host memory outside guest VM. For 32-bit targets we have already
303 excluded high addresses. */
304 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
305 return NULL;
306#endif
307 return &l1_map[index >> L2_BITS];
308}
309
310static inline PageDesc *page_find_alloc(target_ulong index)
311{
312 PageDesc **lp, *p;
313 lp = page_l1_map(index);
314 if (!lp)
315 return NULL;
316
317 p = *lp;
318 if (!p) {
319 /* allocate if not found */
320#if defined(CONFIG_USER_ONLY)
321 size_t len = sizeof(PageDesc) * L2_SIZE;
322 /* Don't use qemu_malloc because it may recurse. */
323 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
324 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
325 *lp = p;
326 if (h2g_valid(p)) {
327 unsigned long addr = h2g(p);
328 page_set_flags(addr & TARGET_PAGE_MASK,
329 TARGET_PAGE_ALIGN(addr + len),
330 PAGE_RESERVED);
331 }
332#else
333 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
334 *lp = p;
335#endif
336 }
337 return p + (index & (L2_SIZE - 1));
338}
339
340static inline PageDesc *page_find(target_ulong index)
341{
342 PageDesc **lp, *p;
343 lp = page_l1_map(index);
344 if (!lp)
345 return NULL;
346
347 p = *lp;
348 if (!p) {
349 return NULL;
350 }
351 return p + (index & (L2_SIZE - 1));
352}
353
354static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
355{
356 void **lp, **p;
357 PhysPageDesc *pd;
358
359 p = (void **)l1_phys_map;
360#if TARGET_PHYS_ADDR_SPACE_BITS > 32
361
362#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
363#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
364#endif
365 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
366 p = *lp;
367 if (!p) {
368 /* allocate if not found */
369 if (!alloc)
370 return NULL;
371 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
372 memset(p, 0, sizeof(void *) * L1_SIZE);
373 *lp = p;
374 }
375#endif
376 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
377 pd = *lp;
378 if (!pd) {
379 int i;
380 /* allocate if not found */
381 if (!alloc)
382 return NULL;
383 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
384 *lp = pd;
385 for (i = 0; i < L2_SIZE; i++) {
386 pd[i].phys_offset = IO_MEM_UNASSIGNED;
387 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
388 }
389 }
390 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
391}
392
393static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
394{
395 return phys_page_find_alloc(index, 0);
396}
397
398#if !defined(CONFIG_USER_ONLY)
399static void tlb_protect_code(ram_addr_t ram_addr);
400static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
401 target_ulong vaddr);
402#define mmap_lock() do { } while(0)
403#define mmap_unlock() do { } while(0)
404#endif
405
406#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
407
408#if defined(CONFIG_USER_ONLY)
409/* Currently it is not recommended to allocate big chunks of data in
410 user mode. It will change when a dedicated libc will be used */
411#define USE_STATIC_CODE_GEN_BUFFER
412#endif
413
414#ifdef USE_STATIC_CODE_GEN_BUFFER
415static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
416#endif
417
418static void code_gen_alloc(unsigned long tb_size)
419{
420#ifdef USE_STATIC_CODE_GEN_BUFFER
421 code_gen_buffer = static_code_gen_buffer;
422 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
423 map_exec(code_gen_buffer, code_gen_buffer_size);
424#else
425 code_gen_buffer_size = tb_size;
426 if (code_gen_buffer_size == 0) {
427#if defined(CONFIG_USER_ONLY)
428 /* in user mode, phys_ram_size is not meaningful */
429 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
430#else
431 /* XXX: needs adjustments */
432 code_gen_buffer_size = (unsigned long)(ram_size / 4);
433#endif
434 }
435 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
436 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
437 /* The code gen buffer location may have constraints depending on
438 the host cpu and OS */
439#if defined(__linux__)
440 {
441 int flags;
442 void *start = NULL;
443
444 flags = MAP_PRIVATE | MAP_ANONYMOUS;
445#if defined(__x86_64__)
446 flags |= MAP_32BIT;
447 /* Cannot map more than that */
448 if (code_gen_buffer_size > (800 * 1024 * 1024))
449 code_gen_buffer_size = (800 * 1024 * 1024);
450#elif defined(__sparc_v9__)
451 // Map the buffer below 2G, so we can use direct calls and branches
452 flags |= MAP_FIXED;
453 start = (void *) 0x60000000UL;
454 if (code_gen_buffer_size > (512 * 1024 * 1024))
455 code_gen_buffer_size = (512 * 1024 * 1024);
456#elif defined(__arm__)
457 /* Map the buffer below 32M, so we can use direct calls and branches */
458 flags |= MAP_FIXED;
459 start = (void *) 0x01000000UL;
460 if (code_gen_buffer_size > 16 * 1024 * 1024)
461 code_gen_buffer_size = 16 * 1024 * 1024;
462#endif
463 code_gen_buffer = mmap(start, code_gen_buffer_size,
464 PROT_WRITE | PROT_READ | PROT_EXEC,
465 flags, -1, 0);
466 if (code_gen_buffer == MAP_FAILED) {
467 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
468 exit(1);
469 }
470 }
471#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
472 {
473 int flags;
474 void *addr = NULL;
475 flags = MAP_PRIVATE | MAP_ANONYMOUS;
476#if defined(__x86_64__)
477 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
478 * 0x40000000 is free */
479 flags |= MAP_FIXED;
480 addr = (void *)0x40000000;
481 /* Cannot map more than that */
482 if (code_gen_buffer_size > (800 * 1024 * 1024))
483 code_gen_buffer_size = (800 * 1024 * 1024);
484#endif
485 code_gen_buffer = mmap(addr, code_gen_buffer_size,
486 PROT_WRITE | PROT_READ | PROT_EXEC,
487 flags, -1, 0);
488 if (code_gen_buffer == MAP_FAILED) {
489 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
490 exit(1);
491 }
492 }
493#else
494 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
495 map_exec(code_gen_buffer, code_gen_buffer_size);
496#endif
497#endif /* !USE_STATIC_CODE_GEN_BUFFER */
498 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
499 code_gen_buffer_max_size = code_gen_buffer_size -
500 code_gen_max_block_size();
501 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
502 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
503}
504
505/* Must be called before using the QEMU cpus. 'tb_size' is the size
506 (in bytes) allocated to the translation buffer. Zero means default
507 size. */
508void cpu_exec_init_all(unsigned long tb_size)
509{
510 cpu_gen_init();
511 code_gen_alloc(tb_size);
512 code_gen_ptr = code_gen_buffer;
513 page_init();
514#if !defined(CONFIG_USER_ONLY)
515 io_mem_init();
516#endif
517}
518
519#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
520
521static void cpu_common_pre_save(void *opaque)
522{
523 CPUState *env = opaque;
524
525 cpu_synchronize_state(env);
526}
527
528static int cpu_common_pre_load(void *opaque)
529{
530 CPUState *env = opaque;
531
532 cpu_synchronize_state(env);
533 return 0;
534}
535
536static int cpu_common_post_load(void *opaque, int version_id)
537{
538 CPUState *env = opaque;
539
540 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
541 version_id is increased. */
542 env->interrupt_request &= ~0x01;
543 tlb_flush(env, 1);
544
545 return 0;
546}
547
548static const VMStateDescription vmstate_cpu_common = {
549 .name = "cpu_common",
550 .version_id = 1,
551 .minimum_version_id = 1,
552 .minimum_version_id_old = 1,
553 .pre_save = cpu_common_pre_save,
554 .pre_load = cpu_common_pre_load,
555 .post_load = cpu_common_post_load,
556 .fields = (VMStateField []) {
557 VMSTATE_UINT32(halted, CPUState),
558 VMSTATE_UINT32(interrupt_request, CPUState),
559 VMSTATE_END_OF_LIST()
560 }
561};
562#endif
563
564CPUState *qemu_get_cpu(int cpu)
565{
566 CPUState *env = first_cpu;
567
568 while (env) {
569 if (env->cpu_index == cpu)
570 break;
571 env = env->next_cpu;
572 }
573
574 return env;
575}
576
577void cpu_exec_init(CPUState *env)
578{
579 CPUState **penv;
580 int cpu_index;
581
582#if defined(CONFIG_USER_ONLY)
583 cpu_list_lock();
584#endif
585 env->next_cpu = NULL;
586 penv = &first_cpu;
587 cpu_index = 0;
588 while (*penv != NULL) {
589 penv = &(*penv)->next_cpu;
590 cpu_index++;
591 }
592 env->cpu_index = cpu_index;
593 env->numa_node = 0;
594 QTAILQ_INIT(&env->breakpoints);
595 QTAILQ_INIT(&env->watchpoints);
596 *penv = env;
597#if defined(CONFIG_USER_ONLY)
598 cpu_list_unlock();
599#endif
600#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
601 vmstate_register(cpu_index, &vmstate_cpu_common, env);
602 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
603 cpu_save, cpu_load, env);
604#endif
605}
606
607static inline void invalidate_page_bitmap(PageDesc *p)
608{
609 if (p->code_bitmap) {
610 qemu_free(p->code_bitmap);
611 p->code_bitmap = NULL;
612 }
613 p->code_write_count = 0;
614}
615
616/* set to NULL all the 'first_tb' fields in all PageDescs */
617static void page_flush_tb(void)
618{
619 int i, j;
620 PageDesc *p;
621
622 for(i = 0; i < L1_SIZE; i++) {
623 p = l1_map[i];
624 if (p) {
625 for(j = 0; j < L2_SIZE; j++) {
626 p->first_tb = NULL;
627 invalidate_page_bitmap(p);
628 p++;
629 }
630 }
631 }
632}
633
634/* flush all the translation blocks */
635/* XXX: tb_flush is currently not thread safe */
636void tb_flush(CPUState *env1)
637{
638 CPUState *env;
639#if defined(DEBUG_FLUSH)
640 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
641 (unsigned long)(code_gen_ptr - code_gen_buffer),
642 nb_tbs, nb_tbs > 0 ?
