]> git.proxmox.com Git - qemu.git/blob - hw/arm/pxa2xx.c
17ddd3fab88326562c48fb022b90a98ad6b03faf
[qemu.git] / hw / arm / pxa2xx.c
1 /*
2 * Intel XScale PXA255/270 processor support.
3 *
4 * Copyright (c) 2006 Openedhand Ltd.
5 * Written by Andrzej Zaborowski <balrog@zabor.org>
6 *
7 * This code is licensed under the GPL.
8 */
9
10 #include "hw/sysbus.h"
11 #include "hw/arm/pxa.h"
12 #include "sysemu/sysemu.h"
13 #include "hw/char/serial.h"
14 #include "hw/i2c/i2c.h"
15 #include "hw/ssi.h"
16 #include "sysemu/char.h"
17 #include "sysemu/blockdev.h"
18
19 static struct {
20 hwaddr io_base;
21 int irqn;
22 } pxa255_serial[] = {
23 { 0x40100000, PXA2XX_PIC_FFUART },
24 { 0x40200000, PXA2XX_PIC_BTUART },
25 { 0x40700000, PXA2XX_PIC_STUART },
26 { 0x41600000, PXA25X_PIC_HWUART },
27 { 0, 0 }
28 }, pxa270_serial[] = {
29 { 0x40100000, PXA2XX_PIC_FFUART },
30 { 0x40200000, PXA2XX_PIC_BTUART },
31 { 0x40700000, PXA2XX_PIC_STUART },
32 { 0, 0 }
33 };
34
35 typedef struct PXASSPDef {
36 hwaddr io_base;
37 int irqn;
38 } PXASSPDef;
39
40 #if 0
41 static PXASSPDef pxa250_ssp[] = {
42 { 0x41000000, PXA2XX_PIC_SSP },
43 { 0, 0 }
44 };
45 #endif
46
47 static PXASSPDef pxa255_ssp[] = {
48 { 0x41000000, PXA2XX_PIC_SSP },
49 { 0x41400000, PXA25X_PIC_NSSP },
50 { 0, 0 }
51 };
52
53 #if 0
54 static PXASSPDef pxa26x_ssp[] = {
55 { 0x41000000, PXA2XX_PIC_SSP },
56 { 0x41400000, PXA25X_PIC_NSSP },
57 { 0x41500000, PXA26X_PIC_ASSP },
58 { 0, 0 }
59 };
60 #endif
61
62 static PXASSPDef pxa27x_ssp[] = {
63 { 0x41000000, PXA2XX_PIC_SSP },
64 { 0x41700000, PXA27X_PIC_SSP2 },
65 { 0x41900000, PXA2XX_PIC_SSP3 },
66 { 0, 0 }
67 };
68
69 #define PMCR 0x00 /* Power Manager Control register */
70 #define PSSR 0x04 /* Power Manager Sleep Status register */
71 #define PSPR 0x08 /* Power Manager Scratch-Pad register */
72 #define PWER 0x0c /* Power Manager Wake-Up Enable register */
73 #define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */
74 #define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */
75 #define PEDR 0x18 /* Power Manager Edge-Detect Status register */
76 #define PCFR 0x1c /* Power Manager General Configuration register */
77 #define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */
78 #define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */
79 #define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */
80 #define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */
81 #define RCSR 0x30 /* Reset Controller Status register */
82 #define PSLR 0x34 /* Power Manager Sleep Configuration register */
83 #define PTSR 0x38 /* Power Manager Standby Configuration register */
84 #define PVCR 0x40 /* Power Manager Voltage Change Control register */
85 #define PUCR 0x4c /* Power Manager USIM Card Control/Status register */
86 #define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */
87 #define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */
88 #define PCMD0 0x80 /* Power Manager I2C Command register File 0 */
89 #define PCMD31 0xfc /* Power Manager I2C Command register File 31 */
90
91 static uint64_t pxa2xx_pm_read(void *opaque, hwaddr addr,
92 unsigned size)
93 {
94 PXA2xxState *s = (PXA2xxState *) opaque;
95
96 switch (addr) {
97 case PMCR ... PCMD31:
98 if (addr & 3)
99 goto fail;
100
101 return s->pm_regs[addr >> 2];
102 default:
103 fail:
104 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
105 break;
106 }
107 return 0;
108 }
109
110 static void pxa2xx_pm_write(void *opaque, hwaddr addr,
111 uint64_t value, unsigned size)
112 {
113 PXA2xxState *s = (PXA2xxState *) opaque;
114
115 switch (addr) {
116 case PMCR:
117 /* Clear the write-one-to-clear bits... */
118 s->pm_regs[addr >> 2] &= ~(value & 0x2a);
119 /* ...and set the plain r/w bits */
120 s->pm_regs[addr >> 2] &= ~0x15;
121 s->pm_regs[addr >> 2] |= value & 0x15;
122 break;
123
124 case PSSR: /* Read-clean registers */
125 case RCSR:
126 case PKSR:
127 s->pm_regs[addr >> 2] &= ~value;
128 break;
129
130 default: /* Read-write registers */
131 if (!(addr & 3)) {
132 s->pm_regs[addr >> 2] = value;
133 break;
134 }
135
136 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
137 break;
138 }
139 }
140
141 static const MemoryRegionOps pxa2xx_pm_ops = {
142 .read = pxa2xx_pm_read,
143 .write = pxa2xx_pm_write,
144 .endianness = DEVICE_NATIVE_ENDIAN,
145 };
146
147 static const VMStateDescription vmstate_pxa2xx_pm = {
148 .name = "pxa2xx_pm",
149 .version_id = 0,
150 .minimum_version_id = 0,
151 .minimum_version_id_old = 0,
152 .fields = (VMStateField[]) {
153 VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
154 VMSTATE_END_OF_LIST()
155 }
156 };
157
158 #define CCCR 0x00 /* Core Clock Configuration register */
159 #define CKEN 0x04 /* Clock Enable register */
160 #define OSCC 0x08 /* Oscillator Configuration register */
161 #define CCSR 0x0c /* Core Clock Status register */
162
163 static uint64_t pxa2xx_cm_read(void *opaque, hwaddr addr,
164 unsigned size)
165 {
166 PXA2xxState *s = (PXA2xxState *) opaque;
167
168 switch (addr) {
169 case CCCR:
170 case CKEN:
171 case OSCC:
172 return s->cm_regs[addr >> 2];
173
174 case CCSR:
175 return s->cm_regs[CCCR >> 2] | (3 << 28);
176
177 default:
178 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
179 break;
180 }
181 return 0;
182 }
183
184 static void pxa2xx_cm_write(void *opaque, hwaddr addr,
185 uint64_t value, unsigned size)
186 {
187 PXA2xxState *s = (PXA2xxState *) opaque;
188
189 switch (addr) {
190 case CCCR:
191 case CKEN:
192 s->cm_regs[addr >> 2] = value;
193 break;
194
195 case OSCC:
196 s->cm_regs[addr >> 2] &= ~0x6c;
197 s->cm_regs[addr >> 2] |= value & 0x6e;
198 if ((value >> 1) & 1) /* OON */
199 s->cm_regs[addr >> 2] |= 1 << 0; /* Oscillator is now stable */
200 break;
201
202 default:
203 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
204 break;
205 }
206 }
207
208 static const MemoryRegionOps pxa2xx_cm_ops = {
209 .read = pxa2xx_cm_read,
210 .write = pxa2xx_cm_write,
211 .endianness = DEVICE_NATIVE_ENDIAN,
212 };
213
214 static const VMStateDescription vmstate_pxa2xx_cm = {
215 .name = "pxa2xx_cm",
216 .version_id = 0,
217 .minimum_version_id = 0,
218 .minimum_version_id_old = 0,
219 .fields = (VMStateField[]) {
220 VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
221 VMSTATE_UINT32(clkcfg, PXA2xxState),
222 VMSTATE_UINT32(pmnc, PXA2xxState),
223 VMSTATE_END_OF_LIST()
224 }
225 };
226
227 static int pxa2xx_clkcfg_read(CPUARMState *env, const ARMCPRegInfo *ri,
228 uint64_t *value)
229 {
230 PXA2xxState *s = (PXA2xxState *)ri->opaque;
231 *value = s->clkcfg;
232 return 0;
233 }
234
235 static int pxa2xx_clkcfg_write(CPUARMState *env, const ARMCPRegInfo *ri,
236 uint64_t value)
237 {
238 PXA2xxState *s = (PXA2xxState *)ri->opaque;
239 s->clkcfg = value & 0xf;
240 if (value & 2) {
241 printf("%s: CPU frequency change attempt\n", __func__);
242 }
243 return 0;
244 }
245
246 static int pxa2xx_pwrmode_write(CPUARMState *env, const ARMCPRegInfo *ri,
247 uint64_t value)
248 {
249 PXA2xxState *s = (PXA2xxState *)ri->opaque;
250 static const char *pwrmode[8] = {
251 "Normal", "Idle", "Deep-idle", "Standby",
252 "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
253 };
254
255 if (value & 8) {
256 printf("%s: CPU voltage change attempt\n", __func__);
257 }
258 switch (value & 7) {
259 case 0:
260 /* Do nothing */
261 break;
262
263 case 1:
264 /* Idle */
265 if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
266 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
267 break;
268 }
269 /* Fall through. */
270
271 case 2:
272 /* Deep-Idle */
273 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
274 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
275 goto message;
276
277 case 3:
278 s->cpu->env.uncached_cpsr =
279 ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
280 s->cpu->env.cp15.c1_sys = 0;
281 s->cpu->env.cp15.c1_coproc = 0;
282 s->cpu->env.cp15.c2_base0 = 0;
283 s->cpu->env.cp15.c3 = 0;
284 s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
285 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
286
287 /*
288 * The scratch-pad register is almost universally used
289 * for storing the return address on suspend. For the
290 * lack of a resuming bootloader, perform a jump
291 * directly to that address.
