]> git.proxmox.com Git - qemu.git/blob - exec.c
59debc9cd8218b9527f0d1b304d12f70f31c1379
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
45 #include "trace.h"
46 #endif
47 #include "exec/cpu-all.h"
48
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
51
52 #include "exec/memory-internal.h"
53
54 //#define DEBUG_SUBPAGE
55
56 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
69
70 #endif
71
72 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
73 /* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
75 DEFINE_TLS(CPUState *, current_cpu);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
79 int use_icount;
80
81 #if !defined(CONFIG_USER_ONLY)
82
83 typedef struct PhysPageEntry PhysPageEntry;
84
85 struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89 };
90
91 typedef PhysPageEntry Node[L2_SIZE];
92
93 struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
96 */
97 PhysPageEntry phys_map;
98 Node *nodes;
99 MemoryRegionSection *sections;
100 AddressSpace *as;
101 };
102
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t {
105 MemoryRegion iomem;
106 AddressSpace *as;
107 hwaddr base;
108 uint16_t sub_section[TARGET_PAGE_SIZE];
109 } subpage_t;
110
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
115
116 typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
119 unsigned nodes_nb;
120 unsigned nodes_nb_alloc;
121 Node *nodes;
122 MemoryRegionSection *sections;
123 } PhysPageMap;
124
125 static PhysPageMap *prev_map;
126 static PhysPageMap next_map;
127
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
129
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr);
133
134 static MemoryRegion io_mem_watch;
135 #endif
136
137 #if !defined(CONFIG_USER_ONLY)
138
139 static void phys_map_node_reserve(unsigned nodes)
140 {
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
143 16);
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
148 }
149 }
150
151 static uint16_t phys_map_node_alloc(void)
152 {
153 unsigned i;
154 uint16_t ret;
155
156 ret = next_map.nodes_nb++;
157 assert(ret != PHYS_MAP_NODE_NIL);
158 assert(ret != next_map.nodes_nb_alloc);
159 for (i = 0; i < L2_SIZE; ++i) {
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
162 }
163 return ret;
164 }
165
166 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
168 int level)
169 {
170 PhysPageEntry *p;
171 int i;
172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
173
174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
175 lp->ptr = phys_map_node_alloc();
176 p = next_map.nodes[lp->ptr];
177 if (level == 0) {
178 for (i = 0; i < L2_SIZE; i++) {
179 p[i].is_leaf = 1;
180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
181 }
182 }
183 } else {
184 p = next_map.nodes[lp->ptr];
185 }
186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
187
188 while (*nb && lp < &p[L2_SIZE]) {
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
190 lp->is_leaf = true;
191 lp->ptr = leaf;
192 *index += step;
193 *nb -= step;
194 } else {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
196 }
197 ++lp;
198 }
199 }
200
201 static void phys_page_set(AddressSpaceDispatch *d,
202 hwaddr index, hwaddr nb,
203 uint16_t leaf)
204 {
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS);
207
208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
209 }
210
211 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
213 {
214 PhysPageEntry *p;
215 int i;
216
217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
219 return &sections[PHYS_SECTION_UNASSIGNED];
220 }
221 p = nodes[lp.ptr];
222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
223 }
224 return &sections[lp.ptr];
225 }
226
227 bool memory_region_is_unassigned(MemoryRegion *mr)
228 {
229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
230 && mr != &io_mem_watch;
231 }
232
233 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
234 hwaddr addr,
235 bool resolve_subpage)
236 {
237 MemoryRegionSection *section;
238 subpage_t *subpage;
239
240 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
241 d->nodes, d->sections);
242 if (resolve_subpage && section->mr->subpage) {
243 subpage = container_of(section->mr, subpage_t, iomem);
244 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
245 }
246 return section;
247 }
248
249 static MemoryRegionSection *
250 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
251 hwaddr *plen, bool resolve_subpage)
252 {
253 MemoryRegionSection *section;
254 Int128 diff;
255
256 section = address_space_lookup_region(d, addr, resolve_subpage);
257 /* Compute offset within MemoryRegionSection */
258 addr -= section->offset_within_address_space;
259
260 /* Compute offset within MemoryRegion */
261 *xlat = addr + section->offset_within_region;
262
263 diff = int128_sub(section->mr->size, int128_make64(addr));
264 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
265 return section;
266 }
267
268 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
269 hwaddr *xlat, hwaddr *plen,
270 bool is_write)
271 {
272 IOMMUTLBEntry iotlb;
273 MemoryRegionSection *section;
274 MemoryRegion *mr;
275 hwaddr len = *plen;
276
277 for (;;) {
278 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
279 mr = section->mr;
280
281 if (!mr->iommu_ops) {
282 break;
283 }
284
285 iotlb = mr->iommu_ops->translate(mr, addr);
286 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
287 | (addr & iotlb.addr_mask));
288 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
289 if (!(iotlb.perm & (1 << is_write))) {
290 mr = &io_mem_unassigned;
291 break;
292 }
293
294 as = iotlb.target_as;
295 }
296
297 *plen = len;
298 *xlat = addr;
299 return mr;
300 }
301
302 MemoryRegionSection *
303 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
304 hwaddr *plen)
305 {
306 MemoryRegionSection *section;
307 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
308
309 assert(!section->mr->iommu_ops);
310 return section;
311 }
312 #endif
313
314 void cpu_exec_init_all(void)
315 {
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list.mutex);
318 memory_map_init();
319 io_mem_init();
320 #endif
321 }
322
323 #if !defined(CONFIG_USER_ONLY)
324
325 static int cpu_common_post_load(void *opaque, int version_id)
326 {
327 CPUState *cpu = opaque;
328
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu->interrupt_request &= ~0x01;
332 tlb_flush(cpu->env_ptr, 1);
333
334 return 0;
335 }
336
337 const VMStateDescription vmstate_cpu_common = {
338 .name = "cpu_common",
339 .version_id = 1,
340 .minimum_version_id = 1,
341 .minimum_version_id_old = 1,
342 .post_load = cpu_common_post_load,
343 .fields = (VMStateField []) {
344 VMSTATE_UINT32(halted, CPUState),
345 VMSTATE_UINT32(interrupt_request, CPUState),
346 VMSTATE_END_OF_LIST()
347 }
348 };
349
350 #endif
351
352 CPUState *qemu_get_cpu(int index)
353 {
354 CPUState *cpu;
355
356 CPU_FOREACH(cpu) {
357 if (cpu->cpu_index == index) {
358 return cpu;
359 }
360 }
361
362 return NULL;
363 }
364
365 void cpu_exec_init(CPUArchState *env)
366 {
367 CPUState *cpu = ENV_GET_CPU(env);
368 CPUClass *cc = CPU_GET_CLASS(cpu);
369 CPUState *some_cpu;
370 int cpu_index;
371
372 #if defined(CONFIG_USER_ONLY)
373 cpu_list_lock();
374 #endif
375 cpu_index = 0;
376 CPU_FOREACH(some_cpu) {
377 cpu_index++;
378 }
379 cpu->cpu_index = cpu_index;
380 cpu->numa_node = 0;
381 QTAILQ_INIT(&env->breakpoints);
382 QTAILQ_INIT(&env->watchpoints);
383 #ifndef CONFIG_USER_ONLY
384 cpu->thread_id = qemu_get_thread_id();
385 #endif
386 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
387 #if defined(CONFIG_USER_ONLY)
388 cpu_list_unlock();
389 #endif
390 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
391 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
392 }
393 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
394 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
395 cpu_save, cpu_load, env);
396 assert(cc->vmsd == NULL);
397 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
398 #endif
399 if (cc->vmsd != NULL) {
400 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
401 }
402 }
403
404 #if defined(TARGET_HAS_ICE)
405 #if defined(CONFIG_USER_ONLY)
406 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
407 {
408 tb_invalidate_phys_page_range(pc, pc + 1, 0);
409 }
410 #else