643 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
644#endif
645 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
646 cpu_abort(env1, "Internal error: code buffer overflow\n");
647
648 nb_tbs = 0;
649
650 for(env = first_cpu; env != NULL; env = env->next_cpu) {
651 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
652 }
653
654 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
655 page_flush_tb();
656
657 code_gen_ptr = code_gen_buffer;
658 /* XXX: flush processor icache at this point if cache flush is
659 expensive */
660 tb_flush_count++;
661}
662
663#ifdef DEBUG_TB_CHECK
664
665static void tb_invalidate_check(target_ulong address)
666{
667 TranslationBlock *tb;
668 int i;
669 address &= TARGET_PAGE_MASK;
670 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
671 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
672 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
673 address >= tb->pc + tb->size)) {
674 printf("ERROR invalidate: address=" TARGET_FMT_lx
675 " PC=%08lx size=%04x\n",
676 address, (long)tb->pc, tb->size);
677 }
678 }
679 }
680}
681
682/* verify that all the pages have correct rights for code */
683static void tb_page_check(void)
684{
685 TranslationBlock *tb;
686 int i, flags1, flags2;
687
688 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
689 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
690 flags1 = page_get_flags(tb->pc);
691 flags2 = page_get_flags(tb->pc + tb->size - 1);
692 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
693 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
694 (long)tb->pc, tb->size, flags1, flags2);
695 }
696 }
697 }
698}
699
700#endif
701
702/* invalidate one TB */
703static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
704 int next_offset)
705{
706 TranslationBlock *tb1;
707 for(;;) {
708 tb1 = *ptb;
709 if (tb1 == tb) {
710 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
711 break;
712 }
713 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
714 }
715}
716
717static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
718{
719 TranslationBlock *tb1;
720 unsigned int n1;
721
722 for(;;) {
723 tb1 = *ptb;
724 n1 = (long)tb1 & 3;
725 tb1 = (TranslationBlock *)((long)tb1 & ~3);
726 if (tb1 == tb) {
727 *ptb = tb1->page_next[n1];
728 break;
729 }
730 ptb = &tb1->page_next[n1];
731 }
732}
733
734static inline void tb_jmp_remove(TranslationBlock *tb, int n)
735{
736 TranslationBlock *tb1, **ptb;
737 unsigned int n1;
738
739 ptb = &tb->jmp_next[n];
740 tb1 = *ptb;
741 if (tb1) {
742 /* find tb(n) in circular list */
743 for(;;) {
744 tb1 = *ptb;
745 n1 = (long)tb1 & 3;
746 tb1 = (TranslationBlock *)((long)tb1 & ~3);
747 if (n1 == n && tb1 == tb)
748 break;
749 if (n1 == 2) {
750 ptb = &tb1->jmp_first;
751 } else {
752 ptb = &tb1->jmp_next[n1];
753 }
754 }
755 /* now we can suppress tb(n) from the list */
756 *ptb = tb->jmp_next[n];
757
758 tb->jmp_next[n] = NULL;
759 }
760}
761
762/* reset the jump entry 'n' of a TB so that it is not chained to
763 another TB */
764static inline void tb_reset_jump(TranslationBlock *tb, int n)
765{
766 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
767}
768
769void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
770{
771 CPUState *env;
772 PageDesc *p;
773 unsigned int h, n1;
774 target_phys_addr_t phys_pc;
775 TranslationBlock *tb1, *tb2;
776
777 /* remove the TB from the hash list */
778 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
779 h = tb_phys_hash_func(phys_pc);
780 tb_remove(&tb_phys_hash[h], tb,
781 offsetof(TranslationBlock, phys_hash_next));
782
783 /* remove the TB from the page list */
784 if (tb->page_addr[0] != page_addr) {
785 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
786 tb_page_remove(&p->first_tb, tb);
787 invalidate_page_bitmap(p);
788 }
789 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
790 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
791 tb_page_remove(&p->first_tb, tb);
792 invalidate_page_bitmap(p);
793 }
794
795 tb_invalidated_flag = 1;
796
797 /* remove the TB from the hash list */
798 h = tb_jmp_cache_hash_func(tb->pc);
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 if (env->tb_jmp_cache[h] == tb)
801 env->tb_jmp_cache[h] = NULL;
802 }
803
804 /* suppress this TB from the two jump lists */
805 tb_jmp_remove(tb, 0);
806 tb_jmp_remove(tb, 1);
807
808 /* suppress any remaining jumps to this TB */
809 tb1 = tb->jmp_first;
810 for(;;) {
811 n1 = (long)tb1 & 3;
812 if (n1 == 2)
813 break;
814 tb1 = (TranslationBlock *)((long)tb1 & ~3);
815 tb2 = tb1->jmp_next[n1];
816 tb_reset_jump(tb1, n1);
817 tb1->jmp_next[n1] = NULL;
818 tb1 = tb2;
819 }
820 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
821
822 tb_phys_invalidate_count++;
823}
824
825static inline void set_bits(uint8_t *tab, int start, int len)
826{
827 int end, mask, end1;
828
829 end = start + len;
830 tab += start >> 3;
831 mask = 0xff << (start & 7);
832 if ((start & ~7) == (end & ~7)) {
833 if (start < end) {
834 mask &= ~(0xff << (end & 7));
835 *tab |= mask;
836 }
837 } else {
838 *tab++ |= mask;
839 start = (start + 8) & ~7;
840 end1 = end & ~7;
841 while (start < end1) {
842 *tab++ = 0xff;
843 start += 8;
844 }
845 if (start < end) {
846 mask = ~(0xff << (end & 7));
847 *tab |= mask;
848 }
849 }
850}
851
852static void build_page_bitmap(PageDesc *p)
853{
854 int n, tb_start, tb_end;
855 TranslationBlock *tb;
856
857 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
858
859 tb = p->first_tb;
860 while (tb != NULL) {
861 n = (long)tb & 3;
862 tb = (TranslationBlock *)((long)tb & ~3);
863 /* NOTE: this is subtle as a TB may span two physical pages */
864 if (n == 0) {
865 /* NOTE: tb_end may be after the end of the page, but
866 it is not a problem */
867 tb_start = tb->pc & ~TARGET_PAGE_MASK;
868 tb_end = tb_start + tb->size;
869 if (tb_end > TARGET_PAGE_SIZE)
870 tb_end = TARGET_PAGE_SIZE;
871 } else {
872 tb_start = 0;
873 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
874 }
875 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
876 tb = tb->page_next[n];
877 }
878}
879
880TranslationBlock *tb_gen_code(CPUState *env,
881 target_ulong pc, target_ulong cs_base,
882 int flags, int cflags)
883{
884 TranslationBlock *tb;
885 uint8_t *tc_ptr;
886 target_ulong phys_pc, phys_page2, virt_page2;
887 int code_gen_size;
888
889 phys_pc = get_phys_addr_code(env, pc);
890 tb = tb_alloc(pc);
891 if (!tb) {
892 /* flush must be done */
893 tb_flush(env);
894 /* cannot fail at this point */
895 tb = tb_alloc(pc);
896 /* Don't forget to invalidate previous TB info. */
897 tb_invalidated_flag = 1;
898 }
899 tc_ptr = code_gen_ptr;
900 tb->tc_ptr = tc_ptr;
901 tb->cs_base = cs_base;
902 tb->flags = flags;
903 tb->cflags = cflags;
904 cpu_gen_code(env, tb, &code_gen_size);
905 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
906
907 /* check next page if needed */
908 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
909 phys_page2 = -1;
910 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
911 phys_page2 = get_phys_addr_code(env, virt_page2);
912 }
913 tb_link_phys(tb, phys_pc, phys_page2);
914 return tb;
915}
916
917/* invalidate all TBs which intersect with the target physical page
918 starting in range [start;end[. NOTE: start and end must refer to
919 the same physical page. 'is_cpu_write_access' should be true if called
920 from a real cpu write access: the virtual CPU will exit the current
921 TB if code is modified inside this TB. */
922void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
923 int is_cpu_write_access)
924{
925 TranslationBlock *tb, *tb_next, *saved_tb;
926 CPUState *env = cpu_single_env;
927 target_ulong tb_start, tb_end;
928 PageDesc *p;
929 int n;
930#ifdef TARGET_HAS_PRECISE_SMC
931 int current_tb_not_found = is_cpu_write_access;
932 TranslationBlock *current_tb = NULL;
933 int current_tb_modified = 0;
934 target_ulong current_pc = 0;
935 target_ulong current_cs_base = 0;
936 int current_flags = 0;
937#endif /* TARGET_HAS_PRECISE_SMC */
938
939 p = page_find(start >> TARGET_PAGE_BITS);
940 if (!p)
941 return;
942 if (!p->code_bitmap &&
943 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
944 is_cpu_write_access) {
945 /* build code bitmap */
946 build_page_bitmap(p);
947 }
948
949 /* we remove all the TBs in the range [start, end[ */
950 /* XXX: see if in some cases it could be faster to invalidate all the code */
951 tb = p->first_tb;
952 while (tb != NULL) {
953 n = (long)tb & 3;
954 tb = (TranslationBlock *)((long)tb & ~3);
955 tb_next = tb->page_next[n];
956 /* NOTE: this is subtle as a TB may span two physical pages */
957 if (n == 0) {
958 /* NOTE: tb_end may be after the end of the page, but
959 it is not a problem */
960 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
961 tb_end = tb_start + tb->size;
962 } else {
963 tb_start = tb->page_addr[1];
964 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
965 }
966 if (!(tb_end <= start || tb_start >= end)) {
967#ifdef TARGET_HAS_PRECISE_SMC
968 if (current_tb_not_found) {
969 current_tb_not_found = 0;
970 current_tb = NULL;
971 if (env->mem_io_pc) {
972 /* now we have a real cpu fault */
973 current_tb = tb_find_pc(env->mem_io_pc);
974 }
975 }
976 if (current_tb == tb &&
977 (current_tb->cflags & CF_COUNT_MASK) != 1) {
978 /* If we are modifying the current TB, we must stop
979 its execution. We could be more precise by checking
980 that the modification is after the current PC, but it
981 would require a specialized function to partially
982 restore the CPU state */
983
984 current_tb_modified = 1;
985 cpu_restore_state(current_tb, env,
986 env->mem_io_pc, NULL);
987 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
988 &current_flags);
989 }
990#endif /* TARGET_HAS_PRECISE_SMC */
991 /* we need to do that to handle the case where a signal
992 occurs while doing tb_phys_invalidate() */
993 saved_tb = NULL;
994 if (env) {
995 saved_tb = env->current_tb;
996 env->current_tb = NULL;
997 }
998 tb_phys_invalidate(tb, -1);
999 if (env) {
1000 env->current_tb = saved_tb;
1001 if (env->interrupt_request && env->current_tb)
1002 cpu_interrupt(env, env->interrupt_request);
1003 }
1004 }
1005 tb = tb_next;
1006 }
1007#if !defined(CONFIG_USER_ONLY)
1008 /* if no code remaining, no need to continue to use slow writes */
1009 if (!p->first_tb) {
1010 invalidate_page_bitmap(p);
1011 if (is_cpu_write_access) {
1012 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1013 }
1014 }
1015#endif
1016#ifdef TARGET_HAS_PRECISE_SMC
1017 if (current_tb_modified) {
1018 /* we generate a block containing just the instruction
1019 modifying the memory. It will ensure that it cannot modify
1020 itself */
1021 env->current_tb = NULL;
1022 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1023 cpu_resume_from_signal(env, NULL);
1024 }
1025#endif
1026}
1027
1028/* len must be <= 8 and start must be a multiple of len */
1029static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1030{
1031 PageDesc *p;
1032 int offset, b;
1033#if 0
1034 if (1) {
1035 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1036 cpu_single_env->mem_io_vaddr, len,
1037 cpu_single_env->eip,
1038 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1039 }
1040#endif
1041 p = page_find(start >> TARGET_PAGE_BITS);
1042 if (!p)
1043 return;
1044 if (p->code_bitmap) {
1045 offset = start & ~TARGET_PAGE_MASK;
1046 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1047 if (b & ((1 << len) - 1))
1048 goto do_invalidate;
1049 } else {
1050 do_invalidate:
1051 tb_invalidate_phys_page_range(start, start + len, 1);
1052 }
1053}
1054
1055#if !defined(CONFIG_SOFTMMU)
1056static void tb_invalidate_phys_page(target_phys_addr_t addr,
1057 unsigned long pc, void *puc)
1058{
1059 TranslationBlock *tb;
1060 PageDesc *p;
1061 int n;
1062#ifdef TARGET_HAS_PRECISE_SMC
1063 TranslationBlock *current_tb = NULL;
1064 CPUState *env = cpu_single_env;
1065 int current_tb_modified = 0;
1066 target_ulong current_pc = 0;
1067 target_ulong current_cs_base = 0;
1068 int current_flags = 0;
1069#endif
1070
1071 addr &= TARGET_PAGE_MASK;
1072 p = page_find(addr >> TARGET_PAGE_BITS);
1073 if (!p)
1074 return;
1075 tb = p->first_tb;
1076#ifdef TARGET_HAS_PRECISE_SMC
1077 if (tb && pc != 0) {
1078 current_tb = tb_find_pc(pc);
1079 }
1080#endif
1081 while (tb != NULL) {
1082 n = (long)tb & 3;
1083 tb = (TranslationBlock *)((long)tb & ~3);
1084#ifdef TARGET_HAS_PRECISE_SMC
1085 if (current_tb == tb &&
1086 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1087 /* If we are modifying the current TB, we must stop
1088 its execution. We could be more precise by checking
1089 that the modification is after the current PC, but it
1090 would require a specialized function to partially
1091 restore the CPU state */
1092
1093 current_tb_modified = 1;
1094 cpu_restore_state(current_tb, env, pc, puc);
1095 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1096 &current_flags);
