]> git.proxmox.com Git - qemu.git/blob - hw/ppc/spapr.c
16bfab90b0e36a772caf41bf06a5260ec782616d
[qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "elf.h"
30 #include "net/net.h"
31 #include "sysemu/blockdev.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/kvm.h"
34 #include "kvm_ppc.h"
35 #include "mmu-hash64.h"
36
37 #include "hw/boards.h"
38 #include "hw/ppc/ppc.h"
39 #include "hw/loader.h"
40
41 #include "hw/ppc/spapr.h"
42 #include "hw/ppc/spapr_vio.h"
43 #include "hw/pci-host/spapr.h"
44 #include "hw/ppc/xics.h"
45 #include "hw/pci/msi.h"
46
47 #include "hw/pci/pci.h"
48
49 #include "exec/address-spaces.h"
50 #include "hw/usb.h"
51 #include "qemu/config-file.h"
52
53 #include <libfdt.h>
54
55 /* SLOF memory layout:
56 *
57 * SLOF raw image loaded at 0, copies its romfs right below the flat
58 * device-tree, then position SLOF itself 31M below that
59 *
60 * So we set FW_OVERHEAD to 40MB which should account for all of that
61 * and more
62 *
63 * We load our kernel at 4M, leaving space for SLOF initial image
64 */
65 #define FDT_MAX_SIZE 0x10000
66 #define RTAS_MAX_SIZE 0x10000
67 #define FW_MAX_SIZE 0x400000
68 #define FW_FILE_NAME "slof.bin"
69 #define FW_OVERHEAD 0x2800000
70 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
71
72 #define MIN_RMA_SLOF 128UL
73
74 #define TIMEBASE_FREQ 512000000ULL
75
76 #define MAX_CPUS 256
77 #define XICS_IRQS 1024
78
79 #define PHANDLE_XICP 0x00001111
80
81 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
82
83 sPAPREnvironment *spapr;
84
85 int spapr_allocate_irq(int hint, bool lsi)
86 {
87 int irq;
88
89 if (hint) {
90 irq = hint;
91 /* FIXME: we should probably check for collisions somehow */
92 } else {
93 irq = spapr->next_irq++;
94 }
95
96 /* Configure irq type */
97 if (!xics_get_qirq(spapr->icp, irq)) {
98 return 0;
99 }
100
101 xics_set_irq_type(spapr->icp, irq, lsi);
102
103 return irq;
104 }
105
106 /* Allocate block of consequtive IRQs, returns a number of the first */
107 int spapr_allocate_irq_block(int num, bool lsi)
108 {
109 int first = -1;
110 int i;
111
112 for (i = 0; i < num; ++i) {
113 int irq;
114
115 irq = spapr_allocate_irq(0, lsi);
116 if (!irq) {
117 return -1;
118 }
119
120 if (0 == i) {
121 first = irq;
122 }
123
124 /* If the above doesn't create a consecutive block then that's
125 * an internal bug */
126 assert(irq == (first + i));
127 }
128
129 return first;
130 }
131
132 static XICSState *try_create_xics(const char *type, int nr_servers,
133 int nr_irqs)
134 {
135 DeviceState *dev;
136
137 dev = qdev_create(NULL, type);
138 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
139 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
140 if (qdev_init(dev) < 0) {
141 return NULL;
142 }
143
144 return XICS(dev);
145 }
146
147 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
148 {
149 XICSState *icp = NULL;
150
151 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
152 if (!icp) {
153 perror("Failed to create XICS\n");
154 abort();
155 }
156
157 return icp;
158 }
159
160 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
161 {
162 int ret = 0, offset;
163 CPUState *cpu;
164 char cpu_model[32];
165 int smt = kvmppc_smt_threads();
166 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
167
168 assert(spapr->cpu_model);
169
170 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
171 uint32_t associativity[] = {cpu_to_be32(0x5),
172 cpu_to_be32(0x0),
173 cpu_to_be32(0x0),
174 cpu_to_be32(0x0),
175 cpu_to_be32(cpu->numa_node),
176 cpu_to_be32(cpu->cpu_index)};
177
178 if ((cpu->cpu_index % smt) != 0) {
179 continue;
180 }
181
182 snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
183 cpu->cpu_index);
184
185 offset = fdt_path_offset(fdt, cpu_model);
186 if (offset < 0) {
187 return offset;
188 }
189
190 if (nb_numa_nodes > 1) {
191 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
192 sizeof(associativity));
193 if (ret < 0) {
194 return ret;
195 }
196 }
197
198 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
199 pft_size_prop, sizeof(pft_size_prop));
200 if (ret < 0) {
201 return ret;
202 }
203 }
204 return ret;
205 }
206
207
208 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
209 size_t maxsize)
210 {
211 size_t maxcells = maxsize / sizeof(uint32_t);
212 int i, j, count;
213 uint32_t *p = prop;
214
215 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
216 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
217
218 if (!sps->page_shift) {
219 break;
220 }
