]> git.proxmox.com Git - qemu.git/blob - hw/etraxfs_eth.c
591bee245cc5f8b07892d461feed862799aa4ba2
[qemu.git] / hw / etraxfs_eth.c
1 /*
2 * QEMU ETRAX Ethernet Controller.
3 *
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include <stdio.h>
26 #include "hw/sysbus.h"
27 #include "net/net.h"
28 #include "hw/etraxfs.h"
29
30 #define D(x)
31
32 /* Advertisement control register. */
33 #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */
34 #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */
35 #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */
36 #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */
37
38 /*
39 * The MDIO extensions in the TDK PHY model were reversed engineered from the
40 * linux driver (PHYID and Diagnostics reg).
41 * TODO: Add friendly names for the register nums.
42 */
43 struct qemu_phy
44 {
45 uint32_t regs[32];
46
47 int link;
48
49 unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
50 void (*write)(struct qemu_phy *phy, unsigned int req, unsigned int data);
51 };
52
53 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
54 {
55 int regnum;
56 unsigned r = 0;
57
58 regnum = req & 0x1f;
59
60 switch (regnum) {
61 case 1:
62 if (!phy->link) {
63 break;
64 }
65 /* MR1. */
66 /* Speeds and modes. */
67 r |= (1 << 13) | (1 << 14);
68 r |= (1 << 11) | (1 << 12);
69 r |= (1 << 5); /* Autoneg complete. */
70 r |= (1 << 3); /* Autoneg able. */
71 r |= (1 << 2); /* link. */
72 break;
73 case 5:
74 /* Link partner ability.
75 We are kind; always agree with whatever best mode
76 the guest advertises. */
77 r = 1 << 14; /* Success. */
78 /* Copy advertised modes. */
79 r |= phy->regs[4] & (15 << 5);
80 /* Autoneg support. */
81 r |= 1;
82 break;
83 case 18:
84 {
85 /* Diagnostics reg. */
86 int duplex = 0;
87 int speed_100 = 0;
88
89 if (!phy->link) {
90 break;
91 }
92
93 /* Are we advertising 100 half or 100 duplex ? */
94 speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
95 speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
96
97 /* Are we advertising 10 duplex or 100 duplex ? */
98 duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
99 duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
100 r = (speed_100 << 10) | (duplex << 11);
101 }
102 break;
103
104 default:
105 r = phy->regs[regnum];
106 break;
107 }
108 D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
109 return r;
110 }
111
112 static void
113 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
114 {
115 int regnum;
116
117 regnum = req & 0x1f;
118 D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
119 switch (regnum) {
120 default:
121 phy->regs[regnum] = data;
122 break;
123 }
124 }
125
126 static void
127 tdk_init(struct qemu_phy *phy)
128 {
129 phy->regs[0] = 0x3100;
130 /* PHY Id. */
131 phy->regs[2] = 0x0300;
132 phy->regs[3] = 0xe400;
133 /* Autonegotiation advertisement reg. */
134 phy->regs[4] = 0x01E1;
135 phy->link = 1;
136
137 phy->read = tdk_read;
138 phy->write = tdk_write;
139 }
140
141 struct qemu_mdio
142 {
143 /* bus. */
144 int mdc;
145 int mdio;
146
147 /* decoder. */
148 enum {
149 PREAMBLE,
150 SOF,
151 OPC,
152 ADDR,
153 REQ,
154 TURNAROUND,
155 DATA
156 } state;
157 unsigned int drive;
158
159 unsigned int cnt;
160 unsigned int addr;
161 unsigned int opc;
162 unsigned int req;
163 unsigned int data;
164
165 struct qemu_phy *devs[32];
166 };
167
168 static void
169 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
170 {
171 bus->devs[addr & 0x1f] = phy;
172 }
173
174 #ifdef USE_THIS_DEAD_CODE
175 static void
176 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
177 {
178 bus->devs[addr & 0x1f] = NULL;
179 }
180 #endif
181
182 static void mdio_read_req(struct qemu_mdio *bus)
183 {
184 struct qemu_phy *phy;
185
186 phy = bus->devs[bus->addr];
