]> git.proxmox.com Git - qemu.git/blob - hw/i386/pc.c
e8bc8ce172adf06475b41d08df8ecb12e895c76b
[qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/cpu/icc_bus.h"
57 #include "hw/boards.h"
58 #include "hw/pci/pci_host.h"
59
60 /* debug PC/ISA interrupts */
61 //#define DEBUG_IRQ
62
63 #ifdef DEBUG_IRQ
64 #define DPRINTF(fmt, ...) \
65 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
66 #else
67 #define DPRINTF(fmt, ...)
68 #endif
69
70 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
71 #define ACPI_DATA_SIZE 0x10000
72 #define BIOS_CFG_IOPORT 0x510
73 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
74 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
75 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
76 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
77 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
78
79 #define E820_NR_ENTRIES 16
80
81 struct e820_entry {
82 uint64_t address;
83 uint64_t length;
84 uint32_t type;
85 } QEMU_PACKED __attribute((__aligned__(4)));
86
87 struct e820_table {
88 uint32_t count;
89 struct e820_entry entry[E820_NR_ENTRIES];
90 } QEMU_PACKED __attribute((__aligned__(4)));
91
92 static struct e820_table e820_table;
93 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
94
95 void gsi_handler(void *opaque, int n, int level)
96 {
97 GSIState *s = opaque;
98
99 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
100 if (n < ISA_NUM_IRQS) {
101 qemu_set_irq(s->i8259_irq[n], level);
102 }
103 qemu_set_irq(s->ioapic_irq[n], level);
104 }
105
106 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
107 unsigned size)
108 {
109 }
110
111 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
112 {
113 return 0xffffffffffffffffULL;
114 }
115
116 /* MSDOS compatibility mode FPU exception support */
117 static qemu_irq ferr_irq;
118
119 void pc_register_ferr_irq(qemu_irq irq)
120 {
121 ferr_irq = irq;
122 }
123
124 /* XXX: add IGNNE support */
125 void cpu_set_ferr(CPUX86State *s)
126 {
127 qemu_irq_raise(ferr_irq);
128 }
129
130 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
131 unsigned size)
132 {
133 qemu_irq_lower(ferr_irq);
134 }
135
136 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
137 {
138 return 0xffffffffffffffffULL;
139 }
140
141 /* TSC handling */
142 uint64_t cpu_get_tsc(CPUX86State *env)
143 {
144 return cpu_get_ticks();
145 }
146
147 /* SMM support */
148
149 static cpu_set_smm_t smm_set;
150 static void *smm_arg;
151
152 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
153 {
154 assert(smm_set == NULL);
155 assert(smm_arg == NULL);
156 smm_set = callback;
157 smm_arg = arg;
158 }
159
160 void cpu_smm_update(CPUX86State *env)
161 {
162 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
163 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
164 }
165 }
166
167
168 /* IRQ handling */
169 int cpu_get_pic_interrupt(CPUX86State *env)
170 {
171 int intno;
172
173 intno = apic_get_interrupt(env->apic_state);
174 if (intno >= 0) {
175 return intno;
176 }
177 /* read the irq from the PIC */
178 if (!apic_accept_pic_intr(env->apic_state)) {
179 return -1;
180 }
181
182 intno = pic_read_irq(isa_pic);
183 return intno;
184 }
185
186 static void pic_irq_request(void *opaque, int irq, int level)
187 {
188 CPUState *cs = first_cpu;
189 X86CPU *cpu = X86_CPU(cs);
190 CPUX86State *env = &cpu->env;
191
192 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
193 if (env->apic_state) {
194 while (cs) {
195 cpu = X86_CPU(cs);
196 env = &cpu->env;
197 if (apic_accept_pic_intr(env->apic_state)) {
198 apic_deliver_pic_intr(env->apic_state, level);
199 }
200 cs = cs->next_cpu;
201 }
202 } else {
203 if (level) {
204 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
205 } else {
206 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
207 }
208 }
209 }
210
211 /* PC cmos mappings */
212
213 #define REG_EQUIPMENT_BYTE 0x14
214
215 static int cmos_get_fd_drive_type(FDriveType fd0)
216 {
217 int val;
218
219 switch (fd0) {
220 case FDRIVE_DRV_144:
221 /* 1.44 Mb 3"5 drive */
222 val = 4;
223 break;
224 case FDRIVE_DRV_288:
225 /* 2.88 Mb 3"5 drive */
226 val = 5;
227 break;
228 case FDRIVE_DRV_120:
229 /* 1.2 Mb 5"5 drive */
230 val = 2;
231 break;
232 case FDRIVE_DRV_NONE:
233 default:
234 val = 0;
235 break;
236 }
237 return val;
238 }
239
240 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
241 int16_t cylinders, int8_t heads, int8_t sectors)
242 {
243 rtc_set_memory(s, type_ofs, 47);
244 rtc_set_memory(s, info_ofs, cylinders);
245 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
246 rtc_set_memory(s, info_ofs + 2, heads);