221 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
222 if (sps->enc[count].page_shift == 0) {
223 break;
224 }
225 }
226 if ((p - prop) >= (maxcells - 3 - count * 2)) {
227 break;
228 }
229 *(p++) = cpu_to_be32(sps->page_shift);
230 *(p++) = cpu_to_be32(sps->slb_enc);
231 *(p++) = cpu_to_be32(count);
232 for (j = 0; j < count; j++) {
233 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
234 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
235 }
236 }
237
238 return (p - prop) * sizeof(uint32_t);
239 }
240
241 #define _FDT(exp) \
242 do { \
243 int ret = (exp); \
244 if (ret < 0) { \
245 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
246 #exp, fdt_strerror(ret)); \
247 exit(1); \
248 } \
249 } while (0)
250
251
252 static void *spapr_create_fdt_skel(const char *cpu_model,
253 hwaddr initrd_base,
254 hwaddr initrd_size,
255 hwaddr kernel_size,
256 const char *boot_device,
257 const char *kernel_cmdline,
258 uint32_t epow_irq)
259 {
260 void *fdt;
261 CPUState *cs;
262 uint32_t start_prop = cpu_to_be32(initrd_base);
263 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
264 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
265 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
266 char qemu_hypertas_prop[] = "hcall-memop1";
267 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
268 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
269 char *modelname;
270 int i, smt = kvmppc_smt_threads();
271 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
272
273 fdt = g_malloc0(FDT_MAX_SIZE);
274 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
275
276 if (kernel_size) {
277 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
278 }
279 if (initrd_size) {
280 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
281 }
282 _FDT((fdt_finish_reservemap(fdt)));
283
284 /* Root node */
285 _FDT((fdt_begin_node(fdt, "")));
286 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
287 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
288 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
289
290 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
291 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
292
293 /* /chosen */
294 _FDT((fdt_begin_node(fdt, "chosen")));
295
296 /* Set Form1_affinity */
297 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
298
299 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
300 _FDT((fdt_property(fdt, "linux,initrd-start",
301 &start_prop, sizeof(start_prop))));
302 _FDT((fdt_property(fdt, "linux,initrd-end",
303 &end_prop, sizeof(end_prop))));
304 if (kernel_size) {
305 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
306 cpu_to_be64(kernel_size) };
307
308 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
309 }
310 if (boot_device) {
311 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
312 }
313 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
314 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
315 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
316
317 _FDT((fdt_end_node(fdt)));
318
319 /* cpus */
320 _FDT((fdt_begin_node(fdt, "cpus")));
321
322 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
323 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
324
325 modelname = g_strdup(cpu_model);
326
327 for (i = 0; i < strlen(modelname); i++) {
328 modelname[i] = toupper(modelname[i]);
329 }
330
331 /* This is needed during FDT finalization */
332 spapr->cpu_model = g_strdup(modelname);
333
334 for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
335 PowerPCCPU *cpu = POWERPC_CPU(cs);
336 CPUPPCState *env = &cpu->env;
337 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
338 int index = cs->cpu_index;
339 uint32_t servers_prop[smp_threads];
340 uint32_t gservers_prop[smp_threads * 2];
341 char *nodename;
342 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
343 0xffffffff, 0xffffffff};
344 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
345 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
346 uint32_t page_sizes_prop[64];
347 size_t page_sizes_prop_size;
348
349 if ((index % smt) != 0) {
350 continue;
351 }
352
353 nodename = g_strdup_printf("%s@%x", modelname, index);
354
355 _FDT((fdt_begin_node(fdt, nodename)));
356
357 g_free(nodename);
358
359 _FDT((fdt_property_cell(fdt, "reg", index)));
360 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
361
362 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
363 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