292 */
293 memset(s->cpu->env.regs, 0, 4 * 15);
294 s->cpu->env.regs[15] = s->pm_regs[PSPR >> 2];
295
296 #if 0
297 buffer = 0xe59ff000; /* ldr pc, [pc, #0] */
298 cpu_physical_memory_write(0, &buffer, 4);
299 buffer = s->pm_regs[PSPR >> 2];
300 cpu_physical_memory_write(8, &buffer, 4);
301 #endif
302
303 /* Suspend */
304 cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
305
306 goto message;
307
308 default:
309 message:
310 printf("%s: machine entered %s mode\n", __func__,
311 pwrmode[value & 7]);
312 }
313
314 return 0;
315 }
316
317 static int pxa2xx_cppmnc_read(CPUARMState *env, const ARMCPRegInfo *ri,
318 uint64_t *value)
319 {
320 PXA2xxState *s = (PXA2xxState *)ri->opaque;
321 *value = s->pmnc;
322 return 0;
323 }
324
325 static int pxa2xx_cppmnc_write(CPUARMState *env, const ARMCPRegInfo *ri,
326 uint64_t value)
327 {
328 PXA2xxState *s = (PXA2xxState *)ri->opaque;
329 s->pmnc = value;
330 return 0;
331 }
332
333 static int pxa2xx_cpccnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
334 uint64_t *value)
335 {
336 PXA2xxState *s = (PXA2xxState *)ri->opaque;
337 if (s->pmnc & 1) {
338 *value = qemu_get_clock_ns(vm_clock);
339 } else {
340 *value = 0;
341 }
342 return 0;
343 }
344
345 static const ARMCPRegInfo pxa_cp_reginfo[] = {
346 /* cp14 crm==1: perf registers */
347 { .name = "CPPMNC", .cp = 14, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 0,
348 .access = PL1_RW,
349 .readfn = pxa2xx_cppmnc_read, .writefn = pxa2xx_cppmnc_write },
350 { .name = "CPCCNT", .cp = 14, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
351 .access = PL1_RW,
352 .readfn = pxa2xx_cpccnt_read, .writefn = arm_cp_write_ignore },
353 { .name = "CPINTEN", .cp = 14, .crn = 4, .crm = 1, .opc1 = 0, .opc2 = 0,
354 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
355 { .name = "CPFLAG", .cp = 14, .crn = 5, .crm = 1, .opc1 = 0, .opc2 = 0,
356 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
357 { .name = "CPEVTSEL", .cp = 14, .crn = 8, .crm = 1, .opc1 = 0, .opc2 = 0,
358 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
359 /* cp14 crm==2: performance count registers */
360 { .name = "CPPMN0", .cp = 14, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 0,
361 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
362 { .name = "CPPMN1", .cp = 14, .crn = 1, .crm = 2, .opc1 = 0, .opc2 = 0,
363 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
364 { .name = "CPPMN2", .cp = 14, .crn = 2, .crm = 2, .opc1 = 0, .opc2 = 0,
365 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
366 { .name = "CPPMN3", .cp = 14, .crn = 2, .crm = 3, .opc1 = 0, .opc2 = 0,
367 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
368 /* cp14 crn==6: CLKCFG */
369 { .name = "CLKCFG", .cp = 14, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
370 .access = PL1_RW,
371 .readfn = pxa2xx_clkcfg_read, .writefn = pxa2xx_clkcfg_write },
372 /* cp14 crn==7: PWRMODE */
373 { .name = "PWRMODE", .cp = 14, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 0,
374 .access = PL1_RW,
375 .readfn = arm_cp_read_zero, .writefn = pxa2xx_pwrmode_write },
376 REGINFO_SENTINEL
377 };
378
379 static void pxa2xx_setup_cp14(PXA2xxState *s)
380 {
381 define_arm_cp_regs_with_opaque(s->cpu, pxa_cp_reginfo, s);
382 }
383
384 #define MDCNFG 0x00 /* SDRAM Configuration register */
385 #define MDREFR 0x04 /* SDRAM Refresh Control register */
386 #define MSC0 0x08 /* Static Memory Control register 0 */
387 #define MSC1 0x0c /* Static Memory Control register 1 */
388 #define MSC2 0x10 /* Static Memory Control register 2 */
389 #define MECR 0x14 /* Expansion Memory Bus Config register */
390 #define SXCNFG 0x1c /* Synchronous Static Memory Config register */
391 #define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */
392 #define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */
393 #define MCATT0 0x30 /* PC Card Attribute Socket 0 register */
394 #define MCATT1 0x34 /* PC Card Attribute Socket 1 register */
395 #define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */
396 #define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */
397 #define MDMRS 0x40 /* SDRAM Mode Register Set Config register */
398 #define BOOT_DEF 0x44 /* Boot-time Default Configuration register */
399 #define ARB_CNTL 0x48 /* Arbiter Control register */
400 #define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */
401 #define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */
402 #define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */
403 #define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */
404 #define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */
405 #define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */
406 #define SA1110 0x64 /* SA-1110 Memory Compatibility register */
407
408 static uint64_t pxa2xx_mm_read(void *opaque, hwaddr addr,
409 unsigned size)
410 {
411 PXA2xxState *s = (PXA2xxState *) opaque;
412
413 switch (addr) {
414 case MDCNFG ... SA1110:
415 if ((addr & 3) == 0)
416 return s->mm_regs[addr >> 2];
417
418 default:
419 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
420 break;
421 }
422 return 0;
423 }
424
425 static void pxa2xx_mm_write(void *opaque, hwaddr addr,
426 uint64_t value, unsigned size)
427 {
428 PXA2xxState *s = (PXA2xxState *) opaque;
429
430 switch (addr) {
431 case MDCNFG ... SA1110:
432 if ((addr & 3) == 0) {
433 s->mm_regs[addr >> 2] = value;
434 break;
435 }
436
437 default:
438 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
439 break;
440 }
441 }
442
443 static const MemoryRegionOps pxa2xx_mm_ops = {
444 .read = pxa2xx_mm_read,
445 .write = pxa2xx_mm_write,
446 .endianness = DEVICE_NATIVE_ENDIAN,
447 };
448
449 static const VMStateDescription vmstate_pxa2xx_mm = {
450 .name = "pxa2xx_mm",
451 .version_id = 0,
452 .minimum_version_id = 0,
453 .minimum_version_id_old = 0,
454 .fields = (VMStateField[]) {
455 VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
456 VMSTATE_END_OF_LIST()
457 }
458 };
459
460 #define TYPE_PXA2XX_SSP "pxa2xx-ssp"
461 #define PXA2XX_SSP(obj) \
462 OBJECT_CHECK(PXA2xxSSPState, (obj), TYPE_PXA2XX_SSP)
463
464 /* Synchronous Serial Ports */
465 typedef struct {
466 /*< private >*/
467 SysBusDevice parent_obj;
468 /*< public >*/
469
470 MemoryRegion iomem;
471 qemu_irq irq;
472 int enable;
473 SSIBus *bus;
474
475 uint32_t sscr[2];
476 uint32_t sspsp;
477 uint32_t ssto;
478 uint32_t ssitr;
479 uint32_t sssr;
480 uint8_t sstsa;
481 uint8_t ssrsa;
482 uint8_t ssacd;
483
484 uint32_t rx_fifo[16];
485 int rx_level;
486 int rx_start;
487 } PXA2xxSSPState;
488
489 #define SSCR0 0x00 /* SSP Control register 0 */
490 #define SSCR1 0x04 /* SSP Control register 1 */
491 #define SSSR 0x08 /* SSP Status register */
492 #define SSITR 0x0c /* SSP Interrupt Test register */
493 #define SSDR 0x10 /* SSP Data register */
494 #define SSTO 0x28 /* SSP Time-Out register */
495 #define SSPSP 0x2c /* SSP Programmable Serial Protocol register */
496 #define SSTSA 0x30 /* SSP TX Time Slot Active register */
497 #define SSRSA 0x34 /* SSP RX Time Slot Active register */
498 #define SSTSS 0x38 /* SSP Time Slot Status register */
499 #define SSACD 0x3c /* SSP Audio Clock Divider register */
500
501 /* Bitfields for above registers */
502 #define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
503 #define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
504 #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
505 #define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
506 #define SSCR0_SSE (1 << 7)
507 #define SSCR0_RIM (1 << 22)
508 #define SSCR0_TIM (1 << 23)
509 #define SSCR0_MOD (1 << 31)
510 #define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
511 #define SSCR1_RIE (1 << 0)
512 #define SSCR1_TIE (1 << 1)
513 #define SSCR1_LBM (1 << 2)
514 #define SSCR1_MWDS (1 << 5)
515 #define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1)
516 #define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1)
517 #define SSCR1_EFWR (1 << 14)
518 #define SSCR1_PINTE (1 << 18)
519 #define SSCR1_TINTE (1 << 19)
520 #define SSCR1_RSRE (1 << 20)
521 #define SSCR1_TSRE (1 << 21)
522 #define SSCR1_EBCEI (1 << 29)
523 #define SSITR_INT (7 << 5)
524 #define SSSR_TNF (1 << 2)
525 #define SSSR_RNE (1 << 3)
526 #define SSSR_TFS (1 << 5)
527 #define SSSR_RFS (1 << 6)
528 #define SSSR_ROR (1 << 7)
529 #define SSSR_PINT (1 << 18)
530 #define SSSR_TINT (1 << 19)
531 #define SSSR_EOC (1 << 20)
532 #define SSSR_TUR (1 << 21)
533 #define SSSR_BCE (1 << 23)
534 #define SSSR_RW 0x00bc0080
535
536 static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
537 {
538 int level = 0;
539
540 level |= s->ssitr & SSITR_INT;
541 level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI);
542 level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM);
543 level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT));
