]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
83154899892f618192d4ddba055c8a166b815fab
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic.h"
33 #include "exec/ioport.h"
34 #include "hyperv.h"
35 #include "hw/pci/pci.h"
36
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62 };
63
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 static bool has_msr_tsc_adjust;
67 static bool has_msr_tsc_deadline;
68 static bool has_msr_async_pf_en;
69 static bool has_msr_pv_eoi_en;
70 static bool has_msr_misc_enable;
71 static bool has_msr_kvm_steal_time;
72 static int lm_capable_kernel;
73
74 bool kvm_allows_irq0_override(void)
75 {
76 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
77 }
78
79 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
80 {
81 struct kvm_cpuid2 *cpuid;
82 int r, size;
83
84 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
85 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
86 cpuid->nent = max;
87 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
88 if (r == 0 && cpuid->nent >= max) {
89 r = -E2BIG;
90 }
91 if (r < 0) {
92 if (r == -E2BIG) {
93 g_free(cpuid);
94 return NULL;
95 } else {
96 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
97 strerror(-r));
98 exit(1);
99 }
100 }
101 return cpuid;
102 }
103
104 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
105 * for all entries.
106 */
107 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
108 {
109 struct kvm_cpuid2 *cpuid;
110 int max = 1;
111 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
112 max *= 2;
113 }
114 return cpuid;
115 }
116
117 struct kvm_para_features {
118 int cap;
119 int feature;
120 } para_features[] = {
121 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
122 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
123 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
124 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
125 { -1, -1 }
126 };
127
128 static int get_para_features(KVMState *s)
129 {
130 int i, features = 0;
131
132 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
133 if (kvm_check_extension(s, para_features[i].cap)) {
134 features |= (1 << para_features[i].feature);
135 }
136 }
137
138 return features;
139 }
140
141
142 /* Returns the value for a specific register on the cpuid entry
143 */
144 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
145 {
146 uint32_t ret = 0;
147 switch (reg) {
148 case R_EAX:
149 ret = entry->eax;
150 break;
151 case R_EBX:
152 ret = entry->ebx;
153 break;
154 case R_ECX:
155 ret = entry->ecx;
156 break;
157 case R_EDX:
158 ret = entry->edx;
159 break;
160 }
161 return ret;
162 }
163
164 /* Find matching entry for function/index on kvm_cpuid2 struct
165 */
166 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
167 uint32_t function,
168 uint32_t index)
169 {
170 int i;
171 for (i = 0; i < cpuid->nent; ++i) {
172 if (cpuid->entries[i].function == function &&
173 cpuid->entries[i].index == index) {
174 return &cpuid->entries[i];
175 }
176 }
177 /* not found: */
178 return NULL;
179 }
180
181 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
182 uint32_t index, int reg)
183 {
184 struct kvm_cpuid2 *cpuid;
185 uint32_t ret = 0;
186 uint32_t cpuid_1_edx;
187 bool found = false;
188
189 cpuid = get_supported_cpuid(s);
190
191 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
192 if (entry) {
193 found = true;
194 ret = cpuid_entry_get_reg(entry, reg);
195 }
196
197 /* Fixups for the data returned by KVM, below */
198
199 if (function == 1 && reg == R_EDX) {
200 /* KVM before 2.6.30 misreports the following features */
201 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
202 } else if (function == 1 && reg == R_ECX) {
203 /* We can set the hypervisor flag, even if KVM does not return it on
204 * GET_SUPPORTED_CPUID
205 */
206 ret |= CPUID_EXT_HYPERVISOR;
207 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
208 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
209 * and the irqchip is in the kernel.
210 */
211 if (kvm_irqchip_in_kernel() &&
212 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
213 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
214 }
215
216 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
217 * without the in-kernel irqchip
218 */
219 if (!kvm_irqchip_in_kernel()) {
220 ret &= ~CPUID_EXT_X2APIC;
221 }
222 } else if (function == 0x80000001 && reg == R_EDX) {
223 /* On Intel, kvm returns cpuid according to the Intel spec,
224 * so add missing bits according to the AMD spec:
225 */
226 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
227 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
228 }
229
230 g_free(cpuid);
231
232 /* fallback for older kernels */
233 if ((function == KVM_CPUID_FEATURES) && !found) {
234 ret = get_para_features(s);
235 }
236
237 return ret;
238 }
239
240 typedef struct HWPoisonPage {
241 ram_addr_t ram_addr;
242 QLIST_ENTRY(HWPoisonPage) list;
243 } HWPoisonPage;
244
245 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
246 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
247
248 static void kvm_unpoison_all(void *param)
249 {
250 HWPoisonPage *page, *next_page;
251
252 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
253 QLIST_REMOVE(page, list);
254 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
255 g_free(page);
256 }
257 }
258
259 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
260 {
261 HWPoisonPage *page;
262
263 QLIST_FOREACH(page, &hwpoison_page_list, list) {
264 if (page->ram_addr == ram_addr) {
265 return;
266 }
267 }
268 page = g_malloc(sizeof(HWPoisonPage));
269 page->ram_addr = ram_addr;
270 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
271 }
272
273 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
274 int *max_banks)
275 {
276 int r;
277
278 r = kvm_check_extension(s, KVM_CAP_MCE);
279 if (r > 0) {
280 *max_banks = r;
281 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
282 }
283 return -ENOSYS;
284 }
285
286 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
287 {
288 CPUX86State *env = &cpu->env;
289 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
290 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
291 uint64_t mcg_status = MCG_STATUS_MCIP;
292
293 if (code == BUS_MCEERR_AR) {
294 status |= MCI_STATUS_AR | 0x134;
295 mcg_status |= MCG_STATUS_EIPV;
296 } else {
297 status |= 0xc0;
298 mcg_status |= MCG_STATUS_RIPV;
299 }
300 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
301 (MCM_ADDR_PHYS << 6) | 0xc,
302 cpu_x86_support_mca_broadcast(env) ?
303 MCE_INJECT_BROADCAST : 0);
304 }
305
306 static void hardware_memory_error(void)
307 {
308 fprintf(stderr, "Hardware memory error!\n");
309 exit(1);
310 }
311
312 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
313 {
314 X86CPU *cpu = X86_CPU(c);
315 CPUX86State *env = &cpu->env;
316 ram_addr_t ram_addr;
317 hwaddr paddr;
318
319 if ((env->mcg_cap & MCG_SER_P) && addr
320 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
321 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
322 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
323 fprintf(stderr, "Hardware memory error for memory used by "
324 "QEMU itself instead of guest system!\n");
325 /* Hope we are lucky for AO MCE */
326 if (code == BUS_MCEERR_AO) {
327 return 0;
328 } else {
329 hardware_memory_error();
330 }
331 }
332 kvm_hwpoison_page_add(ram_addr);
333 kvm_mce_inject(cpu, paddr, code);
334 } else {
335 if (code == BUS_MCEERR_AO) {
336 return 0;
337 } else if (code == BUS_MCEERR_AR) {
338 hardware_memory_error();
339 } else {
340 return 1;
341 }
342 }
343 return 0;
344 }
345
346 int kvm_arch_on_sigbus(int code, void *addr)
347 {
348 X86CPU *cpu = X86_CPU(first_cpu);
349
350 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
351 ram_addr_t ram_addr;
352 hwaddr paddr;
353
354 /* Hope we are lucky for AO MCE */
355 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
356 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
357 addr, &paddr)) {
358 fprintf(stderr, "Hardware memory error for memory used by "
359 "QEMU itself instead of guest system!: %p\n", addr);
360 return 0;
361 }
362 kvm_hwpoison_page_add(ram_addr);
363 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
364 } else {
365 if (code == BUS_MCEERR_AO) {
366 return 0;
367 } else if (code == BUS_MCEERR_AR) {
368 hardware_memory_error();
369 } else {
370 return 1;
371 }
372 }
373 return 0;
374 }
375
376 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
377 {
378 CPUX86State *env = &cpu->env;
379
380 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
381 unsigned int bank, bank_num = env->mcg_cap & 0xff;
382 struct kvm_x86_mce mce;
383
384 env->exception_injected = -1;
385
386 /*
387 * There must be at least one bank in use if an MCE is pending.