364 env->dcache_line_size)));
365 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
366 env->dcache_line_size)));
367 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
368 env->icache_line_size)));
369 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
370 env->icache_line_size)));
371
372 if (pcc->l1_dcache_size) {
373 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
374 } else {
375 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
376 }
377 if (pcc->l1_icache_size) {
378 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
379 } else {
380 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
381 }
382
383 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
384 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
385 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
386 _FDT((fdt_property_string(fdt, "status", "okay")));
387 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
388
389 /* Build interrupt servers and gservers properties */
390 for (i = 0; i < smp_threads; i++) {
391 servers_prop[i] = cpu_to_be32(index + i);
392 /* Hack, direct the group queues back to cpu 0 */
393 gservers_prop[i*2] = cpu_to_be32(index + i);
394 gservers_prop[i*2 + 1] = 0;
395 }
396 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
397 servers_prop, sizeof(servers_prop))));
398 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
399 gservers_prop, sizeof(gservers_prop))));
400
401 if (env->mmu_model & POWERPC_MMU_1TSEG) {
402 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
403 segs, sizeof(segs))));
404 }
405
406 /* Advertise VMX/VSX (vector extensions) if available
407 * 0 / no property == no vector extensions
408 * 1 == VMX / Altivec available
409 * 2 == VSX available */
410 if (env->insns_flags & PPC_ALTIVEC) {
411 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
412
413 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
414 }
415
416 /* Advertise DFP (Decimal Floating Point) if available
417 * 0 / no property == no DFP
418 * 1 == DFP available */
419 if (env->insns_flags2 & PPC2_DFP) {
420 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
421 }
422
423 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
424 sizeof(page_sizes_prop));
425 if (page_sizes_prop_size) {
426 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
427 page_sizes_prop, page_sizes_prop_size)));
428 }
429
430 _FDT((fdt_end_node(fdt)));
431 }
432
433 g_free(modelname);
434
435 _FDT((fdt_end_node(fdt)));
436
437 /* RTAS */
438 _FDT((fdt_begin_node(fdt, "rtas")));
439
440 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
441 sizeof(hypertas_prop))));
442 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
443 sizeof(qemu_hypertas_prop))));
444
445 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
446 refpoints, sizeof(refpoints))));
447
448 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
449
450 _FDT((fdt_end_node(fdt)));
451
452 /* interrupt controller */
453 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
454
455 _FDT((fdt_property_string(fdt, "device_type",
456 "PowerPC-External-Interrupt-Presentation")));
457 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
458 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
459 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
460 interrupt_server_ranges_prop,
461 sizeof(interrupt_server_ranges_prop))));
462 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
463 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
464 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
465
466 _FDT((fdt_end_node(fdt)));
467
468 /* vdevice */
469 _FDT((fdt_begin_node(fdt, "vdevice")));
470
471 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
472 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
473 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
474 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
475 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
476 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
477
478 _FDT((fdt_end_node(fdt)));
479
480 /* event-sources */
481 spapr_events_fdt_skel(fdt, epow_irq);
482
483 _FDT((fdt_end_node(fdt))); /* close root node */
484 _FDT((fdt_finish(fdt)));
485
486 return fdt;
487 }
488
489 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
490 {
491 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
492 cpu_to_be32(0x0), cpu_to_be32(0x0),
493 cpu_to_be32(0x0)};
494 char mem_name[32];
495 hwaddr node0_size, mem_start;
496 uint64_t mem_reg_property[2];