247 rtc_set_memory(s, info_ofs + 3, 0xff);
248 rtc_set_memory(s, info_ofs + 4, 0xff);
249 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
250 rtc_set_memory(s, info_ofs + 6, cylinders);
251 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
252 rtc_set_memory(s, info_ofs + 8, sectors);
253 }
254
255 /* convert boot_device letter to something recognizable by the bios */
256 static int boot_device2nibble(char boot_device)
257 {
258 switch(boot_device) {
259 case 'a':
260 case 'b':
261 return 0x01; /* floppy boot */
262 case 'c':
263 return 0x02; /* hard drive boot */
264 case 'd':
265 return 0x03; /* CD-ROM boot */
266 case 'n':
267 return 0x04; /* Network boot */
268 }
269 return 0;
270 }
271
272 static int set_boot_dev(ISADevice *s, const char *boot_device)
273 {
274 #define PC_MAX_BOOT_DEVICES 3
275 int nbds, bds[3] = { 0, };
276 int i;
277
278 nbds = strlen(boot_device);
279 if (nbds > PC_MAX_BOOT_DEVICES) {
280 error_report("Too many boot devices for PC");
281 return(1);
282 }
283 for (i = 0; i < nbds; i++) {
284 bds[i] = boot_device2nibble(boot_device[i]);
285 if (bds[i] == 0) {
286 error_report("Invalid boot device for PC: '%c'",
287 boot_device[i]);
288 return(1);
289 }
290 }
291 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
292 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
293 return(0);
294 }
295
296 static int pc_boot_set(void *opaque, const char *boot_device)
297 {
298 return set_boot_dev(opaque, boot_device);
299 }
300
301 typedef struct pc_cmos_init_late_arg {
302 ISADevice *rtc_state;
303 BusState *idebus[2];
304 } pc_cmos_init_late_arg;
305
306 static void pc_cmos_init_late(void *opaque)
307 {
308 pc_cmos_init_late_arg *arg = opaque;
309 ISADevice *s = arg->rtc_state;
310 int16_t cylinders;
311 int8_t heads, sectors;
312 int val;
313 int i, trans;
314
315 val = 0;
316 if (ide_get_geometry(arg->idebus[0], 0,
317 &cylinders, &heads, &sectors) >= 0) {
318 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
319 val |= 0xf0;
320 }
321 if (ide_get_geometry(arg->idebus[0], 1,
322 &cylinders, &heads, &sectors) >= 0) {
323 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
324 val |= 0x0f;
325 }
326 rtc_set_memory(s, 0x12, val);
327
328 val = 0;
329 for (i = 0; i < 4; i++) {
330 /* NOTE: ide_get_geometry() returns the physical
331 geometry. It is always such that: 1 <= sects <= 63, 1
332 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
333 geometry can be different if a translation is done. */
334 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
335 &cylinders, &heads, &sectors) >= 0) {
336 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
337 assert((trans & ~3) == 0);
338 val |= trans << (i * 2);
339 }
340 }
341 rtc_set_memory(s, 0x39, val);
342
343 qemu_unregister_reset(pc_cmos_init_late, opaque);
344 }
345
346 typedef struct RTCCPUHotplugArg {
347 Notifier cpu_added_notifier;
348 ISADevice *rtc_state;
349 } RTCCPUHotplugArg;
350
351 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
352 {
353 RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
354 cpu_added_notifier);
355 ISADevice *s = arg->rtc_state;
356
357 /* increment the number of CPUs */
358 rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
359 }
360
361 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
362 const char *boot_device,
363 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
364 ISADevice *s)
365 {
366 int val, nb, i;
367 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
368 static pc_cmos_init_late_arg arg;
369 static RTCCPUHotplugArg cpu_hotplug_cb;
370
371 /* various important CMOS locations needed by PC/Bochs bios */
372
373 /* memory size */
374 /* base memory (first MiB) */
375 val = MIN(ram_size / 1024, 640);
376 rtc_set_memory(s, 0x15, val);
377 rtc_set_memory(s, 0x16, val >> 8);
378 /* extended memory (next 64MiB) */
379 if (ram_size > 1024 * 1024) {
380 val = (ram_size - 1024 * 1024) / 1024;
381 } else {
382 val = 0;
383 }
384 if (val > 65535)
385 val = 65535;
386 rtc_set_memory(s, 0x17, val);
387 rtc_set_memory(s, 0x18, val >> 8);
388 rtc_set_memory(s, 0x30, val);
389 rtc_set_memory(s, 0x31, val >> 8);
390 /* memory between 16MiB and 4GiB */
391 if (ram_size > 16 * 1024 * 1024) {
392 val = (ram_size - 16 * 1024 * 1024) / 65536;
393 } else {
394 val = 0;
395 }
396 if (val > 65535)
397 val = 65535;
398 rtc_set_memory(s, 0x34, val);
399 rtc_set_memory(s, 0x35, val >> 8);
400 /* memory above 4GiB */
401 val = above_4g_mem_size / 65536;
402 rtc_set_memory(s, 0x5b, val);
403 rtc_set_memory(s, 0x5c, val >> 8);
404 rtc_set_memory(s, 0x5d, val >> 16);
405