411 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
412 {
413 tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) |
414 (pc & ~TARGET_PAGE_MASK));
415 }
416 #endif
417 #endif /* TARGET_HAS_ICE */
418
419 #if defined(CONFIG_USER_ONLY)
420 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
421
422 {
423 }
424
425 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
426 int flags, CPUWatchpoint **watchpoint)
427 {
428 return -ENOSYS;
429 }
430 #else
431 /* Add a watchpoint. */
432 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
433 int flags, CPUWatchpoint **watchpoint)
434 {
435 target_ulong len_mask = ~(len - 1);
436 CPUWatchpoint *wp;
437
438 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
439 if ((len & (len - 1)) || (addr & ~len_mask) ||
440 len == 0 || len > TARGET_PAGE_SIZE) {
441 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
442 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
443 return -EINVAL;
444 }
445 wp = g_malloc(sizeof(*wp));
446
447 wp->vaddr = addr;
448 wp->len_mask = len_mask;
449 wp->flags = flags;
450
451 /* keep all GDB-injected watchpoints in front */
452 if (flags & BP_GDB)
453 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
454 else
455 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
456
457 tlb_flush_page(env, addr);
458
459 if (watchpoint)
460 *watchpoint = wp;
461 return 0;
462 }
463
464 /* Remove a specific watchpoint. */
465 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
466 int flags)
467 {
468 target_ulong len_mask = ~(len - 1);
469 CPUWatchpoint *wp;
470
471 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
472 if (addr == wp->vaddr && len_mask == wp->len_mask
473 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
474 cpu_watchpoint_remove_by_ref(env, wp);
475 return 0;
476 }
477 }
478 return -ENOENT;
479 }
480
481 /* Remove a specific watchpoint by reference. */
482 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
483 {
484 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
485
486 tlb_flush_page(env, watchpoint->vaddr);
487
488 g_free(watchpoint);
489 }
490
491 /* Remove all matching watchpoints. */
492 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
493 {
494 CPUWatchpoint *wp, *next;
495
496 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
497 if (wp->flags & mask)
498 cpu_watchpoint_remove_by_ref(env, wp);
499 }
500 }
501 #endif
502
503 /* Add a breakpoint. */
504 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
505 CPUBreakpoint **breakpoint)
506 {
507 #if defined(TARGET_HAS_ICE)
508 CPUBreakpoint *bp;
509
510 bp = g_malloc(sizeof(*bp));
511
512 bp->pc = pc;
513 bp->flags = flags;
514
515 /* keep all GDB-injected breakpoints in front */
516 if (flags & BP_GDB) {
517 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
518 } else {
519 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
520 }
521
522 breakpoint_invalidate(ENV_GET_CPU(env), pc);
523
524 if (breakpoint) {
525 *breakpoint = bp;
526 }
527 return 0;
528 #else
529 return -ENOSYS;
530 #endif
531 }
532
533 /* Remove a specific breakpoint. */
534 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
535 {
536 #if defined(TARGET_HAS_ICE)
537 CPUBreakpoint *bp;
538
539 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
540 if (bp->pc == pc && bp->flags == flags) {
541 cpu_breakpoint_remove_by_ref(env, bp);
542 return 0;
543 }
544 }
545 return -ENOENT;
546 #else
547 return -ENOSYS;
548 #endif
549 }
550
551 /* Remove a specific breakpoint by reference. */
552 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
553 {
554 #if defined(TARGET_HAS_ICE)
555 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
556
557 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
558
559 g_free(breakpoint);
560 #endif
561 }
562
563 /* Remove all matching breakpoints. */
564 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
565 {
566 #if defined(TARGET_HAS_ICE)
567 CPUBreakpoint *bp, *next;
568
569 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
570 if (bp->flags & mask)
571 cpu_breakpoint_remove_by_ref(env, bp);
572 }
573 #endif
574 }
575
576 /* enable or disable single step mode. EXCP_DEBUG is returned by the
577 CPU loop after each instruction */
578 void cpu_single_step(CPUState *cpu, int enabled)
579 {
580 #if defined(TARGET_HAS_ICE)
581 if (cpu->singlestep_enabled != enabled) {
582 cpu->singlestep_enabled = enabled;
583 if (kvm_enabled()) {
584 kvm_update_guest_debug(cpu, 0);
585 } else {
586 /* must flush all the translated code to avoid inconsistencies */
587 /* XXX: only flush what is necessary */
588 CPUArchState *env = cpu->env_ptr;
589 tb_flush(env);
590 }
591 }
592 #endif
593 }
594
595 void cpu_abort(CPUArchState *env, const char *fmt, ...)
596 {
597 CPUState *cpu = ENV_GET_CPU(env);
598 va_list ap;
599 va_list ap2;
600
601 va_start(ap, fmt);
602 va_copy(ap2, ap);
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
610 qemu_log("\n");
611 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
612 qemu_log_flush();
613 qemu_log_close();
614 }
615 va_end(ap2);
616 va_end(ap);
617 #if defined(CONFIG_USER_ONLY)
618 {
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
623 }
624 #endif
625 abort();
626 }
627
628 CPUArchState *cpu_copy(CPUArchState *env)
629 {
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 #if defined(TARGET_HAS_ICE)
632 CPUBreakpoint *bp;
633 CPUWatchpoint *wp;
634 #endif
635
636 /* Reset non arch specific state */
637 cpu_reset(ENV_GET_CPU(new_env));
638
639 /* Copy arch specific state into the new CPU */
640 memcpy(new_env, env, sizeof(CPUArchState));
641
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
647 #if defined(TARGET_HAS_ICE)
648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
650 }
651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
653 wp->flags, NULL);
654 }
655 #endif
656
657 return new_env;
658 }
659
660 #if !defined(CONFIG_USER_ONLY)
661 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
662 uintptr_t length)
663 {
664 uintptr_t start1;
665
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
673 abort();
674 }
675 cpu_tlb_reset_dirty_all(start1, length);
676
677 }
678
679 /* Note: start and end must be within the same ram block. */
680 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
681 int dirty_flags)
682 {
683 uintptr_t length;
684
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
687
688 length = end - start;
689 if (length == 0)
690 return;
691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
692
693 if (tcg_enabled()) {
694 tlb_reset_dirty_range_all(start, end, length);
695 }
696 }
697
698 static int cpu_physical_memory_set_dirty_tracking(int enable)
699 {
700 int ret = 0;
701 in_migration = enable;
702 return ret;
703 }
704
705 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
706 MemoryRegionSection *section,
707 target_ulong vaddr,
708 hwaddr paddr, hwaddr xlat,
709 int prot,
710 target_ulong *address)
711 {
712 hwaddr iotlb;
713 CPUWatchpoint *wp;
714
715 if (memory_region_is_ram(section->mr)) {
716 /* Normal RAM. */
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
718 + xlat;
719 if (!section->readonly) {
720 iotlb |= PHYS_SECTION_NOTDIRTY;
721 } else {
722 iotlb |= PHYS_SECTION_ROM;
723 }
724 } else {
725 iotlb = section - address_space_memory.dispatch->sections;
726 iotlb += xlat;
727 }
728
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = PHYS_SECTION_WATCH + paddr;
736 *address |= TLB_MMIO;
737 break;
738 }
739 }
740 }
741
742 return iotlb;
743 }
744 #endif /* defined(CONFIG_USER_ONLY) */
745
746 #if !defined(CONFIG_USER_ONLY)
747
748 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
749 uint16_t section);
750 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
751
752 static void *(*phys_mem_alloc)(ram_addr_t size) = qemu_anon_ram_alloc;
753
754 /*
755 * Set a custom physical guest memory alloator.
756 * Accelerators with unusual needs may need this. Hopefully, we can
757 * get rid of it eventually.
758 */
759 void phys_mem_set_alloc(void *(*alloc)(ram_addr_t))
760 {
761 phys_mem_alloc = alloc;
762 }
763
764 static uint16_t phys_section_add(MemoryRegionSection *section)
765 {
766 /* The physical section number is ORed with a page-aligned
767 * pointer to produce the iotlb entries. Thus it should
768 * never overflow into the page-aligned value.