497 int i, off;
498
499 /* memory node(s) */
500 node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
501 if (spapr->rma_size > node0_size) {
502 spapr->rma_size = node0_size;
503 }
504
505 /* RMA */
506 mem_reg_property[0] = 0;
507 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
508 off = fdt_add_subnode(fdt, 0, "memory@0");
509 _FDT(off);
510 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
511 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
512 sizeof(mem_reg_property))));
513 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
514 sizeof(associativity))));
515
516 /* RAM: Node 0 */
517 if (node0_size > spapr->rma_size) {
518 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
519 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
520
521 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
522 off = fdt_add_subnode(fdt, 0, mem_name);
523 _FDT(off);
524 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
525 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
526 sizeof(mem_reg_property))));
527 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
528 sizeof(associativity))));
529 }
530
531 /* RAM: Node 1 and beyond */
532 mem_start = node0_size;
533 for (i = 1; i < nb_numa_nodes; i++) {
534 mem_reg_property[0] = cpu_to_be64(mem_start);
535 mem_reg_property[1] = cpu_to_be64(node_mem[i]);
536 associativity[3] = associativity[4] = cpu_to_be32(i);
537 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
538 off = fdt_add_subnode(fdt, 0, mem_name);
539 _FDT(off);
540 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
541 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
542 sizeof(mem_reg_property))));
543 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
544 sizeof(associativity))));
545 mem_start += node_mem[i];
546 }
547
548 return 0;
549 }
550
551 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
552 hwaddr fdt_addr,
553 hwaddr rtas_addr,
554 hwaddr rtas_size)
555 {
556 int ret;
557 void *fdt;
558 sPAPRPHBState *phb;
559
560 fdt = g_malloc(FDT_MAX_SIZE);
561
562 /* open out the base tree into a temp buffer for the final tweaks */
563 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
564
565 ret = spapr_populate_memory(spapr, fdt);
566 if (ret < 0) {
567 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
568 exit(1);
569 }
570
571 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
572 if (ret < 0) {
573 fprintf(stderr, "couldn't setup vio devices in fdt\n");
574 exit(1);
575 }
576
577 QLIST_FOREACH(phb, &spapr->phbs, list) {
578 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
579 }
580
581 if (ret < 0) {
582 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
583 exit(1);
584 }
585
586 /* RTAS */
587 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
588 if (ret < 0) {
589 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
590 }
591
592 /* Advertise NUMA via ibm,associativity */
593 ret = spapr_fixup_cpu_dt(fdt, spapr);
594 if (ret < 0) {
595 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
596 }
597
598 if (!spapr->has_graphics) {
599 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
600 }
601
602 _FDT((fdt_pack(fdt)));
603
604 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
605 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
606 fdt_totalsize(fdt), FDT_MAX_SIZE);
607 exit(1);
608 }
609
610 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
611
612 g_free(fdt);
613 }
614
615 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
616 {
617 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
618 }
619
620 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
621 {
622 CPUPPCState *env = &cpu->env;
623
624 if (msr_pr) {
625 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
626 env->gpr[3] = H_PRIVILEGE;
627 } else {
628 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
629 }
630 }
631
632 static void spapr_reset_htab(sPAPREnvironment *spapr)
633 {
634 long shift;
635
636 /* allocate hash page table. For now we always make this 16mb,
637 * later we should probably make it scale to the size of guest
638 * RAM */
639
640 shift = kvmppc_reset_htab(spapr->htab_shift);
641
642 if (shift > 0) {
643 /* Kernel handles htab, we don't need to allocate one */
644 spapr->htab_shift = shift;
645 } else {
646 if (!spapr->htab) {
647 /* Allocate an htab if we don't yet have one */
648 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
649 }
650
651 /* And clear it */