187 if (phy && phy->read) {
188 bus->data = phy->read(phy, bus->req);
189 } else {
190 bus->data = 0xffff;
191 }
192 }
193
194 static void mdio_write_req(struct qemu_mdio *bus)
195 {
196 struct qemu_phy *phy;
197
198 phy = bus->devs[bus->addr];
199 if (phy && phy->write) {
200 phy->write(phy, bus->req, bus->data);
201 }
202 }
203
204 static void mdio_cycle(struct qemu_mdio *bus)
205 {
206 bus->cnt++;
207
208 D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
209 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
210 #if 0
211 if (bus->mdc) {
212 printf("%d", bus->mdio);
213 }
214 #endif
215 switch (bus->state) {
216 case PREAMBLE:
217 if (bus->mdc) {
218 if (bus->cnt >= (32 * 2) && !bus->mdio) {
219 bus->cnt = 0;
220 bus->state = SOF;
221 bus->data = 0;
222 }
223 }
224 break;
225 case SOF:
226 if (bus->mdc) {
227 if (bus->mdio != 1) {
228 printf("WARNING: no SOF\n");
229 }
230 if (bus->cnt == 1*2) {
231 bus->cnt = 0;
232 bus->opc = 0;
233 bus->state = OPC;
234 }
235 }
236 break;
237 case OPC:
238 if (bus->mdc) {
239 bus->opc <<= 1;
240 bus->opc |= bus->mdio & 1;
241 if (bus->cnt == 2*2) {
242 bus->cnt = 0;
243 bus->addr = 0;
244 bus->state = ADDR;
245 }
246 }
247 break;
248 case ADDR:
249 if (bus->mdc) {
250 bus->addr <<= 1;
251 bus->addr |= bus->mdio & 1;
252
253 if (bus->cnt == 5*2) {
254 bus->cnt = 0;
255 bus->req = 0;
256 bus->state = REQ;
257 }
258 }
259 break;
260 case REQ:
261 if (bus->mdc) {
262 bus->req <<= 1;
263 bus->req |= bus->mdio & 1;
264 if (bus->cnt == 5*2) {
265 bus->cnt = 0;
266 bus->state = TURNAROUND;
267 }
268 }
269 break;
270 case TURNAROUND:
271 if (bus->mdc && bus->cnt == 2*2) {
272 bus->mdio = 0;
273 bus->cnt = 0;
274
275 if (bus->opc == 2) {
276 bus->drive = 1;
277 mdio_read_req(bus);
278 bus->mdio = bus->data & 1;
279 }
280 bus->state = DATA;
281 }
282 break;
283 case DATA:
284 if (!bus->mdc) {
285 if (bus->drive) {
286 bus->mdio = !!(bus->data & (1 << 15));
287 bus->data <<= 1;
288 }
289 } else {
290 if (!bus->drive) {
291 bus->data <<= 1;
292 bus->data |= bus->mdio;
293 }
294 if (bus->cnt == 16 * 2) {
295 bus->cnt = 0;
296 bus->state = PREAMBLE;
297 if (!bus->drive) {
298 mdio_write_req(bus);
299 }
300 bus->drive = 0;
301 }
302 }
303 break;
304 default:
305 break;
306 }
307 }
308
309 /* ETRAX-FS Ethernet MAC block starts here. */
310
311 #define RW_MA0_LO 0x00
312 #define RW_MA0_HI 0x01
313 #define RW_MA1_LO 0x02
314 #define RW_MA1_HI 0x03
315 #define RW_GA_LO 0x04
316 #define RW_GA_HI 0x05
317 #define RW_GEN_CTRL 0x06
318 #define RW_REC_CTRL 0x07
319 #define RW_TR_CTRL 0x08
320 #define RW_CLR_ERR 0x09
321 #define RW_MGM_CTRL 0x0a
322 #define R_STAT 0x0b
323 #define FS_ETH_MAX_REGS 0x17
324
325 struct fs_eth
326 {
327 SysBusDevice busdev;
328 MemoryRegion mmio;
329 NICState *nic;
330 NICConf conf;
331
332 /* Two addrs in the filter. */
333 uint8_t macaddr[2][6];
334 uint32_t regs[FS_ETH_MAX_REGS];
335
336 union {
337 void *vdma_out;
338 struct etraxfs_dma_client *dma_out;
339 };
340 union {
341 void *vdma_in;
342 struct etraxfs_dma_client *dma_in;
343 };
344
345 /* MDIO bus. */
346 struct qemu_mdio mdio_bus;
347 unsigned int phyaddr;
348 int duplex_mismatch;
349
350 /* PHY. */
351 struct qemu_phy phy;
352 };
353
354 static void eth_validate_duplex(struct fs_eth *eth)
355 {
356 struct qemu_phy *phy;
357 unsigned int phy_duplex;
358 unsigned int mac_duplex;
359 int new_mm = 0;
360
361 phy = eth->mdio_bus.devs[eth->phyaddr];
362 phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
363 mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
364
365 if (mac_duplex != phy_duplex) {
366 new_mm = 1;
367 }
368
369 if (eth->regs[RW_GEN_CTRL] & 1) {
370 if (new_mm != eth->duplex_mismatch) {
371 if (new_mm) {
372 printf("HW: WARNING ETH duplex mismatch MAC=%d PHY=%d\n",
373 mac_duplex, phy_duplex);
