]> git.proxmox.com Git - qemu.git/blob - hw/ptimer.c
6f13ce92fc5cab192508ea721f7d9476a12dba0f
[qemu.git] / hw / ptimer.c
1 /*
2 * General purpose implementation of a simple periodic countdown timer.
3 *
4 * Copyright (c) 2007 CodeSourcery.
5 *
6 * This code is licensed under the GNU LGPL.
7 */
8 #include "hw.h"
9 #include "qemu-timer.h"
10 #include "host-utils.h"
11
12 struct ptimer_state
13 {
14 uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */
15 uint64_t limit;
16 uint64_t delta;
17 uint32_t period_frac;
18 int64_t period;
19 int64_t last_event;
20 int64_t next_event;
21 QEMUBH *bh;
22 QEMUTimer *timer;
23 };
24
25 /* Use a bottom-half routine to avoid reentrancy issues. */
26 static void ptimer_trigger(ptimer_state *s)
27 {
28 if (s->bh) {
29 qemu_bh_schedule(s->bh);
30 }
31 }
32
33 static void ptimer_reload(ptimer_state *s)
34 {
35 if (s->delta == 0) {
36 ptimer_trigger(s);
37 s->delta = s->limit;
38 }
39 if (s->delta == 0 || s->period == 0) {
40 fprintf(stderr, "Timer with period zero, disabling\n");
41 s->enabled = 0;
42 return;
43 }
44
45 s->last_event = s->next_event;
46 s->next_event = s->last_event + s->delta * s->period;
47 if (s->period_frac) {
48 s->next_event += ((int64_t)s->period_frac * s->delta) >> 32;
49 }
50 qemu_mod_timer(s->timer, s->next_event);
51 }
52
53 static void ptimer_tick(void *opaque)
54 {
55 ptimer_state *s = (ptimer_state *)opaque;
56 ptimer_trigger(s);
57 s->delta = 0;
58 if (s->enabled == 2) {
59 s->enabled = 0;
60 } else {
61 ptimer_reload(s);
62 }
63 }
64
65 uint64_t ptimer_get_count(ptimer_state *s)
66 {
67 int64_t now;
68 uint64_t counter;
69
70 if (s->enabled) {
71 now = qemu_get_clock_ns(vm_clock);
72 /* Figure out the current counter value. */
73 if (now - s->next_event > 0
74 || s->period == 0) {
75 /* Prevent timer underflowing if it should already have
76 triggered. */
77 counter = 0;
78 } else {
79 uint64_t rem;
80 uint64_t div;
81 int clz1, clz2;
82 int shift;
83
84 /* We need to divide time by period, where time is stored in
85 rem (64-bit integer) and period is stored in period/period_frac
86 (64.32 fixed point).
87
88 Doing full precision division is hard, so scale values and
89 do a 64-bit division. The result should be rounded down,
90 so that the rounding error never causes the timer to go
91 backwards.
92 */
93
94 rem = s->next_event - now;
95 div = s->period;
96
97 clz1 = clz64(rem);
98 clz2 = clz64(div);
99 shift = clz1 < clz2 ? clz1 : clz2;
100
101 rem <<= shift;
102 div <<= shift;
103 if (shift >= 32) {
104 div |= ((uint64_t)s->period_frac << (shift - 32));
105 } else {
106 if (shift != 0)
107 div |= (s->period_frac >> (32 - shift));
108 /* Look at remaining bits of period_frac and round div up if
109 necessary. */
110 if ((uint32_t)(s->period_frac << shift))
111 div += 1;
112 }
113 counter = rem / div;
114 }
115 } else {
116 counter = s->delta;
117 }
118 return counter;
119 }
120
121 void ptimer_set_count(ptimer_state *s, uint64_t count)
122 {
123 s->delta = count;
124 if (s->enabled) {
125 s->next_event = qemu_get_clock_ns(vm_clock);
126 ptimer_reload(s);
127 }
128 }
129
130 void ptimer_run(ptimer_state *s, int oneshot)
131 {
132 if (s->enabled) {
133 return;
134 }
135 if (s->period == 0) {
136 fprintf(stderr, "Timer with period zero, disabling\n");
137 return;
138 }
139 s->enabled = oneshot ? 2 : 1;
140 s->next_event = qemu_get_clock_ns(vm_clock);
141 ptimer_reload(s);
142 }
143
144 /* Pause a timer. Note that this may cause it to "lose" time, even if it
145 is immediately restarted. */
146 void ptimer_stop(ptimer_state *s)
147 {
148 if (!s->enabled)
149 return;
150
151 s->delta = ptimer_get_count(s);
152 qemu_del_timer(s->timer);
153 s->enabled = 0;
154 }
155
156 /* Set counter increment interval in nanoseconds. */
157 void ptimer_set_period(ptimer_state *s, int64_t period)
158 {
159 s->period = period;
160 s->period_frac = 0;
161 if (s->enabled) {
162 s->next_event = qemu_get_clock_ns(vm_clock);
163 ptimer_reload(s);
164 }
165 }
166
167 /* Set counter frequency in Hz. */
168 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
169 {
170 s->period = 1000000000ll / freq;
171 s->period_frac = (1000000000ll << 32) / freq;
172 if (s->enabled) {
173 s->next_event = qemu_get_clock_ns(vm_clock);
174 ptimer_reload(s);
175 }
176 }
177
178 /* Set the initial countdown value. If reload is nonzero then also set
179 count = limit. */
180 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
181 {
182 s->limit = limit;
183 if (reload)
184 s->delta = limit;
185 if (s->enabled && reload) {
186 s->next_event = qemu_get_clock_ns(vm_clock);
187 ptimer_reload(s);
188 }
189 }
190
191 const VMStateDescription vmstate_ptimer = {
192 .name = "ptimer",
193 .version_id = 1,
194 .minimum_version_id = 1,
195 .minimum_version_id_old = 1,
196 .fields = (VMStateField[]) {
197 VMSTATE_UINT8(enabled, ptimer_state),
198 VMSTATE_UINT64(limit, ptimer_state),
199 VMSTATE_UINT64(delta, ptimer_state),
200 VMSTATE_UINT32(period_frac, ptimer_state),
201 VMSTATE_INT64(period, ptimer_state),
202 VMSTATE_INT64(last_event, ptimer_state),
203 VMSTATE_INT64(next_event, ptimer_state),
204 VMSTATE_TIMER(timer, ptimer_state),
205 VMSTATE_END_OF_LIST()
206 }
207 };
208
209 ptimer_state *ptimer_init(QEMUBH *bh)
210 {
211 ptimer_state *s;
212
213 s = (ptimer_state *)qemu_mallocz(sizeof(ptimer_state));
214 s->bh = bh;
215 s->timer = qemu_new_timer_ns(vm_clock, ptimer_tick, s);
216 return s;
217 }