652 memset(spapr->htab, 0, HTAB_SIZE(spapr));
653 }
654
655 /* Update the RMA size if necessary */
656 if (spapr->vrma_adjust) {
657 spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
658 }
659 }
660
661 static void ppc_spapr_reset(void)
662 {
663 PowerPCCPU *first_ppc_cpu;
664
665 /* Reset the hash table & recalc the RMA */
666 spapr_reset_htab(spapr);
667
668 qemu_devices_reset();
669
670 /* Load the fdt */
671 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
672 spapr->rtas_size);
673
674 /* Set up the entry state */
675 first_ppc_cpu = POWERPC_CPU(first_cpu);
676 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
677 first_ppc_cpu->env.gpr[5] = 0;
678 first_cpu->halted = 0;
679 first_ppc_cpu->env.nip = spapr->entry_point;
680
681 }
682
683 static void spapr_cpu_reset(void *opaque)
684 {
685 PowerPCCPU *cpu = opaque;
686 CPUState *cs = CPU(cpu);
687 CPUPPCState *env = &cpu->env;
688
689 cpu_reset(cs);
690
691 /* All CPUs start halted. CPU0 is unhalted from the machine level
692 * reset code and the rest are explicitly started up by the guest
693 * using an RTAS call */
694 cs->halted = 1;
695
696 env->spr[SPR_HIOR] = 0;
697
698 env->external_htab = (uint8_t *)spapr->htab;
699 env->htab_base = -1;
700 env->htab_mask = HTAB_SIZE(spapr) - 1;
701 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
702 (spapr->htab_shift - 18);
703 }
704
705 static void spapr_create_nvram(sPAPREnvironment *spapr)
706 {
707 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
708 const char *drivename = qemu_opt_get(qemu_get_machine_opts(), "nvram");
709
710 if (drivename) {
711 BlockDriverState *bs;
712
713 bs = bdrv_find(drivename);
714 if (!bs) {
715 fprintf(stderr, "No such block device \"%s\" for nvram\n",
716 drivename);
717 exit(1);
718 }
719 qdev_prop_set_drive_nofail(dev, "drive", bs);
720 }
721
722 qdev_init_nofail(dev);
723
724 spapr->nvram = (struct sPAPRNVRAM *)dev;
725 }
726
727 /* Returns whether we want to use VGA or not */
728 static int spapr_vga_init(PCIBus *pci_bus)
729 {
730 switch (vga_interface_type) {
731 case VGA_NONE:
732 case VGA_STD:
733 return pci_vga_init(pci_bus) != NULL;
734 default:
735 fprintf(stderr, "This vga model is not supported,"
736 "currently it only supports -vga std\n");
737 exit(0);
738 break;
739 }
740 }
741
742 static const VMStateDescription vmstate_spapr = {
743 .name = "spapr",
744 .version_id = 1,
745 .minimum_version_id = 1,
746 .minimum_version_id_old = 1,
747 .fields = (VMStateField []) {
748 VMSTATE_UINT32(next_irq, sPAPREnvironment),
749
750 /* RTC offset */
751 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
752
753 VMSTATE_END_OF_LIST()
754 },
755 };
756
757 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
758 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
759 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
760 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
761
762 static int htab_save_setup(QEMUFile *f, void *opaque)
763 {
764 sPAPREnvironment *spapr = opaque;
765
766 /* "Iteration" header */
767 qemu_put_be32(f, spapr->htab_shift);
768
769 if (spapr->htab) {
770 spapr->htab_save_index = 0;
771 spapr->htab_first_pass = true;
772 } else {
773 assert(kvm_enabled());
774
775 spapr->htab_fd = kvmppc_get_htab_fd(false);
776 if (spapr->htab_fd < 0) {
777 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
778 strerror(errno));
779 return -1;
780 }
781 }
782
783
784 return 0;
785 }
786
787 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
788 int64_t max_ns)
789 {
790 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
791 int index = spapr->htab_save_index;
792 int64_t starttime = qemu_get_clock_ns(rt_clock);
793
794 assert(spapr->htab_first_pass);
795
796 do {
797 int chunkstart;
798
799 /* Consume invalid HPTEs */
800 while ((index < htabslots)
801 && !HPTE_VALID(HPTE(spapr->htab, index))) {
802 index++;
803 CLEAN_HPTE(HPTE(spapr->htab, index));
804 }
805
806 /* Consume valid HPTEs */
807 chunkstart = index;
808 while ((index < htabslots)
809 && HPTE_VALID(HPTE(spapr->htab, index))) {
810 index++;
811 CLEAN_HPTE(HPTE(spapr->htab, index));
812 }
813
814 if (index > chunkstart) {
815 int n_valid = index - chunkstart;
816
817 qemu_put_be32(f, chunkstart);
818 qemu_put_be16(f, n_valid);
819 qemu_put_be16(f, 0);
820 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
821 HASH_PTE_SIZE_64 * n_valid);
822
823 if ((qemu_get_clock_ns(rt_clock) - starttime) > max_ns) {
824 break;
825 }
826 }
827 } while ((index < htabslots) && !qemu_file_rate_limit(f));