1097 }
1098#endif /* TARGET_HAS_PRECISE_SMC */
1099 tb_phys_invalidate(tb, addr);
1100 tb = tb->page_next[n];
1101 }
1102 p->first_tb = NULL;
1103#ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1107 itself */
1108 env->current_tb = NULL;
1109 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1110 cpu_resume_from_signal(env, puc);
1111 }
1112#endif
1113}
1114#endif
1115
1116/* add the tb in the target page and protect it if necessary */
1117static inline void tb_alloc_page(TranslationBlock *tb,
1118 unsigned int n, target_ulong page_addr)
1119{
1120 PageDesc *p;
1121 TranslationBlock *last_first_tb;
1122
1123 tb->page_addr[n] = page_addr;
1124 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1125 tb->page_next[n] = p->first_tb;
1126 last_first_tb = p->first_tb;
1127 p->first_tb = (TranslationBlock *)((long)tb | n);
1128 invalidate_page_bitmap(p);
1129
1130#if defined(TARGET_HAS_SMC) || 1
1131
1132#if defined(CONFIG_USER_ONLY)
1133 if (p->flags & PAGE_WRITE) {
1134 target_ulong addr;
1135 PageDesc *p2;
1136 int prot;
1137
1138 /* force the host page as non writable (writes will have a
1139 page fault + mprotect overhead) */
1140 page_addr &= qemu_host_page_mask;
1141 prot = 0;
1142 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1143 addr += TARGET_PAGE_SIZE) {
1144
1145 p2 = page_find (addr >> TARGET_PAGE_BITS);
1146 if (!p2)
1147 continue;
1148 prot |= p2->flags;
1149 p2->flags &= ~PAGE_WRITE;
1150 page_get_flags(addr);
1151 }
1152 mprotect(g2h(page_addr), qemu_host_page_size,
1153 (prot & PAGE_BITS) & ~PAGE_WRITE);
1154#ifdef DEBUG_TB_INVALIDATE
1155 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1156 page_addr);
1157#endif
1158 }
1159#else
1160 /* if some code is already present, then the pages are already
1161 protected. So we handle the case where only the first TB is
1162 allocated in a physical page */
1163 if (!last_first_tb) {
1164 tlb_protect_code(page_addr);
1165 }
1166#endif
1167
1168#endif /* TARGET_HAS_SMC */
1169}
1170
1171/* Allocate a new translation block. Flush the translation buffer if
1172 too many translation blocks or too much generated code. */
1173TranslationBlock *tb_alloc(target_ulong pc)
1174{
1175 TranslationBlock *tb;
1176
1177 if (nb_tbs >= code_gen_max_blocks ||
1178 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1179 return NULL;
1180 tb = &tbs[nb_tbs++];
1181 tb->pc = pc;
1182 tb->cflags = 0;
1183 return tb;
1184}
1185
1186void tb_free(TranslationBlock *tb)
1187{
1188 /* In practice this is mostly used for single use temporary TB
1189 Ignore the hard cases and just back up if this TB happens to
1190 be the last one generated. */
1191 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1192 code_gen_ptr = tb->tc_ptr;
1193 nb_tbs--;
1194 }
1195}
1196
1197/* add a new TB and link it to the physical page tables. phys_page2 is
1198 (-1) to indicate that only one page contains the TB. */
1199void tb_link_phys(TranslationBlock *tb,
1200 target_ulong phys_pc, target_ulong phys_page2)
1201{
1202 unsigned int h;
1203 TranslationBlock **ptb;
1204
1205 /* Grab the mmap lock to stop another thread invalidating this TB
1206 before we are done. */
1207 mmap_lock();
1208 /* add in the physical hash table */
1209 h = tb_phys_hash_func(phys_pc);
1210 ptb = &tb_phys_hash[h];
1211 tb->phys_hash_next = *ptb;
1212 *ptb = tb;
1213
1214 /* add in the page list */
1215 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1216 if (phys_page2 != -1)
1217 tb_alloc_page(tb, 1, phys_page2);
1218 else
1219 tb->page_addr[1] = -1;
1220
1221 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1222 tb->jmp_next[0] = NULL;
1223 tb->jmp_next[1] = NULL;
1224
1225 /* init original jump addresses */
1226 if (tb->tb_next_offset[0] != 0xffff)
1227 tb_reset_jump(tb, 0);
1228 if (tb->tb_next_offset[1] != 0xffff)
1229 tb_reset_jump(tb, 1);
1230
1231#ifdef DEBUG_TB_CHECK
1232 tb_page_check();
1233#endif
1234 mmap_unlock();
1235}
1236
1237/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1238 tb[1].tc_ptr. Return NULL if not found */
1239TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1240{
1241 int m_min, m_max, m;
1242 unsigned long v;
1243 TranslationBlock *tb;
1244
1245 if (nb_tbs <= 0)
1246 return NULL;
1247 if (tc_ptr < (unsigned long)code_gen_buffer ||
1248 tc_ptr >= (unsigned long)code_gen_ptr)
1249 return NULL;
1250 /* binary search (cf Knuth) */
1251 m_min = 0;
1252 m_max = nb_tbs - 1;
1253 while (m_min <= m_max) {
1254 m = (m_min + m_max) >> 1;
1255 tb = &tbs[m];
1256 v = (unsigned long)tb->tc_ptr;
1257 if (v == tc_ptr)
1258 return tb;
1259 else if (tc_ptr < v) {
1260 m_max = m - 1;
1261 } else {
1262 m_min = m + 1;
1263 }
1264 }
1265 return &tbs[m_max];
1266}
1267
1268static void tb_reset_jump_recursive(TranslationBlock *tb);
1269
1270static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1271{
1272 TranslationBlock *tb1, *tb_next, **ptb;
1273 unsigned int n1;
1274
1275 tb1 = tb->jmp_next[n];
1276 if (tb1 != NULL) {
1277 /* find head of list */
1278 for(;;) {
1279 n1 = (long)tb1 & 3;
1280 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1281 if (n1 == 2)
1282 break;
1283 tb1 = tb1->jmp_next[n1];
1284 }
1285 /* we are now sure now that tb jumps to tb1 */
1286 tb_next = tb1;
1287
1288 /* remove tb from the jmp_first list */
1289 ptb = &tb_next->jmp_first;
1290 for(;;) {
1291 tb1 = *ptb;
1292 n1 = (long)tb1 & 3;
1293 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1294 if (n1 == n && tb1 == tb)
1295 break;
1296 ptb = &tb1->jmp_next[n1];
1297 }
1298 *ptb = tb->jmp_next[n];
1299 tb->jmp_next[n] = NULL;
1300
1301 /* suppress the jump to next tb in generated code */
1302 tb_reset_jump(tb, n);
1303
1304 /* suppress jumps in the tb on which we could have jumped */
1305 tb_reset_jump_recursive(tb_next);
1306 }
1307}
1308
1309static void tb_reset_jump_recursive(TranslationBlock *tb)
1310{
1311 tb_reset_jump_recursive2(tb, 0);
1312 tb_reset_jump_recursive2(tb, 1);
1313}
1314
1315#if defined(TARGET_HAS_ICE)
1316#if defined(CONFIG_USER_ONLY)
1317static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1318{
1319 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1320}
1321#else
1322static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1323{
1324 target_phys_addr_t addr;
1325 target_ulong pd;
1326 ram_addr_t ram_addr;
1327 PhysPageDesc *p;
1328
1329 addr = cpu_get_phys_page_debug(env, pc);
1330 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1331 if (!p) {
1332 pd = IO_MEM_UNASSIGNED;
1333 } else {
1334 pd = p->phys_offset;
1335 }
1336 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1337 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1338}
1339#endif
1340#endif /* TARGET_HAS_ICE */
1341
1342/* Add a watchpoint. */
1343int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1344 int flags, CPUWatchpoint **watchpoint)
1345{
1346 target_ulong len_mask = ~(len - 1);
1347 CPUWatchpoint *wp;
1348
1349 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1350 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1351 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1352 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1353 return -EINVAL;
1354 }
1355 wp = qemu_malloc(sizeof(*wp));
1356
1357 wp->vaddr = addr;
1358 wp->len_mask = len_mask;
1359 wp->flags = flags;
1360
1361 /* keep all GDB-injected watchpoints in front */
1362 if (flags & BP_GDB)
1363 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1364 else
1365 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1366
1367 tlb_flush_page(env, addr);
1368
1369 if (watchpoint)
1370 *watchpoint = wp;
1371 return 0;
1372}
1373
1374/* Remove a specific watchpoint. */
1375int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1376 int flags)
1377{
1378 target_ulong len_mask = ~(len - 1);
1379 CPUWatchpoint *wp;
1380
1381 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1382 if (addr == wp->vaddr && len_mask == wp->len_mask
1383 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1384 cpu_watchpoint_remove_by_ref(env, wp);
1385 return 0;
1386 }
1387 }
1388 return -ENOENT;
1389}
1390
1391/* Remove a specific watchpoint by reference. */
1392void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1393{
1394 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1395
1396 tlb_flush_page(env, watchpoint->vaddr);
1397
1398 qemu_free(watchpoint);
1399}
1400
1401/* Remove all matching watchpoints. */
1402void cpu_watchpoint_remove_all(CPUState *env, int mask)
1403{
1404 CPUWatchpoint *wp, *next;
1405
1406 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1407 if (wp->flags & mask)
1408 cpu_watchpoint_remove_by_ref(env, wp);
1409 }
1410}
1411
1412/* Add a breakpoint. */
1413int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1414 CPUBreakpoint **breakpoint)
1415{
1416#if defined(TARGET_HAS_ICE)
1417 CPUBreakpoint *bp;
1418
1419 bp = qemu_malloc(sizeof(*bp));
1420
1421 bp->pc = pc;
1422 bp->flags = flags;
1423
1424 /* keep all GDB-injected breakpoints in front */
1425 if (flags & BP_GDB)
1426 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1427 else
1428 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1429
1430 breakpoint_invalidate(env, pc);
1431
1432 if (breakpoint)
1433 *breakpoint = bp;
1434 return 0;
1435#else
1436 return -ENOSYS;
1437#endif
1438}
1439
1440/* Remove a specific breakpoint. */
1441int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1442{
1443#if defined(TARGET_HAS_ICE)
1444 CPUBreakpoint *bp;
1445
1446 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1447 if (bp->pc == pc && bp->flags == flags) {
1448 cpu_breakpoint_remove_by_ref(env, bp);
1449 return 0;
1450 }
1451 }
1452 return -ENOENT;
1453#else
1454 return -ENOSYS;
1455#endif
1456}
1457
1458/* Remove a specific breakpoint by reference. */
1459void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1460{
1461#if defined(TARGET_HAS_ICE)
1462 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1463
1464 breakpoint_invalidate(env, breakpoint->pc);
1465
1466 qemu_free(breakpoint);
1467#endif
1468}
1469
1470/* Remove all matching breakpoints. */
1471void cpu_breakpoint_remove_all(CPUState *env, int mask)
1472{
1473#if defined(TARGET_HAS_ICE)
1474 CPUBreakpoint *bp, *next;
1475
1476 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1477 if (bp->flags & mask)
1478 cpu_breakpoint_remove_by_ref(env, bp);
1479 }
1480#endif
1481}
1482
1483/* enable or disable single step mode. EXCP_DEBUG is returned by the
1484 CPU loop after each instruction */
1485void cpu_single_step(CPUState *env, int enabled)
1486{
1487#if defined(TARGET_HAS_ICE)
1488 if (env->singlestep_enabled != enabled) {
1489 env->singlestep_enabled = enabled;
1490 if (kvm_enabled())
1491 kvm_update_guest_debug(env, 0);
1492 else {
1493 /* must flush all the translated code to avoid inconsistencies */
1494 /* XXX: only flush what is necessary */
1495 tb_flush(env);
1496 }
1497 }
1498#endif
1499}
1500
1501/* enable or disable low levels log */
1502void cpu_set_log(int log_flags)
1503{
1504 loglevel = log_flags;
1505 if (loglevel && !logfile) {
1506 logfile = fopen(logfilename, log_append ? "a" : "w");
1507 if (!logfile) {
1508 perror(logfilename);
1509 _exit(1);
1510 }
1511#if !defined(CONFIG_SOFTMMU)
1512 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1513 {
1514 static char logfile_buf[4096];
1515 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1516 }
1517#elif !defined(_WIN32)
1518 /* Win32 doesn't support line-buffering and requires size >= 2 */
1519 setvbuf(logfile, NULL, _IOLBF, 0);
1520#endif
1521 log_append = 1;
1522 }
1523 if (!loglevel && logfile) {
1524 fclose(logfile);
1525 logfile = NULL;
1526 }
1527}
1528
1529void cpu_set_log_filename(const char *filename)
1530{
1531 logfilename = strdup(filename);
1532 if (logfile) {
1533 fclose(logfile);
1534 logfile = NULL;
1535 }
1536 cpu_set_log(loglevel);
1537}
1538
1539static void cpu_unlink_tb(CPUState *env)
1540{
1541 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1542 problem and hope the cpu will stop of its own accord. For userspace
1543 emulation this often isn't actually as bad as it sounds. Often
1544 signals are used primarily to interrupt blocking syscalls. */
1545 TranslationBlock *tb;
1546 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1547
1548 spin_lock(&interrupt_lock);
1549 tb = env->current_tb;
1550 /* if the cpu is currently executing code, we must unlink it and
1551 all the potentially executing TB */
1552 if (tb) {
1553 env->current_tb = NULL;
1554 tb_reset_jump_recursive(tb);
1555 }
1556 spin_unlock(&interrupt_lock);
1557}
1558
1559/* mask must never be zero, except for A20 change call */
1560void cpu_interrupt(CPUState *env, int mask)
1561{
1562 int old_mask;
1563
1564 old_mask = env->interrupt_request;
1565 env->interrupt_request |= mask;
1566
1567#ifndef CONFIG_USER_ONLY
1568 /*
1569 * If called from iothread context, wake the target cpu in
1570 * case its halted.