406 /* set the number of CPU */
407 rtc_set_memory(s, 0x5f, smp_cpus - 1);
408 /* init CPU hotplug notifier */
409 cpu_hotplug_cb.rtc_state = s;
410 cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
411 qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
412
413 if (set_boot_dev(s, boot_device)) {
414 exit(1);
415 }
416
417 /* floppy type */
418 if (floppy) {
419 for (i = 0; i < 2; i++) {
420 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
421 }
422 }
423 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
424 cmos_get_fd_drive_type(fd_type[1]);
425 rtc_set_memory(s, 0x10, val);
426
427 val = 0;
428 nb = 0;
429 if (fd_type[0] < FDRIVE_DRV_NONE) {
430 nb++;
431 }
432 if (fd_type[1] < FDRIVE_DRV_NONE) {
433 nb++;
434 }
435 switch (nb) {
436 case 0:
437 break;
438 case 1:
439 val |= 0x01; /* 1 drive, ready for boot */
440 break;
441 case 2:
442 val |= 0x41; /* 2 drives, ready for boot */
443 break;
444 }
445 val |= 0x02; /* FPU is there */
446 val |= 0x04; /* PS/2 mouse installed */
447 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
448
449 /* hard drives */
450 arg.rtc_state = s;
451 arg.idebus[0] = idebus0;
452 arg.idebus[1] = idebus1;
453 qemu_register_reset(pc_cmos_init_late, &arg);
454 }
455
456 #define TYPE_PORT92 "port92"
457 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
458
459 /* port 92 stuff: could be split off */
460 typedef struct Port92State {
461 ISADevice parent_obj;
462
463 MemoryRegion io;
464 uint8_t outport;
465 qemu_irq *a20_out;
466 } Port92State;
467
468 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
469 unsigned size)
470 {
471 Port92State *s = opaque;
472
473 DPRINTF("port92: write 0x%02x\n", val);
474 s->outport = val;
475 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
476 if (val & 1) {
477 qemu_system_reset_request();
478 }
479 }
480
481 static uint64_t port92_read(void *opaque, hwaddr addr,
482 unsigned size)
483 {
484 Port92State *s = opaque;
485 uint32_t ret;
486
487 ret = s->outport;
488 DPRINTF("port92: read 0x%02x\n", ret);
489 return ret;
490 }
491
492 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
493 {
494 Port92State *s = PORT92(dev);
495
496 s->a20_out = a20_out;
497 }
498
499 static const VMStateDescription vmstate_port92_isa = {
500 .name = "port92",
501 .version_id = 1,
502 .minimum_version_id = 1,
503 .minimum_version_id_old = 1,
504 .fields = (VMStateField []) {
505 VMSTATE_UINT8(outport, Port92State),
506 VMSTATE_END_OF_LIST()
507 }
508 };
509
510 static void port92_reset(DeviceState *d)
511 {
512 Port92State *s = PORT92(d);
513
514 s->outport &= ~1;
515 }
516
517 static const MemoryRegionOps port92_ops = {
518 .read = port92_read,
519 .write = port92_write,
520 .impl = {
521 .min_access_size = 1,
522 .max_access_size = 1,
523 },
524 .endianness = DEVICE_LITTLE_ENDIAN,
525 };
526
527 static void port92_initfn(Object *obj)
528 {
529 Port92State *s = PORT92(obj);
530
531 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
532
533 s->outport = 0;
534 }
535
536 static void port92_realizefn(DeviceState *dev, Error **errp)
537 {
538 ISADevice *isadev = ISA_DEVICE(dev);
539 Port92State *s = PORT92(dev);
540
541 isa_register_ioport(isadev, &s->io, 0x92);
542 }
543
544 static void port92_class_initfn(ObjectClass *klass, void *data)
545 {
546 DeviceClass *dc = DEVICE_CLASS(klass);
547
548 dc->no_user = 1;
549 dc->realize = port92_realizefn;
550 dc->reset = port92_reset;
551 dc->vmsd = &vmstate_port92_isa;
552 }
553
554 static const TypeInfo port92_info = {
555 .name = TYPE_PORT92,
556 .parent = TYPE_ISA_DEVICE,
557 .instance_size = sizeof(Port92State),
558 .instance_init = port92_initfn,
559 .class_init = port92_class_initfn,
560 };
561
562 static void port92_register_types(void)
563 {
564 type_register_static(&port92_info);
565 }
566
567 type_init(port92_register_types)
568
569 static void handle_a20_line_change(void *opaque, int irq, int level)
570 {
571 X86CPU *cpu = opaque;
572
573 /* XXX: send to all CPUs ? */
574 /* XXX: add logic to handle multiple A20 line sources */
575 x86_cpu_set_a20(cpu, level);
576 }
577
578 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
579 {
580 int index = le32_to_cpu(e820_table.count);
581 struct e820_entry *entry;
582
583 if (index >= E820_NR_ENTRIES)
584 return -EBUSY;
585 entry = &e820_table.entry[index++];
586
587 entry->address = cpu_to_le64(address);
588 entry->length = cpu_to_le64(length);
589 entry->type = cpu_to_le32(type);
590
591 e820_table.count = cpu_to_le32(index);
592 return index;
593 }
594
595 /* Calculates the limit to CPU APIC ID values
596 *