388 * Find it and use its values for the event injection.
389 */
390 for (bank = 0; bank < bank_num; bank++) {
391 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
392 break;
393 }
394 }
395 assert(bank < bank_num);
396
397 mce.bank = bank;
398 mce.status = env->mce_banks[bank * 4 + 1];
399 mce.mcg_status = env->mcg_status;
400 mce.addr = env->mce_banks[bank * 4 + 2];
401 mce.misc = env->mce_banks[bank * 4 + 3];
402
403 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
404 }
405 return 0;
406 }
407
408 static void cpu_update_state(void *opaque, int running, RunState state)
409 {
410 CPUX86State *env = opaque;
411
412 if (running) {
413 env->tsc_valid = false;
414 }
415 }
416
417 unsigned long kvm_arch_vcpu_id(CPUState *cs)
418 {
419 X86CPU *cpu = X86_CPU(cs);
420 return cpu->env.cpuid_apic_id;
421 }
422
423 #define KVM_MAX_CPUID_ENTRIES 100
424
425 int kvm_arch_init_vcpu(CPUState *cs)
426 {
427 struct {
428 struct kvm_cpuid2 cpuid;
429 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
430 } QEMU_PACKED cpuid_data;
431 X86CPU *cpu = X86_CPU(cs);
432 CPUX86State *env = &cpu->env;
433 uint32_t limit, i, j, cpuid_i;
434 uint32_t unused;
435 struct kvm_cpuid_entry2 *c;
436 uint32_t signature[3];
437 int r;
438
439 cpuid_i = 0;
440
441 /* Paravirtualization CPUIDs */
442 c = &cpuid_data.entries[cpuid_i++];
443 memset(c, 0, sizeof(*c));
444 c->function = KVM_CPUID_SIGNATURE;
445 if (!hyperv_enabled()) {
446 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
447 c->eax = 0;
448 } else {
449 memcpy(signature, "Microsoft Hv", 12);
450 c->eax = HYPERV_CPUID_MIN;
451 }
452 c->ebx = signature[0];
453 c->ecx = signature[1];
454 c->edx = signature[2];
455
456 c = &cpuid_data.entries[cpuid_i++];
457 memset(c, 0, sizeof(*c));
458 c->function = KVM_CPUID_FEATURES;
459 c->eax = env->features[FEAT_KVM];
460
461 if (hyperv_enabled()) {
462 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
463 c->eax = signature[0];
464
465 c = &cpuid_data.entries[cpuid_i++];
466 memset(c, 0, sizeof(*c));
467 c->function = HYPERV_CPUID_VERSION;
468 c->eax = 0x00001bbc;
469 c->ebx = 0x00060001;
470
471 c = &cpuid_data.entries[cpuid_i++];
472 memset(c, 0, sizeof(*c));
473 c->function = HYPERV_CPUID_FEATURES;
474 if (hyperv_relaxed_timing_enabled()) {
475 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
476 }
477 if (hyperv_vapic_recommended()) {
478 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
479 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
480 }
481
482 c = &cpuid_data.entries[cpuid_i++];
483 memset(c, 0, sizeof(*c));
484 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
485 if (hyperv_relaxed_timing_enabled()) {
486 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
487 }
488 if (hyperv_vapic_recommended()) {
489 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
490 }
491 c->ebx = hyperv_get_spinlock_retries();
492
493 c = &cpuid_data.entries[cpuid_i++];
494 memset(c, 0, sizeof(*c));
495 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
496 c->eax = 0x40;
497 c->ebx = 0x40;
498
499 c = &cpuid_data.entries[cpuid_i++];
500 memset(c, 0, sizeof(*c));
501 c->function = KVM_CPUID_SIGNATURE_NEXT;
502 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
503 c->eax = 0;
504 c->ebx = signature[0];
505 c->ecx = signature[1];
506 c->edx = signature[2];
507 }
508
509 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
510
511 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
512
513 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
514
515 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
516
517 for (i = 0; i <= limit; i++) {
518 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
519 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
520 abort();
521 }
522 c = &cpuid_data.entries[cpuid_i++];
523
524 switch (i) {
525 case 2: {
526 /* Keep reading function 2 till all the input is received */
527 int times;
528
529 c->function = i;
530 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
531 KVM_CPUID_FLAG_STATE_READ_NEXT;
532 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
533 times = c->eax & 0xff;
534
535 for (j = 1; j < times; ++j) {
536 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
537 fprintf(stderr, "cpuid_data is full, no space for "
538 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
539 abort();
540 }
541 c = &cpuid_data.entries[cpuid_i++];
542 c->function = i;
543 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
544 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
545 }
546 break;
547 }
548 case 4:
549 case 0xb:
550 case 0xd:
551 for (j = 0; ; j++) {
552 if (i == 0xd && j == 64) {
553 break;
554 }
555 c->function = i;
556 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
557 c->index = j;
558 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
559
560 if (i == 4 && c->eax == 0) {
561 break;
562 }
563 if (i == 0xb && !(c->ecx & 0xff00)) {
564 break;
565 }
566 if (i == 0xd && c->eax == 0) {
567 continue;
568 }
569 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
570 fprintf(stderr, "cpuid_data is full, no space for "
571 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
572 abort();
573 }
574 c = &cpuid_data.entries[cpuid_i++];
575 }
576 break;
577 default:
578 c->function = i;
579 c->flags = 0;
580 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
581 break;
582 }
583 }
584 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
585
586 for (i = 0x80000000; i <= limit; i++) {
587 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
588 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
589 abort();
590 }
591 c = &cpuid_data.entries[cpuid_i++];
592
593 c->function = i;
594 c->flags = 0;
595 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
596 }
597
598 /* Call Centaur's CPUID instructions they are supported. */
599 if (env->cpuid_xlevel2 > 0) {
600 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
601
602 for (i = 0xC0000000; i <= limit; i++) {
603 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
604 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
605 abort();
606 }
607 c = &cpuid_data.entries[cpuid_i++];
608
609 c->function = i;
610 c->flags = 0;
611 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
612 }
613 }
614
615 cpuid_data.cpuid.nent = cpuid_i;
616
617 if (((env->cpuid_version >> 8)&0xF) >= 6
618 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
619 (CPUID_MCE | CPUID_MCA)
620 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
621 uint64_t mcg_cap;
622 int banks;
623 int ret;
624
625 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
626 if (ret < 0) {
627 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
628 return ret;
629 }
630
631 if (banks > MCE_BANKS_DEF) {
632 banks = MCE_BANKS_DEF;
633 }
634 mcg_cap &= MCE_CAP_DEF;
635 mcg_cap |= banks;
636 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
637 if (ret < 0) {
638 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
639 return ret;
640 }
641
642 env->mcg_cap = mcg_cap;
643 }
644
645 qemu_add_vm_change_state_handler(cpu_update_state, env);
646
647 cpuid_data.cpuid.padding = 0;
648 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
649 if (r) {
650 return r;
651 }
652
653 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
654 if (r && env->tsc_khz) {
655 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
656 if (r < 0) {
657 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
658 return r;
659 }
660 }
661
662 if (kvm_has_xsave()) {
663 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
664 }
665
666 return 0;
667 }
668
669 void kvm_arch_reset_vcpu(CPUState *cs)
670 {
671 X86CPU *cpu = X86_CPU(cs);
672 CPUX86State *env = &cpu->env;
673
674 env->exception_injected = -1;
675 env->interrupt_injected = -1;
676 env->xcr0 = 1;
677 if (kvm_irqchip_in_kernel()) {
678 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
679 KVM_MP_STATE_UNINITIALIZED;
680 } else {
681 env->mp_state = KVM_MP_STATE_RUNNABLE;
682 }
683 }
684
685 static int kvm_get_supported_msrs(KVMState *s)
686 {
687 static int kvm_supported_msrs;
688 int ret = 0;
689
690 /* first time */
691 if (kvm_supported_msrs == 0) {
692 struct kvm_msr_list msr_list, *kvm_msr_list;
693
694 kvm_supported_msrs = -1;
695
696 /* Obtain MSR list from KVM. These are the MSRs that we must
697 * save/restore */
698 msr_list.nmsrs = 0;
699 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
700 if (ret < 0 && ret != -E2BIG) {
701 return ret;
702 }
703 /* Old kernel modules had a bug and could write beyond the provided
704 memory. Allocate at least a safe amount of 1K. */
705 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
706 msr_list.nmsrs *
707 sizeof(msr_list.indices[0])));
708
709 kvm_msr_list->nmsrs = msr_list.nmsrs;
710 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
711 if (ret >= 0) {
712 int i;
713
714 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
715 if (kvm_msr_list->indices[i] == MSR_STAR) {
716 has_msr_star = true;
717 continue;
718 }
719 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
720 has_msr_hsave_pa = true;
721 continue;
722 }
723 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
724 has_msr_tsc_adjust = true;
725 continue;
726 }
727 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
728 has_msr_tsc_deadline = true;
729 continue;
730 }
731 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
732 has_msr_misc_enable = true;
733 continue;
734 }
735 }
736 }
737
738 g_free(kvm_msr_list);
739 }
740
741 return ret;
742 }
743
744 int kvm_arch_init(KVMState *s)
745 {
746 uint64_t identity_base = 0xfffbc000;
747 uint64_t shadow_mem;
748 int ret;
749 struct utsname utsname;
750
751 ret = kvm_get_supported_msrs(s);
752 if (ret < 0) {
753 return ret;
754 }
755
756 uname(&utsname);
757 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
758
759 /*
760 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
761 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
762 * Since these must be part of guest physical memory, we need to allocate
763 * them, both by setting their start addresses in the kernel and by
764 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
765 *
766 * Older KVM versions may not support setting the identity map base. In
767 * that case we need to stick with the default, i.e. a 256K maximum BIOS
768 * size.