769 */
770 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
771
772 if (next_map.sections_nb == next_map.sections_nb_alloc) {
773 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
774 16);
775 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
776 next_map.sections_nb_alloc);
777 }
778 next_map.sections[next_map.sections_nb] = *section;
779 memory_region_ref(section->mr);
780 return next_map.sections_nb++;
781 }
782
783 static void phys_section_destroy(MemoryRegion *mr)
784 {
785 memory_region_unref(mr);
786
787 if (mr->subpage) {
788 subpage_t *subpage = container_of(mr, subpage_t, iomem);
789 memory_region_destroy(&subpage->iomem);
790 g_free(subpage);
791 }
792 }
793
794 static void phys_sections_free(PhysPageMap *map)
795 {
796 while (map->sections_nb > 0) {
797 MemoryRegionSection *section = &map->sections[--map->sections_nb];
798 phys_section_destroy(section->mr);
799 }
800 g_free(map->sections);
801 g_free(map->nodes);
802 g_free(map);
803 }
804
805 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
806 {
807 subpage_t *subpage;
808 hwaddr base = section->offset_within_address_space
809 & TARGET_PAGE_MASK;
810 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
811 next_map.nodes, next_map.sections);
812 MemoryRegionSection subsection = {
813 .offset_within_address_space = base,
814 .size = int128_make64(TARGET_PAGE_SIZE),
815 };
816 hwaddr start, end;
817
818 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
819
820 if (!(existing->mr->subpage)) {
821 subpage = subpage_init(d->as, base);
822 subsection.mr = &subpage->iomem;
823 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
824 phys_section_add(&subsection));
825 } else {
826 subpage = container_of(existing->mr, subpage_t, iomem);
827 }
828 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
829 end = start + int128_get64(section->size) - 1;
830 subpage_register(subpage, start, end, phys_section_add(section));
831 }
832
833
834 static void register_multipage(AddressSpaceDispatch *d,
835 MemoryRegionSection *section)
836 {
837 hwaddr start_addr = section->offset_within_address_space;
838 uint16_t section_index = phys_section_add(section);
839 uint64_t num_pages = int128_get64(int128_rshift(section->size,
840 TARGET_PAGE_BITS));
841
842 assert(num_pages);
843 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
844 }
845
846 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
847 {
848 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
849 AddressSpaceDispatch *d = as->next_dispatch;
850 MemoryRegionSection now = *section, remain = *section;
851 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
852
853 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
854 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
855 - now.offset_within_address_space;
856
857 now.size = int128_min(int128_make64(left), now.size);
858 register_subpage(d, &now);
859 } else {
860 now.size = int128_zero();
861 }
862 while (int128_ne(remain.size, now.size)) {
863 remain.size = int128_sub(remain.size, now.size);
864 remain.offset_within_address_space += int128_get64(now.size);
865 remain.offset_within_region += int128_get64(now.size);
866 now = remain;
867 if (int128_lt(remain.size, page_size)) {
868 register_subpage(d, &now);
869 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
870 now.size = page_size;
871 register_subpage(d, &now);
872 } else {
873 now.size = int128_and(now.size, int128_neg(page_size));
874 register_multipage(d, &now);
875 }
876 }
877 }
878
879 void qemu_flush_coalesced_mmio_buffer(void)
880 {
881 if (kvm_enabled())
882 kvm_flush_coalesced_mmio_buffer();
883 }
884
885 void qemu_mutex_lock_ramlist(void)
886 {
887 qemu_mutex_lock(&ram_list.mutex);
888 }
889
890 void qemu_mutex_unlock_ramlist(void)
891 {
892 qemu_mutex_unlock(&ram_list.mutex);
893 }
894
895 #ifdef __linux__
896
897 #include <sys/vfs.h>
898
899 #define HUGETLBFS_MAGIC 0x958458f6
900
901 static long gethugepagesize(const char *path)
902 {
903 struct statfs fs;
904 int ret;
905
906 do {
907 ret = statfs(path, &fs);
908 } while (ret != 0 && errno == EINTR);
909
910 if (ret != 0) {
911 perror(path);
912 return 0;
913 }
914
915 if (fs.f_type != HUGETLBFS_MAGIC)
916 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
917
918 return fs.f_bsize;
919 }
920
921 static void *file_ram_alloc(RAMBlock *block,
922 ram_addr_t memory,
923 const char *path)
924 {
925 char *filename;
926 char *sanitized_name;
927 char *c;
928 void *area;
929 int fd;
930 #ifdef MAP_POPULATE
931 int flags;
932 #endif
933 unsigned long hpagesize;
934
935 hpagesize = gethugepagesize(path);
936 if (!hpagesize) {
937 return NULL;
938 }
939
940 if (memory < hpagesize) {
941 return NULL;
942 }
943
944 if (kvm_enabled() && !kvm_has_sync_mmu()) {
945 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
946 return NULL;
947 }
948
949 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
950 sanitized_name = g_strdup(block->mr->name);
951 for (c = sanitized_name; *c != '\0'; c++) {
952 if (*c == '/')
953 *c = '_';
954 }
955
956 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
957 sanitized_name);
958 g_free(sanitized_name);
959
960 fd = mkstemp(filename);
961 if (fd < 0) {
962 perror("unable to create backing store for hugepages");
963 g_free(filename);
964 return NULL;
965 }
966 unlink(filename);
967 g_free(filename);
968
969 memory = (memory+hpagesize-1) & ~(hpagesize-1);
970
971 /*
972 * ftruncate is not supported by hugetlbfs in older
973 * hosts, so don't bother bailing out on errors.
974 * If anything goes wrong with it under other filesystems,
975 * mmap will fail.
976 */
977 if (ftruncate(fd, memory))
978 perror("ftruncate");
979
980 #ifdef MAP_POPULATE
981 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
982 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
983 * to sidestep this quirk.
984 */
985 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
986 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
987 #else
988 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
989 #endif
990 if (area == MAP_FAILED) {
991 perror("file_ram_alloc: can't mmap RAM pages");
992 close(fd);
993 return (NULL);
994 }
995 block->fd = fd;
996 return area;
997 }
998 #else
999 static void *file_ram_alloc(RAMBlock *block,
1000 ram_addr_t memory,
1001 const char *path)
1002 {
1003 fprintf(stderr, "-mem-path not supported on this host\n");
1004 exit(1);
1005 }
1006 #endif
1007
1008 static ram_addr_t find_ram_offset(ram_addr_t size)
1009 {
1010 RAMBlock *block, *next_block;
1011 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1012
1013 assert(size != 0); /* it would hand out same offset multiple times */
1014
1015 if (QTAILQ_EMPTY(&ram_list.blocks))
1016 return 0;
1017
1018 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1019 ram_addr_t end, next = RAM_ADDR_MAX;
1020
1021 end = block->offset + block->length;
1022
1023 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1024 if (next_block->offset >= end) {
1025 next = MIN(next, next_block->offset);
1026 }
1027 }
1028 if (next - end >= size && next - end < mingap) {
1029 offset = end;
1030 mingap = next - end;
1031 }
1032 }
1033
1034 if (offset == RAM_ADDR_MAX) {
1035 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1036 (uint64_t)size);
1037 abort();
1038 }
1039
1040 return offset;
1041 }
1042
1043 ram_addr_t last_ram_offset(void)
1044 {
1045 RAMBlock *block;
1046 ram_addr_t last = 0;
1047
1048 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1049 last = MAX(last, block->offset + block->length);
1050
1051 return last;
1052 }
1053
1054 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1055 {
1056 int ret;
1057
1058 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1059 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1060 "dump-guest-core", true)) {
1061 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1062 if (ret) {
1063 perror("qemu_madvise");
1064 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1065 "but dump_guest_core=off specified\n");
1066 }
1067 }
1068 }
1069
1070 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1071 {
1072 RAMBlock *new_block, *block;
1073
1074 new_block = NULL;
1075 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1076 if (block->offset == addr) {
1077 new_block = block;
1078 break;
1079 }
1080 }
1081 assert(new_block);
1082 assert(!new_block->idstr[0]);
1083
1084 if (dev) {
1085 char *id = qdev_get_dev_path(dev);
1086 if (id) {
1087 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1088 g_free(id);
1089 }
1090 }
1091 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1092
1093 /* This assumes the iothread lock is taken here too. */
1094 qemu_mutex_lock_ramlist();
1095 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1096 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1097 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1098 new_block->idstr);
1099 abort();
1100 }
1101 }
1102 qemu_mutex_unlock_ramlist();
1103 }
1104
1105 static int memory_try_enable_merging(void *addr, size_t len)
1106 {
1107 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1108 /* disabled by the user */
1109 return 0;
1110 }
1111
1112 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1113 }
1114
1115 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1116 MemoryRegion *mr)
1117 {
1118 RAMBlock *block, *new_block;
1119
1120 size = TARGET_PAGE_ALIGN(size);
1121 new_block = g_malloc0(sizeof(*new_block));
1122 new_block->fd = -1;
1123
1124 /* This assumes the iothread lock is taken here too. */
1125 qemu_mutex_lock_ramlist();
1126 new_block->mr = mr;
1127 new_block->offset = find_ram_offset(size);
1128 if (host) {
1129 new_block->host = host;
1130 new_block->flags |= RAM_PREALLOC_MASK;
1131 } else if (xen_enabled()) {
1132 if (mem_path) {
1133 fprintf(stderr, "-mem-path not supported with Xen\n");
1134 exit(1);
1135 }
1136 xen_ram_alloc(new_block->offset, size, mr);
1137 } else {
1138 if (mem_path) {
1139 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1140 /*
1141 * file_ram_alloc() needs to allocate just like
1142 * phys_mem_alloc, but we haven't bothered to provide
1143 * a hook there.