597 * This function returns the limit for the APIC ID value, so that all
598 * CPU APIC IDs are < pc_apic_id_limit().
599 *
600 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
601 */
602 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
603 {
604 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
605 }
606
607 static FWCfgState *bochs_bios_init(void)
608 {
609 FWCfgState *fw_cfg;
610 uint8_t *smbios_table;
611 size_t smbios_len;
612 uint64_t *numa_fw_cfg;
613 int i, j;
614 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
615
616 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
617 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
618 *
619 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
620 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
621 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
622 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
623 * may see".
624 *
625 * So, this means we must not use max_cpus, here, but the maximum possible
626 * APIC ID value, plus one.
627 *
628 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
629 * the APIC ID, not the "CPU index"
630 */
631 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
632 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
633 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
634 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
635 acpi_tables, acpi_tables_len);
636 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
637
638 smbios_table = smbios_get_table(&smbios_len);
639 if (smbios_table)
640 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
641 smbios_table, smbios_len);
642 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
643 &e820_table, sizeof(e820_table));
644
645 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
646 /* allocate memory for the NUMA channel: one (64bit) word for the number
647 * of nodes, one word for each VCPU->node and one word for each node to
648 * hold the amount of memory.
649 */
650 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
651 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
652 for (i = 0; i < max_cpus; i++) {
653 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
654 assert(apic_id < apic_id_limit);
655 for (j = 0; j < nb_numa_nodes; j++) {
656 if (test_bit(i, node_cpumask[j])) {
657 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
658 break;
659 }
660 }
661 }
662 for (i = 0; i < nb_numa_nodes; i++) {
663 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
664 }
665 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
666 (1 + apic_id_limit + nb_numa_nodes) *
667 sizeof(*numa_fw_cfg));
668
669 return fw_cfg;
670 }
671
672 static long get_file_size(FILE *f)
673 {
674 long where, size;
675
676 /* XXX: on Unix systems, using fstat() probably makes more sense */
677
678 where = ftell(f);
679 fseek(f, 0, SEEK_END);
680 size = ftell(f);
681 fseek(f, where, SEEK_SET);
682
683 return size;
684 }
685
686 static void load_linux(FWCfgState *fw_cfg,
687 const char *kernel_filename,
688 const char *initrd_filename,
689 const char *kernel_cmdline,
690 hwaddr max_ram_size)
691 {
692 uint16_t protocol;
693 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
694 uint32_t initrd_max;
695 uint8_t header[8192], *setup, *kernel, *initrd_data;
696 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
697 FILE *f;
698 char *vmode;
699
700 /* Align to 16 bytes as a paranoia measure */
701 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
702
703 /* load the kernel header */
704 f = fopen(kernel_filename, "rb");
705 if (!f || !(kernel_size = get_file_size(f)) ||
706 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
707 MIN(ARRAY_SIZE(header), kernel_size)) {
708 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
709 kernel_filename, strerror(errno));
710 exit(1);
711 }
712
713 /* kernel protocol version */
714 #if 0
715 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
716 #endif
717 if (ldl_p(header+0x202) == 0x53726448) {
718 protocol = lduw_p(header+0x206);
719 } else {
720 /* This looks like a multiboot kernel. If it is, let's stop
721 treating it like a Linux kernel. */
722 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
723 kernel_cmdline, kernel_size, header)) {
724 return;
725 }
726 protocol = 0;
727 }
728
729 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
730 /* Low kernel */
731 real_addr = 0x90000;
732 cmdline_addr = 0x9a000 - cmdline_size;
733 prot_addr = 0x10000;
734 } else if (protocol < 0x202) {
735 /* High but ancient kernel */
736 real_addr = 0x90000;
737 cmdline_addr = 0x9a000 - cmdline_size;
738 prot_addr = 0x100000;