769 */
770 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
771 /* Allows up to 16M BIOSes. */
772 identity_base = 0xfeffc000;
773
774 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
775 if (ret < 0) {
776 return ret;
777 }
778 }
779
780 /* Set TSS base one page after EPT identity map. */
781 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
782 if (ret < 0) {
783 return ret;
784 }
785
786 /* Tell fw_cfg to notify the BIOS to reserve the range. */
787 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
788 if (ret < 0) {
789 fprintf(stderr, "e820_add_entry() table is full\n");
790 return ret;
791 }
792 qemu_register_reset(kvm_unpoison_all, NULL);
793
794 shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(),
795 "kvm_shadow_mem", -1);
796 if (shadow_mem != -1) {
797 shadow_mem /= 4096;
798 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
799 if (ret < 0) {
800 return ret;
801 }
802 }
803 return 0;
804 }
805
806 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
807 {
808 lhs->selector = rhs->selector;
809 lhs->base = rhs->base;
810 lhs->limit = rhs->limit;
811 lhs->type = 3;
812 lhs->present = 1;
813 lhs->dpl = 3;
814 lhs->db = 0;
815 lhs->s = 1;
816 lhs->l = 0;
817 lhs->g = 0;
818 lhs->avl = 0;
819 lhs->unusable = 0;
820 }
821
822 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
823 {
824 unsigned flags = rhs->flags;
825 lhs->selector = rhs->selector;
826 lhs->base = rhs->base;
827 lhs->limit = rhs->limit;
828 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
829 lhs->present = (flags & DESC_P_MASK) != 0;
830 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
831 lhs->db = (flags >> DESC_B_SHIFT) & 1;
832 lhs->s = (flags & DESC_S_MASK) != 0;
833 lhs->l = (flags >> DESC_L_SHIFT) & 1;
834 lhs->g = (flags & DESC_G_MASK) != 0;
835 lhs->avl = (flags & DESC_AVL_MASK) != 0;
836 lhs->unusable = 0;
837 lhs->padding = 0;
838 }
839
840 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
841 {
842 lhs->selector = rhs->selector;
843 lhs->base = rhs->base;
844 lhs->limit = rhs->limit;
845 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
846 (rhs->present * DESC_P_MASK) |
847 (rhs->dpl << DESC_DPL_SHIFT) |
848 (rhs->db << DESC_B_SHIFT) |
849 (rhs->s * DESC_S_MASK) |
850 (rhs->l << DESC_L_SHIFT) |
851 (rhs->g * DESC_G_MASK) |
852 (rhs->avl * DESC_AVL_MASK);
853 }
854
855 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
856 {
857 if (set) {
858 *kvm_reg = *qemu_reg;
859 } else {
860 *qemu_reg = *kvm_reg;
861 }
862 }
863
864 static int kvm_getput_regs(X86CPU *cpu, int set)
865 {
866 CPUX86State *env = &cpu->env;
867 struct kvm_regs regs;
868 int ret = 0;
869
870 if (!set) {
871 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
872 if (ret < 0) {
873 return ret;
874 }
875 }
876
877 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
878 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
879 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
880 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
881 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
882 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
883 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
884 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
885 #ifdef TARGET_X86_64
886 kvm_getput_reg(&regs.r8, &env->regs[8], set);
887 kvm_getput_reg(&regs.r9, &env->regs[9], set);
888 kvm_getput_reg(&regs.r10, &env->regs[10], set);
889 kvm_getput_reg(&regs.r11, &env->regs[11], set);
890 kvm_getput_reg(&regs.r12, &env->regs[12], set);
891 kvm_getput_reg(&regs.r13, &env->regs[13], set);
892 kvm_getput_reg(&regs.r14, &env->regs[14], set);
893 kvm_getput_reg(&regs.r15, &env->regs[15], set);
894 #endif
895
896 kvm_getput_reg(&regs.rflags, &env->eflags, set);
897 kvm_getput_reg(&regs.rip, &env->eip, set);
898
899 if (set) {
900 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
901 }
902
903 return ret;
904 }
905
906 static int kvm_put_fpu(X86CPU *cpu)
907 {
908 CPUX86State *env = &cpu->env;
909 struct kvm_fpu fpu;
910 int i;
911
912 memset(&fpu, 0, sizeof fpu);
913 fpu.fsw = env->fpus & ~(7 << 11);
914 fpu.fsw |= (env->fpstt & 7) << 11;
915 fpu.fcw = env->fpuc;
916 fpu.last_opcode = env->fpop;
917 fpu.last_ip = env->fpip;
918 fpu.last_dp = env->fpdp;
919 for (i = 0; i < 8; ++i) {
920 fpu.ftwx |= (!env->fptags[i]) << i;
921 }
922 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
923 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
924 fpu.mxcsr = env->mxcsr;
925
926 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
927 }
928
929 #define XSAVE_FCW_FSW 0
930 #define XSAVE_FTW_FOP 1
931 #define XSAVE_CWD_RIP 2
932 #define XSAVE_CWD_RDP 4
933 #define XSAVE_MXCSR 6
934 #define XSAVE_ST_SPACE 8
935 #define XSAVE_XMM_SPACE 40
936 #define XSAVE_XSTATE_BV 128
937 #define XSAVE_YMMH_SPACE 144
938
939 static int kvm_put_xsave(X86CPU *cpu)
940 {
941 CPUX86State *env = &cpu->env;
942 struct kvm_xsave* xsave = env->kvm_xsave_buf;
943 uint16_t cwd, swd, twd;
944 int i, r;
945
946 if (!kvm_has_xsave()) {
947 return kvm_put_fpu(cpu);
948 }
949
950 memset(xsave, 0, sizeof(struct kvm_xsave));
951 twd = 0;
952 swd = env->fpus & ~(7 << 11);
953 swd |= (env->fpstt & 7) << 11;
954 cwd = env->fpuc;
955 for (i = 0; i < 8; ++i) {
956 twd |= (!env->fptags[i]) << i;
957 }
958 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
959 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
960 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
961 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
962 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
963 sizeof env->fpregs);
964 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
965 sizeof env->xmm_regs);
966 xsave->region[XSAVE_MXCSR] = env->mxcsr;
967 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
968 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
969 sizeof env->ymmh_regs);
970 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
971 return r;
972 }
973
974 static int kvm_put_xcrs(X86CPU *cpu)
975 {
976 CPUX86State *env = &cpu->env;
977 struct kvm_xcrs xcrs;
978
979 if (!kvm_has_xcrs()) {
980 return 0;
981 }
982
983 xcrs.nr_xcrs = 1;
984 xcrs.flags = 0;
985 xcrs.xcrs[0].xcr = 0;
986 xcrs.xcrs[0].value = env->xcr0;
987 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
988 }
989
990 static int kvm_put_sregs(X86CPU *cpu)
991 {
992 CPUX86State *env = &cpu->env;
993 struct kvm_sregs sregs;
994
995 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
996 if (env->interrupt_injected >= 0) {
997 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
998 (uint64_t)1 << (env->interrupt_injected % 64);
999 }
1000
1001 if ((env->eflags & VM_MASK)) {
1002 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1003 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1004 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1005 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1006 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1007 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1008 } else {
1009 set_seg(&sregs.cs, &env->segs[R_CS]);
1010 set_seg(&sregs.ds, &env->segs[R_DS]);
1011 set_seg(&sregs.es, &env->segs[R_ES]);
1012 set_seg(&sregs.fs, &env->segs[R_FS]);
1013 set_seg(&sregs.gs, &env->segs[R_GS]);
1014 set_seg(&sregs.ss, &env->segs[R_SS]);
1015 }
1016