1571 */
1572 if (!qemu_cpu_self(env)) {
1573 qemu_cpu_kick(env);
1574 return;
1575 }
1576#endif
1577
1578 if (use_icount) {
1579 env->icount_decr.u16.high = 0xffff;
1580#ifndef CONFIG_USER_ONLY
1581 if (!can_do_io(env)
1582 && (mask & ~old_mask) != 0) {
1583 cpu_abort(env, "Raised interrupt while not in I/O function");
1584 }
1585#endif
1586 } else {
1587 cpu_unlink_tb(env);
1588 }
1589}
1590
1591void cpu_reset_interrupt(CPUState *env, int mask)
1592{
1593 env->interrupt_request &= ~mask;
1594}
1595
1596void cpu_exit(CPUState *env)
1597{
1598 env->exit_request = 1;
1599 cpu_unlink_tb(env);
1600}
1601
1602const CPULogItem cpu_log_items[] = {
1603 { CPU_LOG_TB_OUT_ASM, "out_asm",
1604 "show generated host assembly code for each compiled TB" },
1605 { CPU_LOG_TB_IN_ASM, "in_asm",
1606 "show target assembly code for each compiled TB" },
1607 { CPU_LOG_TB_OP, "op",
1608 "show micro ops for each compiled TB" },
1609 { CPU_LOG_TB_OP_OPT, "op_opt",
1610 "show micro ops "
1611#ifdef TARGET_I386
1612 "before eflags optimization and "
1613#endif
1614 "after liveness analysis" },
1615 { CPU_LOG_INT, "int",
1616 "show interrupts/exceptions in short format" },
1617 { CPU_LOG_EXEC, "exec",
1618 "show trace before each executed TB (lots of logs)" },
1619 { CPU_LOG_TB_CPU, "cpu",
1620 "show CPU state before block translation" },
1621#ifdef TARGET_I386
1622 { CPU_LOG_PCALL, "pcall",
1623 "show protected mode far calls/returns/exceptions" },
1624 { CPU_LOG_RESET, "cpu_reset",
1625 "show CPU state before CPU resets" },
1626#endif
1627#ifdef DEBUG_IOPORT
1628 { CPU_LOG_IOPORT, "ioport",
1629 "show all i/o ports accesses" },
1630#endif
1631 { 0, NULL, NULL },
1632};
1633
1634#ifndef CONFIG_USER_ONLY
1635static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1636 = QLIST_HEAD_INITIALIZER(memory_client_list);
1637
1638static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1639 ram_addr_t size,
1640 ram_addr_t phys_offset)
1641{
1642 CPUPhysMemoryClient *client;
1643 QLIST_FOREACH(client, &memory_client_list, list) {
1644 client->set_memory(client, start_addr, size, phys_offset);
1645 }
1646}
1647
1648static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1649 target_phys_addr_t end)
1650{
1651 CPUPhysMemoryClient *client;
1652 QLIST_FOREACH(client, &memory_client_list, list) {
1653 int r = client->sync_dirty_bitmap(client, start, end);
1654 if (r < 0)
1655 return r;
1656 }
1657 return 0;
1658}
1659
1660static int cpu_notify_migration_log(int enable)
1661{
1662 CPUPhysMemoryClient *client;
1663 QLIST_FOREACH(client, &memory_client_list, list) {
1664 int r = client->migration_log(client, enable);
1665 if (r < 0)
1666 return r;
1667 }
1668 return 0;
1669}
1670
1671static void phys_page_for_each_in_l1_map(PhysPageDesc **phys_map,
1672 CPUPhysMemoryClient *client)
1673{
1674 PhysPageDesc *pd;
1675 int l1, l2;
1676
1677 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1678 pd = phys_map[l1];
1679 if (!pd) {
1680 continue;
1681 }
1682 for (l2 = 0; l2 < L2_SIZE; ++l2) {
1683 if (pd[l2].phys_offset == IO_MEM_UNASSIGNED) {
1684 continue;
1685 }
1686 client->set_memory(client, pd[l2].region_offset,
1687 TARGET_PAGE_SIZE, pd[l2].phys_offset);
1688 }
1689 }
1690}
1691
1692static void phys_page_for_each(CPUPhysMemoryClient *client)
1693{
1694#if TARGET_PHYS_ADDR_SPACE_BITS > 32
1695
1696#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
1697#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
1698#endif
1699 void **phys_map = (void **)l1_phys_map;
1700 int l1;
1701 if (!l1_phys_map) {
1702 return;
1703 }
1704 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1705 if (phys_map[l1]) {
1706 phys_page_for_each_in_l1_map(phys_map[l1], client);
1707 }
1708 }
1709#else
1710 if (!l1_phys_map) {
1711 return;
1712 }
1713 phys_page_for_each_in_l1_map(l1_phys_map, client);
1714#endif
1715}
1716
1717void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1718{
1719 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1720 phys_page_for_each(client);
1721}
1722
1723void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1724{
1725 QLIST_REMOVE(client, list);
1726}
1727#endif
1728
1729static int cmp1(const char *s1, int n, const char *s2)
1730{
1731 if (strlen(s2) != n)
1732 return 0;
1733 return memcmp(s1, s2, n) == 0;
1734}
1735
1736/* takes a comma separated list of log masks. Return 0 if error. */
1737int cpu_str_to_log_mask(const char *str)
1738{
1739 const CPULogItem *item;
1740 int mask;
1741 const char *p, *p1;
1742
1743 p = str;
1744 mask = 0;
1745 for(;;) {
1746 p1 = strchr(p, ',');
1747 if (!p1)
1748 p1 = p + strlen(p);
1749 if(cmp1(p,p1-p,"all")) {
1750 for(item = cpu_log_items; item->mask != 0; item++) {
1751 mask |= item->mask;
1752 }
1753 } else {
1754 for(item = cpu_log_items; item->mask != 0; item++) {
1755 if (cmp1(p, p1 - p, item->name))
1756 goto found;
1757 }
1758 return 0;
1759 }
1760 found:
1761 mask |= item->mask;
1762 if (*p1 != ',')
1763 break;
1764 p = p1 + 1;
1765 }
1766 return mask;
1767}
1768
1769void cpu_abort(CPUState *env, const char *fmt, ...)
1770{
1771 va_list ap;
1772 va_list ap2;
1773
1774 va_start(ap, fmt);
1775 va_copy(ap2, ap);
1776 fprintf(stderr, "qemu: fatal: ");
1777 vfprintf(stderr, fmt, ap);
1778 fprintf(stderr, "\n");
1779#ifdef TARGET_I386
1780 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1781#else
1782 cpu_dump_state(env, stderr, fprintf, 0);
1783#endif
1784 if (qemu_log_enabled()) {
1785 qemu_log("qemu: fatal: ");
1786 qemu_log_vprintf(fmt, ap2);
1787 qemu_log("\n");
1788#ifdef TARGET_I386
1789 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1790#else
1791 log_cpu_state(env, 0);
1792#endif
1793 qemu_log_flush();
1794 qemu_log_close();
1795 }
1796 va_end(ap2);
1797 va_end(ap);
1798#if defined(CONFIG_USER_ONLY)
1799 {
1800 struct sigaction act;
1801 sigfillset(&act.sa_mask);
1802 act.sa_handler = SIG_DFL;
1803 sigaction(SIGABRT, &act, NULL);
1804 }
1805#endif
1806 abort();
1807}
1808
1809CPUState *cpu_copy(CPUState *env)
1810{
1811 CPUState *new_env = cpu_init(env->cpu_model_str);
1812 CPUState *next_cpu = new_env->next_cpu;
1813 int cpu_index = new_env->cpu_index;
1814#if defined(TARGET_HAS_ICE)
1815 CPUBreakpoint *bp;
1816 CPUWatchpoint *wp;
1817#endif
1818
1819 memcpy(new_env, env, sizeof(CPUState));
1820
1821 /* Preserve chaining and index. */
1822 new_env->next_cpu = next_cpu;
1823 new_env->cpu_index = cpu_index;
1824
1825 /* Clone all break/watchpoints.
1826 Note: Once we support ptrace with hw-debug register access, make sure
1827 BP_CPU break/watchpoints are handled correctly on clone. */
1828 QTAILQ_INIT(&env->breakpoints);
1829 QTAILQ_INIT(&env->watchpoints);
1830#if defined(TARGET_HAS_ICE)
1831 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1832 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1833 }
1834 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1835 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1836 wp->flags, NULL);
1837 }
1838#endif
1839
1840 return new_env;
1841}
1842
1843#if !defined(CONFIG_USER_ONLY)
1844
1845static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1846{
1847 unsigned int i;
1848
1849 /* Discard jump cache entries for any tb which might potentially
1850 overlap the flushed page. */
1851 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1852 memset (&env->tb_jmp_cache[i], 0,
1853 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1854
1855 i = tb_jmp_cache_hash_page(addr);
1856 memset (&env->tb_jmp_cache[i], 0,
1857 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1858}
1859
1860static CPUTLBEntry s_cputlb_empty_entry = {
1861 .addr_read = -1,
1862 .addr_write = -1,
1863 .addr_code = -1,
1864 .addend = -1,
1865};
1866
1867/* NOTE: if flush_global is true, also flush global entries (not
1868 implemented yet) */
1869void tlb_flush(CPUState *env, int flush_global)
1870{
1871 int i;
1872
1873#if defined(DEBUG_TLB)
1874 printf("tlb_flush:\n");
1875#endif
1876 /* must reset current TB so that interrupts cannot modify the
1877 links while we are modifying them */
1878 env->current_tb = NULL;
1879
1880 for(i = 0; i < CPU_TLB_SIZE; i++) {
1881 int mmu_idx;
1882 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1883 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1884 }
1885 }
1886
1887 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1888
1889 tlb_flush_count++;
1890}
1891
1892static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1893{
1894 if (addr == (tlb_entry->addr_read &
1895 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1896 addr == (tlb_entry->addr_write &
1897 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1898 addr == (tlb_entry->addr_code &
1899 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1900 *tlb_entry = s_cputlb_empty_entry;
1901 }
1902}
1903
1904void tlb_flush_page(CPUState *env, target_ulong addr)
1905{
1906 int i;
1907 int mmu_idx;
1908
1909#if defined(DEBUG_TLB)
1910 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1911#endif
1912 /* must reset current TB so that interrupts cannot modify the
1913 links while we are modifying them */
1914 env->current_tb = NULL;
1915
1916 addr &= TARGET_PAGE_MASK;
1917 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1918 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1919 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1920
1921 tlb_flush_jmp_cache(env, addr);
1922}
1923
1924/* update the TLBs so that writes to code in the virtual page 'addr'
1925 can be detected */
1926static void tlb_protect_code(ram_addr_t ram_addr)
1927{
1928 cpu_physical_memory_reset_dirty(ram_addr,
1929 ram_addr + TARGET_PAGE_SIZE,
1930 CODE_DIRTY_FLAG);
1931}
1932
1933/* update the TLB so that writes in physical page 'phys_addr' are no longer
1934 tested for self modifying code */
1935static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1936 target_ulong vaddr)
1937{
1938 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1939}
1940
1941static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1942 unsigned long start, unsigned long length)
1943{
1944 unsigned long addr;
1945 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1946 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1947 if ((addr - start) < length) {
1948 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1949 }
1950 }
1951}
1952
1953/* Note: start and end must be within the same ram block. */
1954void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1955 int dirty_flags)
1956{
1957 CPUState *env;
1958 unsigned long length, start1;
1959 int i, mask, len;
1960 uint8_t *p;
1961
1962 start &= TARGET_PAGE_MASK;
1963 end = TARGET_PAGE_ALIGN(end);
1964
1965 length = end - start;
1966 if (length == 0)
1967 return;
1968 len = length >> TARGET_PAGE_BITS;
1969 mask = ~dirty_flags;
1970 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1971 for(i = 0; i < len; i++)
1972 p[i] &= mask;
1973
1974 /* we modify the TLB cache so that the dirty bit will be set again
1975 when accessing the range */
1976 start1 = (unsigned long)qemu_get_ram_ptr(start);
1977 /* Chek that we don't span multiple blocks - this breaks the
1978 address comparisons below. */
1979 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1980 != (end - 1) - start) {
1981 abort();
1982 }
1983
1984 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1985 int mmu_idx;
1986 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1987 for(i = 0; i < CPU_TLB_SIZE; i++)
1988 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1989 start1, length);
1990 }
1991 }
1992}
1993
1994int cpu_physical_memory_set_dirty_tracking(int enable)
1995{
1996 int ret = 0;
1997 in_migration = enable;
1998 ret = cpu_notify_migration_log(!!enable);
1999 return ret;
2000}
2001
2002int cpu_physical_memory_get_dirty_tracking(void)
2003{
2004 return in_migration;
2005}
2006
2007int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2008 target_phys_addr_t end_addr)
2009{
2010 int ret;
2011
2012 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2013 return ret;
2014}
2015
2016static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2017{
2018 ram_addr_t ram_addr;
2019 void *p;
2020
2021 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2022 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2023 + tlb_entry->addend);
2024 ram_addr = qemu_ram_addr_from_host(p);
2025 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2026 tlb_entry->addr_write |= TLB_NOTDIRTY;
2027 }
2028 }
2029}
2030
2031/* update the TLB according to the current state of the dirty bits */
2032void cpu_tlb_update_dirty(CPUState *env)
2033{
2034 int i;
2035 int mmu_idx;
2036 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2037 for(i = 0; i < CPU_TLB_SIZE; i++)
2038 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2039 }
2040}
2041
2042static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2043{
2044 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2045 tlb_entry->addr_write = vaddr;
2046}
2047
2048/* update the TLB corresponding to virtual page vaddr
2049 so that it is no longer dirty */
2050static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2051{
2052 int i;
2053 int mmu_idx;
2054
2055 vaddr &= TARGET_PAGE_MASK;
2056 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2057 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2058 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2059}
2060
2061/* add a new TLB entry. At most one entry for a given virtual address
2062 is permitted. Return 0 if OK or 2 if the page could not be mapped
2063 (can only happen in non SOFTMMU mode for I/O pages or pages
2064 conflicting with the host address space). */
2065int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2066 target_phys_addr_t paddr, int prot,
2067 int mmu_idx, int is_softmmu)
2068{
2069 PhysPageDesc *p;
2070 unsigned long pd;
2071 unsigned int index;
2072 target_ulong address;
2073 target_ulong code_address;
2074 target_phys_addr_t addend;
2075 int ret;
2076 CPUTLBEntry *te;
2077 CPUWatchpoint *wp;
2078 target_phys_addr_t iotlb;
2079
2080 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2081 if (!p) {
2082 pd = IO_MEM_UNASSIGNED;
2083 } else {
2084 pd = p->phys_offset;
2085 }
2086#if defined(DEBUG_TLB)
2087 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2088 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2089#endif
2090
2091 ret = 0;
2092 address = vaddr;
2093 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2094 /* IO memory case (romd handled later) */
2095 address |= TLB_MMIO;
2096 }
2097 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2098 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2099 /* Normal RAM. */
2100 iotlb = pd & TARGET_PAGE_MASK;
2101 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2102 iotlb |= IO_MEM_NOTDIRTY;
2103 else
2104 iotlb |= IO_MEM_ROM;
2105 } else {
2106 /* IO handlers are currently passed a physical address.