739 } else {
740 /* High and recent kernel */
741 real_addr = 0x10000;
742 cmdline_addr = 0x20000;
743 prot_addr = 0x100000;
744 }
745
746 #if 0
747 fprintf(stderr,
748 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
749 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
750 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
751 real_addr,
752 cmdline_addr,
753 prot_addr);
754 #endif
755
756 /* highest address for loading the initrd */
757 if (protocol >= 0x203) {
758 initrd_max = ldl_p(header+0x22c);
759 } else {
760 initrd_max = 0x37ffffff;
761 }
762
763 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
764 initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
765
766 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
767 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
768 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
769
770 if (protocol >= 0x202) {
771 stl_p(header+0x228, cmdline_addr);
772 } else {
773 stw_p(header+0x20, 0xA33F);
774 stw_p(header+0x22, cmdline_addr-real_addr);
775 }
776
777 /* handle vga= parameter */
778 vmode = strstr(kernel_cmdline, "vga=");
779 if (vmode) {
780 unsigned int video_mode;
781 /* skip "vga=" */
782 vmode += 4;
783 if (!strncmp(vmode, "normal", 6)) {
784 video_mode = 0xffff;
785 } else if (!strncmp(vmode, "ext", 3)) {
786 video_mode = 0xfffe;
787 } else if (!strncmp(vmode, "ask", 3)) {
788 video_mode = 0xfffd;
789 } else {
790 video_mode = strtol(vmode, NULL, 0);
791 }
792 stw_p(header+0x1fa, video_mode);
793 }
794
795 /* loader type */
796 /* High nybble = B reserved for QEMU; low nybble is revision number.
797 If this code is substantially changed, you may want to consider
798 incrementing the revision. */
799 if (protocol >= 0x200) {
800 header[0x210] = 0xB0;
801 }
802 /* heap */
803 if (protocol >= 0x201) {
804 header[0x211] |= 0x80; /* CAN_USE_HEAP */
805 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
806 }
807
808 /* load initrd */
809 if (initrd_filename) {
810 if (protocol < 0x200) {
811 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
812 exit(1);
813 }
814
815 initrd_size = get_image_size(initrd_filename);
816 if (initrd_size < 0) {
817 fprintf(stderr, "qemu: error reading initrd %s\n",
818 initrd_filename);
819 exit(1);
820 }
821
822 initrd_addr = (initrd_max-initrd_size) & ~4095;
823
824 initrd_data = g_malloc(initrd_size);
825 load_image(initrd_filename, initrd_data);
826
827 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
828 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
829 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
830
831 stl_p(header+0x218, initrd_addr);
832 stl_p(header+0x21c, initrd_size);
833 }
834
835 /* load kernel and setup */
836 setup_size = header[0x1f1];
837 if (setup_size == 0) {
838 setup_size = 4;
839 }
840 setup_size = (setup_size+1)*512;
841 kernel_size -= setup_size;
842
843 setup = g_malloc(setup_size);
844 kernel = g_malloc(kernel_size);
845 fseek(f, 0, SEEK_SET);
846 if (fread(setup, 1, setup_size, f) != setup_size) {
847 fprintf(stderr, "fread() failed\n");
848 exit(1);
849 }
850 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
851 fprintf(stderr, "fread() failed\n");
852 exit(1);
853 }
854 fclose(f);
855 memcpy(setup, header, MIN(sizeof(header), setup_size));
856
857 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
858 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
859 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
860
861 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
862 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
863 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
864
865 option_rom[nb_option_roms].name = "linuxboot.bin";
866 option_rom[nb_option_roms].bootindex = 0;
867 nb_option_roms++;
868 }
869
870 #define NE2000_NB_MAX 6
871
872 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
873 0x280, 0x380 };
874 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
875
876 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
877 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
878
879 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
880 {
881 static int nb_ne2k = 0;
882
883 if (nb_ne2k == NE2000_NB_MAX)
884 return;
885 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
886 ne2000_irq[nb_ne2k], nd);
887 nb_ne2k++;
888 }
889
890 DeviceState *cpu_get_current_apic(void)
891 {
892 if (current_cpu) {
893 X86CPU *cpu = X86_CPU(current_cpu);
894 return cpu->env.apic_state;
895 } else {
896 return NULL;
897 }
898 }
899
900 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
901 {
902 X86CPU *cpu = opaque;