1017 set_seg(&sregs.tr, &env->tr);
1018 set_seg(&sregs.ldt, &env->ldt);
1019
1020 sregs.idt.limit = env->idt.limit;
1021 sregs.idt.base = env->idt.base;
1022 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1023 sregs.gdt.limit = env->gdt.limit;
1024 sregs.gdt.base = env->gdt.base;
1025 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1026
1027 sregs.cr0 = env->cr[0];
1028 sregs.cr2 = env->cr[2];
1029 sregs.cr3 = env->cr[3];
1030 sregs.cr4 = env->cr[4];
1031
1032 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1033 sregs.apic_base = cpu_get_apic_base(env->apic_state);
1034
1035 sregs.efer = env->efer;
1036
1037 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1038 }
1039
1040 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1041 uint32_t index, uint64_t value)
1042 {
1043 entry->index = index;
1044 entry->data = value;
1045 }
1046
1047 static int kvm_put_msrs(X86CPU *cpu, int level)
1048 {
1049 CPUX86State *env = &cpu->env;
1050 struct {
1051 struct kvm_msrs info;
1052 struct kvm_msr_entry entries[100];
1053 } msr_data;
1054 struct kvm_msr_entry *msrs = msr_data.entries;
1055 int n = 0;
1056
1057 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1058 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1059 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1060 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1061 if (has_msr_star) {
1062 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1063 }
1064 if (has_msr_hsave_pa) {
1065 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1066 }
1067 if (has_msr_tsc_adjust) {
1068 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1069 }
1070 if (has_msr_tsc_deadline) {
1071 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1072 }
1073 if (has_msr_misc_enable) {
1074 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1075 env->msr_ia32_misc_enable);
1076 }
1077 #ifdef TARGET_X86_64
1078 if (lm_capable_kernel) {
1079 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1080 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1081 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1082 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1083 }
1084 #endif
1085 if (level == KVM_PUT_FULL_STATE) {
1086 /*
1087 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1088 * writeback. Until this is fixed, we only write the offset to SMP
1089 * guests after migration, desynchronizing the VCPUs, but avoiding
1090 * huge jump-backs that would occur without any writeback at all.
1091 */
1092 if (smp_cpus == 1 || env->tsc != 0) {
1093 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1094 }
1095 }
1096 /*
1097 * The following paravirtual MSRs have side effects on the guest or are
1098 * too heavy for normal writeback. Limit them to reset or full state
1099 * updates.
1100 */
1101 if (level >= KVM_PUT_RESET_STATE) {
1102 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1103 env->system_time_msr);
1104 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1105 if (has_msr_async_pf_en) {
1106 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1107 env->async_pf_en_msr);
1108 }
1109 if (has_msr_pv_eoi_en) {
1110 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1111 env->pv_eoi_en_msr);
1112 }
1113 if (has_msr_kvm_steal_time) {
1114 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1115 env->steal_time_msr);
1116 }
1117 if (hyperv_hypercall_available()) {
1118 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1119 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1120 }
1121 if (hyperv_vapic_recommended()) {
1122 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1123 }
1124 }
1125 if (env->mcg_cap) {
1126 int i;
1127
1128 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1129 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1130 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1131 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1132 }
1133 }
1134
1135 msr_data.info.nmsrs = n;
1136
1137 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1138
1139 }
1140
1141
1142 static int kvm_get_fpu(X86CPU *cpu)
1143 {
1144 CPUX86State *env = &cpu->env;
1145 struct kvm_fpu fpu;
1146 int i, ret;
1147
1148 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1149 if (ret < 0) {
1150 return ret;
1151 }
1152
1153 env->fpstt = (fpu.fsw >> 11) & 7;
1154 env->fpus = fpu.fsw;
1155 env->fpuc = fpu.fcw;
1156 env->fpop = fpu.last_opcode;
1157 env->fpip = fpu.last_ip;
1158 env->fpdp = fpu.last_dp;
1159 for (i = 0; i < 8; ++i) {
1160 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1161 }
1162 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1163 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1164 env->mxcsr = fpu.mxcsr;
1165
1166 return 0;
1167 }
1168
1169 static int kvm_get_xsave(X86CPU *cpu)
1170 {
1171 CPUX86State *env = &cpu->env;
1172 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1173 int ret, i;
1174 uint16_t cwd, swd, twd;
1175
1176 if (!kvm_has_xsave()) {
1177 return kvm_get_fpu(cpu);
1178 }
1179
1180 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1181 if (ret < 0) {
1182 return ret;
1183 }
1184
1185 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1186 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1187 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1188 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1189 env->fpstt = (swd >> 11) & 7;
1190 env->fpus = swd;
1191 env->fpuc = cwd;
1192 for (i = 0; i < 8; ++i) {
1193 env->fptags[i] = !((twd >> i) & 1);
1194 }
1195 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1196 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1197 env->mxcsr = xsave->region[XSAVE_MXCSR];
1198 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1199 sizeof env->fpregs);
1200 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1201 sizeof env->xmm_regs);
1202 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1203 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1204 sizeof env->ymmh_regs);
1205 return 0;
1206 }
1207
1208 static int kvm_get_xcrs(X86CPU *cpu)
1209 {
1210 CPUX86State *env = &cpu->env;
1211 int i, ret;
1212 struct kvm_xcrs xcrs;
1213
1214 if (!kvm_has_xcrs()) {
1215 return 0;
1216 }
1217
1218 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1219 if (ret < 0) {
1220 return ret;
1221 }
1222
1223 for (i = 0; i < xcrs.nr_xcrs; i++) {
1224 /* Only support xcr0 now */
1225 if (xcrs.xcrs[0].xcr == 0) {
1226 env->xcr0 = xcrs.xcrs[0].value;
1227 break;
1228 }
1229 }
1230 return 0;
1231 }
1232
1233 static int kvm_get_sregs(X86CPU *cpu)
1234 {
1235 CPUX86State *env = &cpu->env;
1236 struct kvm_sregs sregs;
1237 uint32_t hflags;
1238 int bit, i, ret;
1239
1240 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1241 if (ret < 0) {
1242 return ret;
1243 }
1244
1245 /* There can only be one pending IRQ set in the bitmap at a time, so try
1246 to find it and save its number instead (-1 for none). */
1247 env->interrupt_injected = -1;
1248 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1249 if (sregs.interrupt_bitmap[i]) {
1250 bit = ctz64(sregs.interrupt_bitmap[i]);
1251 env->interrupt_injected = i * 64 + bit;
1252 break;
1253 }
1254 }
1255
1256 get_seg(&env->segs[R_CS], &sregs.cs);
1257 get_seg(&env->segs[R_DS], &sregs.ds);
1258 get_seg(&env->segs[R_ES], &sregs.es);