1144 */
1145 fprintf(stderr,
1146 "-mem-path not supported with this accelerator\n");
1147 exit(1);
1148 }
1149 new_block->host = file_ram_alloc(new_block, size, mem_path);
1150 }
1151 if (!new_block->host) {
1152 new_block->host = phys_mem_alloc(size);
1153 memory_try_enable_merging(new_block->host, size);
1154 }
1155 }
1156 new_block->length = size;
1157
1158 /* Keep the list sorted from biggest to smallest block. */
1159 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1160 if (block->length < new_block->length) {
1161 break;
1162 }
1163 }
1164 if (block) {
1165 QTAILQ_INSERT_BEFORE(block, new_block, next);
1166 } else {
1167 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1168 }
1169 ram_list.mru_block = NULL;
1170
1171 ram_list.version++;
1172 qemu_mutex_unlock_ramlist();
1173
1174 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1175 last_ram_offset() >> TARGET_PAGE_BITS);
1176 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1177 0, size >> TARGET_PAGE_BITS);
1178 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1179
1180 qemu_ram_setup_dump(new_block->host, size);
1181 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1182
1183 if (kvm_enabled())
1184 kvm_setup_guest_memory(new_block->host, size);
1185
1186 return new_block->offset;
1187 }
1188
1189 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1190 {
1191 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1192 }
1193
1194 void qemu_ram_free_from_ptr(ram_addr_t addr)
1195 {
1196 RAMBlock *block;
1197
1198 /* This assumes the iothread lock is taken here too. */
1199 qemu_mutex_lock_ramlist();
1200 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1201 if (addr == block->offset) {
1202 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1203 ram_list.mru_block = NULL;
1204 ram_list.version++;
1205 g_free(block);
1206 break;
1207 }
1208 }
1209 qemu_mutex_unlock_ramlist();
1210 }
1211
1212 void qemu_ram_free(ram_addr_t addr)
1213 {
1214 RAMBlock *block;
1215
1216 /* This assumes the iothread lock is taken here too. */
1217 qemu_mutex_lock_ramlist();
1218 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1219 if (addr == block->offset) {
1220 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1221 ram_list.mru_block = NULL;
1222 ram_list.version++;
1223 if (block->flags & RAM_PREALLOC_MASK) {
1224 ;
1225 } else if (xen_enabled()) {
1226 xen_invalidate_map_cache_entry(block->host);
1227 } else if (block->fd >= 0) {
1228 munmap(block->host, block->length);
1229 close(block->fd);
1230 } else {
1231 qemu_anon_ram_free(block->host, block->length);
1232 }
1233 g_free(block);
1234 break;
1235 }
1236 }
1237 qemu_mutex_unlock_ramlist();
1238
1239 }
1240
1241 #ifndef _WIN32
1242 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1243 {
1244 RAMBlock *block;
1245 ram_addr_t offset;
1246 int flags;
1247 void *area, *vaddr;
1248
1249 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1250 offset = addr - block->offset;
1251 if (offset < block->length) {
1252 vaddr = block->host + offset;
1253 if (block->flags & RAM_PREALLOC_MASK) {
1254 ;
1255 } else if (xen_enabled()) {
1256 abort();
1257 } else {
1258 flags = MAP_FIXED;
1259 munmap(vaddr, length);
1260 if (block->fd >= 0) {
1261 #ifdef MAP_POPULATE
1262 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1263 MAP_PRIVATE;
1264 #else
1265 flags |= MAP_PRIVATE;
1266 #endif
1267 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1268 flags, block->fd, offset);
1269 } else {
1270 /*
1271 * Remap needs to match alloc. Accelerators that
1272 * set phys_mem_alloc never remap. If they did,
1273 * we'd need a remap hook here.
1274 */
1275 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1276
1277 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1278 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1279 flags, -1, 0);
1280 }
1281 if (area != vaddr) {
1282 fprintf(stderr, "Could not remap addr: "
1283 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1284 length, addr);
1285 exit(1);
1286 }
1287 memory_try_enable_merging(vaddr, length);
1288 qemu_ram_setup_dump(vaddr, length);
1289 }
1290 return;
1291 }
1292 }
1293 }
1294 #endif /* !_WIN32 */
1295
1296 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1297 {
1298 RAMBlock *block;
1299
1300 /* The list is protected by the iothread lock here. */
1301 block = ram_list.mru_block;
1302 if (block && addr - block->offset < block->length) {
1303 goto found;
1304 }
1305 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1306 if (addr - block->offset < block->length) {
1307 goto found;
1308 }
1309 }
1310
1311 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1312 abort();
1313
1314 found:
1315 ram_list.mru_block = block;
1316 return block;
1317 }
1318
1319 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1320 With the exception of the softmmu code in this file, this should
1321 only be used for local memory (e.g. video ram) that the device owns,
1322 and knows it isn't going to access beyond the end of the block.
1323
1324 It should not be used for general purpose DMA.
1325 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1326 */
1327 void *qemu_get_ram_ptr(ram_addr_t addr)
1328 {
1329 RAMBlock *block = qemu_get_ram_block(addr);
1330
1331 if (xen_enabled()) {
1332 /* We need to check if the requested address is in the RAM
1333 * because we don't want to map the entire memory in QEMU.
1334 * In that case just map until the end of the page.
1335 */
1336 if (block->offset == 0) {
1337 return xen_map_cache(addr, 0, 0);
1338 } else if (block->host == NULL) {
1339 block->host =
1340 xen_map_cache(block->offset, block->length, 1);
1341 }
1342 }
1343 return block->host + (addr - block->offset);
1344 }
1345
1346 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1347 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1348 *
1349 * ??? Is this still necessary?
1350 */
1351 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1352 {
1353 RAMBlock *block;
1354
1355 /* The list is protected by the iothread lock here. */
1356 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1357 if (addr - block->offset < block->length) {
1358 if (xen_enabled()) {
1359 /* We need to check if the requested address is in the RAM
1360 * because we don't want to map the entire memory in QEMU.
1361 * In that case just map until the end of the page.
1362 */
1363 if (block->offset == 0) {
1364 return xen_map_cache(addr, 0, 0);
1365 } else if (block->host == NULL) {
1366 block->host =
1367 xen_map_cache(block->offset, block->length, 1);
1368 }
1369 }
1370 return block->host + (addr - block->offset);
1371 }
1372 }
1373
1374 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1375 abort();
1376
1377 return NULL;
1378 }
1379
1380 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1381 * but takes a size argument */
1382 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1383 {
1384 if (*size == 0) {
1385 return NULL;
1386 }
1387 if (xen_enabled()) {
1388 return xen_map_cache(addr, *size, 1);
1389 } else {
1390 RAMBlock *block;
1391
1392 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1393 if (addr - block->offset < block->length) {
1394 if (addr - block->offset + *size > block->length)
1395 *size = block->length - addr + block->offset;
1396 return block->host + (addr - block->offset);
1397 }
1398 }
1399
1400 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1401 abort();
1402 }
1403 }
1404
1405 /* Some of the softmmu routines need to translate from a host pointer
1406 (typically a TLB entry) back to a ram offset. */
1407 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1408 {
1409 RAMBlock *block;
1410 uint8_t *host = ptr;
1411
1412 if (xen_enabled()) {
1413 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1414 return qemu_get_ram_block(*ram_addr)->mr;
1415 }
1416
1417 block = ram_list.mru_block;
1418 if (block && block->host && host - block->host < block->length) {
1419 goto found;
1420 }
1421
1422 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1423 /* This case append when the block is not mapped. */
1424 if (block->host == NULL) {
1425 continue;
1426 }
1427 if (host - block->host < block->length) {
1428 goto found;
1429 }
1430 }
1431
1432 return NULL;
1433
1434 found:
1435 *ram_addr = block->offset + (host - block->host);
1436 return block->mr;
1437 }
1438
1439 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1440 uint64_t val, unsigned size)
1441 {