903
904 if (level) {
905 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
906 }
907 }
908
909 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
910 DeviceState *icc_bridge, Error **errp)
911 {
912 X86CPU *cpu;
913 Error *local_err = NULL;
914
915 cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
916 if (local_err != NULL) {
917 error_propagate(errp, local_err);
918 return NULL;
919 }
920
921 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
922 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
923
924 if (local_err) {
925 error_propagate(errp, local_err);
926 object_unref(OBJECT(cpu));
927 cpu = NULL;
928 }
929 return cpu;
930 }
931
932 static const char *current_cpu_model;
933
934 void pc_hot_add_cpu(const int64_t id, Error **errp)
935 {
936 DeviceState *icc_bridge;
937 int64_t apic_id = x86_cpu_apic_id_from_index(id);
938
939 if (id < 0) {
940 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
941 return;
942 }
943
944 if (cpu_exists(apic_id)) {
945 error_setg(errp, "Unable to add CPU: %" PRIi64
946 ", it already exists", id);
947 return;
948 }
949
950 if (id >= max_cpus) {
951 error_setg(errp, "Unable to add CPU: %" PRIi64
952 ", max allowed: %d", id, max_cpus - 1);
953 return;
954 }
955
956 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
957 TYPE_ICC_BRIDGE, NULL));
958 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
959 }
960
961 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
962 {
963 int i;
964 X86CPU *cpu = NULL;
965 Error *error = NULL;
966
967 /* init CPUs */
968 if (cpu_model == NULL) {
969 #ifdef TARGET_X86_64
970 cpu_model = "qemu64";
971 #else
972 cpu_model = "qemu32";
973 #endif
974 }
975 current_cpu_model = cpu_model;
976
977 for (i = 0; i < smp_cpus; i++) {
978 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
979 icc_bridge, &error);
980 if (error) {
981 fprintf(stderr, "%s\n", error_get_pretty(error));
982 error_free(error);
983 exit(1);
984 }
985 }
986
987 /* map APIC MMIO area if CPU has APIC */
988 if (cpu && cpu->env.apic_state) {
989 /* XXX: what if the base changes? */
990 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
991 APIC_DEFAULT_ADDRESS, 0x1000);
992 }
993 }
994
995 /* pci-info ROM file. Little endian format */
996 typedef struct PcRomPciInfo {
997 uint64_t w32_min;
998 uint64_t w32_max;
999 uint64_t w64_min;
1000 uint64_t w64_max;
1001 } PcRomPciInfo;
1002
1003 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
1004 {
1005 PcRomPciInfo *info;
1006 Object *pci_info;
1007 bool ambiguous = false;
1008
1009 if (!guest_info->has_pci_info || !guest_info->fw_cfg) {
1010 return;
1011 }
1012 pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous);
1013 g_assert(!ambiguous);
1014 if (!pci_info) {
1015 return;
1016 }
1017
1018 info = g_malloc(sizeof *info);
1019 info->w32_min = cpu_to_le64(object_property_get_int(pci_info,
1020 PCI_HOST_PROP_PCI_HOLE_START, NULL));
1021 info->w32_max = cpu_to_le64(object_property_get_int(pci_info,
1022 PCI_HOST_PROP_PCI_HOLE_END, NULL));
1023 info->w64_min = cpu_to_le64(object_property_get_int(pci_info,
1024 PCI_HOST_PROP_PCI_HOLE64_START, NULL));
1025 info->w64_max = cpu_to_le64(object_property_get_int(pci_info,
1026 PCI_HOST_PROP_PCI_HOLE64_END, NULL));
1027 /* Pass PCI hole info to guest via a side channel.
1028 * Required so guest PCI enumeration does the right thing. */
1029 fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
1030 }
1031
1032 typedef struct PcGuestInfoState {
1033 PcGuestInfo info;
1034 Notifier machine_done;
1035 } PcGuestInfoState;
1036
1037 static
1038 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1039 {
1040 PcGuestInfoState *guest_info_state = container_of(notifier,
1041 PcGuestInfoState,
1042 machine_done);
1043 pc_fw_cfg_guest_info(&guest_info_state->info);
1044 }
1045
1046 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1047 ram_addr_t above_4g_mem_size)
1048 {
1049 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1050 PcGuestInfo *guest_info = &guest_info_state->info;
1051
1052 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1053 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1054 return guest_info;
1055 }
1056
1057 void pc_init_pci64_hole(PcPciInfo *pci_info, uint64_t pci_hole64_start,
1058 uint64_t pci_hole64_size)
1059 {
1060 if ((sizeof(hwaddr) == 4) || (!pci_hole64_size)) {
1061 return;
1062 }
1063 /*
1064 * BIOS does not set MTRR entries for the 64 bit window, so no need to
1065 * align address to power of two. Align address at 1G, this makes sure
1066 * it can be exactly covered with a PAT entry even when using huge
1067 * pages.