1259 get_seg(&env->segs[R_FS], &sregs.fs);
1260 get_seg(&env->segs[R_GS], &sregs.gs);
1261 get_seg(&env->segs[R_SS], &sregs.ss);
1262
1263 get_seg(&env->tr, &sregs.tr);
1264 get_seg(&env->ldt, &sregs.ldt);
1265
1266 env->idt.limit = sregs.idt.limit;
1267 env->idt.base = sregs.idt.base;
1268 env->gdt.limit = sregs.gdt.limit;
1269 env->gdt.base = sregs.gdt.base;
1270
1271 env->cr[0] = sregs.cr0;
1272 env->cr[2] = sregs.cr2;
1273 env->cr[3] = sregs.cr3;
1274 env->cr[4] = sregs.cr4;
1275
1276 env->efer = sregs.efer;
1277
1278 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1279
1280 #define HFLAG_COPY_MASK \
1281 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1282 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1283 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1284 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1285
1286 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1287 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1288 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1289 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1290 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1291 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1292 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1293
1294 if (env->efer & MSR_EFER_LMA) {
1295 hflags |= HF_LMA_MASK;
1296 }
1297
1298 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1299 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1300 } else {
1301 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1302 (DESC_B_SHIFT - HF_CS32_SHIFT);
1303 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1304 (DESC_B_SHIFT - HF_SS32_SHIFT);
1305 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1306 !(hflags & HF_CS32_MASK)) {
1307 hflags |= HF_ADDSEG_MASK;
1308 } else {
1309 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1310 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1311 }
1312 }
1313 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1314
1315 return 0;
1316 }
1317
1318 static int kvm_get_msrs(X86CPU *cpu)
1319 {
1320 CPUX86State *env = &cpu->env;
1321 struct {
1322 struct kvm_msrs info;
1323 struct kvm_msr_entry entries[100];
1324 } msr_data;
1325 struct kvm_msr_entry *msrs = msr_data.entries;
1326 int ret, i, n;
1327
1328 n = 0;
1329 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1330 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1331 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1332 msrs[n++].index = MSR_PAT;
1333 if (has_msr_star) {
1334 msrs[n++].index = MSR_STAR;
1335 }
1336 if (has_msr_hsave_pa) {
1337 msrs[n++].index = MSR_VM_HSAVE_PA;
1338 }
1339 if (has_msr_tsc_adjust) {
1340 msrs[n++].index = MSR_TSC_ADJUST;
1341 }
1342 if (has_msr_tsc_deadline) {
1343 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1344 }
1345 if (has_msr_misc_enable) {
1346 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1347 }
1348
1349 if (!env->tsc_valid) {
1350 msrs[n++].index = MSR_IA32_TSC;
1351 env->tsc_valid = !runstate_is_running();
1352 }
1353
1354 #ifdef TARGET_X86_64
1355 if (lm_capable_kernel) {
1356 msrs[n++].index = MSR_CSTAR;
1357 msrs[n++].index = MSR_KERNELGSBASE;
1358 msrs[n++].index = MSR_FMASK;
1359 msrs[n++].index = MSR_LSTAR;
1360 }
1361 #endif
1362 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1363 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1364 if (has_msr_async_pf_en) {
1365 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1366 }
1367 if (has_msr_pv_eoi_en) {
1368 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1369 }
1370 if (has_msr_kvm_steal_time) {
1371 msrs[n++].index = MSR_KVM_STEAL_TIME;
1372 }
1373
1374 if (env->mcg_cap) {
1375 msrs[n++].index = MSR_MCG_STATUS;
1376 msrs[n++].index = MSR_MCG_CTL;
1377 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1378 msrs[n++].index = MSR_MC0_CTL + i;
1379 }
1380 }
1381
1382 msr_data.info.nmsrs = n;
1383 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1384 if (ret < 0) {
1385 return ret;
1386 }
1387
1388 for (i = 0; i < ret; i++) {
1389 switch (msrs[i].index) {
1390 case MSR_IA32_SYSENTER_CS:
1391 env->sysenter_cs = msrs[i].data;
1392 break;
1393 case MSR_IA32_SYSENTER_ESP:
1394 env->sysenter_esp = msrs[i].data;
1395 break;
1396 case MSR_IA32_SYSENTER_EIP:
1397 env->sysenter_eip = msrs[i].data;
1398 break;
1399 case MSR_PAT:
1400 env->pat = msrs[i].data;
1401 break;
1402 case MSR_STAR:
1403 env->star = msrs[i].data;
1404 break;
1405 #ifdef TARGET_X86_64
1406 case MSR_CSTAR:
1407 env->cstar = msrs[i].data;
1408 break;
1409 case MSR_KERNELGSBASE:
1410 env->kernelgsbase = msrs[i].data;
1411 break;
1412 case MSR_FMASK:
1413 env->fmask = msrs[i].data;
1414 break;
1415 case MSR_LSTAR:
1416 env->lstar = msrs[i].data;
1417 break;
1418 #endif
1419 case MSR_IA32_TSC:
1420 env->tsc = msrs[i].data;
1421 break;
1422 case MSR_TSC_ADJUST:
1423 env->tsc_adjust = msrs[i].data;
1424 break;
1425 case MSR_IA32_TSCDEADLINE:
1426 env->tsc_deadline = msrs[i].data;
1427 break;
1428 case MSR_VM_HSAVE_PA:
1429 env->vm_hsave = msrs[i].data;
1430 break;
1431 case MSR_KVM_SYSTEM_TIME:
1432 env->system_time_msr = msrs[i].data;
1433 break;
1434 case MSR_KVM_WALL_CLOCK:
1435 env->wall_clock_msr = msrs[i].data;
1436 break;
1437 case MSR_MCG_STATUS:
1438 env->mcg_status = msrs[i].data;
1439 break;
1440 case MSR_MCG_CTL:
1441 env->mcg_ctl = msrs[i].data;
1442 break;
1443 case MSR_IA32_MISC_ENABLE:
1444 env->msr_ia32_misc_enable = msrs[i].data;
1445 break;
1446 default:
1447 if (msrs[i].index >= MSR_MC0_CTL &&
1448 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1449 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1450 }
1451 break;
1452 case MSR_KVM_ASYNC_PF_EN:
1453 env->async_pf_en_msr = msrs[i].data;
1454 break;
1455 case MSR_KVM_PV_EOI_EN:
1456 env->pv_eoi_en_msr = msrs[i].data;
1457 break;
1458 case MSR_KVM_STEAL_TIME:
1459 env->steal_time_msr = msrs[i].data;
1460 break;
1461 }
1462 }
1463
1464 return 0;
1465 }
1466
1467 static int kvm_put_mp_state(X86CPU *cpu)
1468 {
1469 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1470
1471 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1472 }
1473
1474 static int kvm_get_mp_state(X86CPU *cpu)
1475 {
1476 CPUState *cs = CPU(cpu);
1477 CPUX86State *env = &cpu->env;
1478 struct kvm_mp_state mp_state;
1479 int ret;
1480
1481 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
1482 if (ret < 0) {
1483 return ret;
1484 }
1485 env->mp_state = mp_state.mp_state;
1486 if (kvm_irqchip_in_kernel()) {
1487 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1488 }
1489 return 0;
1490 }
1491
1492 static int kvm_get_apic(X86CPU *cpu)
1493 {
1494 CPUX86State *env = &cpu->env;
1495 DeviceState *apic = env->apic_state;
1496 struct kvm_lapic_state kapic;
1497 int ret;
1498
1499 if (apic && kvm_irqchip_in_kernel()) {
1500 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1501 if (ret < 0) {
1502 return ret;
1503 }
1504
1505 kvm_get_apic_state(apic, &kapic);
1506 }
1507 return 0;
1508 }
1509
1510 static int kvm_put_apic(X86CPU *cpu)
1511 {
1512 CPUX86State *env = &cpu->env;
1513 DeviceState *apic = env->apic_state;
1514 struct kvm_lapic_state kapic;
1515
1516 if (apic && kvm_irqchip_in_kernel()) {
1517 kvm_put_apic_state(apic, &kapic);
1518
1519 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1520 }