1442 int dirty_flags;
1443 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1444 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1445 tb_invalidate_phys_page_fast(ram_addr, size);
1446 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1447 }
1448 switch (size) {
1449 case 1:
1450 stb_p(qemu_get_ram_ptr(ram_addr), val);
1451 break;
1452 case 2:
1453 stw_p(qemu_get_ram_ptr(ram_addr), val);
1454 break;
1455 case 4:
1456 stl_p(qemu_get_ram_ptr(ram_addr), val);
1457 break;
1458 default:
1459 abort();
1460 }
1461 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1462 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1463 /* we remove the notdirty callback only if the code has been
1464 flushed */
1465 if (dirty_flags == 0xff) {
1466 CPUArchState *env = current_cpu->env_ptr;
1467 tlb_set_dirty(env, env->mem_io_vaddr);
1468 }
1469 }
1470
1471 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1472 unsigned size, bool is_write)
1473 {
1474 return is_write;
1475 }
1476
1477 static const MemoryRegionOps notdirty_mem_ops = {
1478 .write = notdirty_mem_write,
1479 .valid.accepts = notdirty_mem_accepts,
1480 .endianness = DEVICE_NATIVE_ENDIAN,
1481 };
1482
1483 /* Generate a debug exception if a watchpoint has been hit. */
1484 static void check_watchpoint(int offset, int len_mask, int flags)
1485 {
1486 CPUArchState *env = current_cpu->env_ptr;
1487 target_ulong pc, cs_base;
1488 target_ulong vaddr;
1489 CPUWatchpoint *wp;
1490 int cpu_flags;
1491
1492 if (env->watchpoint_hit) {
1493 /* We re-entered the check after replacing the TB. Now raise
1494 * the debug interrupt so that is will trigger after the
1495 * current instruction. */
1496 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1497 return;
1498 }
1499 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1500 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1501 if ((vaddr == (wp->vaddr & len_mask) ||
1502 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1503 wp->flags |= BP_WATCHPOINT_HIT;
1504 if (!env->watchpoint_hit) {
1505 env->watchpoint_hit = wp;
1506 tb_check_watchpoint(env);
1507 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1508 env->exception_index = EXCP_DEBUG;
1509 cpu_loop_exit(env);
1510 } else {
1511 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1512 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1513 cpu_resume_from_signal(env, NULL);
1514 }
1515 }
1516 } else {
1517 wp->flags &= ~BP_WATCHPOINT_HIT;
1518 }
1519 }
1520 }
1521
1522 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1523 so these check for a hit then pass through to the normal out-of-line
1524 phys routines. */
1525 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1526 unsigned size)
1527 {
1528 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1529 switch (size) {
1530 case 1: return ldub_phys(addr);
1531 case 2: return lduw_phys(addr);
1532 case 4: return ldl_phys(addr);
1533 default: abort();
1534 }
1535 }
1536
1537 static void watch_mem_write(void *opaque, hwaddr addr,
1538 uint64_t val, unsigned size)
1539 {
1540 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1541 switch (size) {
1542 case 1:
1543 stb_phys(addr, val);
1544 break;
1545 case 2:
1546 stw_phys(addr, val);
1547 break;
1548 case 4:
1549 stl_phys(addr, val);
1550 break;
1551 default: abort();
1552 }
1553 }
1554
1555 static const MemoryRegionOps watch_mem_ops = {
1556 .read = watch_mem_read,
1557 .write = watch_mem_write,
1558 .endianness = DEVICE_NATIVE_ENDIAN,
1559 };
1560
1561 static uint64_t subpage_read(void *opaque, hwaddr addr,
1562 unsigned len)
1563 {
1564 subpage_t *subpage = opaque;
1565 uint8_t buf[4];
1566
1567 #if defined(DEBUG_SUBPAGE)
1568 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1569 subpage, len, addr);
1570 #endif
1571 address_space_read(subpage->as, addr + subpage->base, buf, len);
1572 switch (len) {
1573 case 1:
1574 return ldub_p(buf);
1575 case 2:
1576 return lduw_p(buf);
1577 case 4:
1578 return ldl_p(buf);
1579 default:
1580 abort();
1581 }
1582 }
1583
1584 static void subpage_write(void *opaque, hwaddr addr,
1585 uint64_t value, unsigned len)
1586 {
1587 subpage_t *subpage = opaque;
1588 uint8_t buf[4];
1589
1590 #if defined(DEBUG_SUBPAGE)
1591 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1592 " value %"PRIx64"\n",
1593 __func__, subpage, len, addr, value);
1594 #endif
1595 switch (len) {
1596 case 1:
1597 stb_p(buf, value);
1598 break;
1599 case 2:
1600 stw_p(buf, value);
1601 break;
1602 case 4:
1603 stl_p(buf, value);
1604 break;
1605 default:
1606 abort();
1607 }
1608 address_space_write(subpage->as, addr + subpage->base, buf, len);
1609 }
1610
1611 static bool subpage_accepts(void *opaque, hwaddr addr,
1612 unsigned size, bool is_write)
1613 {
1614 subpage_t *subpage = opaque;
1615 #if defined(DEBUG_SUBPAGE)
1616 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1617 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1618 #endif
1619
1620 return address_space_access_valid(subpage->as, addr + subpage->base,
1621 size, is_write);
1622 }
1623
1624 static const MemoryRegionOps subpage_ops = {
1625 .read = subpage_read,
1626 .write = subpage_write,
1627 .valid.accepts = subpage_accepts,
1628 .endianness = DEVICE_NATIVE_ENDIAN,
1629 };
1630
1631 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1632 uint16_t section)
1633 {
1634 int idx, eidx;
1635
1636 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1637 return -1;
1638 idx = SUBPAGE_IDX(start);
1639 eidx = SUBPAGE_IDX(end);
1640 #if defined(DEBUG_SUBPAGE)
1641 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1642 mmio, start, end, idx, eidx, memory);
1643 #endif
1644 for (; idx <= eidx; idx++) {
1645 mmio->sub_section[idx] = section;
1646 }
1647
1648 return 0;
1649 }
1650
1651 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1652 {
1653 subpage_t *mmio;
1654
1655 mmio = g_malloc0(sizeof(subpage_t));
1656
1657 mmio->as = as;
1658 mmio->base = base;
1659 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1660 "subpage", TARGET_PAGE_SIZE);
1661 mmio->iomem.subpage = true;
1662 #if defined(DEBUG_SUBPAGE)
1663 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1664 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1665 #endif
1666 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1667
1668 return mmio;
1669 }
1670
1671 static uint16_t dummy_section(MemoryRegion *mr)
1672 {
1673 MemoryRegionSection section = {
1674 .mr = mr,
1675 .offset_within_address_space = 0,
1676 .offset_within_region = 0,
1677 .size = int128_2_64(),
1678 };
1679
1680 return phys_section_add(&section);
1681 }
1682
1683 MemoryRegion *iotlb_to_region(hwaddr index)
1684 {
1685 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
1686 }
1687
1688 static void io_mem_init(void)
1689 {
1690 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1691 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1692 "unassigned", UINT64_MAX);
1693 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1694 "notdirty", UINT64_MAX);
1695 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1696 "watch", UINT64_MAX);
1697 }
1698
1699 static void mem_begin(MemoryListener *listener)
1700 {
1701 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1702 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1703
1704 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1705 d->as = as;
1706 as->next_dispatch = d;
1707 }
1708
1709 static void mem_commit(MemoryListener *listener)
1710 {
1711 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1712 AddressSpaceDispatch *cur = as->dispatch;
1713 AddressSpaceDispatch *next = as->next_dispatch;
1714
1715 next->nodes = next_map.nodes;
1716 next->sections = next_map.sections;
1717
1718 as->dispatch = next;
1719 g_free(cur);
1720 }
1721
1722 static void core_begin(MemoryListener *listener)
1723 {
1724 uint16_t n;
1725
1726 prev_map = g_new(PhysPageMap, 1);
1727 *prev_map = next_map;
1728
1729 memset(&next_map, 0, sizeof(next_map));
1730 n = dummy_section(&io_mem_unassigned);
1731 assert(n == PHYS_SECTION_UNASSIGNED);
1732 n = dummy_section(&io_mem_notdirty);
1733 assert(n == PHYS_SECTION_NOTDIRTY);
1734 n = dummy_section(&io_mem_rom);
1735 assert(n == PHYS_SECTION_ROM);
1736 n = dummy_section(&io_mem_watch);
1737 assert(n == PHYS_SECTION_WATCH);
1738 }
1739
1740 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1741 * All AddressSpaceDispatch instances have switched to the next map.