544 level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE);
545 level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE);
546 level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM);
547 level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
548 level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
549 qemu_set_irq(s->irq, !!level);
550 }
551
552 static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
553 {
554 s->sssr &= ~(0xf << 12); /* Clear RFL */
555 s->sssr &= ~(0xf << 8); /* Clear TFL */
556 s->sssr &= ~SSSR_TFS;
557 s->sssr &= ~SSSR_TNF;
558 if (s->enable) {
559 s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
560 if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
561 s->sssr |= SSSR_RFS;
562 else
563 s->sssr &= ~SSSR_RFS;
564 if (s->rx_level)
565 s->sssr |= SSSR_RNE;
566 else
567 s->sssr &= ~SSSR_RNE;
568 /* TX FIFO is never filled, so it is always in underrun
569 condition if SSP is enabled */
570 s->sssr |= SSSR_TFS;
571 s->sssr |= SSSR_TNF;
572 }
573
574 pxa2xx_ssp_int_update(s);
575 }
576
577 static uint64_t pxa2xx_ssp_read(void *opaque, hwaddr addr,
578 unsigned size)
579 {
580 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
581 uint32_t retval;
582
583 switch (addr) {
584 case SSCR0:
585 return s->sscr[0];
586 case SSCR1:
587 return s->sscr[1];
588 case SSPSP:
589 return s->sspsp;
590 case SSTO:
591 return s->ssto;
592 case SSITR:
593 return s->ssitr;
594 case SSSR:
595 return s->sssr | s->ssitr;
596 case SSDR:
597 if (!s->enable)
598 return 0xffffffff;
599 if (s->rx_level < 1) {
600 printf("%s: SSP Rx Underrun\n", __FUNCTION__);
601 return 0xffffffff;
602 }
603 s->rx_level --;
604 retval = s->rx_fifo[s->rx_start ++];
605 s->rx_start &= 0xf;
606 pxa2xx_ssp_fifo_update(s);
607 return retval;
608 case SSTSA:
609 return s->sstsa;
610 case SSRSA:
611 return s->ssrsa;
612 case SSTSS:
613 return 0;
614 case SSACD:
615 return s->ssacd;
616 default:
617 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
618 break;
619 }
620 return 0;
621 }
622
623 static void pxa2xx_ssp_write(void *opaque, hwaddr addr,
624 uint64_t value64, unsigned size)
625 {
626 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
627 uint32_t value = value64;
628
629 switch (addr) {
630 case SSCR0:
631 s->sscr[0] = value & 0xc7ffffff;
632 s->enable = value & SSCR0_SSE;
633 if (value & SSCR0_MOD)
634 printf("%s: Attempt to use network mode\n", __FUNCTION__);
635 if (s->enable && SSCR0_DSS(value) < 4)
636 printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
637 SSCR0_DSS(value));
638 if (!(value & SSCR0_SSE)) {
639 s->sssr = 0;
640 s->ssitr = 0;
641 s->rx_level = 0;
642 }
643 pxa2xx_ssp_fifo_update(s);
644 break;
645
646 case SSCR1:
647 s->sscr[1] = value;
648 if (value & (SSCR1_LBM | SSCR1_EFWR))
649 printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
650 pxa2xx_ssp_fifo_update(s);
651 break;
652
653 case SSPSP:
654 s->sspsp = value;
655 break;
656
657 case SSTO:
658 s->ssto = value;
659 break;
660
661 case SSITR:
662 s->ssitr = value & SSITR_INT;
663 pxa2xx_ssp_int_update(s);
664 break;
665
666 case SSSR:
667 s->sssr &= ~(value & SSSR_RW);
668 pxa2xx_ssp_int_update(s);
669 break;
670
671 case SSDR:
672 if (SSCR0_UWIRE(s->sscr[0])) {
673 if (s->sscr[1] & SSCR1_MWDS)
674 value &= 0xffff;
675 else
676 value &= 0xff;
677 } else
678 /* Note how 32bits overflow does no harm here */
679 value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
680
681 /* Data goes from here to the Tx FIFO and is shifted out from
682 * there directly to the slave, no need to buffer it.
683 */
684 if (s->enable) {
685 uint32_t readval;
686 readval = ssi_transfer(s->bus, value);
687 if (s->rx_level < 0x10) {
688 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
689 } else {
690 s->sssr |= SSSR_ROR;
691 }
692 }
693 pxa2xx_ssp_fifo_update(s);
694 break;
695
696 case SSTSA:
697 s->sstsa = value;
698 break;
699
700 case SSRSA:
701 s->ssrsa = value;
702 break;
703
704 case SSACD:
705 s->ssacd = value;
706 break;
707
708 default:
709 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
710 break;
711 }
712 }
713
714 static const MemoryRegionOps pxa2xx_ssp_ops = {
715 .read = pxa2xx_ssp_read,
716 .write = pxa2xx_ssp_write,
717 .endianness = DEVICE_NATIVE_ENDIAN,
718 };
719
720 static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
721 {
722 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
723 int i;
724
725 qemu_put_be32(f, s->enable);
726
727 qemu_put_be32s(f, &s->sscr[0]);
728 qemu_put_be32s(f, &s->sscr[1]);
729 qemu_put_be32s(f, &s->sspsp);
730 qemu_put_be32s(f, &s->ssto);
731 qemu_put_be32s(f, &s->ssitr);
732 qemu_put_be32s(f, &s->sssr);
733 qemu_put_8s(f, &s->sstsa);
734 qemu_put_8s(f, &s->ssrsa);
735 qemu_put_8s(f, &s->ssacd);
736
737 qemu_put_byte(f, s->rx_level);
738 for (i = 0; i < s->rx_level; i ++)
739 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
740 }
741
742 static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
743 {
744 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
745 int i;
746
747 s->enable = qemu_get_be32(f);
748
749 qemu_get_be32s(f, &s->sscr[0]);
750 qemu_get_be32s(f, &s->sscr[1]);
751 qemu_get_be32s(f, &s->sspsp);
752 qemu_get_be32s(f, &s->ssto);
753 qemu_get_be32s(f, &s->ssitr);
754 qemu_get_be32s(f, &s->sssr);
755 qemu_get_8s(f, &s->sstsa);
756 qemu_get_8s(f, &s->ssrsa);
757 qemu_get_8s(f, &s->ssacd);
758
759 s->rx_level = qemu_get_byte(f);
760 s->rx_start = 0;
761 for (i = 0; i < s->rx_level; i ++)
762 s->rx_fifo[i] = qemu_get_byte(f);
763
764 return 0;
765 }
766
767 static int pxa2xx_ssp_init(SysBusDevice *sbd)
768 {
769 DeviceState *dev = DEVICE(sbd);
770 PXA2xxSSPState *s = PXA2XX_SSP(dev);
771
772 sysbus_init_irq(sbd, &s->irq);
773
774 memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_ssp_ops, s,
775 "pxa2xx-ssp", 0x1000);
776 sysbus_init_mmio(sbd, &s->iomem);
777 register_savevm(dev, "pxa2xx_ssp", -1, 0,
778 pxa2xx_ssp_save, pxa2xx_ssp_load, s);
779
780 s->bus = ssi_create_bus(dev, "ssi");
781 return 0;
782 }
783
784 /* Real-Time Clock */
785 #define RCNR 0x00 /* RTC Counter register */
786 #define RTAR 0x04 /* RTC Alarm register */
787 #define RTSR 0x08 /* RTC Status register */
788 #define RTTR 0x0c /* RTC Timer Trim register */
789 #define RDCR 0x10 /* RTC Day Counter register */
790 #define RYCR 0x14 /* RTC Year Counter register */
791 #define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */
792 #define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */
793 #define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */
794 #define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */
795 #define SWCR 0x28 /* RTC Stopwatch Counter register */
796 #define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */
797 #define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */
798 #define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */
799 #define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */
800
801 #define TYPE_PXA2XX_RTC "pxa2xx_rtc"
802 #define PXA2XX_RTC(obj) \
803 OBJECT_CHECK(PXA2xxRTCState, (obj), TYPE_PXA2XX_RTC)
804
805 typedef struct {
806 /*< private >*/
807 SysBusDevice parent_obj;
808 /*< public >*/
809
810 MemoryRegion iomem;
811 uint32_t rttr;
812 uint32_t rtsr;
813 uint32_t rtar;
814 uint32_t rdar1;
815 uint32_t rdar2;
816 uint32_t ryar1;
817 uint32_t ryar2;
818 uint32_t swar1;
819 uint32_t swar2;
820 uint32_t piar;
821 uint32_t last_rcnr;
822 uint32_t last_rdcr;
823 uint32_t last_rycr;
824 uint32_t last_swcr;
825 uint32_t last_rtcpicr;
826 int64_t last_hz;
827 int64_t last_sw;
828 int64_t last_pi;
829 QEMUTimer *rtc_hz;
830 QEMUTimer *rtc_rdal1;
831 QEMUTimer *rtc_rdal2;
832 QEMUTimer *rtc_swal1;
833 QEMUTimer *rtc_swal2;
834 QEMUTimer *rtc_pi;
835 qemu_irq rtc_irq;
836 } PXA2xxRTCState;
837
838 static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
839 {
840 qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
841 }
842
843 static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
844 {
845 int64_t rt = qemu_get_clock_ms(rtc_clock);
846 s->last_rcnr += ((rt - s->last_hz) << 15) /
847 (1000 * ((s->rttr & 0xffff) + 1));
848 s->last_rdcr += ((rt - s->last_hz) << 15) /
849 (1000 * ((s->rttr & 0xffff) + 1));
850 s->last_hz = rt;
851 }
852
853 static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
854 {
855 int64_t rt = qemu_get_clock_ms(rtc_clock);
856 if (s->rtsr & (1 << 12))
857 s->last_swcr += (rt - s->last_sw) / 10;
858 s->last_sw = rt;
859 }
860
861 static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
862 {
863 int64_t rt = qemu_get_clock_ms(rtc_clock);
864 if (s->rtsr & (1 << 15))
865 s->last_swcr += rt - s->last_pi;
866 s->last_pi = rt;
867 }
868
869 static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
870 uint32_t rtsr)
871 {
872 if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
