]> git.proxmox.com Git - qemu.git/blobdiff - qemu-tech.texi
Open 2.0 development tree
[qemu.git] / qemu-tech.texi
index 659cd203ece5bb2c171fa1edc2cb2a7f64b7531b..8aefa743a8b7c1dbed925412799a3a9a4b99e174 100644 (file)
@@ -1,7 +1,22 @@
 \input texinfo @c -*- texinfo -*-
+@c %**start of header
+@setfilename qemu-tech.info
+
+@documentlanguage en
+@documentencoding UTF-8
 
-@iftex
 @settitle QEMU Internals
+@exampleindent 0
+@paragraphindent 0
+@c %**end of header
+
+@ifinfo
+@direntry
+* QEMU Internals: (qemu-tech).   The QEMU Emulator Internals.
+@end direntry
+@end ifinfo
+
+@iftex
 @titlepage
 @sp 7
 @center @titlefont{QEMU Internals}
@@ -9,8 +24,35 @@
 @end titlepage
 @end iftex
 
+@ifnottex
+@node Top
+@top
+
+@menu
+* Introduction::
+* QEMU Internals::
+* Regression Tests::
+* Index::
+@end menu
+@end ifnottex
+
+@contents
+
+@node Introduction
 @chapter Introduction
 
+@menu
+* intro_features::         Features
+* intro_x86_emulation::    x86 and x86-64 emulation
+* intro_arm_emulation::    ARM emulation
+* intro_mips_emulation::   MIPS emulation
+* intro_ppc_emulation::    PowerPC emulation
+* intro_sparc_emulation::  Sparc32 and Sparc64 emulation
+* intro_xtensa_emulation:: Xtensa emulation
+* intro_other_emulation::  Other CPU emulation
+@end menu
+
+@node intro_features
 @section Features
 
 QEMU is a FAST! processor emulator using a portable dynamic
@@ -20,18 +62,18 @@ QEMU has two operating modes:
 
 @itemize @minus
 
-@item 
-Full system emulation. In this mode, QEMU emulates a full system
-(usually a PC), including a processor and various peripherials. It can
-be used to launch an different Operating System without rebooting the
-PC or to debug system code.
-
-@item 
-User mode emulation (Linux host only). In this mode, QEMU can launch
-Linux processes compiled for one CPU on another CPU. It can be used to
-launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
-to ease cross-compilation and cross-debugging.
-
+@item
+Full system emulation. In this mode (full platform virtualization),
+QEMU emulates a full system (usually a PC), including a processor and
+various peripherals. It can be used to launch several different
+Operating Systems at once without rebooting the host machine or to
+debug system code.
+
+@item
+User mode emulation. In this mode (application level virtualization),
+QEMU can launch processes compiled for one CPU on another CPU, however
+the Operating Systems must match. This can be used for example to ease
+cross-compilation and cross-debugging.
 @end itemize
 
 As QEMU requires no host kernel driver to run, it is very safe and
@@ -39,77 +81,101 @@ easy to use.
 
 QEMU generic features:
 
-@itemize 
+@itemize
 
 @item User space only or full system emulation.
 
-@item Using dynamic translation to native code for reasonnable speed.
+@item Using dynamic translation to native code for reasonable speed.
 
-@item Working on x86 and PowerPC hosts. Being tested on ARM, Sparc32, Alpha and S390.
+@item
+Working on x86, x86_64 and PowerPC32/64 hosts. Being tested on ARM,
+HPPA, Sparc32 and Sparc64. Previous versions had some support for
+Alpha and S390 hosts, but TCG (see below) doesn't support those yet.
 
 @item Self-modifying code support.
 
 @item Precise exceptions support.
 
-@item The virtual CPU is a library (@code{libqemu}) which can be used 
-in other projects (look at @file{qemu/tests/qruncom.c} to have an
-example of user mode @code{libqemu} usage).
+@item
+Floating point library supporting both full software emulation and
+native host FPU instructions.
 
 @end itemize
 
 QEMU user mode emulation features:
-@itemize 
+@itemize
 @item Generic Linux system call converter, including most ioctls.
 
 @item clone() emulation using native CPU clone() to use Linux scheduler for threads.
 