1742 */
1743 static void core_commit(MemoryListener *listener)
1744 {
1745 phys_sections_free(prev_map);
1746 }
1747
1748 static void tcg_commit(MemoryListener *listener)
1749 {
1750 CPUState *cpu;
1751
1752 /* since each CPU stores ram addresses in its TLB cache, we must
1753 reset the modified entries */
1754 /* XXX: slow ! */
1755 CPU_FOREACH(cpu) {
1756 CPUArchState *env = cpu->env_ptr;
1757
1758 tlb_flush(env, 1);
1759 }
1760 }
1761
1762 static void core_log_global_start(MemoryListener *listener)
1763 {
1764 cpu_physical_memory_set_dirty_tracking(1);
1765 }
1766
1767 static void core_log_global_stop(MemoryListener *listener)
1768 {
1769 cpu_physical_memory_set_dirty_tracking(0);
1770 }
1771
1772 static MemoryListener core_memory_listener = {
1773 .begin = core_begin,
1774 .commit = core_commit,
1775 .log_global_start = core_log_global_start,
1776 .log_global_stop = core_log_global_stop,
1777 .priority = 1,
1778 };
1779
1780 static MemoryListener tcg_memory_listener = {
1781 .commit = tcg_commit,
1782 };
1783
1784 void address_space_init_dispatch(AddressSpace *as)
1785 {
1786 as->dispatch = NULL;
1787 as->dispatch_listener = (MemoryListener) {
1788 .begin = mem_begin,
1789 .commit = mem_commit,
1790 .region_add = mem_add,
1791 .region_nop = mem_add,
1792 .priority = 0,
1793 };
1794 memory_listener_register(&as->dispatch_listener, as);
1795 }
1796
1797 void address_space_destroy_dispatch(AddressSpace *as)
1798 {
1799 AddressSpaceDispatch *d = as->dispatch;
1800
1801 memory_listener_unregister(&as->dispatch_listener);
1802 g_free(d);
1803 as->dispatch = NULL;
1804 }
1805
1806 static void memory_map_init(void)
1807 {
1808 system_memory = g_malloc(sizeof(*system_memory));
1809 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1810 address_space_init(&address_space_memory, system_memory, "memory");
1811
1812 system_io = g_malloc(sizeof(*system_io));
1813 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1814 65536);
1815 address_space_init(&address_space_io, system_io, "I/O");
1816
1817 memory_listener_register(&core_memory_listener, &address_space_memory);
1818 if (tcg_enabled()) {
1819 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1820 }
1821 }
1822
1823 MemoryRegion *get_system_memory(void)
1824 {
1825 return system_memory;
1826 }
1827
1828 MemoryRegion *get_system_io(void)
1829 {
1830 return system_io;
1831 }
1832
1833 #endif /* !defined(CONFIG_USER_ONLY) */
1834
1835 /* physical memory access (slow version, mainly for debug) */
1836 #if defined(CONFIG_USER_ONLY)
1837 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
1838 uint8_t *buf, int len, int is_write)
1839 {
1840 int l, flags;
1841 target_ulong page;
1842 void * p;
1843
1844 while (len > 0) {
1845 page = addr & TARGET_PAGE_MASK;
1846 l = (page + TARGET_PAGE_SIZE) - addr;
1847 if (l > len)
1848 l = len;
1849 flags = page_get_flags(page);
1850 if (!(flags & PAGE_VALID))
1851 return -1;
1852 if (is_write) {
1853 if (!(flags & PAGE_WRITE))
1854 return -1;
1855 /* XXX: this code should not depend on lock_user */
1856 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1857 return -1;
1858 memcpy(p, buf, l);
1859 unlock_user(p, addr, l);
1860 } else {
1861 if (!(flags & PAGE_READ))
1862 return -1;
1863 /* XXX: this code should not depend on lock_user */
1864 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1865 return -1;
1866 memcpy(buf, p, l);
1867 unlock_user(p, addr, 0);
1868 }
1869 len -= l;
1870 buf += l;
1871 addr += l;
1872 }
1873 return 0;
1874 }
1875
1876 #else
1877
1878 static void invalidate_and_set_dirty(hwaddr addr,
1879 hwaddr length)
1880 {
1881 if (!cpu_physical_memory_is_dirty(addr)) {
1882 /* invalidate code */
1883 tb_invalidate_phys_page_range(addr, addr + length, 0);
1884 /* set dirty bit */
1885 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1886 }
1887 xen_modified_memory(addr, length);
1888 }
1889
1890 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1891 {
1892 if (memory_region_is_ram(mr)) {
1893 return !(is_write && mr->readonly);
1894 }
1895 if (memory_region_is_romd(mr)) {
1896 return !is_write;
1897 }
1898
1899 return false;
1900 }
1901
1902 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
1903 {
1904 unsigned access_size_max = mr->ops->valid.max_access_size;
1905
1906 /* Regions are assumed to support 1-4 byte accesses unless
1907 otherwise specified. */
1908 if (access_size_max == 0) {
1909 access_size_max = 4;
1910 }
1911
1912 /* Bound the maximum access by the alignment of the address. */
1913 if (!mr->ops->impl.unaligned) {
1914 unsigned align_size_max = addr & -addr;
1915 if (align_size_max != 0 && align_size_max < access_size_max) {
1916 access_size_max = align_size_max;
1917 }
1918 }
1919
1920 /* Don't attempt accesses larger than the maximum. */
1921 if (l > access_size_max) {
1922 l = access_size_max;
1923 }
1924 if (l & (l - 1)) {
1925 l = 1 << (qemu_fls(l) - 1);
1926 }
1927
1928 return l;
1929 }
1930
1931 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1932 int len, bool is_write)
1933 {
1934 hwaddr l;
1935 uint8_t *ptr;
1936 uint64_t val;
1937 hwaddr addr1;
1938 MemoryRegion *mr;
1939 bool error = false;
1940
1941 while (len > 0) {
1942 l = len;
1943 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1944
1945 if (is_write) {
1946 if (!memory_access_is_direct(mr, is_write)) {
1947 l = memory_access_size(mr, l, addr1);
1948 /* XXX: could force current_cpu to NULL to avoid
1949 potential bugs */
1950 switch (l) {
1951 case 8:
1952 /* 64 bit write access */
1953 val = ldq_p(buf);
1954 error |= io_mem_write(mr, addr1, val, 8);
1955 break;
1956 case 4:
1957 /* 32 bit write access */
1958 val = ldl_p(buf);
1959 error |= io_mem_write(mr, addr1, val, 4);
1960 break;
1961 case 2:
1962 /* 16 bit write access */
1963 val = lduw_p(buf);
1964 error |= io_mem_write(mr, addr1, val, 2);
1965 break;
1966 case 1:
1967 /* 8 bit write access */
1968 val = ldub_p(buf);
1969 error |= io_mem_write(mr, addr1, val, 1);
1970 break;
1971 default:
1972 abort();
1973 }
1974 } else {
1975 addr1 += memory_region_get_ram_addr(mr);
1976 /* RAM case */
1977 ptr = qemu_get_ram_ptr(addr1);
1978 memcpy(ptr, buf, l);
1979 invalidate_and_set_dirty(addr1, l);
1980 }
1981 } else {
1982 if (!memory_access_is_direct(mr, is_write)) {
1983 /* I/O case */
1984 l = memory_access_size(mr, l, addr1);
1985 switch (l) {
1986 case 8:
1987 /* 64 bit read access */
1988 error |= io_mem_read(mr, addr1, &val, 8);
1989 stq_p(buf, val);
1990 break;
1991 case 4:
1992 /* 32 bit read access */
1993 error |= io_mem_read(mr, addr1, &val, 4);
1994 stl_p(buf, val);
1995 break;
1996 case 2:
1997 /* 16 bit read access */
1998 error |= io_mem_read(mr, addr1, &val, 2);
1999 stw_p(buf, val);
2000 break;
2001 case 1:
2002 /* 8 bit read access */
2003 error |= io_mem_read(mr, addr1, &val, 1);
2004 stb_p(buf, val);
2005 break;
2006 default:
2007 abort();
2008 }
2009 } else {
2010 /* RAM case */
2011 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2012 memcpy(buf, ptr, l);
2013 }
2014 }
2015 len -= l;
2016 buf += l;
2017 addr += l;
2018 }
2019
2020 return error;
2021 }
2022
2023 bool address_space_write(AddressSpace *as, hwaddr addr,
2024 const uint8_t *buf, int len)
2025 {
2026 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
2027 }
2028
2029 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
2030 {
2031 return address_space_rw(as, addr, buf, len, false);
2032 }
2033
2034
2035 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2036 int len, int is_write)
2037 {
2038 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2039 }
2040
2041 /* used for ROM loading : can write in RAM and ROM */
2042 void cpu_physical_memory_write_rom(hwaddr addr,
2043 const uint8_t *buf, int len)
2044 {
2045 hwaddr l;
2046 uint8_t *ptr;
2047 hwaddr addr1;
2048 MemoryRegion *mr;
2049
2050 while (len > 0) {
2051 l = len;
2052 mr = address_space_translate(&address_space_memory,
2053 addr, &addr1, &l, true);
2054
2055 if (!(memory_region_is_ram(mr) ||
2056 memory_region_is_romd(mr))) {
2057 /* do nothing */
2058 } else {
2059 addr1 += memory_region_get_ram_addr(mr);
2060 /* ROM/RAM case */
2061 ptr = qemu_get_ram_ptr(addr1);
2062 memcpy(ptr, buf, l);
2063 invalidate_and_set_dirty(addr1, l);
2064 }
2065 len -= l;
2066 buf += l;
2067 addr += l;
2068 }
2069 }
2070
2071 typedef struct {
2072 MemoryRegion *mr;
2073 void *buffer;
2074 hwaddr addr;
2075 hwaddr len;
2076 } BounceBuffer;
2077
2078 static BounceBuffer bounce;
2079
2080 typedef struct MapClient {
2081 void *opaque;
2082 void (*callback)(void *opaque);
2083 QLIST_ENTRY(MapClient) link;
2084 } MapClient;
2085
2086 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2087 = QLIST_HEAD_INITIALIZER(map_client_list);
2088
2089 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2090 {
2091 MapClient *client = g_malloc(sizeof(*client));
2092
2093 client->opaque = opaque;
2094 client->callback = callback;
2095 QLIST_INSERT_HEAD(&map_client_list, client, link);
2096 return client;
2097 }
2098
2099 static void cpu_unregister_map_client(void *_client)
2100 {
2101 MapClient *client = (MapClient *)_client;
2102
2103 QLIST_REMOVE(client, link);
2104 g_free(client);
2105 }
2106
2107 static void cpu_notify_map_clients(void)
2108 {
2109 MapClient *client;
2110
2111 while (!QLIST_EMPTY(&map_client_list)) {
2112 client = QLIST_FIRST(&map_client_list);
2113 client->callback(client->opaque);
2114 cpu_unregister_map_client(client);
2115 }
2116 }
2117
2118 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2119 {
2120 MemoryRegion *mr;
2121 hwaddr l, xlat;
2122
2123 while (len > 0) {
2124 l = len;
2125 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2126 if (!memory_access_is_direct(mr, is_write)) {
2127 l = memory_access_size(mr, l, addr);
2128 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2129 return false;
2130 }
2131 }
2132
2133 len -= l;
2134 addr += l;
2135 }
2136 return true;
2137 }
2138
2139 /* Map a physical memory region into a host virtual address.