828
829 if (index >= htabslots) {
830 assert(index == htabslots);
831 index = 0;
832 spapr->htab_first_pass = false;
833 }
834 spapr->htab_save_index = index;
835 }
836
837 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
838 int64_t max_ns)
839 {
840 bool final = max_ns < 0;
841 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
842 int examined = 0, sent = 0;
843 int index = spapr->htab_save_index;
844 int64_t starttime = qemu_get_clock_ns(rt_clock);
845
846 assert(!spapr->htab_first_pass);
847
848 do {
849 int chunkstart, invalidstart;
850
851 /* Consume non-dirty HPTEs */
852 while ((index < htabslots)
853 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
854 index++;
855 examined++;
856 }
857
858 chunkstart = index;
859 /* Consume valid dirty HPTEs */
860 while ((index < htabslots)
861 && HPTE_DIRTY(HPTE(spapr->htab, index))
862 && HPTE_VALID(HPTE(spapr->htab, index))) {
863 CLEAN_HPTE(HPTE(spapr->htab, index));
864 index++;
865 examined++;
866 }
867
868 invalidstart = index;
869 /* Consume invalid dirty HPTEs */
870 while ((index < htabslots)
871 && HPTE_DIRTY(HPTE(spapr->htab, index))
872 && !HPTE_VALID(HPTE(spapr->htab, index))) {
873 CLEAN_HPTE(HPTE(spapr->htab, index));
874 index++;
875 examined++;
876 }
877
878 if (index > chunkstart) {
879 int n_valid = invalidstart - chunkstart;
880 int n_invalid = index - invalidstart;
881
882 qemu_put_be32(f, chunkstart);
883 qemu_put_be16(f, n_valid);
884 qemu_put_be16(f, n_invalid);
885 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
886 HASH_PTE_SIZE_64 * n_valid);
887 sent += index - chunkstart;
888
889 if (!final && (qemu_get_clock_ns(rt_clock) - starttime) > max_ns) {
890 break;
891 }
892 }
893
894 if (examined >= htabslots) {
895 break;
896 }
897
898 if (index >= htabslots) {
899 assert(index == htabslots);
900 index = 0;
901 }
902 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
903
904 if (index >= htabslots) {
905 assert(index == htabslots);
906 index = 0;
907 }
908
909 spapr->htab_save_index = index;
910
911 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
912 }
913
914 #define MAX_ITERATION_NS 5000000 /* 5 ms */
915 #define MAX_KVM_BUF_SIZE 2048
916
917 static int htab_save_iterate(QEMUFile *f, void *opaque)
918 {
919 sPAPREnvironment *spapr = opaque;
920 int rc = 0;
921
922 /* Iteration header */
923 qemu_put_be32(f, 0);
924
925 if (!spapr->htab) {
926 assert(kvm_enabled());
927
928 rc = kvmppc_save_htab(f, spapr->htab_fd,
929 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
930 if (rc < 0) {
931 return rc;
932 }
933 } else if (spapr->htab_first_pass) {
934 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
935 } else {
936 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
937 }
938
939 /* End marker */
940 qemu_put_be32(f, 0);
941 qemu_put_be16(f, 0);
942 qemu_put_be16(f, 0);
943
944 return rc;
945 }
946
947 static int htab_save_complete(QEMUFile *f, void *opaque)
948 {
949 sPAPREnvironment *spapr = opaque;
950
951 /* Iteration header */
952 qemu_put_be32(f, 0);
953
954 if (!spapr->htab) {
955 int rc;
956
957 assert(kvm_enabled());
958
959 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
960 if (rc < 0) {
961 return rc;
962 }
963 close(spapr->htab_fd);
964 spapr->htab_fd = -1;
965 } else {
966 htab_save_later_pass(f, spapr, -1);
967 }
968
969 /* End marker */
970 qemu_put_be32(f, 0);
971 qemu_put_be16(f, 0);
972 qemu_put_be16(f, 0);
973
974 return 0;
975 }
976
977 static int htab_load(QEMUFile *f, void *opaque, int version_id)
978 {
979 sPAPREnvironment *spapr = opaque;
980 uint32_t section_hdr;
981 int fd = -1;
982
983 if (version_id < 1 || version_id > 1) {
984 fprintf(stderr, "htab_load() bad version\n");
985 return -EINVAL;
986 }
987
988 section_hdr = qemu_get_be32(f);
989
990 if (section_hdr) {
991 /* First section, just the hash shift */
992 if (spapr->htab_shift != section_hdr) {
993 return -EINVAL;
994 }
995 return 0;
996 }
997
998 if (!spapr->htab) {
999 assert(kvm_enabled());
1000
1001 fd = kvmppc_get_htab_fd(true);
1002 if (fd < 0) {
1003 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1004 strerror(errno));
1005 }
1006 }
1007
1008 while (true) {
1009 uint32_t index;
1010 uint16_t n_valid, n_invalid;
1011
1012 index = qemu_get_be32(f);
1013 n_valid = qemu_get_be16(f);
1014 n_invalid = qemu_get_be16(f);
1015
1016 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1017 /* End of Stream */
1018 break;
1019 }
1020
1021 if ((index + n_valid + n_invalid) >