-@item Accurate signal handling by remapping host signals to target signals. 
-@end itemize
+@item Accurate signal handling by remapping host signals to target signals.
 @end itemize
 
+Linux user emulator (Linux host only) can be used to launch the Wine
+Windows API emulator (@url{http://www.winehq.org}). A BSD user emulator for BSD
+hosts is under development. It would also be possible to develop a
+similar user emulator for Solaris.
+
 QEMU full system emulation features:
-@itemize 
-@item QEMU can either use a full software MMU for maximum portability or use the host system call mmap() to simulate the target MMU.
+@itemize
+@item
+QEMU uses a full software MMU for maximum portability.
+
+@item
+QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators 
+execute some of the guest code natively, while
+continuing to emulate the rest of the machine.
+
+@item
+Various hardware devices can be emulated and in some cases, host
+devices (e.g. serial and parallel ports, USB, drives) can be used
+transparently by the guest Operating System. Host device passthrough
+can be used for talking to external physical peripherals (e.g. a
+webcam, modem or tape drive).
+
+@item
+Symmetric multiprocessing (SMP) even on a host with a single CPU. On a
+SMP host system, QEMU can use only one CPU fully due to difficulty in
+implementing atomic memory accesses efficiently.
+
 @end itemize
 
-@section x86 emulation
+@node intro_x86_emulation
+@section x86 and x86-64 emulation
 
 QEMU x86 target features:
 
-@itemize 
+@itemize
 
-@item The virtual x86 CPU supports 16 bit and 32 bit addressing with segmentation. 
-LDT/GDT and IDT are emulated. VM86 mode is also supported to run DOSEMU.
+@item The virtual x86 CPU supports 16 bit and 32 bit addressing with segmentation.
+LDT/GDT and IDT are emulated. VM86 mode is also supported to run
+DOSEMU. There is some support for MMX/3DNow!, SSE, SSE2, SSE3, SSSE3,
+and SSE4 as well as x86-64 SVM.
 
 @item Support of host page sizes bigger than 4KB in user mode emulation.
 
 @item QEMU can emulate itself on x86.
 
-@item An extensive Linux x86 CPU test program is included @file{tests/test-i386}. 
+@item An extensive Linux x86 CPU test program is included @file{tests/test-i386}.
 It can be used to test other x86 virtual CPUs.
 
 @end itemize
 
 Current QEMU limitations:
 
-@itemize 
-
-@item No SSE/MMX support (yet).
+@itemize
 
-@item No x86-64 support.
+@item Limited x86-64 support.
 
 @item IPC syscalls are missing.
 
-@item The x86 segment limits and access rights are not tested at every 
+@item The x86 segment limits and access rights are not tested at every
 memory access (yet). Hopefully, very few OSes seem to rely on that for
 normal use.
 
-@item On non x86 host CPUs, @code{double}s are used instead of the non standard 
-10 byte @code{long double}s of x86 for floating point emulation to get
-maximum performances.
-
 @end itemize
 
+@node intro_arm_emulation
 @section ARM emulation
 
 @itemize
@@ -122,29 +188,136 @@ maximum performances.
 
 @end itemize
 
+@node intro_mips_emulation
+@section MIPS emulation
+
+@itemize
+
+@item The system emulation allows full MIPS32/MIPS64 Release 2 emulation,
+including privileged instructions, FPU and MMU, in both little and big
+endian modes.
+
+@item The Linux userland emulation can run many 32 bit MIPS Linux binaries.
+
+@end itemize
+
+Current QEMU limitations:
+
+@itemize
+
+@item Self-modifying code is not always handled correctly.
+
+@item 64 bit userland emulation is not implemented.
+
+@item The system emulation is not complete enough to run real firmware.
+
+@item The watchpoint debug facility is not implemented.
+
+@end itemize
+
+@node intro_ppc_emulation
 @section PowerPC emulation
 
 @itemize
 
-@item Full PowerPC 32 bit emulation, including priviledged instructions, 
+@item Full PowerPC 32 bit emulation, including privileged instructions,
 FPU and MMU.
 
 @item Can run most PowerPC Linux binaries.
 
 @end itemize
 
-@section SPARC emulation
+@node intro_sparc_emulation
+@section Sparc32 and Sparc64 emulation
 
 @itemize
 
-@item SPARC V8 user support, except FPU instructions.
+@item Full SPARC V8 emulation, including privileged
+instructions, FPU and MMU. SPARC V9 emulation includes most privileged
+and VIS instructions, FPU and I/D MMU. Alignment is fully enforced.
 
-@item Can run some SPARC Linux binaries.
+@item Can run most 32-bit SPARC Linux binaries, SPARC32PLUS Linux binaries and
+some 64-bit SPARC Linux binaries.
 