1521 return 0;
1522 }
1523
1524 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1525 {
1526 CPUX86State *env = &cpu->env;
1527 struct kvm_vcpu_events events;
1528
1529 if (!kvm_has_vcpu_events()) {
1530 return 0;
1531 }
1532
1533 events.exception.injected = (env->exception_injected >= 0);
1534 events.exception.nr = env->exception_injected;
1535 events.exception.has_error_code = env->has_error_code;
1536 events.exception.error_code = env->error_code;
1537 events.exception.pad = 0;
1538
1539 events.interrupt.injected = (env->interrupt_injected >= 0);
1540 events.interrupt.nr = env->interrupt_injected;
1541 events.interrupt.soft = env->soft_interrupt;
1542
1543 events.nmi.injected = env->nmi_injected;
1544 events.nmi.pending = env->nmi_pending;
1545 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1546 events.nmi.pad = 0;
1547
1548 events.sipi_vector = env->sipi_vector;
1549
1550 events.flags = 0;
1551 if (level >= KVM_PUT_RESET_STATE) {
1552 events.flags |=
1553 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1554 }
1555
1556 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1557 }
1558
1559 static int kvm_get_vcpu_events(X86CPU *cpu)
1560 {
1561 CPUX86State *env = &cpu->env;
1562 struct kvm_vcpu_events events;
1563 int ret;
1564
1565 if (!kvm_has_vcpu_events()) {
1566 return 0;
1567 }
1568
1569 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1570 if (ret < 0) {
1571 return ret;
1572 }
1573 env->exception_injected =
1574 events.exception.injected ? events.exception.nr : -1;
1575 env->has_error_code = events.exception.has_error_code;
1576 env->error_code = events.exception.error_code;
1577
1578 env->interrupt_injected =
1579 events.interrupt.injected ? events.interrupt.nr : -1;
1580 env->soft_interrupt = events.interrupt.soft;
1581
1582 env->nmi_injected = events.nmi.injected;
1583 env->nmi_pending = events.nmi.pending;
1584 if (events.nmi.masked) {
1585 env->hflags2 |= HF2_NMI_MASK;
1586 } else {
1587 env->hflags2 &= ~HF2_NMI_MASK;
1588 }
1589
1590 env->sipi_vector = events.sipi_vector;
1591
1592 return 0;
1593 }
1594
1595 static int kvm_guest_debug_workarounds(X86CPU *cpu)
1596 {
1597 CPUX86State *env = &cpu->env;
1598 int ret = 0;
1599 unsigned long reinject_trap = 0;
1600
1601 if (!kvm_has_vcpu_events()) {
1602 if (env->exception_injected == 1) {
1603 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1604 } else if (env->exception_injected == 3) {
1605 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1606 }
1607 env->exception_injected = -1;
1608 }
1609
1610 /*
1611 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1612 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1613 * by updating the debug state once again if single-stepping is on.
1614 * Another reason to call kvm_update_guest_debug here is a pending debug
1615 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1616 * reinject them via SET_GUEST_DEBUG.
1617 */
1618 if (reinject_trap ||
1619 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1620 ret = kvm_update_guest_debug(env, reinject_trap);
1621 }
1622 return ret;
1623 }
1624
1625 static int kvm_put_debugregs(X86CPU *cpu)
1626 {
1627 CPUX86State *env = &cpu->env;
1628 struct kvm_debugregs dbgregs;
1629 int i;
1630
1631 if (!kvm_has_debugregs()) {
1632 return 0;
1633 }
1634
1635 for (i = 0; i < 4; i++) {
1636 dbgregs.db[i] = env->dr[i];
1637 }
1638 dbgregs.dr6 = env->dr[6];
1639 dbgregs.dr7 = env->dr[7];
1640 dbgregs.flags = 0;
1641
1642 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1643 }
1644
1645 static int kvm_get_debugregs(X86CPU *cpu)
1646 {
1647 CPUX86State *env = &cpu->env;
1648 struct kvm_debugregs dbgregs;
1649 int i, ret;
1650
1651 if (!kvm_has_debugregs()) {
1652 return 0;
1653 }
1654
1655 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1656 if (ret < 0) {
1657 return ret;
1658 }
1659 for (i = 0; i < 4; i++) {
1660 env->dr[i] = dbgregs.db[i];
1661 }
1662 env->dr[4] = env->dr[6] = dbgregs.dr6;
1663 env->dr[5] = env->dr[7] = dbgregs.dr7;
1664
1665 return 0;
1666 }
1667
1668 int kvm_arch_put_registers(CPUState *cpu, int level)
1669 {
1670 X86CPU *x86_cpu = X86_CPU(cpu);
1671 int ret;
1672
1673 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1674
1675 ret = kvm_getput_regs(x86_cpu, 1);
1676 if (ret < 0) {
1677 return ret;
1678 }
1679 ret = kvm_put_xsave(x86_cpu);
1680 if (ret < 0) {
1681 return ret;
1682 }
1683 ret = kvm_put_xcrs(x86_cpu);
1684 if (ret < 0) {
1685 return ret;
1686 }
1687 ret = kvm_put_sregs(x86_cpu);
1688 if (ret < 0) {
1689 return ret;
1690 }
1691 /* must be before kvm_put_msrs */
1692 ret = kvm_inject_mce_oldstyle(x86_cpu);
1693 if (ret < 0) {
1694 return ret;
1695 }
1696 ret = kvm_put_msrs(x86_cpu, level);
1697 if (ret < 0) {
1698 return ret;
1699 }
1700 if (level >= KVM_PUT_RESET_STATE) {
1701 ret = kvm_put_mp_state(x86_cpu);
1702 if (ret < 0) {
1703 return ret;
1704 }
1705 ret = kvm_put_apic(x86_cpu);
1706 if (ret < 0) {
1707 return ret;
1708 }
1709 }
1710 ret = kvm_put_vcpu_events(x86_cpu, level);
1711 if (ret < 0) {
1712 return ret;
1713 }
1714 ret = kvm_put_debugregs(x86_cpu);
1715 if (ret < 0) {
1716 return ret;
1717 }
1718 /* must be last */
1719 ret = kvm_guest_debug_workarounds(x86_cpu);
1720 if (ret < 0) {
1721 return ret;
1722 }
1723 return 0;
1724 }
1725
1726 int kvm_arch_get_registers(CPUState *cs)
1727 {
1728 X86CPU *cpu = X86_CPU(cs);
1729 int ret;
1730
1731 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1732
1733 ret = kvm_getput_regs(cpu, 0);
1734 if (ret < 0) {
1735 return ret;
1736 }
1737 ret = kvm_get_xsave(cpu);
1738 if (ret < 0) {
1739 return ret;
1740 }
1741 ret = kvm_get_xcrs(cpu);
1742 if (ret < 0) {
1743 return ret;
1744 }
1745 ret = kvm_get_sregs(cpu);
1746 if (ret < 0) {
1747 return ret;
1748 }
1749 ret = kvm_get_msrs(cpu);
1750 if (ret < 0) {
1751 return ret;
1752 }
1753 ret = kvm_get_mp_state(cpu);
1754 if (ret < 0) {
1755 return ret;
1756 }
1757 ret = kvm_get_apic(cpu);
1758 if (ret < 0) {
1759 return ret;
1760 }
1761 ret = kvm_get_vcpu_events(cpu);
1762 if (ret < 0) {
1763 return ret;
1764 }
1765 ret = kvm_get_debugregs(cpu);
1766 if (ret < 0) {
1767 return ret;
1768 }
1769 return 0;
1770 }
1771
1772 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1773 {
1774 X86CPU *x86_cpu = X86_CPU(cpu);
1775 CPUX86State *env = &x86_cpu->env;
1776 int ret;
1777
1778 /* Inject NMI */
1779 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
1780 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
1781 DPRINTF("injected NMI\n");
1782 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
1783 if (ret < 0) {
1784 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1785 strerror(-ret));
1786 }
1787 }
1788
1789 if (!kvm_irqchip_in_kernel()) {
1790 /* Force the VCPU out of its inner loop to process any INIT requests
1791 * or pending TPR access reports. */
1792 if (cpu->interrupt_request &
1793 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1794 cpu->exit_request = 1;
1795 }
1796
1797 /* Try to inject an interrupt if the guest can accept it */
1798 if (run->ready_for_interrupt_injection &&
1799 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
1800 (env->eflags & IF_MASK)) {
1801 int irq;
1802
1803 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
1804 irq = cpu_get_pic_interrupt(env);