374 } else {
375 printf("HW: ETH duplex ok.\n");
376 }
377 }
378 eth->duplex_mismatch = new_mm;
379 }
380 }
381
382 static uint64_t
383 eth_read(void *opaque, hwaddr addr, unsigned int size)
384 {
385 struct fs_eth *eth = opaque;
386 uint32_t r = 0;
387
388 addr >>= 2;
389
390 switch (addr) {
391 case R_STAT:
392 r = eth->mdio_bus.mdio & 1;
393 break;
394 default:
395 r = eth->regs[addr];
396 D(printf("%s %x\n", __func__, addr * 4));
397 break;
398 }
399 return r;
400 }
401
402 static void eth_update_ma(struct fs_eth *eth, int ma)
403 {
404 int reg;
405 int i = 0;
406
407 ma &= 1;
408
409 reg = RW_MA0_LO;
410 if (ma) {
411 reg = RW_MA1_LO;
412 }
413
414 eth->macaddr[ma][i++] = eth->regs[reg];
415 eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
416 eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
417 eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
418 eth->macaddr[ma][i++] = eth->regs[reg + 1];
419 eth->macaddr[ma][i] = eth->regs[reg + 1] >> 8;
420
421 D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
422 eth->macaddr[ma][0], eth->macaddr[ma][1],
423 eth->macaddr[ma][2], eth->macaddr[ma][3],
424 eth->macaddr[ma][4], eth->macaddr[ma][5]));
425 }
426
427 static void
428 eth_write(void *opaque, hwaddr addr,
429 uint64_t val64, unsigned int size)
430 {
431 struct fs_eth *eth = opaque;
432 uint32_t value = val64;
433
434 addr >>= 2;
435 switch (addr) {
436 case RW_MA0_LO:
437 case RW_MA0_HI:
438 eth->regs[addr] = value;
439 eth_update_ma(eth, 0);
440 break;
441 case RW_MA1_LO:
442 case RW_MA1_HI:
443 eth->regs[addr] = value;
444 eth_update_ma(eth, 1);
445 break;
446
447 case RW_MGM_CTRL:
448 /* Attach an MDIO/PHY abstraction. */
449 if (value & 2) {
450 eth->mdio_bus.mdio = value & 1;
451 }
452 if (eth->mdio_bus.mdc != (value & 4)) {
453 mdio_cycle(&eth->mdio_bus);
454 eth_validate_duplex(eth);
455 }
456 eth->mdio_bus.mdc = !!(value & 4);
457 eth->regs[addr] = value;
458 break;
459
460 case RW_REC_CTRL:
461 eth->regs[addr] = value;
462 eth_validate_duplex(eth);
463 break;
464
465 default:
466 eth->regs[addr] = value;
467 D(printf("%s %x %x\n", __func__, addr, value));
468 break;
469 }
470 }
471
472 /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
473 filter dropping group addresses we have not joined. The filter has 64
474 bits (m). The has function is a simple nible xor of the group addr. */
475 static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
476 {
477 unsigned int hsh;
478 int m_individual = eth->regs[RW_REC_CTRL] & 4;
479 int match;
480
481 /* First bit on the wire of a MAC address signals multicast or
482 physical address. */
483 if (!m_individual && !(sa[0] & 1)) {
484 return 0;
485 }
486
487 /* Calculate the hash index for the GA registers. */
488 hsh = 0;
489 hsh ^= (*sa) & 0x3f;
490 hsh ^= ((*sa) >> 6) & 0x03;
491 ++sa;
492 hsh ^= ((*sa) << 2) & 0x03c;
493 hsh ^= ((*sa) >> 4) & 0xf;
494 ++sa;
495 hsh ^= ((*sa) << 4) & 0x30;
496 hsh ^= ((*sa) >> 2) & 0x3f;
497 ++sa;
498 hsh ^= (*sa) & 0x3f;
499 hsh ^= ((*sa) >> 6) & 0x03;
500 ++sa;
501 hsh ^= ((*sa) << 2) & 0x03c;
502 hsh ^= ((*sa) >> 4) & 0xf;
503 ++sa;
504 hsh ^= ((*sa) << 4) & 0x30;
505 hsh ^= ((*sa) >> 2) & 0x3f;
506
507 hsh &= 63;
508 if (hsh > 31) {
509 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
510 } else {
511 match = eth->regs[RW_GA_LO] & (1 << hsh);
512 }
513 D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
514 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
515 return match;
516 }
517
518 static int eth_can_receive(NetClientState *nc)
519 {
520 return 1;
521 }
522
523 static ssize_t eth_receive(NetClientState *nc, const uint8_t *buf, size_t size)
524 {
525 unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
526 struct fs_eth *eth = qemu_get_nic_opaque(nc);