2107 It would be nice to pass an offset from the base address
2108 of that region. This would avoid having to special case RAM,
2109 and avoid full address decoding in every device.
2110 We can't use the high bits of pd for this because
2111 IO_MEM_ROMD uses these as a ram address. */
2112 iotlb = (pd & ~TARGET_PAGE_MASK);
2113 if (p) {
2114 iotlb += p->region_offset;
2115 } else {
2116 iotlb += paddr;
2117 }
2118 }
2119
2120 code_address = address;
2121 /* Make accesses to pages with watchpoints go via the
2122 watchpoint trap routines. */
2123 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2124 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2125 iotlb = io_mem_watch + paddr;
2126 /* TODO: The memory case can be optimized by not trapping
2127 reads of pages with a write breakpoint. */
2128 address |= TLB_MMIO;
2129 }
2130 }
2131
2132 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2133 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2134 te = &env->tlb_table[mmu_idx][index];
2135 te->addend = addend - vaddr;
2136 if (prot & PAGE_READ) {
2137 te->addr_read = address;
2138 } else {
2139 te->addr_read = -1;
2140 }
2141
2142 if (prot & PAGE_EXEC) {
2143 te->addr_code = code_address;
2144 } else {
2145 te->addr_code = -1;
2146 }
2147 if (prot & PAGE_WRITE) {
2148 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2149 (pd & IO_MEM_ROMD)) {
2150 /* Write access calls the I/O callback. */
2151 te->addr_write = address | TLB_MMIO;
2152 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2153 !cpu_physical_memory_is_dirty(pd)) {
2154 te->addr_write = address | TLB_NOTDIRTY;
2155 } else {
2156 te->addr_write = address;
2157 }
2158 } else {
2159 te->addr_write = -1;
2160 }
2161 return ret;
2162}
2163
2164#else
2165
2166void tlb_flush(CPUState *env, int flush_global)
2167{
2168}
2169
2170void tlb_flush_page(CPUState *env, target_ulong addr)
2171{
2172}
2173
2174int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2175 target_phys_addr_t paddr, int prot,
2176 int mmu_idx, int is_softmmu)
2177{
2178 return 0;
2179}
2180
2181/*
2182 * Walks guest process memory "regions" one by one
2183 * and calls callback function 'fn' for each region.
2184 */
2185int walk_memory_regions(void *priv,
2186 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
2187{
2188 unsigned long start, end;
2189 PageDesc *p = NULL;
2190 int i, j, prot, prot1;
2191 int rc = 0;
2192
2193 start = end = -1;
2194 prot = 0;
2195
2196 for (i = 0; i <= L1_SIZE; i++) {
2197 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2198 for (j = 0; j < L2_SIZE; j++) {
2199 prot1 = (p == NULL) ? 0 : p[j].flags;
2200 /*
2201 * "region" is one continuous chunk of memory
2202 * that has same protection flags set.
2203 */
2204 if (prot1 != prot) {
2205 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2206 if (start != -1) {
2207 rc = (*fn)(priv, start, end, prot);
2208 /* callback can stop iteration by returning != 0 */
2209 if (rc != 0)
2210 return (rc);
2211 }
2212 if (prot1 != 0)
2213 start = end;
2214 else
2215 start = -1;
2216 prot = prot1;
2217 }
2218 if (p == NULL)
2219 break;
2220 }
2221 }
2222 return (rc);
2223}
2224
2225static int dump_region(void *priv, unsigned long start,
2226 unsigned long end, unsigned long prot)
2227{
2228 FILE *f = (FILE *)priv;
2229
2230 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2231 start, end, end - start,
2232 ((prot & PAGE_READ) ? 'r' : '-'),
2233 ((prot & PAGE_WRITE) ? 'w' : '-'),
2234 ((prot & PAGE_EXEC) ? 'x' : '-'));
2235
2236 return (0);
2237}
2238
2239/* dump memory mappings */
2240void page_dump(FILE *f)
2241{
2242 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2243 "start", "end", "size", "prot");
2244 walk_memory_regions(f, dump_region);
2245}
2246
2247int page_get_flags(target_ulong address)
2248{
2249 PageDesc *p;
2250
2251 p = page_find(address >> TARGET_PAGE_BITS);
2252 if (!p)
2253 return 0;
2254 return p->flags;
2255}
2256
2257/* modify the flags of a page and invalidate the code if
2258 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2259 depending on PAGE_WRITE */
2260void page_set_flags(target_ulong start, target_ulong end, int flags)
2261{
2262 PageDesc *p;
2263 target_ulong addr;
2264
2265 /* mmap_lock should already be held. */
2266 start = start & TARGET_PAGE_MASK;
2267 end = TARGET_PAGE_ALIGN(end);
2268 if (flags & PAGE_WRITE)
2269 flags |= PAGE_WRITE_ORG;
2270 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2271 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2272 /* We may be called for host regions that are outside guest
2273 address space. */
2274 if (!p)
2275 return;
2276 /* if the write protection is set, then we invalidate the code
2277 inside */
2278 if (!(p->flags & PAGE_WRITE) &&
2279 (flags & PAGE_WRITE) &&
2280 p->first_tb) {
2281 tb_invalidate_phys_page(addr, 0, NULL);
2282 }
2283 p->flags = flags;
2284 }
2285}
2286
2287int page_check_range(target_ulong start, target_ulong len, int flags)
2288{
2289 PageDesc *p;
2290 target_ulong end;
2291 target_ulong addr;
2292
2293 if (start + len < start)
2294 /* we've wrapped around */
2295 return -1;
2296
2297 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2298 start = start & TARGET_PAGE_MASK;
2299
2300 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2301 p = page_find(addr >> TARGET_PAGE_BITS);
2302 if( !p )
2303 return -1;
2304 if( !(p->flags & PAGE_VALID) )
2305 return -1;
2306
2307 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2308 return -1;
2309 if (flags & PAGE_WRITE) {
2310 if (!(p->flags & PAGE_WRITE_ORG))
2311 return -1;
2312 /* unprotect the page if it was put read-only because it
2313 contains translated code */
2314 if (!(p->flags & PAGE_WRITE)) {
2315 if (!page_unprotect(addr, 0, NULL))
2316 return -1;
2317 }
2318 return 0;
2319 }
2320 }
2321 return 0;
2322}
2323
2324/* called from signal handler: invalidate the code and unprotect the
2325 page. Return TRUE if the fault was successfully handled. */
2326int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2327{
2328 unsigned int page_index, prot, pindex;
2329 PageDesc *p, *p1;
2330 target_ulong host_start, host_end, addr;
2331
2332 /* Technically this isn't safe inside a signal handler. However we
2333 know this only ever happens in a synchronous SEGV handler, so in
2334 practice it seems to be ok. */
2335 mmap_lock();
2336
2337 host_start = address & qemu_host_page_mask;
2338 page_index = host_start >> TARGET_PAGE_BITS;
2339 p1 = page_find(page_index);
2340 if (!p1) {
2341 mmap_unlock();
2342 return 0;
2343 }
2344 host_end = host_start + qemu_host_page_size;
2345 p = p1;
2346 prot = 0;
2347 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2348 prot |= p->flags;
2349 p++;
2350 }
2351 /* if the page was really writable, then we change its
2352 protection back to writable */
2353 if (prot & PAGE_WRITE_ORG) {
2354 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2355 if (!(p1[pindex].flags & PAGE_WRITE)) {
2356 mprotect((void *)g2h(host_start), qemu_host_page_size,
2357 (prot & PAGE_BITS) | PAGE_WRITE);
2358 p1[pindex].flags |= PAGE_WRITE;
2359 /* and since the content will be modified, we must invalidate
2360 the corresponding translated code. */
2361 tb_invalidate_phys_page(address, pc, puc);
2362#ifdef DEBUG_TB_CHECK
2363 tb_invalidate_check(address);
2364#endif
2365 mmap_unlock();
2366 return 1;
2367 }
2368 }
2369 mmap_unlock();
2370 return 0;
2371}
2372
2373static inline void tlb_set_dirty(CPUState *env,
2374 unsigned long addr, target_ulong vaddr)
2375{
2376}
2377#endif /* defined(CONFIG_USER_ONLY) */
2378
2379#if !defined(CONFIG_USER_ONLY)
2380
2381static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2382 ram_addr_t memory, ram_addr_t region_offset);
2383static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2384 ram_addr_t orig_memory, ram_addr_t region_offset);
2385#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2386 need_subpage) \
2387 do { \
2388 if (addr > start_addr) \
2389 start_addr2 = 0; \
2390 else { \
2391 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2392 if (start_addr2 > 0) \
2393 need_subpage = 1; \
2394 } \
2395 \
2396 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2397 end_addr2 = TARGET_PAGE_SIZE - 1; \
2398 else { \
2399 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2400 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2401 need_subpage = 1; \
2402 } \
2403 } while (0)
2404
2405/* register physical memory.