1068 */
1069 pci_info->w64.begin = ROUND_UP(pci_hole64_start, 0x1ULL << 30);
1070 pci_info->w64.end = pci_info->w64.begin + pci_hole64_size;
1071 assert(pci_info->w64.begin <= pci_info->w64.end);
1072 }
1073
1074 void pc_acpi_init(const char *default_dsdt)
1075 {
1076 char *filename;
1077
1078 if (acpi_tables != NULL) {
1079 /* manually set via -acpitable, leave it alone */
1080 return;
1081 }
1082
1083 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1084 if (filename == NULL) {
1085 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1086 } else {
1087 char *arg;
1088 QemuOpts *opts;
1089 Error *err = NULL;
1090
1091 arg = g_strdup_printf("file=%s", filename);
1092
1093 /* creates a deep copy of "arg" */
1094 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1095 g_assert(opts != NULL);
1096
1097 acpi_table_add(opts, &err);
1098 if (err) {
1099 fprintf(stderr, "WARNING: failed to load %s: %s\n", filename,
1100 error_get_pretty(err));
1101 error_free(err);
1102 }
1103 g_free(arg);
1104 g_free(filename);
1105 }
1106 }
1107
1108 FWCfgState *pc_memory_init(MemoryRegion *system_memory,
1109 const char *kernel_filename,
1110 const char *kernel_cmdline,
1111 const char *initrd_filename,
1112 ram_addr_t below_4g_mem_size,
1113 ram_addr_t above_4g_mem_size,
1114 MemoryRegion *rom_memory,
1115 MemoryRegion **ram_memory,
1116 PcGuestInfo *guest_info)
1117 {
1118 int linux_boot, i;
1119 MemoryRegion *ram, *option_rom_mr;
1120 MemoryRegion *ram_below_4g, *ram_above_4g;
1121 FWCfgState *fw_cfg;
1122
1123 linux_boot = (kernel_filename != NULL);
1124
1125 /* Allocate RAM. We allocate it as a single memory region and use
1126 * aliases to address portions of it, mostly for backwards compatibility
1127 * with older qemus that used qemu_ram_alloc().
1128 */
1129 ram = g_malloc(sizeof(*ram));
1130 memory_region_init_ram(ram, NULL, "pc.ram",
1131 below_4g_mem_size + above_4g_mem_size);
1132 vmstate_register_ram_global(ram);
1133 *ram_memory = ram;
1134 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1135 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1136 0, below_4g_mem_size);
1137 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1138 if (above_4g_mem_size > 0) {
1139 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1140 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1141 below_4g_mem_size, above_4g_mem_size);
1142 memory_region_add_subregion(system_memory, 0x100000000ULL,
1143 ram_above_4g);
1144 }
1145
1146
1147 /* Initialize PC system firmware */
1148 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1149
1150 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1151 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
1152 vmstate_register_ram_global(option_rom_mr);
1153 memory_region_add_subregion_overlap(rom_memory,
1154 PC_ROM_MIN_VGA,
1155 option_rom_mr,
1156 1);
1157
1158 fw_cfg = bochs_bios_init();
1159 rom_set_fw(fw_cfg);
1160
1161 if (linux_boot) {
1162 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1163 }
1164
1165 for (i = 0; i < nb_option_roms; i++) {
1166 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1167 }
1168 guest_info->fw_cfg = fw_cfg;
1169 return fw_cfg;
1170 }
1171
1172 qemu_irq *pc_allocate_cpu_irq(void)
1173 {
1174 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1175 }
1176
1177 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1178 {
1179 DeviceState *dev = NULL;
1180
1181 if (pci_bus) {
1182 PCIDevice *pcidev = pci_vga_init(pci_bus);
1183 dev = pcidev ? &pcidev->qdev : NULL;
1184 } else if (isa_bus) {
1185 ISADevice *isadev = isa_vga_init(isa_bus);
1186 dev = isadev ? DEVICE(isadev) : NULL;
1187 }
1188 return dev;
1189 }
1190
1191 static void cpu_request_exit(void *opaque, int irq, int level)
1192 {
1193 CPUState *cpu = current_cpu;
1194
1195 if (cpu && level) {
1196 cpu_exit(cpu);
1197 }
1198 }
1199
1200 static const MemoryRegionOps ioport80_io_ops = {
1201 .write = ioport80_write,
1202 .read = ioport80_read,
1203 .endianness = DEVICE_NATIVE_ENDIAN,
1204 .impl = {
1205 .min_access_size = 1,
1206 .max_access_size = 1,
1207 },
1208 };
1209
1210 static const MemoryRegionOps ioportF0_io_ops = {
1211 .write = ioportF0_write,
1212 .read = ioportF0_read,
1213 .endianness = DEVICE_NATIVE_ENDIAN,
1214 .impl = {
1215 .min_access_size = 1,
1216 .max_access_size = 1,
1217 },
1218 };
1219
1220 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1221 ISADevice **rtc_state,
1222 ISADevice **floppy,
1223 bool no_vmport)
1224 {
1225 int i;
1226 DriveInfo *fd[MAX_FD];
1227 DeviceState *hpet = NULL;
1228 int pit_isa_irq = 0;
1229 qemu_irq pit_alt_irq = NULL;
1230 qemu_irq rtc_irq = NULL;
1231 qemu_irq *a20_line;
1232 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1233 qemu_irq *cpu_exit_irq;
1234 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1235 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1236
1237 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1238 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1239
1240 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1241 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1242
1243 /*
1244 * Check if an HPET shall be created.