527 int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
528 int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
529 int r_bcast = eth->regs[RW_REC_CTRL] & 8;
530
531 if (size < 12) {
532 return -1;
533 }
534
535 D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
536 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
537 use_ma0, use_ma1, r_bcast));
538
539 /* Does the frame get through the address filters? */
540 if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
541 && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
542 && (!r_bcast || memcmp(buf, sa_bcast, 6))
543 && !eth_match_groupaddr(eth, buf)) {
544 return size;
545 }
546
547 /* FIXME: Find another way to pass on the fake csum. */
548 etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
549
550 return size;
551 }
552
553 static int eth_tx_push(void *opaque, unsigned char *buf, int len, bool eop)
554 {
555 struct fs_eth *eth = opaque;
556
557 D(printf("%s buf=%p len=%d\n", __func__, buf, len));
558 qemu_send_packet(qemu_get_queue(eth->nic), buf, len);
559 return len;
560 }
561
562 static void eth_set_link(NetClientState *nc)
563 {
564 struct fs_eth *eth = qemu_get_nic_opaque(nc);
565 D(printf("%s %d\n", __func__, nc->link_down));
566 eth->phy.link = !nc->link_down;
567 }
568
569 static const MemoryRegionOps eth_ops = {
570 .read = eth_read,
571 .write = eth_write,
572 .endianness = DEVICE_LITTLE_ENDIAN,
573 .valid = {
574 .min_access_size = 4,
575 .max_access_size = 4
576 }
577 };
578
579 static void eth_cleanup(NetClientState *nc)
580 {
581 struct fs_eth *eth = qemu_get_nic_opaque(nc);
582
583 /* Disconnect the client. */
584 eth->dma_out->client.push = NULL;
585 eth->dma_out->client.opaque = NULL;
586 eth->dma_in->client.opaque = NULL;
587 eth->dma_in->client.pull = NULL;
588 g_free(eth);
589 }
590
591 static NetClientInfo net_etraxfs_info = {
592 .type = NET_CLIENT_OPTIONS_KIND_NIC,
593 .size = sizeof(NICState),
594 .can_receive = eth_can_receive,
595 .receive = eth_receive,
596 .cleanup = eth_cleanup,
597 .link_status_changed = eth_set_link,
598 };
599
600 static int fs_eth_init(SysBusDevice *dev)
601 {
602 struct fs_eth *s = FROM_SYSBUS(typeof(*s), dev);
603
604 if (!s->dma_out || !s->dma_in) {
605 hw_error("Unconnected ETRAX-FS Ethernet MAC.\n");
606 }
607
608 s->dma_out->client.push = eth_tx_push;
609 s->dma_out->client.opaque = s;
610 s->dma_in->client.opaque = s;
611 s->dma_in->client.pull = NULL;
612
613 memory_region_init_io(&s->mmio, &eth_ops, s, "etraxfs-eth", 0x5c);
614 sysbus_init_mmio(dev, &s->mmio);
615
616 qemu_macaddr_default_if_unset(&s->conf.macaddr);
617 s->nic = qemu_new_nic(&net_etraxfs_info, &s->conf,
618 object_get_typename(OBJECT(s)), dev->qdev.id, s);
619 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
620
621
622 tdk_init(&s->phy);
623 mdio_attach(&s->mdio_bus, &s->phy, s->phyaddr);
624 return 0;
625 }
626
627 static Property etraxfs_eth_properties[] = {
628 DEFINE_PROP_UINT32("phyaddr", struct fs_eth, phyaddr, 1),
629 DEFINE_PROP_PTR("dma_out", struct fs_eth, vdma_out),
630 DEFINE_PROP_PTR("dma_in", struct fs_eth, vdma_in),
631 DEFINE_NIC_PROPERTIES(struct fs_eth, conf),
632 DEFINE_PROP_END_OF_LIST(),
633 };
634
635 static void etraxfs_eth_class_init(ObjectClass *klass, void *data)
636 {
637 DeviceClass *dc = DEVICE_CLASS(klass);
638 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
639
640 k->init = fs_eth_init;
641 dc->props = etraxfs_eth_properties;
642 }
643
644 static const TypeInfo etraxfs_eth_info = {
645 .name = "etraxfs-eth",
646 .parent = TYPE_SYS_BUS_DEVICE,
647 .instance_size = sizeof(struct fs_eth),
648 .class_init = etraxfs_eth_class_init,
649 };
650
651 static void etraxfs_eth_register_types(void)
652 {
653 type_register_static(&etraxfs_eth_info);
654 }
655
656 type_init(etraxfs_eth_register_types)