873 qemu_mod_timer(s->rtc_hz, s->last_hz +
874 (((s->rtar - s->last_rcnr) * 1000 *
875 ((s->rttr & 0xffff) + 1)) >> 15));
876 else
877 qemu_del_timer(s->rtc_hz);
878
879 if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
880 qemu_mod_timer(s->rtc_rdal1, s->last_hz +
881 (((s->rdar1 - s->last_rdcr) * 1000 *
882 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
883 else
884 qemu_del_timer(s->rtc_rdal1);
885
886 if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
887 qemu_mod_timer(s->rtc_rdal2, s->last_hz +
888 (((s->rdar2 - s->last_rdcr) * 1000 *
889 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
890 else
891 qemu_del_timer(s->rtc_rdal2);
892
893 if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
894 qemu_mod_timer(s->rtc_swal1, s->last_sw +
895 (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
896 else
897 qemu_del_timer(s->rtc_swal1);
898
899 if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
900 qemu_mod_timer(s->rtc_swal2, s->last_sw +
901 (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
902 else
903 qemu_del_timer(s->rtc_swal2);
904
905 if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
906 qemu_mod_timer(s->rtc_pi, s->last_pi +
907 (s->piar & 0xffff) - s->last_rtcpicr);
908 else
909 qemu_del_timer(s->rtc_pi);
910 }
911
912 static inline void pxa2xx_rtc_hz_tick(void *opaque)
913 {
914 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
915 s->rtsr |= (1 << 0);
916 pxa2xx_rtc_alarm_update(s, s->rtsr);
917 pxa2xx_rtc_int_update(s);
918 }
919
920 static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
921 {
922 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
923 s->rtsr |= (1 << 4);
924 pxa2xx_rtc_alarm_update(s, s->rtsr);
925 pxa2xx_rtc_int_update(s);
926 }
927
928 static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
929 {
930 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
931 s->rtsr |= (1 << 6);
932 pxa2xx_rtc_alarm_update(s, s->rtsr);
933 pxa2xx_rtc_int_update(s);
934 }
935
936 static inline void pxa2xx_rtc_swal1_tick(void *opaque)
937 {
938 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
939 s->rtsr |= (1 << 8);
940 pxa2xx_rtc_alarm_update(s, s->rtsr);
941 pxa2xx_rtc_int_update(s);
942 }
943
944 static inline void pxa2xx_rtc_swal2_tick(void *opaque)
945 {
946 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
947 s->rtsr |= (1 << 10);
948 pxa2xx_rtc_alarm_update(s, s->rtsr);
949 pxa2xx_rtc_int_update(s);
950 }
951
952 static inline void pxa2xx_rtc_pi_tick(void *opaque)
953 {
954 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
955 s->rtsr |= (1 << 13);
956 pxa2xx_rtc_piupdate(s);
957 s->last_rtcpicr = 0;
958 pxa2xx_rtc_alarm_update(s, s->rtsr);
959 pxa2xx_rtc_int_update(s);
960 }
961
962 static uint64_t pxa2xx_rtc_read(void *opaque, hwaddr addr,
963 unsigned size)
964 {
965 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
966
967 switch (addr) {
968 case RTTR:
969 return s->rttr;
970 case RTSR:
971 return s->rtsr;
972 case RTAR:
973 return s->rtar;
974 case RDAR1:
975 return s->rdar1;
976 case RDAR2:
977 return s->rdar2;
978 case RYAR1:
979 return s->ryar1;
980 case RYAR2:
981 return s->ryar2;
982 case SWAR1:
983 return s->swar1;
984 case SWAR2:
985 return s->swar2;
986 case PIAR:
987 return s->piar;
988 case RCNR:
989 return s->last_rcnr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
990 (1000 * ((s->rttr & 0xffff) + 1));
991 case RDCR:
992 return s->last_rdcr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
993 (1000 * ((s->rttr & 0xffff) + 1));
994 case RYCR:
995 return s->last_rycr;
996 case SWCR:
997 if (s->rtsr & (1 << 12))
998 return s->last_swcr + (qemu_get_clock_ms(rtc_clock) - s->last_sw) / 10;
999 else
1000 return s->last_swcr;
1001 default:
1002 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1003 break;
1004 }
1005 return 0;
1006 }
1007
1008 static void pxa2xx_rtc_write(void *opaque, hwaddr addr,
1009 uint64_t value64, unsigned size)
1010 {
1011 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1012 uint32_t value = value64;
1013
1014 switch (addr) {
1015 case RTTR:
1016 if (!(s->rttr & (1 << 31))) {
1017 pxa2xx_rtc_hzupdate(s);
1018 s->rttr = value;
1019 pxa2xx_rtc_alarm_update(s, s->rtsr);
1020 }
1021 break;
1022
1023 case RTSR:
1024 if ((s->rtsr ^ value) & (1 << 15))
1025 pxa2xx_rtc_piupdate(s);
1026
1027 if ((s->rtsr ^ value) & (1 << 12))
1028 pxa2xx_rtc_swupdate(s);
1029
1030 if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1031 pxa2xx_rtc_alarm_update(s, value);
1032
1033 s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1034 pxa2xx_rtc_int_update(s);
1035 break;
1036
1037 case RTAR:
1038 s->rtar = value;
1039 pxa2xx_rtc_alarm_update(s, s->rtsr);
1040 break;
1041
1042 case RDAR1:
1043 s->rdar1 = value;
1044 pxa2xx_rtc_alarm_update(s, s->rtsr);
1045 break;
1046
1047 case RDAR2:
1048 s->rdar2 = value;
1049 pxa2xx_rtc_alarm_update(s, s->rtsr);
1050 break;
1051
1052 case RYAR1:
1053 s->ryar1 = value;
1054 pxa2xx_rtc_alarm_update(s, s->rtsr);
1055 break;
1056
1057 case RYAR2:
1058 s->ryar2 = value;
1059 pxa2xx_rtc_alarm_update(s, s->rtsr);
1060 break;
1061
1062 case SWAR1:
1063 pxa2xx_rtc_swupdate(s);
1064 s->swar1 = value;
1065 s->last_swcr = 0;
1066 pxa2xx_rtc_alarm_update(s, s->rtsr);
1067 break;
1068
1069 case SWAR2:
1070 s->swar2 = value;
1071 pxa2xx_rtc_alarm_update(s, s->rtsr);
1072 break;
1073
1074 case PIAR:
1075 s->piar = value;
1076 pxa2xx_rtc_alarm_update(s, s->rtsr);
1077 break;
1078
1079 case RCNR:
1080 pxa2xx_rtc_hzupdate(s);
1081 s->last_rcnr = value;
1082 pxa2xx_rtc_alarm_update(s, s->rtsr);
1083 break;
1084
1085 case RDCR:
1086 pxa2xx_rtc_hzupdate(s);
1087 s->last_rdcr = value;
1088 pxa2xx_rtc_alarm_update(s, s->rtsr);
1089 break;
1090
1091 case RYCR:
1092 s->last_rycr = value;
1093 break;
1094
1095 case SWCR:
1096 pxa2xx_rtc_swupdate(s);
1097 s->last_swcr = value;
1098 pxa2xx_rtc_alarm_update(s, s->rtsr);
1099 break;
1100
1101 case RTCPICR:
1102 pxa2xx_rtc_piupdate(s);
1103 s->last_rtcpicr = value & 0xffff;
1104 pxa2xx_rtc_alarm_update(s, s->rtsr);
1105 break;
1106
1107 default:
1108 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1109 }
1110 }
1111
1112 static const MemoryRegionOps pxa2xx_rtc_ops = {
1113 .read = pxa2xx_rtc_read,
1114 .write = pxa2xx_rtc_write,
1115 .endianness = DEVICE_NATIVE_ENDIAN,
1116 };
1117
1118 static int pxa2xx_rtc_init(SysBusDevice *dev)
1119 {
1120 PXA2xxRTCState *s = PXA2XX_RTC(dev);
1121 struct tm tm;
1122 int wom;
1123
1124 s->rttr = 0x7fff;
1125 s->rtsr = 0;
1126
1127 qemu_get_timedate(&tm, 0);
1128 wom = ((tm.tm_mday - 1) / 7) + 1;
1129
1130 s->last_rcnr = (uint32_t) mktimegm(&tm);
1131 s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1132 (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1133 s->last_rycr = ((tm.tm_year + 1900) << 9) |
1134 ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1135 s->last_swcr = (tm.tm_hour << 19) |
1136 (tm.tm_min << 13) | (tm.tm_sec << 7);
1137 s->last_rtcpicr = 0;
1138 s->last_hz = s->last_sw = s->last_pi = qemu_get_clock_ms(rtc_clock);
1139
1140 s->rtc_hz = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_hz_tick, s);
1141 s->rtc_rdal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal1_tick, s);
1142 s->rtc_rdal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal2_tick, s);
1143 s->rtc_swal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal1_tick, s);
1144 s->rtc_swal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal2_tick, s);
1145 s->rtc_pi = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_pi_tick, s);
1146
1147 sysbus_init_irq(dev, &s->rtc_irq);
1148
1149 memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_rtc_ops, s,
1150 "pxa2xx-rtc", 0x10000);
1151 sysbus_init_mmio(dev, &s->iomem);
1152
1153 return 0;
1154 }
1155
1156 static void pxa2xx_rtc_pre_save(void *opaque)
1157 {
1158 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1159
1160 pxa2xx_rtc_hzupdate(s);
1161 pxa2xx_rtc_piupdate(s);
1162 pxa2xx_rtc_swupdate(s);
1163 }
1164
1165 static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1166 {
1167 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1168
1169 pxa2xx_rtc_alarm_update(s, s->rtsr);
1170
1171 return 0;
1172 }
1173
1174 static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1175 .name = "pxa2xx_rtc",
1176 .version_id = 0,
1177 .minimum_version_id = 0,
1178 .minimum_version_id_old = 0,
1179 .pre_save = pxa2xx_rtc_pre_save,
1180 .post_load = pxa2xx_rtc_post_load,
1181 .fields = (VMStateField[]) {
1182 VMSTATE_UINT32(rttr, PXA2xxRTCState),
1183 VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1184 VMSTATE_UINT32(rtar, PXA2xxRTCState),
1185 VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1186 VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1187 VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1188 VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1189 VMSTATE_UINT32(swar1, PXA2xxRTCState),