1805 if (irq >= 0) {
1806 struct kvm_interrupt intr;
1807
1808 intr.irq = irq;
1809 DPRINTF("injected interrupt %d\n", irq);
1810 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
1811 if (ret < 0) {
1812 fprintf(stderr,
1813 "KVM: injection failed, interrupt lost (%s)\n",
1814 strerror(-ret));
1815 }
1816 }
1817 }
1818
1819 /* If we have an interrupt but the guest is not ready to receive an
1820 * interrupt, request an interrupt window exit. This will
1821 * cause a return to userspace as soon as the guest is ready to
1822 * receive interrupts. */
1823 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
1824 run->request_interrupt_window = 1;
1825 } else {
1826 run->request_interrupt_window = 0;
1827 }
1828
1829 DPRINTF("setting tpr\n");
1830 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1831 }
1832 }
1833
1834 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
1835 {
1836 X86CPU *x86_cpu = X86_CPU(cpu);
1837 CPUX86State *env = &x86_cpu->env;
1838
1839 if (run->if_flag) {
1840 env->eflags |= IF_MASK;
1841 } else {
1842 env->eflags &= ~IF_MASK;
1843 }
1844 cpu_set_apic_tpr(env->apic_state, run->cr8);
1845 cpu_set_apic_base(env->apic_state, run->apic_base);
1846 }
1847
1848 int kvm_arch_process_async_events(CPUState *cs)
1849 {
1850 X86CPU *cpu = X86_CPU(cs);
1851 CPUX86State *env = &cpu->env;
1852
1853 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
1854 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1855 assert(env->mcg_cap);
1856
1857 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
1858
1859 kvm_cpu_synchronize_state(cs);
1860
1861 if (env->exception_injected == EXCP08_DBLE) {
1862 /* this means triple fault */
1863 qemu_system_reset_request();
1864 cs->exit_request = 1;
1865 return 0;
1866 }
1867 env->exception_injected = EXCP12_MCHK;
1868 env->has_error_code = 0;
1869
1870 cs->halted = 0;
1871 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1872 env->mp_state = KVM_MP_STATE_RUNNABLE;
1873 }
1874 }
1875
1876 if (kvm_irqchip_in_kernel()) {
1877 return 0;
1878 }
1879
1880 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
1881 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
1882 apic_poll_irq(env->apic_state);
1883 }
1884 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1885 (env->eflags & IF_MASK)) ||
1886 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
1887 cs->halted = 0;
1888 }
1889 if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
1890 kvm_cpu_synchronize_state(cs);
1891 do_cpu_init(cpu);
1892 }
1893 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
1894 kvm_cpu_synchronize_state(cs);
1895 do_cpu_sipi(cpu);
1896 }
1897 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
1898 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
1899 kvm_cpu_synchronize_state(cs);
1900 apic_handle_tpr_access_report(env->apic_state, env->eip,
1901 env->tpr_access_type);
1902 }
1903
1904 return cs->halted;
1905 }
1906
1907 static int kvm_handle_halt(X86CPU *cpu)
1908 {
1909 CPUState *cs = CPU(cpu);
1910 CPUX86State *env = &cpu->env;
1911
1912 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1913 (env->eflags & IF_MASK)) &&
1914 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
1915 cs->halted = 1;
1916 return EXCP_HLT;
1917 }
1918
1919 return 0;
1920 }
1921
1922 static int kvm_handle_tpr_access(X86CPU *cpu)
1923 {
1924 CPUX86State *env = &cpu->env;
1925 CPUState *cs = CPU(cpu);
1926 struct kvm_run *run = cs->kvm_run;
1927
1928 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1929 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1930 : TPR_ACCESS_READ);
1931 return 1;
1932 }
1933
1934 int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1935 {
1936 CPUX86State *env = &X86_CPU(cpu)->env;
1937 static const uint8_t int3 = 0xcc;
1938
1939 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1940 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1941 return -EINVAL;
1942 }
1943 return 0;
1944 }
1945
1946 int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1947 {
1948 CPUX86State *env = &X86_CPU(cpu)->env;
1949 uint8_t int3;
1950
1951 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1952 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1953 return -EINVAL;
1954 }
1955 return 0;
1956 }
1957
1958 static struct {
1959 target_ulong addr;
1960 int len;
1961 int type;
1962 } hw_breakpoint[4];
1963
1964 static int nb_hw_breakpoint;
1965
1966 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1967 {
1968 int n;
1969
1970 for (n = 0; n < nb_hw_breakpoint; n++) {
1971 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1972 (hw_breakpoint[n].len == len || len == -1)) {
1973 return n;
1974 }
1975 }
1976 return -1;
1977 }
1978
1979 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1980 target_ulong len, int type)
1981 {
1982 switch (type) {
1983 case GDB_BREAKPOINT_HW:
1984 len = 1;
1985 break;
1986 case GDB_WATCHPOINT_WRITE:
1987 case GDB_WATCHPOINT_ACCESS:
1988 switch (len) {
1989 case 1:
1990 break;
1991 case 2:
1992 case 4:
1993 case 8:
1994 if (addr & (len - 1)) {
1995 return -EINVAL;
1996 }
1997 break;
1998 default:
1999 return -EINVAL;
2000 }
2001 break;
2002 default:
2003 return -ENOSYS;
2004 }
2005
2006 if (nb_hw_breakpoint == 4) {
2007 return -ENOBUFS;
2008 }
2009 if (find_hw_breakpoint(addr, len, type) >= 0) {
2010 return -EEXIST;
2011 }
2012 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2013 hw_breakpoint[nb_hw_breakpoint].len = len;
2014 hw_breakpoint[nb_hw_breakpoint].type = type;
2015 nb_hw_breakpoint++;
2016
2017 return 0;
2018 }
2019
2020 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2021 target_ulong len, int type)
2022 {
2023 int n;
2024
2025 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2026 if (n < 0) {
2027 return -ENOENT;
2028 }
2029 nb_hw_breakpoint--;
2030 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2031
2032 return 0;
2033 }
2034
2035 void kvm_arch_remove_all_hw_breakpoints(void)
2036 {
2037 nb_hw_breakpoint = 0;
2038 }
2039
2040 static CPUWatchpoint hw_watchpoint;
2041
2042 static int kvm_handle_debug(X86CPU *cpu,
2043 struct kvm_debug_exit_arch *arch_info)
2044 {
2045 CPUX86State *env = &cpu->env;
2046 int ret = 0;
2047 int n;
2048
2049 if (arch_info->exception == 1) {
2050 if (arch_info->dr6 & (1 << 14)) {
2051 if (env->singlestep_enabled) {
2052 ret = EXCP_DEBUG;
2053 }
2054 } else {
2055 for (n = 0; n < 4; n++) {
2056 if (arch_info->dr6 & (1 << n)) {
2057 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2058 case 0x0:
2059 ret = EXCP_DEBUG;
2060 break;
2061 case 0x1:
2062 ret = EXCP_DEBUG;
2063 env->watchpoint_hit = &hw_watchpoint;
2064 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2065 hw_watchpoint.flags = BP_MEM_WRITE;
2066 break;
2067 case 0x3:
2068 ret = EXCP_DEBUG;
2069 env->watchpoint_hit = &hw_watchpoint;
2070 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2071 hw_watchpoint.flags = BP_MEM_ACCESS;
2072 break;
2073 }
2074 }
2075 }
2076 }
2077 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2078 ret = EXCP_DEBUG;
2079 }
2080 if (ret == 0) {
2081 cpu_synchronize_state(CPU(cpu));
2082 assert(env->exception_injected == -1);
2083
2084 /* pass to guest */
2085 env->exception_injected = arch_info->exception;
2086 env->has_error_code = 0;
2087 }
2088
2089 return ret;