2406 For RAM, 'size' must be a multiple of the target page size.
2407 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2408 io memory page. The address used when calling the IO function is
2409 the offset from the start of the region, plus region_offset. Both
2410 start_addr and region_offset are rounded down to a page boundary
2411 before calculating this offset. This should not be a problem unless
2412 the low bits of start_addr and region_offset differ. */
2413void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2414 ram_addr_t size,
2415 ram_addr_t phys_offset,
2416 ram_addr_t region_offset)
2417{
2418 target_phys_addr_t addr, end_addr;
2419 PhysPageDesc *p;
2420 CPUState *env;
2421 ram_addr_t orig_size = size;
2422 void *subpage;
2423
2424 cpu_notify_set_memory(start_addr, size, phys_offset);
2425
2426 if (phys_offset == IO_MEM_UNASSIGNED) {
2427 region_offset = start_addr;
2428 }
2429 region_offset &= TARGET_PAGE_MASK;
2430 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2431 end_addr = start_addr + (target_phys_addr_t)size;
2432 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2433 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2434 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2435 ram_addr_t orig_memory = p->phys_offset;
2436 target_phys_addr_t start_addr2, end_addr2;
2437 int need_subpage = 0;
2438
2439 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2440 need_subpage);
2441 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2442 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2443 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2444 &p->phys_offset, orig_memory,
2445 p->region_offset);
2446 } else {
2447 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2448 >> IO_MEM_SHIFT];
2449 }
2450 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2451 region_offset);
2452 p->region_offset = 0;
2453 } else {
2454 p->phys_offset = phys_offset;
2455 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2456 (phys_offset & IO_MEM_ROMD))
2457 phys_offset += TARGET_PAGE_SIZE;
2458 }
2459 } else {
2460 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2461 p->phys_offset = phys_offset;
2462 p->region_offset = region_offset;
2463 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2464 (phys_offset & IO_MEM_ROMD)) {
2465 phys_offset += TARGET_PAGE_SIZE;
2466 } else {
2467 target_phys_addr_t start_addr2, end_addr2;
2468 int need_subpage = 0;
2469
2470 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2471 end_addr2, need_subpage);
2472
2473 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2474 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2475 &p->phys_offset, IO_MEM_UNASSIGNED,
2476 addr & TARGET_PAGE_MASK);
2477 subpage_register(subpage, start_addr2, end_addr2,
2478 phys_offset, region_offset);
2479 p->region_offset = 0;
2480 }
2481 }
2482 }
2483 region_offset += TARGET_PAGE_SIZE;
2484 }
2485
2486 /* since each CPU stores ram addresses in its TLB cache, we must
2487 reset the modified entries */
2488 /* XXX: slow ! */
2489 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2490 tlb_flush(env, 1);
2491 }
2492}
2493
2494/* XXX: temporary until new memory mapping API */
2495ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2496{
2497 PhysPageDesc *p;
2498
2499 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2500 if (!p)
2501 return IO_MEM_UNASSIGNED;
2502 return p->phys_offset;
2503}
2504
2505void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2506{
2507 if (kvm_enabled())
2508 kvm_coalesce_mmio_region(addr, size);
2509}
2510
2511void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2512{
2513 if (kvm_enabled())
2514 kvm_uncoalesce_mmio_region(addr, size);
2515}
2516
2517void qemu_flush_coalesced_mmio_buffer(void)
2518{
2519 if (kvm_enabled())
2520 kvm_flush_coalesced_mmio_buffer();
2521}
2522
2523ram_addr_t qemu_ram_alloc(ram_addr_t size)
2524{
2525 RAMBlock *new_block;
2526
2527 size = TARGET_PAGE_ALIGN(size);
2528 new_block = qemu_malloc(sizeof(*new_block));
2529
2530#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2531 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2532 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2533 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2534#else
2535 new_block->host = qemu_vmalloc(size);
2536#endif
2537#ifdef MADV_MERGEABLE
2538 madvise(new_block->host, size, MADV_MERGEABLE);
2539#endif
2540 new_block->offset = last_ram_offset;
2541 new_block->length = size;
2542
2543 new_block->next = ram_blocks;
2544 ram_blocks = new_block;
2545
2546 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2547 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2548 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2549 0xff, size >> TARGET_PAGE_BITS);
2550
2551 last_ram_offset += size;
2552
2553 if (kvm_enabled())
2554 kvm_setup_guest_memory(new_block->host, size);
2555
2556 return new_block->offset;
2557}
2558
2559void qemu_ram_free(ram_addr_t addr)
2560{
2561 /* TODO: implement this. */
2562}
2563
2564/* Return a host pointer to ram allocated with qemu_ram_alloc.
2565 With the exception of the softmmu code in this file, this should
2566 only be used for local memory (e.g. video ram) that the device owns,
2567 and knows it isn't going to access beyond the end of the block.
2568
2569 It should not be used for general purpose DMA.
2570 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2571 */
2572void *qemu_get_ram_ptr(ram_addr_t addr)
2573{
2574 RAMBlock *prev;
2575 RAMBlock **prevp;
2576 RAMBlock *block;
2577
2578 prev = NULL;
2579 prevp = &ram_blocks;
2580 block = ram_blocks;
2581 while (block && (block->offset > addr
2582 || block->offset + block->length <= addr)) {
2583 if (prev)
2584 prevp = &prev->next;
2585 prev = block;
2586 block = block->next;
2587 }
2588 if (!block) {
2589 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2590 abort();
2591 }
2592 /* Move this entry to to start of the list. */
2593 if (prev) {
2594 prev->next = block->next;
2595 block->next = *prevp;
2596 *prevp = block;
2597 }
2598 return block->host + (addr - block->offset);
2599}
2600
2601/* Some of the softmmu routines need to translate from a host pointer
2602 (typically a TLB entry) back to a ram offset. */
2603ram_addr_t qemu_ram_addr_from_host(void *ptr)
2604{
2605 RAMBlock *prev;
2606 RAMBlock *block;
2607 uint8_t *host = ptr;
2608
2609 prev = NULL;
2610 block = ram_blocks;
2611 while (block && (block->host > host
2612 || block->host + block->length <= host)) {
2613 prev = block;
2614 block = block->next;
2615 }
2616 if (!block) {
2617 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2618 abort();
2619 }
2620 return block->offset + (host - block->host);
2621}
2622
2623static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2624{
2625#ifdef DEBUG_UNASSIGNED
2626 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2627#endif
2628#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2629 do_unassigned_access(addr, 0, 0, 0, 1);
2630#endif
2631 return 0;
2632}
2633
2634static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2635{
2636#ifdef DEBUG_UNASSIGNED
2637 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2638#endif
2639#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2640 do_unassigned_access(addr, 0, 0, 0, 2);
2641#endif
2642 return 0;
2643}
2644
2645static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2646{
2647#ifdef DEBUG_UNASSIGNED
2648 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2649#endif
2650#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2651 do_unassigned_access(addr, 0, 0, 0, 4);
2652#endif
2653 return 0;
2654}
2655
2656static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2657{
2658#ifdef DEBUG_UNASSIGNED
2659 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2660#endif
2661#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2662 do_unassigned_access(addr, 1, 0, 0, 1);
2663#endif
2664}
2665
2666static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2667{
2668#ifdef DEBUG_UNASSIGNED
2669 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2670#endif
2671#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2672 do_unassigned_access(addr, 1, 0, 0, 2);
2673#endif
2674}
2675
2676static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2677{
2678#ifdef DEBUG_UNASSIGNED
2679 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2680#endif
2681#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2682 do_unassigned_access(addr, 1, 0, 0, 4);
2683#endif
2684}
2685
2686static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2687 unassigned_mem_readb,
2688 unassigned_mem_readw,
2689 unassigned_mem_readl,
2690};
2691
2692static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2693 unassigned_mem_writeb,
2694 unassigned_mem_writew,
2695 unassigned_mem_writel,
2696};
2697
2698static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2699 uint32_t val)
2700{
2701 int dirty_flags;
2702 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2703 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2704#if !defined(CONFIG_USER_ONLY)
2705 tb_invalidate_phys_page_fast(ram_addr, 1);
2706 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2707#endif
2708 }
2709 stb_p(qemu_get_ram_ptr(ram_addr), val);
2710 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2711 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2712 /* we remove the notdirty callback only if the code has been
2713 flushed */
2714 if (dirty_flags == 0xff)
2715 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2716}
2717
2718static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2719 uint32_t val)
2720{
2721 int dirty_flags;
2722 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2723 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2724#if !defined(CONFIG_USER_ONLY)
2725 tb_invalidate_phys_page_fast(ram_addr, 2);
2726 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2727#endif
2728 }
2729 stw_p(qemu_get_ram_ptr(ram_addr), val);
2730 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2731 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2732 /* we remove the notdirty callback only if the code has been
2733 flushed */
2734 if (dirty_flags == 0xff)
2735 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2736}
2737
2738static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2739 uint32_t val)
2740{
2741 int dirty_flags;
2742 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2743 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2744#if !defined(CONFIG_USER_ONLY)
2745 tb_invalidate_phys_page_fast(ram_addr, 4);
2746 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2747#endif
2748 }
2749 stl_p(qemu_get_ram_ptr(ram_addr), val);
2750 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2751 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2752 /* we remove the notdirty callback only if the code has been
2753 flushed */
2754 if (dirty_flags == 0xff)
2755 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2756}
2757
2758static CPUReadMemoryFunc * const error_mem_read[3] = {
2759 NULL, /* never used */
2760 NULL, /* never used */
2761 NULL, /* never used */
2762};
2763
2764static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
2765 notdirty_mem_writeb,
2766 notdirty_mem_writew,
2767 notdirty_mem_writel,
2768};
2769
2770/* Generate a debug exception if a watchpoint has been hit. */
2771static void check_watchpoint(int offset, int len_mask, int flags)
2772{
2773 CPUState *env = cpu_single_env;
2774 target_ulong pc, cs_base;
2775 TranslationBlock *tb;
2776 target_ulong vaddr;
2777 CPUWatchpoint *wp;
2778 int cpu_flags;
2779
2780 if (env->watchpoint_hit) {
2781 /* We re-entered the check after replacing the TB. Now raise
2782 * the debug interrupt so that is will trigger after the
2783 * current instruction. */
2784 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2785 return;
2786 }
2787 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2788 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2789 if ((vaddr == (wp->vaddr & len_mask) ||
2790 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2791 wp->flags |= BP_WATCHPOINT_HIT;
2792 if (!env->watchpoint_hit) {
2793 env->watchpoint_hit = wp;
2794 tb = tb_find_pc(env->mem_io_pc);
2795 if (!tb) {
2796 cpu_abort(env, "check_watchpoint: could not find TB for "
2797 "pc=%p", (void *)env->mem_io_pc);
2798 }
2799 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2800 tb_phys_invalidate(tb, -1);
2801 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2802 env->exception_index = EXCP_DEBUG;
2803 } else {
2804 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2805 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2806 }
2807 cpu_resume_from_signal(env, NULL);
2808 }
2809 } else {
2810 wp->flags &= ~BP_WATCHPOINT_HIT;
2811 }
2812 }
2813}
2814
2815/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2816 so these check for a hit then pass through to the normal out-of-line
2817 phys routines. */
2818static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2819{
2820 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2821 return ldub_phys(addr);
2822}
2823
2824static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2825{
2826 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2827 return lduw_phys(addr);
2828}
2829
2830static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2831{
2832 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2833 return ldl_phys(addr);
2834}
2835
2836static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2837 uint32_t val)
2838{
2839 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2840 stb_phys(addr, val);
2841}
2842
2843static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2844 uint32_t val)
2845{
2846 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2847 stw_phys(addr, val);
2848}
2849
2850static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2851 uint32_t val)
2852{
2853 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2854 stl_phys(addr, val);
2855}
2856
2857static CPUReadMemoryFunc * const watch_mem_read[3] = {
2858 watch_mem_readb,
2859 watch_mem_readw,
2860 watch_mem_readl,
2861};
2862
2863static CPUWriteMemoryFunc * const watch_mem_write[3] = {
2864 watch_mem_writeb,
2865 watch_mem_writew,
2866 watch_mem_writel,
2867};
2868
2869static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2870 unsigned int len)
2871{
2872 uint32_t ret;
2873 unsigned int idx;
2874
2875 idx = SUBPAGE_IDX(addr);
2876#if defined(DEBUG_SUBPAGE)
2877 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2878 mmio, len, addr, idx);
2879#endif
2880 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2881 addr + mmio->region_offset[idx][0][len]);
2882
2883 return ret;
2884}
2885
2886static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2887 uint32_t value, unsigned int len)
2888{
2889 unsigned int idx;
2890
2891 idx = SUBPAGE_IDX(addr);
2892#if defined(DEBUG_SUBPAGE)
2893 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2894 mmio, len, addr, idx, value);
2895#endif
2896 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2897 addr + mmio->region_offset[idx][1][len],
2898 value);
2899}
2900
2901static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2902{
2903#if defined(DEBUG_SUBPAGE)
2904 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2905#endif
2906
2907 return subpage_readlen(opaque, addr, 0);
2908}
2909
2910static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2911 uint32_t value)
2912{
2913#if defined(DEBUG_SUBPAGE)
2914 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2915#endif
2916 subpage_writelen(opaque, addr, value, 0);
2917}
2918
2919static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2920{
2921#if defined(DEBUG_SUBPAGE)
2922 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2923#endif
2924
2925 return subpage_readlen(opaque, addr, 1);
2926}
2927
2928static void subpage_writew (void *opaque, target_phys_addr_t addr,
2929 uint32_t value)
2930{
2931#if defined(DEBUG_SUBPAGE)
2932 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2933#endif
2934 subpage_writelen(opaque, addr, value, 1);
2935}
2936
2937static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2938{
2939#if defined(DEBUG_SUBPAGE)
2940 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2941#endif
2942
2943 return subpage_readlen(opaque, addr, 2);
2944}
2945
2946static void subpage_writel (void *opaque,
2947 target_phys_addr_t addr, uint32_t value)
2948{
2949#if defined(DEBUG_SUBPAGE)
2950 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2951#endif
2952 subpage_writelen(opaque, addr, value, 2);
2953}
2954
2955static CPUReadMemoryFunc * const subpage_read[] = {
2956 &subpage_readb,
2957 &subpage_readw,
2958 &subpage_readl,
2959};
2960
2961static CPUWriteMemoryFunc * const subpage_write[] = {
2962 &subpage_writeb,
2963 &subpage_writew,
2964 &subpage_writel,
2965};
2966
2967static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2968 ram_addr_t memory, ram_addr_t region_offset)
2969{
2970 int idx, eidx;
2971 unsigned int i;
2972
2973 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2974 return -1;
2975 idx = SUBPAGE_IDX(start);
2976 eidx = SUBPAGE_IDX(end);
2977#if defined(DEBUG_SUBPAGE)
2978 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
2979 mmio, start, end, idx, eidx, memory);
2980#endif
2981 memory >>= IO_MEM_SHIFT;
2982 for (; idx <= eidx; idx++) {
2983 for (i = 0; i < 4; i++) {
2984 if (io_mem_read[memory][i]) {
2985 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2986 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2987 mmio->region_offset[idx][0][i] = region_offset;
2988 }
2989 if (io_mem_write[memory][i]) {
2990 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2991 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2992 mmio->region_offset[idx][1][i] = region_offset;
2993 }
2994 }
2995 }
2996
2997 return 0;
2998}
2999
3000static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3001 ram_addr_t orig_memory, ram_addr_t region_offset)
3002{
3003 subpage_t *mmio;
3004 int subpage_memory;
3005
3006 mmio = qemu_mallocz(sizeof(subpage_t));
3007
3008 mmio->base = base;
3009 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3010#if defined(DEBUG_SUBPAGE)
3011 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3012 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3013#endif
3014 *phys = subpage_memory | IO_MEM_SUBPAGE;
3015 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
3016 region_offset);
3017
3018 return mmio;
3019}
3020
3021static int get_free_io_mem_idx(void)
3022{
3023 int i;
3024
3025 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3026 if (!io_mem_used[i]) {
3027 io_mem_used[i] = 1;
3028 return i;
3029 }
3030 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3031 return -1;
3032}
3033
3034/* mem_read and mem_write are arrays of functions containing the
3035 function to access byte (index 0), word (index 1) and dword (index
3036 2). Functions can be omitted with a NULL function pointer.