1190 VMSTATE_UINT32(swar2, PXA2xxRTCState),
1191 VMSTATE_UINT32(piar, PXA2xxRTCState),
1192 VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1193 VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1194 VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1195 VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1196 VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1197 VMSTATE_INT64(last_hz, PXA2xxRTCState),
1198 VMSTATE_INT64(last_sw, PXA2xxRTCState),
1199 VMSTATE_INT64(last_pi, PXA2xxRTCState),
1200 VMSTATE_END_OF_LIST(),
1201 },
1202 };
1203
1204 static void pxa2xx_rtc_sysbus_class_init(ObjectClass *klass, void *data)
1205 {
1206 DeviceClass *dc = DEVICE_CLASS(klass);
1207 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1208
1209 k->init = pxa2xx_rtc_init;
1210 dc->desc = "PXA2xx RTC Controller";
1211 dc->vmsd = &vmstate_pxa2xx_rtc_regs;
1212 }
1213
1214 static const TypeInfo pxa2xx_rtc_sysbus_info = {
1215 .name = TYPE_PXA2XX_RTC,
1216 .parent = TYPE_SYS_BUS_DEVICE,
1217 .instance_size = sizeof(PXA2xxRTCState),
1218 .class_init = pxa2xx_rtc_sysbus_class_init,
1219 };
1220
1221 /* I2C Interface */
1222 typedef struct {
1223 I2CSlave i2c;
1224 PXA2xxI2CState *host;
1225 } PXA2xxI2CSlaveState;
1226
1227 #define TYPE_PXA2XX_I2C "pxa2xx_i2c"
1228 #define PXA2XX_I2C(obj) \
1229 OBJECT_CHECK(PXA2xxI2CState, (obj), TYPE_PXA2XX_I2C)
1230
1231 struct PXA2xxI2CState {
1232 /*< private >*/
1233 SysBusDevice parent_obj;
1234 /*< public >*/
1235
1236 MemoryRegion iomem;
1237 PXA2xxI2CSlaveState *slave;
1238 i2c_bus *bus;
1239 qemu_irq irq;
1240 uint32_t offset;
1241 uint32_t region_size;
1242
1243 uint16_t control;
1244 uint16_t status;
1245 uint8_t ibmr;
1246 uint8_t data;
1247 };
1248
1249 #define IBMR 0x80 /* I2C Bus Monitor register */
1250 #define IDBR 0x88 /* I2C Data Buffer register */
1251 #define ICR 0x90 /* I2C Control register */
1252 #define ISR 0x98 /* I2C Status register */
1253 #define ISAR 0xa0 /* I2C Slave Address register */
1254
1255 static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1256 {
1257 uint16_t level = 0;
1258 level |= s->status & s->control & (1 << 10); /* BED */
1259 level |= (s->status & (1 << 7)) && (s->control & (1 << 9)); /* IRF */
1260 level |= (s->status & (1 << 6)) && (s->control & (1 << 8)); /* ITE */
1261 level |= s->status & (1 << 9); /* SAD */
1262 qemu_set_irq(s->irq, !!level);
1263 }
1264
1265 /* These are only stubs now. */
1266 static void pxa2xx_i2c_event(I2CSlave *i2c, enum i2c_event event)
1267 {
1268 PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1269 PXA2xxI2CState *s = slave->host;
1270
1271 switch (event) {
1272 case I2C_START_SEND:
1273 s->status |= (1 << 9); /* set SAD */
1274 s->status &= ~(1 << 0); /* clear RWM */
1275 break;
1276 case I2C_START_RECV:
1277 s->status |= (1 << 9); /* set SAD */
1278 s->status |= 1 << 0; /* set RWM */
1279 break;
1280 case I2C_FINISH:
1281 s->status |= (1 << 4); /* set SSD */
1282 break;
1283 case I2C_NACK:
1284 s->status |= 1 << 1; /* set ACKNAK */
1285 break;
1286 }
1287 pxa2xx_i2c_update(s);
1288 }
1289
1290 static int pxa2xx_i2c_rx(I2CSlave *i2c)
1291 {
1292 PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1293 PXA2xxI2CState *s = slave->host;
1294 if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1295 return 0;
1296
1297 if (s->status & (1 << 0)) { /* RWM */
1298 s->status |= 1 << 6; /* set ITE */
1299 }
1300 pxa2xx_i2c_update(s);
1301
1302 return s->data;
1303 }
1304
1305 static int pxa2xx_i2c_tx(I2CSlave *i2c, uint8_t data)
1306 {
1307 PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1308 PXA2xxI2CState *s = slave->host;
1309 if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1310 return 1;
1311
1312 if (!(s->status & (1 << 0))) { /* RWM */
1313 s->status |= 1 << 7; /* set IRF */
1314 s->data = data;
1315 }
1316 pxa2xx_i2c_update(s);
1317
1318 return 1;
1319 }
1320
1321 static uint64_t pxa2xx_i2c_read(void *opaque, hwaddr addr,
1322 unsigned size)
1323 {
1324 PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1325
1326 addr -= s->offset;
1327 switch (addr) {
1328 case ICR:
1329 return s->control;
1330 case ISR:
1331 return s->status | (i2c_bus_busy(s->bus) << 2);
1332 case ISAR:
1333 return s->slave->i2c.address;
1334 case IDBR:
1335 return s->data;
1336 case IBMR:
1337 if (s->status & (1 << 2))
1338 s->ibmr ^= 3; /* Fake SCL and SDA pin changes */
1339 else
1340 s->ibmr = 0;
1341 return s->ibmr;
1342 default:
1343 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1344 break;
1345 }
1346 return 0;
1347 }
1348
1349 static void pxa2xx_i2c_write(void *opaque, hwaddr addr,
1350 uint64_t value64, unsigned size)
1351 {
1352 PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1353 uint32_t value = value64;
1354 int ack;
1355
1356 addr -= s->offset;
1357 switch (addr) {
1358 case ICR:
1359 s->control = value & 0xfff7;
1360 if ((value & (1 << 3)) && (value & (1 << 6))) { /* TB and IUE */
1361 /* TODO: slave mode */
1362 if (value & (1 << 0)) { /* START condition */
1363 if (s->data & 1)
1364 s->status |= 1 << 0; /* set RWM */
1365 else
1366 s->status &= ~(1 << 0); /* clear RWM */
1367 ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1368 } else {
1369 if (s->status & (1 << 0)) { /* RWM */
1370 s->data = i2c_recv(s->bus);
1371 if (value & (1 << 2)) /* ACKNAK */
1372 i2c_nack(s->bus);
1373 ack = 1;
1374 } else
1375 ack = !i2c_send(s->bus, s->data);
1376 }
1377
1378 if (value & (1 << 1)) /* STOP condition */
1379 i2c_end_transfer(s->bus);
1380
1381 if (ack) {
1382 if (value & (1 << 0)) /* START condition */
1383 s->status |= 1 << 6; /* set ITE */
1384 else
1385 if (s->status & (1 << 0)) /* RWM */
1386 s->status |= 1 << 7; /* set IRF */
1387 else
1388 s->status |= 1 << 6; /* set ITE */
1389 s->status &= ~(1 << 1); /* clear ACKNAK */
1390 } else {
1391 s->status |= 1 << 6; /* set ITE */
1392 s->status |= 1 << 10; /* set BED */
1393 s->status |= 1 << 1; /* set ACKNAK */
1394 }
1395 }
1396 if (!(value & (1 << 3)) && (value & (1 << 6))) /* !TB and IUE */
1397 if (value & (1 << 4)) /* MA */
1398 i2c_end_transfer(s->bus);
1399 pxa2xx_i2c_update(s);
1400 break;
1401
1402 case ISR:
1403 s->status &= ~(value & 0x07f0);
1404 pxa2xx_i2c_update(s);
1405 break;
1406
1407 case ISAR:
1408 i2c_set_slave_address(&s->slave->i2c, value & 0x7f);
1409 break;
1410
1411 case IDBR:
1412 s->data = value & 0xff;
1413 break;
1414
1415 default:
1416 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1417 }
1418 }
1419
1420 static const MemoryRegionOps pxa2xx_i2c_ops = {
1421 .read = pxa2xx_i2c_read,
1422 .write = pxa2xx_i2c_write,
1423 .endianness = DEVICE_NATIVE_ENDIAN,
1424 };
1425
1426 static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1427 .name = "pxa2xx_i2c_slave",
1428 .version_id = 1,
1429 .minimum_version_id = 1,
1430 .minimum_version_id_old = 1,
1431 .fields = (VMStateField []) {
1432 VMSTATE_I2C_SLAVE(i2c, PXA2xxI2CSlaveState),
1433 VMSTATE_END_OF_LIST()
1434 }
1435 };
1436
1437 static const VMStateDescription vmstate_pxa2xx_i2c = {
1438 .name = "pxa2xx_i2c",
1439 .version_id = 1,
1440 .minimum_version_id = 1,
1441 .minimum_version_id_old = 1,
1442 .fields = (VMStateField []) {
1443 VMSTATE_UINT16(control, PXA2xxI2CState),
1444 VMSTATE_UINT16(status, PXA2xxI2CState),
1445 VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1446 VMSTATE_UINT8(data, PXA2xxI2CState),
1447 VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1448 vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState *),
1449 VMSTATE_END_OF_LIST()
1450 }
1451 };
1452
1453 static int pxa2xx_i2c_slave_init(I2CSlave *i2c)
1454 {
1455 /* Nothing to do. */
1456 return 0;
1457 }
1458
1459 static void pxa2xx_i2c_slave_class_init(ObjectClass *klass, void *data)
1460 {
1461 I2CSlaveClass *k = I2C_SLAVE_CLASS(klass);
1462
1463 k->init = pxa2xx_i2c_slave_init;
1464 k->event = pxa2xx_i2c_event;
1465 k->recv = pxa2xx_i2c_rx;
1466 k->send = pxa2xx_i2c_tx;
1467 }
1468
1469 static const TypeInfo pxa2xx_i2c_slave_info = {
1470 .name = "pxa2xx-i2c-slave",
1471 .parent = TYPE_I2C_SLAVE,
1472 .instance_size = sizeof(PXA2xxI2CSlaveState),
1473 .class_init = pxa2xx_i2c_slave_class_init,
1474 };
1475
1476 PXA2xxI2CState *pxa2xx_i2c_init(hwaddr base,
1477 qemu_irq irq, uint32_t region_size)
1478 {
1479 DeviceState *dev;
1480 SysBusDevice *i2c_dev;
1481 PXA2xxI2CState *s;
1482 i2c_bus *i2cbus;
1483
1484 dev = qdev_create(NULL, TYPE_PXA2XX_I2C);
1485 qdev_prop_set_uint32(dev, "size", region_size + 1);
1486 qdev_prop_set_uint32(dev, "offset", base & region_size);
1487 qdev_init_nofail(dev);
1488
1489 i2c_dev = SYS_BUS_DEVICE(dev);
1490 sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1491 sysbus_connect_irq(i2c_dev, 0, irq);
1492
1493 s = PXA2XX_I2C(i2c_dev);