2090 }
2091
2092 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2093 {
2094 const uint8_t type_code[] = {
2095 [GDB_BREAKPOINT_HW] = 0x0,
2096 [GDB_WATCHPOINT_WRITE] = 0x1,
2097 [GDB_WATCHPOINT_ACCESS] = 0x3
2098 };
2099 const uint8_t len_code[] = {
2100 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2101 };
2102 int n;
2103
2104 if (kvm_sw_breakpoints_active(cpu)) {
2105 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2106 }
2107 if (nb_hw_breakpoint > 0) {
2108 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2109 dbg->arch.debugreg[7] = 0x0600;
2110 for (n = 0; n < nb_hw_breakpoint; n++) {
2111 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2112 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2113 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2114 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2115 }
2116 }
2117 }
2118
2119 static bool host_supports_vmx(void)
2120 {
2121 uint32_t ecx, unused;
2122
2123 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2124 return ecx & CPUID_EXT_VMX;
2125 }
2126
2127 #define VMX_INVALID_GUEST_STATE 0x80000021
2128
2129 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2130 {
2131 X86CPU *cpu = X86_CPU(cs);
2132 uint64_t code;
2133 int ret;
2134
2135 switch (run->exit_reason) {
2136 case KVM_EXIT_HLT:
2137 DPRINTF("handle_hlt\n");
2138 ret = kvm_handle_halt(cpu);
2139 break;
2140 case KVM_EXIT_SET_TPR:
2141 ret = 0;
2142 break;
2143 case KVM_EXIT_TPR_ACCESS:
2144 ret = kvm_handle_tpr_access(cpu);
2145 break;
2146 case KVM_EXIT_FAIL_ENTRY:
2147 code = run->fail_entry.hardware_entry_failure_reason;
2148 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2149 code);
2150 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2151 fprintf(stderr,
2152 "\nIf you're running a guest on an Intel machine without "
2153 "unrestricted mode\n"
2154 "support, the failure can be most likely due to the guest "
2155 "entering an invalid\n"
2156 "state for Intel VT. For example, the guest maybe running "
2157 "in big real mode\n"
2158 "which is not supported on less recent Intel processors."
2159 "\n\n");
2160 }
2161 ret = -1;
2162 break;
2163 case KVM_EXIT_EXCEPTION:
2164 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2165 run->ex.exception, run->ex.error_code);
2166 ret = -1;
2167 break;
2168 case KVM_EXIT_DEBUG:
2169 DPRINTF("kvm_exit_debug\n");
2170 ret = kvm_handle_debug(cpu, &run->debug.arch);
2171 break;
2172 default:
2173 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2174 ret = -1;
2175 break;
2176 }
2177
2178 return ret;
2179 }
2180
2181 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2182 {
2183 X86CPU *cpu = X86_CPU(cs);
2184 CPUX86State *env = &cpu->env;
2185
2186 kvm_cpu_synchronize_state(cs);
2187 return !(env->cr[0] & CR0_PE_MASK) ||
2188 ((env->segs[R_CS].selector & 3) != 3);
2189 }
2190
2191 void kvm_arch_init_irq_routing(KVMState *s)
2192 {
2193 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2194 /* If kernel can't do irq routing, interrupt source
2195 * override 0->2 cannot be set up as required by HPET.
2196 * So we have to disable it.
2197 */
2198 no_hpet = 1;
2199 }
2200 /* We know at this point that we're using the in-kernel
2201 * irqchip, so we can use irqfds, and on x86 we know
2202 * we can use msi via irqfd and GSI routing.
2203 */
2204 kvm_irqfds_allowed = true;
2205 kvm_msi_via_irqfd_allowed = true;
2206 kvm_gsi_routing_allowed = true;
2207 }
2208
2209 /* Classic KVM device assignment interface. Will remain x86 only. */
2210 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2211 uint32_t flags, uint32_t *dev_id)
2212 {
2213 struct kvm_assigned_pci_dev dev_data = {
2214 .segnr = dev_addr->domain,
2215 .busnr = dev_addr->bus,
2216 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2217 .flags = flags,
2218 };
2219 int ret;
2220
2221 dev_data.assigned_dev_id =
2222 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2223
2224 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2225 if (ret < 0) {
2226 return ret;
2227 }
2228
2229 *dev_id = dev_data.assigned_dev_id;
2230
2231 return 0;
2232 }
2233
2234 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2235 {
2236 struct kvm_assigned_pci_dev dev_data = {
2237 .assigned_dev_id = dev_id,
2238 };
2239
2240 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2241 }
2242
2243 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2244 uint32_t irq_type, uint32_t guest_irq)
2245 {
2246 struct kvm_assigned_irq assigned_irq = {
2247 .assigned_dev_id = dev_id,
2248 .guest_irq = guest_irq,
2249 .flags = irq_type,
2250 };
2251
2252 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2253 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2254 } else {
2255 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2256 }
2257 }
2258
2259 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2260 uint32_t guest_irq)
2261 {
2262 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2263 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2264
2265 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2266 }
2267
2268 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2269 {
2270 struct kvm_assigned_pci_dev dev_data = {
2271 .assigned_dev_id = dev_id,
2272 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2273 };
2274
2275 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2276 }
2277
2278 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2279 uint32_t type)
2280 {
2281 struct kvm_assigned_irq assigned_irq = {
2282 .assigned_dev_id = dev_id,
2283 .flags = type,
2284 };
2285
2286 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2287 }
2288
2289 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2290 {
2291 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2292 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2293 }
2294
2295 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2296 {
2297 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2298 KVM_DEV_IRQ_GUEST_MSI, virq);
2299 }
2300
2301 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2302 {
2303 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2304 KVM_DEV_IRQ_HOST_MSI);
2305 }
2306
2307 bool kvm_device_msix_supported(KVMState *s)
2308 {
2309 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2310 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2311 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2312 }
2313
2314 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2315 uint32_t nr_vectors)
2316 {
2317 struct kvm_assigned_msix_nr msix_nr = {
2318 .assigned_dev_id = dev_id,
2319 .entry_nr = nr_vectors,
2320 };
2321
2322 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2323 }
2324
2325 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2326 int virq)
2327 {
2328 struct kvm_assigned_msix_entry msix_entry = {
2329 .assigned_dev_id = dev_id,
2330 .gsi = virq,
2331 .entry = vector,
2332 };
2333
2334 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2335 }
2336
2337 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2338 {
2339 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2340 KVM_DEV_IRQ_GUEST_MSIX, 0);
2341 }
2342
2343 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2344 {
2345 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2346 KVM_DEV_IRQ_HOST_MSIX);
2347 }