1022 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1023 /* Bad index in stream */
1024 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1025 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1026 spapr->htab_shift);
1027 return -EINVAL;
1028 }
1029
1030 if (spapr->htab) {
1031 if (n_valid) {
1032 qemu_get_buffer(f, HPTE(spapr->htab, index),
1033 HASH_PTE_SIZE_64 * n_valid);
1034 }
1035 if (n_invalid) {
1036 memset(HPTE(spapr->htab, index + n_valid), 0,
1037 HASH_PTE_SIZE_64 * n_invalid);
1038 }
1039 } else {
1040 int rc;
1041
1042 assert(fd >= 0);
1043
1044 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1045 if (rc < 0) {
1046 return rc;
1047 }
1048 }
1049 }
1050
1051 if (!spapr->htab) {
1052 assert(fd >= 0);
1053 close(fd);
1054 }
1055
1056 return 0;
1057 }
1058
1059 static SaveVMHandlers savevm_htab_handlers = {
1060 .save_live_setup = htab_save_setup,
1061 .save_live_iterate = htab_save_iterate,
1062 .save_live_complete = htab_save_complete,
1063 .load_state = htab_load,
1064 };
1065
1066 /* pSeries LPAR / sPAPR hardware init */
1067 static void ppc_spapr_init(QEMUMachineInitArgs *args)
1068 {
1069 ram_addr_t ram_size = args->ram_size;
1070 const char *cpu_model = args->cpu_model;
1071 const char *kernel_filename = args->kernel_filename;
1072 const char *kernel_cmdline = args->kernel_cmdline;
1073 const char *initrd_filename = args->initrd_filename;
1074 const char *boot_device = args->boot_device;
1075 PowerPCCPU *cpu;
1076 CPUPPCState *env;
1077 PCIHostState *phb;
1078 int i;
1079 MemoryRegion *sysmem = get_system_memory();
1080 MemoryRegion *ram = g_new(MemoryRegion, 1);
1081 hwaddr rma_alloc_size;
1082 uint32_t initrd_base = 0;
1083 long kernel_size = 0, initrd_size = 0;
1084 long load_limit, rtas_limit, fw_size;
1085 char *filename;
1086
1087 msi_supported = true;
1088
1089 spapr = g_malloc0(sizeof(*spapr));
1090 QLIST_INIT(&spapr->phbs);
1091
1092 cpu_ppc_hypercall = emulate_spapr_hypercall;
1093
1094 /* Allocate RMA if necessary */
1095 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
1096
1097 if (rma_alloc_size == -1) {
1098 hw_error("qemu: Unable to create RMA\n");
1099 exit(1);
1100 }
1101
1102 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
1103 spapr->rma_size = rma_alloc_size;
1104 } else {
1105 spapr->rma_size = ram_size;
1106
1107 /* With KVM, we don't actually know whether KVM supports an
1108 * unbounded RMA (PR KVM) or is limited by the hash table size
1109 * (HV KVM using VRMA), so we always assume the latter
1110 *
1111 * In that case, we also limit the initial allocations for RTAS
1112 * etc... to 256M since we have no way to know what the VRMA size
1113 * is going to be as it depends on the size of the hash table
1114 * isn't determined yet.
1115 */
1116 if (kvm_enabled()) {
1117 spapr->vrma_adjust = 1;
1118 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1119 }
1120 }
1121
1122 /* We place the device tree and RTAS just below either the top of the RMA,
1123 * or just below 2GB, whichever is lowere, so that it can be
1124 * processed with 32-bit real mode code if necessary */
1125 rtas_limit = MIN(spapr->rma_size, 0x80000000);
1126 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1127 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1128 load_limit = spapr->fdt_addr - FW_OVERHEAD;
1129
1130 /* We aim for a hash table of size 1/128 the size of RAM. The
1131 * normal rule of thumb is 1/64 the size of RAM, but that's much
1132 * more than needed for the Linux guests we support. */
1133 spapr->htab_shift = 18; /* Minimum architected size */
1134 while (spapr->htab_shift <= 46) {
1135 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1136 break;
1137 }
1138 spapr->htab_shift++;
1139 }
1140
1141 /* Set up Interrupt Controller before we create the VCPUs */
1142 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1143 XICS_IRQS);
1144 spapr->next_irq = XICS_IRQ_BASE;
1145
1146 /* init CPUs */
1147 if (cpu_model == NULL) {
1148 cpu_model = kvm_enabled() ? "host" : "POWER7";
1149 }
1150 for (i = 0; i < smp_cpus; i++) {
1151 cpu = cpu_ppc_init(cpu_model);
1152 if (cpu == NULL) {
1153 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1154 exit(1);
1155 }
1156 env = &cpu->env;
1157
1158 xics_cpu_setup(spapr->icp, cpu);
1159
1160 /* Set time-base frequency to 512 MHz */
1161 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1162
1163 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1164 * MSR[IP] should never be set.