1494 /* FIXME: Should the slave device really be on a separate bus? */
1495 i2cbus = i2c_init_bus(dev, "dummy");
1496 dev = i2c_create_slave(i2cbus, "pxa2xx-i2c-slave", 0);
1497 s->slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, I2C_SLAVE(dev));
1498 s->slave->host = s;
1499
1500 return s;
1501 }
1502
1503 static int pxa2xx_i2c_initfn(SysBusDevice *sbd)
1504 {
1505 DeviceState *dev = DEVICE(sbd);
1506 PXA2xxI2CState *s = PXA2XX_I2C(dev);
1507
1508 s->bus = i2c_init_bus(dev, "i2c");
1509
1510 memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_i2c_ops, s,
1511 "pxa2xx-i2c", s->region_size);
1512 sysbus_init_mmio(sbd, &s->iomem);
1513 sysbus_init_irq(sbd, &s->irq);
1514
1515 return 0;
1516 }
1517
1518 i2c_bus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1519 {
1520 return s->bus;
1521 }
1522
1523 static Property pxa2xx_i2c_properties[] = {
1524 DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1525 DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1526 DEFINE_PROP_END_OF_LIST(),
1527 };
1528
1529 static void pxa2xx_i2c_class_init(ObjectClass *klass, void *data)
1530 {
1531 DeviceClass *dc = DEVICE_CLASS(klass);
1532 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1533
1534 k->init = pxa2xx_i2c_initfn;
1535 dc->desc = "PXA2xx I2C Bus Controller";
1536 dc->vmsd = &vmstate_pxa2xx_i2c;
1537 dc->props = pxa2xx_i2c_properties;
1538 }
1539
1540 static const TypeInfo pxa2xx_i2c_info = {
1541 .name = TYPE_PXA2XX_I2C,
1542 .parent = TYPE_SYS_BUS_DEVICE,
1543 .instance_size = sizeof(PXA2xxI2CState),
1544 .class_init = pxa2xx_i2c_class_init,
1545 };
1546
1547 /* PXA Inter-IC Sound Controller */
1548 static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1549 {
1550 i2s->rx_len = 0;
1551 i2s->tx_len = 0;
1552 i2s->fifo_len = 0;
1553 i2s->clk = 0x1a;
1554 i2s->control[0] = 0x00;
1555 i2s->control[1] = 0x00;
1556 i2s->status = 0x00;
1557 i2s->mask = 0x00;
1558 }
1559
1560 #define SACR_TFTH(val) ((val >> 8) & 0xf)
1561 #define SACR_RFTH(val) ((val >> 12) & 0xf)
1562 #define SACR_DREC(val) (val & (1 << 3))
1563 #define SACR_DPRL(val) (val & (1 << 4))
1564
1565 static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1566 {
1567 int rfs, tfs;
1568 rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1569 !SACR_DREC(i2s->control[1]);
1570 tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1571 i2s->enable && !SACR_DPRL(i2s->control[1]);
1572
1573 qemu_set_irq(i2s->rx_dma, rfs);
1574 qemu_set_irq(i2s->tx_dma, tfs);
1575
1576 i2s->status &= 0xe0;
1577 if (i2s->fifo_len < 16 || !i2s->enable)
1578 i2s->status |= 1 << 0; /* TNF */
1579 if (i2s->rx_len)
1580 i2s->status |= 1 << 1; /* RNE */
1581 if (i2s->enable)
1582 i2s->status |= 1 << 2; /* BSY */
1583 if (tfs)
1584 i2s->status |= 1 << 3; /* TFS */
1585 if (rfs)
1586 i2s->status |= 1 << 4; /* RFS */
1587 if (!(i2s->tx_len && i2s->enable))
1588 i2s->status |= i2s->fifo_len << 8; /* TFL */
1589 i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */
1590
1591 qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1592 }
1593
1594 #define SACR0 0x00 /* Serial Audio Global Control register */
1595 #define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */
1596 #define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */
1597 #define SAIMR 0x14 /* Serial Audio Interrupt Mask register */
1598 #define SAICR 0x18 /* Serial Audio Interrupt Clear register */
1599 #define SADIV 0x60 /* Serial Audio Clock Divider register */
1600 #define SADR 0x80 /* Serial Audio Data register */
1601
1602 static uint64_t pxa2xx_i2s_read(void *opaque, hwaddr addr,
1603 unsigned size)
1604 {
1605 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1606
1607 switch (addr) {
1608 case SACR0:
1609 return s->control[0];
1610 case SACR1:
1611 return s->control[1];
1612 case SASR0:
1613 return s->status;
1614 case SAIMR:
1615 return s->mask;
1616 case SAICR:
1617 return 0;
1618 case SADIV:
1619 return s->clk;
1620 case SADR:
1621 if (s->rx_len > 0) {
1622 s->rx_len --;
1623 pxa2xx_i2s_update(s);
1624 return s->codec_in(s->opaque);
1625 }
1626 return 0;
1627 default:
1628 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1629 break;
1630 }
1631 return 0;
1632 }
1633
1634 static void pxa2xx_i2s_write(void *opaque, hwaddr addr,
1635 uint64_t value, unsigned size)
1636 {
1637 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1638 uint32_t *sample;
1639
1640 switch (addr) {
1641 case SACR0:
1642 if (value & (1 << 3)) /* RST */
1643 pxa2xx_i2s_reset(s);
1644 s->control[0] = value & 0xff3d;
1645 if (!s->enable && (value & 1) && s->tx_len) { /* ENB */
1646 for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1647 s->codec_out(s->opaque, *sample);
1648 s->status &= ~(1 << 7); /* I2SOFF */
1649 }
1650 if (value & (1 << 4)) /* EFWR */
1651 printf("%s: Attempt to use special function\n", __FUNCTION__);
1652 s->enable = (value & 9) == 1; /* ENB && !RST*/
1653 pxa2xx_i2s_update(s);
1654 break;
1655 case SACR1:
1656 s->control[1] = value & 0x0039;
1657 if (value & (1 << 5)) /* ENLBF */
1658 printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1659 if (value & (1 << 4)) /* DPRL */
1660 s->fifo_len = 0;
1661 pxa2xx_i2s_update(s);
1662 break;
1663 case SAIMR:
1664 s->mask = value & 0x0078;
1665 pxa2xx_i2s_update(s);
1666 break;
1667 case SAICR:
1668 s->status &= ~(value & (3 << 5));
1669 pxa2xx_i2s_update(s);
1670 break;
1671 case SADIV:
1672 s->clk = value & 0x007f;
1673 break;
1674 case SADR:
1675 if (s->tx_len && s->enable) {
1676 s->tx_len --;
1677 pxa2xx_i2s_update(s);
1678 s->codec_out(s->opaque, value);
1679 } else if (s->fifo_len < 16) {
1680 s->fifo[s->fifo_len ++] = value;
1681 pxa2xx_i2s_update(s);
1682 }
1683 break;
1684 default:
1685 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1686 }
1687 }
1688
1689 static const MemoryRegionOps pxa2xx_i2s_ops = {
1690 .read = pxa2xx_i2s_read,
1691 .write = pxa2xx_i2s_write,
1692 .endianness = DEVICE_NATIVE_ENDIAN,
1693 };
1694
1695 static const VMStateDescription vmstate_pxa2xx_i2s = {
1696 .name = "pxa2xx_i2s",
1697 .version_id = 0,
1698 .minimum_version_id = 0,
1699 .minimum_version_id_old = 0,
1700 .fields = (VMStateField[]) {
1701 VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1702 VMSTATE_UINT32(status, PXA2xxI2SState),
1703 VMSTATE_UINT32(mask, PXA2xxI2SState),
1704 VMSTATE_UINT32(clk, PXA2xxI2SState),
1705 VMSTATE_INT32(enable, PXA2xxI2SState),
1706 VMSTATE_INT32(rx_len, PXA2xxI2SState),
1707 VMSTATE_INT32(tx_len, PXA2xxI2SState),
1708 VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1709 VMSTATE_END_OF_LIST()
1710 }
1711 };
1712
1713 static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1714 {
1715 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1716 uint32_t *sample;
1717
1718 /* Signal FIFO errors */
1719 if (s->enable && s->tx_len)
1720 s->status |= 1 << 5; /* TUR */
1721 if (s->enable && s->rx_len)
1722 s->status |= 1 << 6; /* ROR */
1723
1724 /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1725 * handle the cases where it makes a difference. */
1726 s->tx_len = tx - s->fifo_len;
1727 s->rx_len = rx;
1728 /* Note that is s->codec_out wasn't set, we wouldn't get called. */
1729 if (s->enable)
1730 for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1731 s->codec_out(s->opaque, *sample);
1732 pxa2xx_i2s_update(s);
1733 }
1734
1735 static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem,
1736 hwaddr base,
1737 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1738 {
1739 PXA2xxI2SState *s = (PXA2xxI2SState *)
1740 g_malloc0(sizeof(PXA2xxI2SState));
1741
1742 s->irq = irq;
1743 s->rx_dma = rx_dma;
1744 s->tx_dma = tx_dma;
1745 s->data_req = pxa2xx_i2s_data_req;
1746
1747 pxa2xx_i2s_reset(s);
1748
1749 memory_region_init_io(&s->iomem, NULL, &pxa2xx_i2s_ops, s,
1750 "pxa2xx-i2s", 0x100000);
1751 memory_region_add_subregion(sysmem, base, &s->iomem);
1752
1753 vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1754
1755 return s;
1756 }
1757
1758 /* PXA Fast Infra-red Communications Port */
1759 struct PXA2xxFIrState {
1760 MemoryRegion iomem;
1761 qemu_irq irq;
1762 qemu_irq rx_dma;
1763 qemu_irq tx_dma;
1764 int enable;
1765 CharDriverState *chr;
1766
1767 uint8_t control[3];
1768 uint8_t status[2];
1769
1770 int rx_len;
1771 int rx_start;
1772 uint8_t rx_fifo[64];
1773 };
1774
1775 static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1776 {
1777 s->control[0] = 0x00;
1778 s->control[1] = 0x00;
1779 s->control[2] = 0x00;
1780 s->status[0] = 0x00;
1781 s->status[1] = 0x00;
1782 s->enable = 0;
1783 }
1784
1785 static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1786 {
1787 static const int tresh[4] = { 8, 16, 32, 0 };
1788 int intr = 0;
1789 if ((s->control[0] & (1 << 4)) && /* RXE */
1790 s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */
1791 s->status[0] |= 1 << 4; /* RFS */