2140 * May map a subset of the requested range, given by and returned in *plen.
2141 * May return NULL if resources needed to perform the mapping are exhausted.
2142 * Use only for reads OR writes - not for read-modify-write operations.
2143 * Use cpu_register_map_client() to know when retrying the map operation is
2144 * likely to succeed.
2145 */
2146 void *address_space_map(AddressSpace *as,
2147 hwaddr addr,
2148 hwaddr *plen,
2149 bool is_write)
2150 {
2151 hwaddr len = *plen;
2152 hwaddr done = 0;
2153 hwaddr l, xlat, base;
2154 MemoryRegion *mr, *this_mr;
2155 ram_addr_t raddr;
2156
2157 if (len == 0) {
2158 return NULL;
2159 }
2160
2161 l = len;
2162 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2163 if (!memory_access_is_direct(mr, is_write)) {
2164 if (bounce.buffer) {
2165 return NULL;
2166 }
2167 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2168 bounce.addr = addr;
2169 bounce.len = l;
2170
2171 memory_region_ref(mr);
2172 bounce.mr = mr;
2173 if (!is_write) {
2174 address_space_read(as, addr, bounce.buffer, l);
2175 }
2176
2177 *plen = l;
2178 return bounce.buffer;
2179 }
2180
2181 base = xlat;
2182 raddr = memory_region_get_ram_addr(mr);
2183
2184 for (;;) {
2185 len -= l;
2186 addr += l;
2187 done += l;
2188 if (len == 0) {
2189 break;
2190 }
2191
2192 l = len;
2193 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2194 if (this_mr != mr || xlat != base + done) {
2195 break;
2196 }
2197 }
2198
2199 memory_region_ref(mr);
2200 *plen = done;
2201 return qemu_ram_ptr_length(raddr + base, plen);
2202 }
2203
2204 /* Unmaps a memory region previously mapped by address_space_map().
2205 * Will also mark the memory as dirty if is_write == 1. access_len gives
2206 * the amount of memory that was actually read or written by the caller.
2207 */
2208 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2209 int is_write, hwaddr access_len)
2210 {
2211 if (buffer != bounce.buffer) {
2212 MemoryRegion *mr;
2213 ram_addr_t addr1;
2214
2215 mr = qemu_ram_addr_from_host(buffer, &addr1);
2216 assert(mr != NULL);
2217 if (is_write) {
2218 while (access_len) {
2219 unsigned l;
2220 l = TARGET_PAGE_SIZE;
2221 if (l > access_len)
2222 l = access_len;
2223 invalidate_and_set_dirty(addr1, l);
2224 addr1 += l;
2225 access_len -= l;
2226 }
2227 }
2228 if (xen_enabled()) {
2229 xen_invalidate_map_cache_entry(buffer);
2230 }
2231 memory_region_unref(mr);
2232 return;
2233 }
2234 if (is_write) {
2235 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2236 }
2237 qemu_vfree(bounce.buffer);
2238 bounce.buffer = NULL;
2239 memory_region_unref(bounce.mr);
2240 cpu_notify_map_clients();
2241 }
2242
2243 void *cpu_physical_memory_map(hwaddr addr,
2244 hwaddr *plen,
2245 int is_write)
2246 {
2247 return address_space_map(&address_space_memory, addr, plen, is_write);
2248 }
2249
2250 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2251 int is_write, hwaddr access_len)
2252 {
2253 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2254 }
2255
2256 /* warning: addr must be aligned */
2257 static inline uint32_t ldl_phys_internal(hwaddr addr,
2258 enum device_endian endian)
2259 {
2260 uint8_t *ptr;
2261 uint64_t val;
2262 MemoryRegion *mr;
2263 hwaddr l = 4;
2264 hwaddr addr1;
2265
2266 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2267 false);
2268 if (l < 4 || !memory_access_is_direct(mr, false)) {
2269 /* I/O case */
2270 io_mem_read(mr, addr1, &val, 4);
2271 #if defined(TARGET_WORDS_BIGENDIAN)
2272 if (endian == DEVICE_LITTLE_ENDIAN) {
2273 val = bswap32(val);
2274 }
2275 #else
2276 if (endian == DEVICE_BIG_ENDIAN) {
2277 val = bswap32(val);
2278 }
2279 #endif
2280 } else {
2281 /* RAM case */
2282 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2283 & TARGET_PAGE_MASK)
2284 + addr1);
2285 switch (endian) {
2286 case DEVICE_LITTLE_ENDIAN:
2287 val = ldl_le_p(ptr);
2288 break;
2289 case DEVICE_BIG_ENDIAN:
2290 val = ldl_be_p(ptr);
2291 break;
2292 default:
2293 val = ldl_p(ptr);
2294 break;
2295 }
2296 }
2297 return val;
2298 }
2299
2300 uint32_t ldl_phys(hwaddr addr)
2301 {
2302 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2303 }
2304
2305 uint32_t ldl_le_phys(hwaddr addr)
2306 {
2307 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2308 }
2309
2310 uint32_t ldl_be_phys(hwaddr addr)
2311 {
2312 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2313 }
2314
2315 /* warning: addr must be aligned */
2316 static inline uint64_t ldq_phys_internal(hwaddr addr,
2317 enum device_endian endian)
2318 {
2319 uint8_t *ptr;
2320 uint64_t val;
2321 MemoryRegion *mr;
2322 hwaddr l = 8;
2323 hwaddr addr1;
2324
2325 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2326 false);
2327 if (l < 8 || !memory_access_is_direct(mr, false)) {
2328 /* I/O case */
2329 io_mem_read(mr, addr1, &val, 8);
2330 #if defined(TARGET_WORDS_BIGENDIAN)
2331 if (endian == DEVICE_LITTLE_ENDIAN) {
2332 val = bswap64(val);
2333 }
2334 #else
2335 if (endian == DEVICE_BIG_ENDIAN) {
2336 val = bswap64(val);
2337 }
2338 #endif
2339 } else {
2340 /* RAM case */
2341 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2342 & TARGET_PAGE_MASK)
2343 + addr1);
2344 switch (endian) {
2345 case DEVICE_LITTLE_ENDIAN:
2346 val = ldq_le_p(ptr);
2347 break;
2348 case DEVICE_BIG_ENDIAN:
2349 val = ldq_be_p(ptr);
2350 break;
2351 default:
2352 val = ldq_p(ptr);
2353 break;
2354 }
2355 }
2356 return val;
2357 }
2358
2359 uint64_t ldq_phys(hwaddr addr)
2360 {
2361 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2362 }
2363
2364 uint64_t ldq_le_phys(hwaddr addr)
2365 {
2366 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2367 }
2368
2369 uint64_t ldq_be_phys(hwaddr addr)
2370 {
2371 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2372 }
2373
2374 /* XXX: optimize */
2375 uint32_t ldub_phys(hwaddr addr)
2376 {
2377 uint8_t val;
2378 cpu_physical_memory_read(addr, &val, 1);
2379 return val;
2380 }
2381
2382 /* warning: addr must be aligned */
2383 static inline uint32_t lduw_phys_internal(hwaddr addr,
2384 enum device_endian endian)
2385 {
2386 uint8_t *ptr;
2387 uint64_t val;
2388 MemoryRegion *mr;
2389 hwaddr l = 2;
2390 hwaddr addr1;
2391
2392 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2393 false);
2394 if (l < 2 || !memory_access_is_direct(mr, false)) {
2395 /* I/O case */
2396 io_mem_read(mr, addr1, &val, 2);
2397 #if defined(TARGET_WORDS_BIGENDIAN)
2398 if (endian == DEVICE_LITTLE_ENDIAN) {
2399 val = bswap16(val);
2400 }
2401 #else
2402 if (endian == DEVICE_BIG_ENDIAN) {
2403 val = bswap16(val);
2404 }
2405 #endif
2406 } else {
2407 /* RAM case */
2408 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2409 & TARGET_PAGE_MASK)
2410 + addr1);
2411 switch (endian) {