1165 */
1166 env->msr_mask &= ~(1 << 6);
1167
1168 /* Tell KVM that we're in PAPR mode */
1169 if (kvm_enabled()) {
1170 kvmppc_set_papr(cpu);
1171 }
1172
1173 qemu_register_reset(spapr_cpu_reset, cpu);
1174 }
1175
1176 /* allocate RAM */
1177 spapr->ram_limit = ram_size;
1178 if (spapr->ram_limit > rma_alloc_size) {
1179 ram_addr_t nonrma_base = rma_alloc_size;
1180 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
1181
1182 memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1183 vmstate_register_ram_global(ram);
1184 memory_region_add_subregion(sysmem, nonrma_base, ram);
1185 }
1186
1187 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1188 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1189 rtas_limit - spapr->rtas_addr);
1190 if (spapr->rtas_size < 0) {
1191 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1192 exit(1);
1193 }
1194 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1195 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1196 spapr->rtas_size, RTAS_MAX_SIZE);
1197 exit(1);
1198 }
1199 g_free(filename);
1200
1201 /* Set up EPOW events infrastructure */
1202 spapr_events_init(spapr);
1203
1204 /* Set up VIO bus */
1205 spapr->vio_bus = spapr_vio_bus_init();
1206
1207 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1208 if (serial_hds[i]) {
1209 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1210 }
1211 }
1212
1213 /* We always have at least the nvram device on VIO */
1214 spapr_create_nvram(spapr);
1215
1216 /* Set up PCI */
1217 spapr_pci_rtas_init();
1218
1219 phb = spapr_create_phb(spapr, 0);
1220
1221 for (i = 0; i < nb_nics; i++) {
1222 NICInfo *nd = &nd_table[i];
1223
1224 if (!nd->model) {
1225 nd->model = g_strdup("ibmveth");
1226 }
1227
1228 if (strcmp(nd->model, "ibmveth") == 0) {
1229 spapr_vlan_create(spapr->vio_bus, nd);
1230 } else {
1231 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1232 }
1233 }
1234
1235 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1236 spapr_vscsi_create(spapr->vio_bus);
1237 }
1238
1239 /* Graphics */
1240 if (spapr_vga_init(phb->bus)) {
1241 spapr->has_graphics = true;
1242 }
1243
1244 if (usb_enabled(spapr->has_graphics)) {
1245 pci_create_simple(phb->bus, -1, "pci-ohci");
1246 if (spapr->has_graphics) {
1247 usbdevice_create("keyboard");
1248 usbdevice_create("mouse");
1249 }
1250 }
1251
1252 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1253 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1254 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1255 exit(1);
1256 }
1257
1258 if (kernel_filename) {
1259 uint64_t lowaddr = 0;
1260
1261 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1262 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1263 if (kernel_size < 0) {
1264 kernel_size = load_image_targphys(kernel_filename,
1265 KERNEL_LOAD_ADDR,
1266 load_limit - KERNEL_LOAD_ADDR);
1267 }
1268 if (kernel_size < 0) {
1269 fprintf(stderr, "qemu: could not load kernel '%s'\n",
1270 kernel_filename);
1271 exit(1);
1272 }
1273
1274 /* load initrd */
1275 if (initrd_filename) {
1276 /* Try to locate the initrd in the gap between the kernel
1277 * and the firmware. Add a bit of space just in case
1278 */
1279 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1280 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1281 load_limit - initrd_base);
1282 if (initrd_size < 0) {
1283 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1284 initrd_filename);
1285 exit(1);
1286 }
1287 } else {
1288 initrd_base = 0;
1289 initrd_size = 0;
1290 }
1291 }
1292
1293 if (bios_name == NULL) {
1294 bios_name = FW_FILE_NAME;
1295 }
1296 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1297 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1298 if (fw_size < 0) {
1299 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1300 exit(1);
1301 }
1302 g_free(filename);
1303
1304 spapr->entry_point = 0x100;
1305
1306 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1307 register_savevm_live(NULL, "spapr/htab", -1, 1,
1308 &savevm_htab_handlers, spapr);
1309
1310 /* Prepare the device tree */
1311 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
1312 initrd_base, initrd_size,
1313 kernel_size,
1314 boot_device, kernel_cmdline,
1315 spapr->epow_irq);
1316 assert(spapr->fdt_skel != NULL);
1317 }
1318
1319 static QEMUMachine spapr_machine = {
1320 .name = "pseries",
1321 .desc = "pSeries Logical Partition (PAPR compliant)",
1322 .is_default = 1,
1323 .init = ppc_spapr_init,
1324 .reset = ppc_spapr_reset,
1325 .block_default_type = IF_SCSI,
1326 .max_cpus = MAX_CPUS,
1327 .no_parallel = 1,
1328 .boot_order = NULL,
1329 };
1330
1331 static void spapr_machine_init(void)
1332 {
1333 qemu_register_machine(&spapr_machine);
1334 }
1335
1336 machine_init(spapr_machine_init);