1792 else
1793 s->status[0] &= ~(1 << 4); /* RFS */
1794 if (s->control[0] & (1 << 3)) /* TXE */
1795 s->status[0] |= 1 << 3; /* TFS */
1796 else
1797 s->status[0] &= ~(1 << 3); /* TFS */
1798 if (s->rx_len)
1799 s->status[1] |= 1 << 2; /* RNE */
1800 else
1801 s->status[1] &= ~(1 << 2); /* RNE */
1802 if (s->control[0] & (1 << 4)) /* RXE */
1803 s->status[1] |= 1 << 0; /* RSY */
1804 else
1805 s->status[1] &= ~(1 << 0); /* RSY */
1806
1807 intr |= (s->control[0] & (1 << 5)) && /* RIE */
1808 (s->status[0] & (1 << 4)); /* RFS */
1809 intr |= (s->control[0] & (1 << 6)) && /* TIE */
1810 (s->status[0] & (1 << 3)); /* TFS */
1811 intr |= (s->control[2] & (1 << 4)) && /* TRAIL */
1812 (s->status[0] & (1 << 6)); /* EOC */
1813 intr |= (s->control[0] & (1 << 2)) && /* TUS */
1814 (s->status[0] & (1 << 1)); /* TUR */
1815 intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */
1816
1817 qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1818 qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1819
1820 qemu_set_irq(s->irq, intr && s->enable);
1821 }
1822
1823 #define ICCR0 0x00 /* FICP Control register 0 */
1824 #define ICCR1 0x04 /* FICP Control register 1 */
1825 #define ICCR2 0x08 /* FICP Control register 2 */
1826 #define ICDR 0x0c /* FICP Data register */
1827 #define ICSR0 0x14 /* FICP Status register 0 */
1828 #define ICSR1 0x18 /* FICP Status register 1 */
1829 #define ICFOR 0x1c /* FICP FIFO Occupancy Status register */
1830
1831 static uint64_t pxa2xx_fir_read(void *opaque, hwaddr addr,
1832 unsigned size)
1833 {
1834 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1835 uint8_t ret;
1836
1837 switch (addr) {
1838 case ICCR0:
1839 return s->control[0];
1840 case ICCR1:
1841 return s->control[1];
1842 case ICCR2:
1843 return s->control[2];
1844 case ICDR:
1845 s->status[0] &= ~0x01;
1846 s->status[1] &= ~0x72;
1847 if (s->rx_len) {
1848 s->rx_len --;
1849 ret = s->rx_fifo[s->rx_start ++];
1850 s->rx_start &= 63;
1851 pxa2xx_fir_update(s);
1852 return ret;
1853 }
1854 printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1855 break;
1856 case ICSR0:
1857 return s->status[0];
1858 case ICSR1:
1859 return s->status[1] | (1 << 3); /* TNF */
1860 case ICFOR:
1861 return s->rx_len;
1862 default:
1863 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1864 break;
1865 }
1866 return 0;
1867 }
1868
1869 static void pxa2xx_fir_write(void *opaque, hwaddr addr,
1870 uint64_t value64, unsigned size)
1871 {
1872 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1873 uint32_t value = value64;
1874 uint8_t ch;
1875
1876 switch (addr) {
1877 case ICCR0:
1878 s->control[0] = value;
1879 if (!(value & (1 << 4))) /* RXE */
1880 s->rx_len = s->rx_start = 0;
1881 if (!(value & (1 << 3))) { /* TXE */
1882 /* Nop */
1883 }
1884 s->enable = value & 1; /* ITR */
1885 if (!s->enable)
1886 s->status[0] = 0;
1887 pxa2xx_fir_update(s);
1888 break;
1889 case ICCR1:
1890 s->control[1] = value;
1891 break;
1892 case ICCR2:
1893 s->control[2] = value & 0x3f;
1894 pxa2xx_fir_update(s);
1895 break;
1896 case ICDR:
1897 if (s->control[2] & (1 << 2)) /* TXP */
1898 ch = value;
1899 else
1900 ch = ~value;
1901 if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */
1902 qemu_chr_fe_write(s->chr, &ch, 1);
1903 break;
1904 case ICSR0:
1905 s->status[0] &= ~(value & 0x66);
1906 pxa2xx_fir_update(s);
1907 break;
1908 case ICFOR:
1909 break;
1910 default:
1911 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1912 }
1913 }
1914
1915 static const MemoryRegionOps pxa2xx_fir_ops = {
1916 .read = pxa2xx_fir_read,
1917 .write = pxa2xx_fir_write,
1918 .endianness = DEVICE_NATIVE_ENDIAN,
1919 };
1920
1921 static int pxa2xx_fir_is_empty(void *opaque)
1922 {
1923 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1924 return (s->rx_len < 64);
1925 }
1926
1927 static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1928 {
1929 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1930 if (!(s->control[0] & (1 << 4))) /* RXE */
1931 return;
1932
1933 while (size --) {
1934 s->status[1] |= 1 << 4; /* EOF */
1935 if (s->rx_len >= 64) {
1936 s->status[1] |= 1 << 6; /* ROR */
1937 break;
1938 }
1939
1940 if (s->control[2] & (1 << 3)) /* RXP */
1941 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1942 else
1943 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1944 }
1945
1946 pxa2xx_fir_update(s);
1947 }
1948
1949 static void pxa2xx_fir_event(void *opaque, int event)
1950 {
1951 }
1952
1953 static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1954 {
1955 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1956 int i;
1957
1958 qemu_put_be32(f, s->enable);
1959
1960 qemu_put_8s(f, &s->control[0]);
1961 qemu_put_8s(f, &s->control[1]);
1962 qemu_put_8s(f, &s->control[2]);
1963 qemu_put_8s(f, &s->status[0]);
1964 qemu_put_8s(f, &s->status[1]);
1965
1966 qemu_put_byte(f, s->rx_len);
1967 for (i = 0; i < s->rx_len; i ++)
1968 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1969 }
1970
1971 static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1972 {
1973 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1974 int i;
1975
1976 s->enable = qemu_get_be32(f);
1977
1978 qemu_get_8s(f, &s->control[0]);
1979 qemu_get_8s(f, &s->control[1]);
1980 qemu_get_8s(f, &s->control[2]);
1981 qemu_get_8s(f, &s->status[0]);
1982 qemu_get_8s(f, &s->status[1]);
1983
1984 s->rx_len = qemu_get_byte(f);
1985 s->rx_start = 0;
1986 for (i = 0; i < s->rx_len; i ++)
1987 s->rx_fifo[i] = qemu_get_byte(f);
1988
1989 return 0;
1990 }
1991
1992 static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem,
1993 hwaddr base,
1994 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma,
1995 CharDriverState *chr)
1996 {
1997 PXA2xxFIrState *s = (PXA2xxFIrState *)
1998 g_malloc0(sizeof(PXA2xxFIrState));
1999
2000 s->irq = irq;
2001 s->rx_dma = rx_dma;
2002 s->tx_dma = tx_dma;
2003 s->chr = chr;
2004
2005 pxa2xx_fir_reset(s);
2006
2007 memory_region_init_io(&s->iomem, NULL, &pxa2xx_fir_ops, s, "pxa2xx-fir", 0x1000);
2008 memory_region_add_subregion(sysmem, base, &s->iomem);
2009
2010 if (chr) {
2011 qemu_chr_fe_claim_no_fail(chr);
2012 qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
2013 pxa2xx_fir_rx, pxa2xx_fir_event, s);
2014 }
2015
2016 register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
2017 pxa2xx_fir_load, s);
2018
2019 return s;
2020 }
2021
2022 static void pxa2xx_reset(void *opaque, int line, int level)
2023 {
2024 PXA2xxState *s = (PXA2xxState *) opaque;
2025
2026 if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */
2027 cpu_reset(CPU(s->cpu));
2028 /* TODO: reset peripherals */
2029 }
2030 }
2031
2032 /* Initialise a PXA270 integrated chip (ARM based core). */
2033 PXA2xxState *pxa270_init(MemoryRegion *address_space,
2034 unsigned int sdram_size, const char *revision)
2035 {
2036 PXA2xxState *s;
2037 int i;
2038 DriveInfo *dinfo;
2039 s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2040
2041 if (revision && strncmp(revision, "pxa27", 5)) {
2042 fprintf(stderr, "Machine requires a PXA27x processor.\n");
2043 exit(1);
2044 }
2045 if (!revision)
2046 revision = "pxa270";
2047
2048 s->cpu = cpu_arm_init(revision);
2049 if (s->cpu == NULL) {
2050 fprintf(stderr, "Unable to find CPU definition\n");
2051 exit(1);
2052 }
2053 s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2054
2055 /* SDRAM & Internal Memory Storage */
2056 memory_region_init_ram(&s->sdram, NULL, "pxa270.sdram", sdram_size);
2057 vmstate_register_ram_global(&s->sdram);
2058 memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2059 memory_region_init_ram(&s->internal, NULL, "pxa270.internal", 0x40000);
2060 vmstate_register_ram_global(&s->internal);
2061 memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2062 &s->internal);
2063
2064 s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2065
2066 s->dma = pxa27x_dma_init(0x40000000,
2067 qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2068
2069 sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2070 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2071 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2072 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2073 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2074 qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2075 NULL);
2076
2077 s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 121);
2078
2079 dinfo = drive_get(IF_SD, 0, 0);
2080 if (!dinfo) {
2081 fprintf(stderr, "qemu: missing SecureDigital device\n");
2082 exit(1);
2083 }
2084 s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2085 qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2086 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2087 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2088
2089 for (i = 0; pxa270_serial[i].io_base; i++) {