2412 case DEVICE_LITTLE_ENDIAN:
2413 val = lduw_le_p(ptr);
2414 break;
2415 case DEVICE_BIG_ENDIAN:
2416 val = lduw_be_p(ptr);
2417 break;
2418 default:
2419 val = lduw_p(ptr);
2420 break;
2421 }
2422 }
2423 return val;
2424 }
2425
2426 uint32_t lduw_phys(hwaddr addr)
2427 {
2428 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2429 }
2430
2431 uint32_t lduw_le_phys(hwaddr addr)
2432 {
2433 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2434 }
2435
2436 uint32_t lduw_be_phys(hwaddr addr)
2437 {
2438 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2439 }
2440
2441 /* warning: addr must be aligned. The ram page is not masked as dirty
2442 and the code inside is not invalidated. It is useful if the dirty
2443 bits are used to track modified PTEs */
2444 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2445 {
2446 uint8_t *ptr;
2447 MemoryRegion *mr;
2448 hwaddr l = 4;
2449 hwaddr addr1;
2450
2451 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2452 true);
2453 if (l < 4 || !memory_access_is_direct(mr, true)) {
2454 io_mem_write(mr, addr1, val, 4);
2455 } else {
2456 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2457 ptr = qemu_get_ram_ptr(addr1);
2458 stl_p(ptr, val);
2459
2460 if (unlikely(in_migration)) {
2461 if (!cpu_physical_memory_is_dirty(addr1)) {
2462 /* invalidate code */
2463 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2464 /* set dirty bit */
2465 cpu_physical_memory_set_dirty_flags(
2466 addr1, (0xff & ~CODE_DIRTY_FLAG));
2467 }
2468 }
2469 }
2470 }
2471
2472 /* warning: addr must be aligned */
2473 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2474 enum device_endian endian)
2475 {
2476 uint8_t *ptr;
2477 MemoryRegion *mr;
2478 hwaddr l = 4;
2479 hwaddr addr1;
2480
2481 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2482 true);
2483 if (l < 4 || !memory_access_is_direct(mr, true)) {
2484 #if defined(TARGET_WORDS_BIGENDIAN)
2485 if (endian == DEVICE_LITTLE_ENDIAN) {
2486 val = bswap32(val);
2487 }
2488 #else
2489 if (endian == DEVICE_BIG_ENDIAN) {
2490 val = bswap32(val);
2491 }
2492 #endif
2493 io_mem_write(mr, addr1, val, 4);
2494 } else {
2495 /* RAM case */
2496 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2497 ptr = qemu_get_ram_ptr(addr1);
2498 switch (endian) {
2499 case DEVICE_LITTLE_ENDIAN:
2500 stl_le_p(ptr, val);
2501 break;
2502 case DEVICE_BIG_ENDIAN:
2503 stl_be_p(ptr, val);
2504 break;
2505 default:
2506 stl_p(ptr, val);
2507 break;
2508 }
2509 invalidate_and_set_dirty(addr1, 4);
2510 }
2511 }
2512
2513 void stl_phys(hwaddr addr, uint32_t val)
2514 {
2515 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2516 }
2517
2518 void stl_le_phys(hwaddr addr, uint32_t val)
2519 {
2520 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2521 }
2522
2523 void stl_be_phys(hwaddr addr, uint32_t val)
2524 {
2525 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2526 }
2527
2528 /* XXX: optimize */
2529 void stb_phys(hwaddr addr, uint32_t val)
2530 {
2531 uint8_t v = val;
2532 cpu_physical_memory_write(addr, &v, 1);
2533 }
2534
2535 /* warning: addr must be aligned */
2536 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2537 enum device_endian endian)
2538 {
2539 uint8_t *ptr;
2540 MemoryRegion *mr;
2541 hwaddr l = 2;
2542 hwaddr addr1;
2543
2544 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2545 true);
2546 if (l < 2 || !memory_access_is_direct(mr, true)) {
2547 #if defined(TARGET_WORDS_BIGENDIAN)
2548 if (endian == DEVICE_LITTLE_ENDIAN) {
2549 val = bswap16(val);
2550 }
2551 #else
2552 if (endian == DEVICE_BIG_ENDIAN) {
2553 val = bswap16(val);
2554 }
2555 #endif
2556 io_mem_write(mr, addr1, val, 2);
2557 } else {
2558 /* RAM case */
2559 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2560 ptr = qemu_get_ram_ptr(addr1);
2561 switch (endian) {
2562 case DEVICE_LITTLE_ENDIAN:
2563 stw_le_p(ptr, val);
2564 break;
2565 case DEVICE_BIG_ENDIAN:
2566 stw_be_p(ptr, val);
2567 break;
2568 default:
2569 stw_p(ptr, val);
2570 break;
2571 }
2572 invalidate_and_set_dirty(addr1, 2);
2573 }
2574 }
2575
2576 void stw_phys(hwaddr addr, uint32_t val)
2577 {
2578 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2579 }
2580
2581 void stw_le_phys(hwaddr addr, uint32_t val)
2582 {
2583 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2584 }
2585
2586 void stw_be_phys(hwaddr addr, uint32_t val)
2587 {
2588 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2589 }
2590
2591 /* XXX: optimize */
2592 void stq_phys(hwaddr addr, uint64_t val)
2593 {
2594 val = tswap64(val);
2595 cpu_physical_memory_write(addr, &val, 8);
2596 }
2597
2598 void stq_le_phys(hwaddr addr, uint64_t val)
2599 {
2600 val = cpu_to_le64(val);
2601 cpu_physical_memory_write(addr, &val, 8);
2602 }
2603
2604 void stq_be_phys(hwaddr addr, uint64_t val)
2605 {
2606 val = cpu_to_be64(val);
2607 cpu_physical_memory_write(addr, &val, 8);
2608 }
2609
2610 /* virtual memory access for debug (includes writing to ROM) */
2611 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2612 uint8_t *buf, int len, int is_write)
2613 {
2614 int l;
2615 hwaddr phys_addr;
2616 target_ulong page;
2617
2618 while (len > 0) {
2619 page = addr & TARGET_PAGE_MASK;
2620 phys_addr = cpu_get_phys_page_debug(cpu, page);
2621 /* if no physical page mapped, return an error */
2622 if (phys_addr == -1)
2623 return -1;
2624 l = (page + TARGET_PAGE_SIZE) - addr;
2625 if (l > len)
2626 l = len;
2627 phys_addr += (addr & ~TARGET_PAGE_MASK);
2628 if (is_write)
2629 cpu_physical_memory_write_rom(phys_addr, buf, l);
2630 else
2631 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2632 len -= l;
2633 buf += l;
2634 addr += l;
2635 }
2636 return 0;
2637 }
2638 #endif
2639
2640 #if !defined(CONFIG_USER_ONLY)
2641
2642 /*
2643 * A helper function for the _utterly broken_ virtio device model to find out if
2644 * it's running on a big endian machine. Don't do this at home kids!
2645 */
2646 bool virtio_is_big_endian(void);
2647 bool virtio_is_big_endian(void)
2648 {
2649 #if defined(TARGET_WORDS_BIGENDIAN)
2650 return true;
2651 #else
2652 return false;
2653 #endif
2654 }
2655
2656 #endif
2657
2658 #ifndef CONFIG_USER_ONLY
2659 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2660 {
2661 MemoryRegion*mr;
2662 hwaddr l = 1;
2663
2664 mr = address_space_translate(&address_space_memory,
2665 phys_addr, &phys_addr, &l, false);
2666
2667 return !(memory_region_is_ram(mr) ||
2668 memory_region_is_romd(mr));
2669 }
2670
2671 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2672 {
2673 RAMBlock *block;
2674
2675 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2676 func(block->host, block->offset, block->length, opaque);
2677 }
2678 }
2679 #endif