1245 *
1246 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1247 * when the HPET wants to take over. Thus we have to disable the latter.
1248 */
1249 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1250 hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1251
1252 if (hpet) {
1253 for (i = 0; i < GSI_NUM_PINS; i++) {
1254 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1255 }
1256 pit_isa_irq = -1;
1257 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1258 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1259 }
1260 }
1261 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1262
1263 qemu_register_boot_set(pc_boot_set, *rtc_state);
1264
1265 if (!xen_enabled()) {
1266 if (kvm_irqchip_in_kernel()) {
1267 pit = kvm_pit_init(isa_bus, 0x40);
1268 } else {
1269 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1270 }
1271 if (hpet) {
1272 /* connect PIT to output control line of the HPET */
1273 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1274 }
1275 pcspk_init(isa_bus, pit);
1276 }
1277
1278 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1279 if (serial_hds[i]) {
1280 serial_isa_init(isa_bus, i, serial_hds[i]);
1281 }
1282 }
1283
1284 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1285 if (parallel_hds[i]) {
1286 parallel_init(isa_bus, i, parallel_hds[i]);
1287 }
1288 }
1289
1290 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1291 i8042 = isa_create_simple(isa_bus, "i8042");
1292 i8042_setup_a20_line(i8042, &a20_line[0]);
1293 if (!no_vmport) {
1294 vmport_init(isa_bus);
1295 vmmouse = isa_try_create(isa_bus, "vmmouse");
1296 } else {
1297 vmmouse = NULL;
1298 }
1299 if (vmmouse) {
1300 DeviceState *dev = DEVICE(vmmouse);
1301 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1302 qdev_init_nofail(dev);
1303 }
1304 port92 = isa_create_simple(isa_bus, "port92");
1305 port92_init(port92, &a20_line[1]);
1306
1307 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1308 DMA_init(0, cpu_exit_irq);
1309
1310 for(i = 0; i < MAX_FD; i++) {
1311 fd[i] = drive_get(IF_FLOPPY, 0, i);
1312 }
1313 *floppy = fdctrl_init_isa(isa_bus, fd);
1314 }
1315
1316 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1317 {
1318 int i;
1319
1320 for (i = 0; i < nb_nics; i++) {
1321 NICInfo *nd = &nd_table[i];
1322
1323 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1324 pc_init_ne2k_isa(isa_bus, nd);
1325 } else {
1326 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1327 }
1328 }
1329 }
1330
1331 void pc_pci_device_init(PCIBus *pci_bus)
1332 {
1333 int max_bus;
1334 int bus;
1335
1336 max_bus = drive_get_max_bus(IF_SCSI);
1337 for (bus = 0; bus <= max_bus; bus++) {
1338 pci_create_simple(pci_bus, -1, "lsi53c895a");
1339 }
1340 }
1341
1342 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1343 {
1344 DeviceState *dev;
1345 SysBusDevice *d;
1346 unsigned int i;
1347
1348 if (kvm_irqchip_in_kernel()) {
1349 dev = qdev_create(NULL, "kvm-ioapic");
1350 } else {
1351 dev = qdev_create(NULL, "ioapic");
1352 }
1353 if (parent_name) {
1354 object_property_add_child(object_resolve_path(parent_name, NULL),
1355 "ioapic", OBJECT(dev), NULL);
1356 }
1357 qdev_init_nofail(dev);
1358 d = SYS_BUS_DEVICE(dev);
1359 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1360
1361 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1362 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1363 }
1364 }