2090 if (serial_hds[i]) {
2091 serial_mm_init(address_space, pxa270_serial[i].io_base, 2,
2092 qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2093 14857000 / 16, serial_hds[i],
2094 DEVICE_NATIVE_ENDIAN);
2095 } else {
2096 break;
2097 }
2098 }
2099 if (serial_hds[i])
2100 s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2101 qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2102 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2103 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2104 serial_hds[i]);
2105
2106 s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2107 qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2108
2109 s->cm_base = 0x41300000;
2110 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
2111 s->clkcfg = 0x00000009; /* Turbo mode active */
2112 memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2113 memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2114 vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2115
2116 pxa2xx_setup_cp14(s);
2117
2118 s->mm_base = 0x48000000;
2119 s->mm_regs[MDMRS >> 2] = 0x00020002;
2120 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2121 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2122 memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2123 memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2124 vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2125
2126 s->pm_base = 0x40f00000;
2127 memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2128 memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2129 vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2130
2131 for (i = 0; pxa27x_ssp[i].io_base; i ++);
2132 s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2133 for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2134 DeviceState *dev;
2135 dev = sysbus_create_simple(TYPE_PXA2XX_SSP, pxa27x_ssp[i].io_base,
2136 qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2137 s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2138 }
2139
2140 if (usb_enabled(false)) {
2141 sysbus_create_simple("sysbus-ohci", 0x4c000000,
2142 qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2143 }
2144
2145 s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2146 s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2147
2148 sysbus_create_simple(TYPE_PXA2XX_RTC, 0x40900000,
2149 qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2150
2151 s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2152 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2153 s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2154 qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2155
2156 s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2157 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2158 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2159 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2160
2161 s->kp = pxa27x_keypad_init(address_space, 0x41500000,
2162 qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2163
2164 /* GPIO1 resets the processor */
2165 /* The handler can be overridden by board-specific code */
2166 qdev_connect_gpio_out(s->gpio, 1, s->reset);
2167 return s;
2168 }
2169
2170 /* Initialise a PXA255 integrated chip (ARM based core). */
2171 PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size)
2172 {
2173 PXA2xxState *s;
2174 int i;
2175 DriveInfo *dinfo;
2176
2177 s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2178
2179 s->cpu = cpu_arm_init("pxa255");
2180 if (s->cpu == NULL) {
2181 fprintf(stderr, "Unable to find CPU definition\n");
2182 exit(1);
2183 }
2184 s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2185
2186 /* SDRAM & Internal Memory Storage */
2187 memory_region_init_ram(&s->sdram, NULL, "pxa255.sdram", sdram_size);
2188 vmstate_register_ram_global(&s->sdram);
2189 memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2190 memory_region_init_ram(&s->internal, NULL, "pxa255.internal",
2191 PXA2XX_INTERNAL_SIZE);
2192 vmstate_register_ram_global(&s->internal);
2193 memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2194 &s->internal);
2195
2196 s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2197
2198 s->dma = pxa255_dma_init(0x40000000,
2199 qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2200
2201 sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2202 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2203 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2204 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2205 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2206 NULL);
2207
2208 s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 85);
2209
2210 dinfo = drive_get(IF_SD, 0, 0);
2211 if (!dinfo) {
2212 fprintf(stderr, "qemu: missing SecureDigital device\n");
2213 exit(1);
2214 }
2215 s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2216 qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2217 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2218 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2219
2220 for (i = 0; pxa255_serial[i].io_base; i++) {
2221 if (serial_hds[i]) {
2222 serial_mm_init(address_space, pxa255_serial[i].io_base, 2,
2223 qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2224 14745600 / 16, serial_hds[i],
2225 DEVICE_NATIVE_ENDIAN);
2226 } else {
2227 break;
2228 }
2229 }
2230 if (serial_hds[i])
2231 s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2232 qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2233 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2234 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2235 serial_hds[i]);
2236
2237 s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2238 qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2239
2240 s->cm_base = 0x41300000;
2241 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
2242 s->clkcfg = 0x00000009; /* Turbo mode active */
2243 memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2244 memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2245 vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2246
2247 pxa2xx_setup_cp14(s);
2248
2249 s->mm_base = 0x48000000;
2250 s->mm_regs[MDMRS >> 2] = 0x00020002;
2251 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2252 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2253 memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2254 memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2255 vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2256
2257 s->pm_base = 0x40f00000;
2258 memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2259 memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2260 vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2261
2262 for (i = 0; pxa255_ssp[i].io_base; i ++);
2263 s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2264 for (i = 0; pxa255_ssp[i].io_base; i ++) {
2265 DeviceState *dev;
2266 dev = sysbus_create_simple(TYPE_PXA2XX_SSP, pxa255_ssp[i].io_base,
2267 qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2268 s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2269 }
2270
2271 if (usb_enabled(false)) {
2272 sysbus_create_simple("sysbus-ohci", 0x4c000000,
2273 qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2274 }
2275
2276 s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2277 s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2278
2279 sysbus_create_simple(TYPE_PXA2XX_RTC, 0x40900000,
2280 qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2281
2282 s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2283 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2284 s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2285 qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2286
2287 s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2288 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2289 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2290 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2291
2292 /* GPIO1 resets the processor */
2293 /* The handler can be overridden by board-specific code */
2294 qdev_connect_gpio_out(s->gpio, 1, s->reset);
2295 return s;
2296 }
2297
2298 static void pxa2xx_ssp_class_init(ObjectClass *klass, void *data)
2299 {
2300 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
2301
2302 sdc->init = pxa2xx_ssp_init;
2303 }
2304
2305 static const TypeInfo pxa2xx_ssp_info = {
2306 .name = TYPE_PXA2XX_SSP,
2307 .parent = TYPE_SYS_BUS_DEVICE,
2308 .instance_size = sizeof(PXA2xxSSPState),
2309 .class_init = pxa2xx_ssp_class_init,
2310 };
2311
2312 static void pxa2xx_register_types(void)
2313 {
2314 type_register_static(&pxa2xx_i2c_slave_info);
2315 type_register_static(&pxa2xx_ssp_info);
2316 type_register_static(&pxa2xx_i2c_info);
2317 type_register_static(&pxa2xx_rtc_sysbus_info);
2318 }
2319
2320 type_init(pxa2xx_register_types)