3037 If io_index is non zero, the corresponding io zone is
3038 modified. If it is zero, a new io zone is allocated. The return
3039 value can be used with cpu_register_physical_memory(). (-1) is
3040 returned if error. */
3041static int cpu_register_io_memory_fixed(int io_index,
3042 CPUReadMemoryFunc * const *mem_read,
3043 CPUWriteMemoryFunc * const *mem_write,
3044 void *opaque)
3045{
3046 int i, subwidth = 0;
3047
3048 if (io_index <= 0) {
3049 io_index = get_free_io_mem_idx();
3050 if (io_index == -1)
3051 return io_index;
3052 } else {
3053 io_index >>= IO_MEM_SHIFT;
3054 if (io_index >= IO_MEM_NB_ENTRIES)
3055 return -1;
3056 }
3057
3058 for(i = 0;i < 3; i++) {
3059 if (!mem_read[i] || !mem_write[i])
3060 subwidth = IO_MEM_SUBWIDTH;
3061 io_mem_read[io_index][i] = mem_read[i];
3062 io_mem_write[io_index][i] = mem_write[i];
3063 }
3064 io_mem_opaque[io_index] = opaque;
3065 return (io_index << IO_MEM_SHIFT) | subwidth;
3066}
3067
3068int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3069 CPUWriteMemoryFunc * const *mem_write,
3070 void *opaque)
3071{
3072 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3073}
3074
3075void cpu_unregister_io_memory(int io_table_address)
3076{
3077 int i;
3078 int io_index = io_table_address >> IO_MEM_SHIFT;
3079
3080 for (i=0;i < 3; i++) {
3081 io_mem_read[io_index][i] = unassigned_mem_read[i];
3082 io_mem_write[io_index][i] = unassigned_mem_write[i];
3083 }
3084 io_mem_opaque[io_index] = NULL;
3085 io_mem_used[io_index] = 0;
3086}
3087
3088static void io_mem_init(void)
3089{
3090 int i;
3091
3092 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3093 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3094 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3095 for (i=0; i<5; i++)
3096 io_mem_used[i] = 1;
3097
3098 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3099 watch_mem_write, NULL);
3100}
3101
3102#endif /* !defined(CONFIG_USER_ONLY) */
3103
3104/* physical memory access (slow version, mainly for debug) */
3105#if defined(CONFIG_USER_ONLY)
3106void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3107 int len, int is_write)
3108{
3109 int l, flags;
3110 target_ulong page;
3111 void * p;
3112
3113 while (len > 0) {
3114 page = addr & TARGET_PAGE_MASK;
3115 l = (page + TARGET_PAGE_SIZE) - addr;
3116 if (l > len)
3117 l = len;
3118 flags = page_get_flags(page);
3119 if (!(flags & PAGE_VALID))
3120 return;
3121 if (is_write) {
3122 if (!(flags & PAGE_WRITE))
3123 return;
3124 /* XXX: this code should not depend on lock_user */
3125 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3126 /* FIXME - should this return an error rather than just fail? */
3127 return;
3128 memcpy(p, buf, l);
3129 unlock_user(p, addr, l);
3130 } else {
3131 if (!(flags & PAGE_READ))
3132 return;
3133 /* XXX: this code should not depend on lock_user */
3134 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3135 /* FIXME - should this return an error rather than just fail? */
3136 return;
3137 memcpy(buf, p, l);
3138 unlock_user(p, addr, 0);
3139 }
3140 len -= l;
3141 buf += l;
3142 addr += l;
3143 }
3144}
3145
3146#else
3147void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3148 int len, int is_write)
3149{
3150 int l, io_index;
3151 uint8_t *ptr;
3152 uint32_t val;
3153 target_phys_addr_t page;
3154 unsigned long pd;
3155 PhysPageDesc *p;
3156
3157 while (len > 0) {
3158 page = addr & TARGET_PAGE_MASK;
3159 l = (page + TARGET_PAGE_SIZE) - addr;
3160 if (l > len)
3161 l = len;
3162 p = phys_page_find(page >> TARGET_PAGE_BITS);
3163 if (!p) {
3164 pd = IO_MEM_UNASSIGNED;
3165 } else {
3166 pd = p->phys_offset;
3167 }
3168
3169 if (is_write) {
3170 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3171 target_phys_addr_t addr1 = addr;
3172 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3173 if (p)
3174 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3175 /* XXX: could force cpu_single_env to NULL to avoid
3176 potential bugs */
3177 if (l >= 4 && ((addr1 & 3) == 0)) {
3178 /* 32 bit write access */
3179 val = ldl_p(buf);
3180 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3181 l = 4;
3182 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3183 /* 16 bit write access */
3184 val = lduw_p(buf);
3185 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3186 l = 2;
3187 } else {
3188 /* 8 bit write access */
3189 val = ldub_p(buf);
3190 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3191 l = 1;
3192 }
3193 } else {
3194 unsigned long addr1;
3195 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3196 /* RAM case */
3197 ptr = qemu_get_ram_ptr(addr1);
3198 memcpy(ptr, buf, l);
3199 if (!cpu_physical_memory_is_dirty(addr1)) {
3200 /* invalidate code */
3201 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3202 /* set dirty bit */
3203 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3204 (0xff & ~CODE_DIRTY_FLAG);
3205 }
3206 }
3207 } else {
3208 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3209 !(pd & IO_MEM_ROMD)) {
3210 target_phys_addr_t addr1 = addr;
3211 /* I/O case */
3212 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3213 if (p)
3214 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3215 if (l >= 4 && ((addr1 & 3) == 0)) {
3216 /* 32 bit read access */
3217 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3218 stl_p(buf, val);
3219 l = 4;
3220 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3221 /* 16 bit read access */
3222 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3223 stw_p(buf, val);
3224 l = 2;
3225 } else {
3226 /* 8 bit read access */
3227 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3228 stb_p(buf, val);
3229 l = 1;
3230 }
3231 } else {
3232 /* RAM case */
3233 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3234 (addr & ~TARGET_PAGE_MASK);
3235 memcpy(buf, ptr, l);
3236 }
3237 }
3238 len -= l;
3239 buf += l;
3240 addr += l;
3241 }
3242}
3243
3244/* used for ROM loading : can write in RAM and ROM */
3245void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3246 const uint8_t *buf, int len)
3247{
3248 int l;
3249 uint8_t *ptr;
3250 target_phys_addr_t page;
3251 unsigned long pd;
3252 PhysPageDesc *p;
3253
3254 while (len > 0) {
3255 page = addr & TARGET_PAGE_MASK;
3256 l = (page + TARGET_PAGE_SIZE) - addr;
3257 if (l > len)
3258 l = len;
3259 p = phys_page_find(page >> TARGET_PAGE_BITS);
3260 if (!p) {
3261 pd = IO_MEM_UNASSIGNED;
3262 } else {
3263 pd = p->phys_offset;
3264 }
3265
3266 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3267 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3268 !(pd & IO_MEM_ROMD)) {
3269 /* do nothing */
3270 } else {
3271 unsigned long addr1;
3272 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3273 /* ROM/RAM case */
3274 ptr = qemu_get_ram_ptr(addr1);
3275 memcpy(ptr, buf, l);
3276 }
3277 len -= l;
3278 buf += l;
3279 addr += l;
3280 }
3281}
3282
3283typedef struct {
3284 void *buffer;
3285 target_phys_addr_t addr;
3286 target_phys_addr_t len;
3287} BounceBuffer;
3288
3289static BounceBuffer bounce;
3290
3291typedef struct MapClient {
3292 void *opaque;
3293 void (*callback)(void *opaque);
3294 QLIST_ENTRY(MapClient) link;
3295} MapClient;
3296
3297static QLIST_HEAD(map_client_list, MapClient) map_client_list
3298 = QLIST_HEAD_INITIALIZER(map_client_list);
3299
3300void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3301{
3302 MapClient *client = qemu_malloc(sizeof(*client));
3303
3304 client->opaque = opaque;
3305 client->callback = callback;
3306 QLIST_INSERT_HEAD(&map_client_list, client, link);
3307 return client;
3308}
3309
3310void cpu_unregister_map_client(void *_client)
3311{
3312 MapClient *client = (MapClient *)_client;
3313
3314 QLIST_REMOVE(client, link);
3315 qemu_free(client);
3316}
3317
3318static void cpu_notify_map_clients(void)
3319{
3320 MapClient *client;
3321
3322 while (!QLIST_EMPTY(&map_client_list)) {
3323 client = QLIST_FIRST(&map_client_list);
3324 client->callback(client->opaque);
3325 cpu_unregister_map_client(client);
3326 }
3327}
3328
3329/* Map a physical memory region into a host virtual address.
3330 * May map a subset of the requested range, given by and returned in *plen.
3331 * May return NULL if resources needed to perform the mapping are exhausted.
3332 * Use only for reads OR writes - not for read-modify-write operations.
3333 * Use cpu_register_map_client() to know when retrying the map operation is
3334 * likely to succeed.
3335 */
3336void *cpu_physical_memory_map(target_phys_addr_t addr,
3337 target_phys_addr_t *plen,
3338 int is_write)
3339{
3340 target_phys_addr_t len = *plen;
3341 target_phys_addr_t done = 0;
3342 int l;
3343 uint8_t *ret = NULL;
3344 uint8_t *ptr;
3345 target_phys_addr_t page;
3346 unsigned long pd;
3347 PhysPageDesc *p;
3348 unsigned long addr1;
3349
3350 while (len > 0) {
3351 page = addr & TARGET_PAGE_MASK;
3352 l = (page + TARGET_PAGE_SIZE) - addr;
3353 if (l > len)
3354 l = len;
3355 p = phys_page_find(page >> TARGET_PAGE_BITS);
3356 if (!p) {
3357 pd = IO_MEM_UNASSIGNED;
3358 } else {
3359 pd = p->phys_offset;
3360 }
3361
3362 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3363 if (done || bounce.buffer) {
3364 break;
3365 }
3366 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3367 bounce.addr = addr;
3368 bounce.len = l;
3369 if (!is_write) {
3370 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3371 }
3372 ptr = bounce.buffer;
3373 } else {
3374 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3375 ptr = qemu_get_ram_ptr(addr1);
3376 }
3377 if (!done) {
3378 ret = ptr;
3379 } else if (ret + done != ptr) {
3380 break;
3381 }
3382
3383 len -= l;
3384 addr += l;
3385 done += l;
3386 }
3387 *plen = done;
3388 return ret;
3389}
3390
3391/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3392 * Will also mark the memory as dirty if is_write == 1. access_len gives
3393 * the amount of memory that was actually read or written by the caller.
3394 */
3395void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3396 int is_write, target_phys_addr_t access_len)
3397{
3398 if (buffer != bounce.buffer) {
3399 if (is_write) {
3400 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3401 while (access_len) {
3402 unsigned l;
3403 l = TARGET_PAGE_SIZE;
3404 if (l > access_len)
3405 l = access_len;
3406 if (!cpu_physical_memory_is_dirty(addr1)) {
3407 /* invalidate code */
3408 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3409 /* set dirty bit */
3410 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3411 (0xff & ~CODE_DIRTY_FLAG);
3412 }
3413 addr1 += l;
3414 access_len -= l;
3415 }
3416 }
3417 return;
3418 }
3419 if (is_write) {
3420 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3421 }
3422 qemu_vfree(bounce.buffer);
3423 bounce.buffer = NULL;
3424 cpu_notify_map_clients();
3425}
3426
3427/* warning: addr must be aligned */
3428uint32_t ldl_phys(target_phys_addr_t addr)
3429{
3430 int io_index;
3431 uint8_t *ptr;
3432 uint32_t val;
3433 unsigned long pd;
3434 PhysPageDesc *p;
3435
3436 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3437 if (!p) {
3438 pd = IO_MEM_UNASSIGNED;
3439 } else {
3440 pd = p->phys_offset;
3441 }
3442
3443 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3444 !(pd & IO_MEM_ROMD)) {
3445 /* I/O case */
3446 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3447 if (p)
3448 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3449 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3450 } else {
3451 /* RAM case */
3452 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3453 (addr & ~TARGET_PAGE_MASK);
3454 val = ldl_p(ptr);
3455 }
3456 return val;
3457}
3458
3459/* warning: addr must be aligned */
3460uint64_t ldq_phys(target_phys_addr_t addr)
3461{
3462 int io_index;
3463 uint8_t *ptr;
3464 uint64_t val;
3465 unsigned long pd;
3466 PhysPageDesc *p;
3467
3468 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3469 if (!p) {
3470 pd = IO_MEM_UNASSIGNED;
3471 } else {
3472 pd = p->phys_offset;
3473 }
3474
3475 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3476 !(pd & IO_MEM_ROMD)) {
3477 /* I/O case */
3478 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3479 if (p)
3480 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3481#ifdef TARGET_WORDS_BIGENDIAN
3482 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3483 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3484#else
3485 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3486 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3487#endif
3488 } else {
3489 /* RAM case */
3490 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3491 (addr & ~TARGET_PAGE_MASK);
3492 val = ldq_p(ptr);
3493 }
3494 return val;
3495}
3496
3497/* XXX: optimize */
3498uint32_t ldub_phys(target_phys_addr_t addr)
3499{
3500 uint8_t val;
3501 cpu_physical_memory_read(addr, &val, 1);
3502 return val;
3503}
3504
3505/* XXX: optimize */
3506uint32_t lduw_phys(target_phys_addr_t addr)
3507{
3508 uint16_t val;
3509 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3510 return tswap16(val);
3511}
3512
3513/* warning: addr must be aligned. The ram page is not masked as dirty
3514 and the code inside is not invalidated. It is useful if the dirty
3515 bits are used to track modified PTEs */
3516void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3517{
3518 int io_index;
3519 uint8_t *ptr;
3520 unsigned long pd;
3521 PhysPageDesc *p;
3522
3523 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3524 if (!p) {
3525 pd = IO_MEM_UNASSIGNED;
3526 } else {
3527 pd = p->phys_offset;
3528 }
3529
3530 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3531 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3532 if (p)
3533 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3534 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3535 } else {
3536 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3537 ptr = qemu_get_ram_ptr(addr1);
3538 stl_p(ptr, val);
3539
3540 if (unlikely(in_migration)) {
3541 if (!cpu_physical_memory_is_dirty(addr1)) {
3542 /* invalidate code */
3543 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3544 /* set dirty bit */
3545 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3546 (0xff & ~CODE_DIRTY_FLAG);
3547 }
3548 }
3549 }
3550}
3551
3552void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3553{
3554 int io_index;
3555 uint8_t *ptr;
3556 unsigned long pd;
3557 PhysPageDesc *p;
3558
3559 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3560 if (!p) {
3561 pd = IO_MEM_UNASSIGNED;
3562 } else {
3563 pd = p->phys_offset;
3564 }
3565
3566 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3567 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3568 if (p)
3569 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3570#ifdef TARGET_WORDS_BIGENDIAN
3571 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3572 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3573#else
3574 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3575 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3576#endif
3577 } else {
3578 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3579 (addr & ~TARGET_PAGE_MASK);
3580 stq_p(ptr, val);
3581 }
3582}
3583
3584/* warning: addr must be aligned */
3585void stl_phys(target_phys_addr_t addr, uint32_t val)
3586{
3587 int io_index;
3588 uint8_t *ptr;
3589 unsigned long pd;
3590 PhysPageDesc *p;
3591
3592 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3593 if (!p) {
3594 pd = IO_MEM_UNASSIGNED;
3595 } else {
3596 pd = p->phys_offset;
3597 }
3598
3599 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3600 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3601 if (p)
3602 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3603 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3604 } else {
3605 unsigned long addr1;
3606 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3607 /* RAM case */
3608 ptr = qemu_get_ram_ptr(addr1);
3609 stl_p(ptr, val);
3610 if (!cpu_physical_memory_is_dirty(addr1)) {
3611 /* invalidate code */
3612 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3613 /* set dirty bit */
3614 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3615 (0xff & ~CODE_DIRTY_FLAG);
3616 }
3617 }
3618}
3619
3620/* XXX: optimize */
3621void stb_phys(target_phys_addr_t addr, uint32_t val)
3622{
3623 uint8_t v = val;
3624 cpu_physical_memory_write(addr, &v, 1);
3625}
3626
3627/* XXX: optimize */
3628void stw_phys(target_phys_addr_t addr, uint32_t val)
3629{
3630 uint16_t v = tswap16(val);
3631 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3632}
3633
3634/* XXX: optimize */
3635void stq_phys(target_phys_addr_t addr, uint64_t val)
3636{
3637 val = tswap64(val);
3638 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3639}
3640
3641#endif
3642
3643/* virtual memory access for debug (includes writing to ROM) */
3644int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3645 uint8_t *buf, int len, int is_write)
3646{
3647 int l;
3648 target_phys_addr_t phys_addr;
3649 target_ulong page;
3650
3651 while (len > 0) {
3652 page = addr & TARGET_PAGE_MASK;
3653 phys_addr = cpu_get_phys_page_debug(env, page);
3654 /* if no physical page mapped, return an error */
3655 if (phys_addr == -1)
3656 return -1;
3657 l = (page + TARGET_PAGE_SIZE) - addr;
3658 if (l > len)
3659 l = len;
3660 phys_addr += (addr & ~TARGET_PAGE_MASK);
3661#if !defined(CONFIG_USER_ONLY)
3662 if (is_write)
3663 cpu_physical_memory_write_rom(phys_addr, buf, l);
3664 else
3665#endif
3666 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3667 len -= l;
3668 buf += l;
3669 addr += l;
3670 }
3671 return 0;
3672}
3673
3674/* in deterministic execution mode, instructions doing device I/Os
3675 must be at the end of the TB */
3676void cpu_io_recompile(CPUState *env, void *retaddr)
3677{
3678 TranslationBlock *tb;
3679 uint32_t n, cflags;
3680 target_ulong pc, cs_base;
3681 uint64_t flags;
3682
3683 tb = tb_find_pc((unsigned long)retaddr);
3684 if (!tb) {
3685 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3686 retaddr);
3687 }
3688 n = env->icount_decr.u16.low + tb->icount;
3689 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3690 /* Calculate how many instructions had been executed before the fault
3691 occurred. */
3692 n = n - env->icount_decr.u16.low;
3693 /* Generate a new TB ending on the I/O insn. */
3694 n++;
3695 /* On MIPS and SH, delay slot instructions can only be restarted if
3696 they were already the first instruction in the TB. If this is not
3697 the first instruction in a TB then re-execute the preceding
3698 branch. */
3699#if defined(TARGET_MIPS)
3700 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3701 env->active_tc.PC -= 4;
3702 env->icount_decr.u16.low++;
3703 env->hflags &= ~MIPS_HFLAG_BMASK;
3704 }
3705#elif defined(TARGET_SH4)
3706 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3707 && n > 1) {
3708 env->pc -= 2;
3709 env->icount_decr.u16.low++;
3710 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3711 }
3712#endif
3713 /* This should never happen. */
3714 if (n > CF_COUNT_MASK)
3715 cpu_abort(env, "TB too big during recompile");
3716
3717 cflags = n | CF_LAST_IO;
3718 pc = tb->pc;
3719 cs_base = tb->cs_base;
3720 flags = tb->flags;
3721 tb_phys_invalidate(tb, -1);
3722 /* FIXME: In theory this could raise an exception. In practice
3723 we have already translated the block once so it's probably ok. */
3724 tb_gen_code(env, pc, cs_base, flags, cflags);
3725 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3726 the first in the TB) then we end up generating a whole new TB and
3727 repeating the fault, which is horribly inefficient.
3728 Better would be to execute just this insn uncached, or generate a
3729 second new TB. */
3730 cpu_resume_from_signal(env, NULL);
3731}
3732
3733void dump_exec_info(FILE *f,
3734 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3735{
3736 int i, target_code_size, max_target_code_size;
3737 int direct_jmp_count, direct_jmp2_count, cross_page;
3738 TranslationBlock *tb;
3739
3740 target_code_size = 0;
3741 max_target_code_size = 0;
3742 cross_page = 0;
3743 direct_jmp_count = 0;
3744 direct_jmp2_count = 0;
3745 for(i = 0; i < nb_tbs; i++) {
3746 tb = &tbs[i];
3747 target_code_size += tb->size;
3748 if (tb->size > max_target_code_size)
3749 max_target_code_size = tb->size;
3750 if (tb->page_addr[1] != -1)
3751 cross_page++;
3752 if (tb->tb_next_offset[0] != 0xffff) {
3753 direct_jmp_count++;
3754 if (tb->tb_next_offset[1] != 0xffff) {
3755 direct_jmp2_count++;
3756 }
3757 }
3758 }
3759 /* XXX: avoid using doubles ? */
3760 cpu_fprintf(f, "Translation buffer state:\n");
3761 cpu_fprintf(f, "gen code size %ld/%ld\n",
3762 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3763 cpu_fprintf(f, "TB count %d/%d\n",
3764 nb_tbs, code_gen_max_blocks);
3765 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3766 nb_tbs ? target_code_size / nb_tbs : 0,
3767 max_target_code_size);
3768 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3769 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3770 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3771 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3772 cross_page,
3773 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3774 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3775 direct_jmp_count,
3776 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3777 direct_jmp2_count,
3778 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3779 cpu_fprintf(f, "\nStatistics:\n");
3780 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3781 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3782 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3783 tcg_dump_info(f, cpu_fprintf);
3784}
3785
3786#if !defined(CONFIG_USER_ONLY)
3787
3788#define MMUSUFFIX _cmmu
3789#define GETPC() NULL
3790#define env cpu_single_env
3791#define SOFTMMU_CODE_ACCESS
3792
3793#define SHIFT 0
3794#include "softmmu_template.h"
3795
3796#define SHIFT 1
3797#include "softmmu_template.h"
3798
3799#define SHIFT 2
3800#include "softmmu_template.h"
3801
3802#define SHIFT 3
3803#include "softmmu_template.h"
3804
3805#undef env
3806
3807#endif