 @end itemize
 
+Current QEMU limitations:
+
+@itemize
+
+@item IPC syscalls are missing.
+
+@item Floating point exception support is buggy.
+
+@item Atomic instructions are not correctly implemented.
+
+@item There are still some problems with Sparc64 emulators.
+
+@end itemize
+
+@node intro_xtensa_emulation
+@section Xtensa emulation
+
+@itemize
+
+@item Core Xtensa ISA emulation, including most options: code density,
+loop, extended L32R, 16- and 32-bit multiplication, 32-bit division,
+MAC16, miscellaneous operations, boolean, FP coprocessor, coprocessor
+context, debug, multiprocessor synchronization,
+conditional store, exceptions, relocatable vectors, unaligned exception,
+interrupts (including high priority and timer), hardware alignment,
+region protection, region translation, MMU, windowed registers, thread
+pointer, processor ID.
+
+@item Not implemented options: data/instruction cache (including cache
+prefetch and locking), XLMI, processor interface. Also options not
+covered by the core ISA (e.g. FLIX, wide branches) are not implemented.
+
+@item Can run most Xtensa Linux binaries.
+
+@item New core configuration that requires no additional instructions
+may be created from overlay with minimal amount of hand-written code.
+
+@end itemize
+
+@node intro_other_emulation
+@section Other CPU emulation
+
+In addition to the above, QEMU supports emulation of other CPUs with
+varying levels of success. These are:
+
+@itemize
+
+@item
+Alpha
+@item
+CRIS
+@item
+M68k
+@item
+SH4
+@end itemize
+
+@node QEMU Internals
 @chapter QEMU Internals
 
+@menu
+* QEMU compared to other emulators::
+* Portable dynamic translation::
+* Condition code optimisations::
+* CPU state optimisations::
+* Translation cache::
+* Direct block chaining::
+* Self-modifying code and translated code invalidation::
+* Exception support::
+* MMU emulation::
+* Device emulation::
+* Hardware interrupts::
+* User emulation specific details::
+* Bibliography::
+@end menu
+
+@node QEMU compared to other emulators
 @section QEMU compared to other emulators
 
 Like bochs [3], QEMU emulates an x86 CPU. But QEMU is much faster than
@@ -167,7 +340,7 @@ interpreter part of the FX!32 Digital Win32 code translator [5]).
 
 TWIN [6] is a Windows API emulator like Wine. It is less accurate than
 Wine but includes a protected mode x86 interpreter to launch x86 Windows
-executables. Such an approach as greater potential because most of the
+executables. Such an approach has greater potential because most of the
 Windows API is executed natively but it is far more difficult to develop
 because all the data structures and function parameters exchanged
 between the API and the x86 code must be converted.
@@ -178,19 +351,24 @@ patches. However, user mode Linux requires heavy kernel patches while
 QEMU accepts unpatched Linux kernels. The price to pay is that QEMU is
 slower.
 
-The new Plex86 [8] PC virtualizer is done in the same spirit as the
-qemu-fast system emulator. It requires a patched Linux kernel to work
-(you cannot launch the same kernel on your PC), but the patches are
-really small. As it is a PC virtualizer (no emulation is done except
-for some priveledged instructions), it has the potential of being
-faster than QEMU. The downside is that a complicated (and potentially
-unsafe) host kernel patch is needed.
+The Plex86 [8] PC virtualizer is done in the same spirit as the now
+obsolete qemu-fast system emulator. It requires a patched Linux kernel
+to work (you cannot launch the same kernel on your PC), but the
+patches are really small. As it is a PC virtualizer (no emulation is
+done except for some privileged instructions), it has the potential of
+being faster than QEMU. The downside is that a complicated (and
+potentially unsafe) host kernel patch is needed.
 
 The commercial PC Virtualizers (VMWare [9], VirtualPC [10], TwoOStwo
 [11]) are faster than QEMU, but they all need specific, proprietary
 and potentially unsafe host drivers. Moreover, they are unable to
 provide cycle exact simulation as an emulator can.
 
+VirtualBox [12], Xen [13] and KVM [14] are based on QEMU. QEMU-SystemC
+[15] uses QEMU to simulate a system where some hardware devices are
+developed in SystemC.
+
+@node Portable dynamic translation
 @section Portable dynamic translation
 
 QEMU is a dynamic translator. When it first encounters a piece of code,
@@ -199,71 +377,66 @@ are very complicated and highly CPU dependent. QEMU uses some tricks
 which make it relatively easily portable and simple while achieving good
 performances.
 
-The basic idea is to split every x86 instruction into fewer simpler
-instructions. Each simple instruction is implemented by a piece of C
-code (see @file{target-i386/op.c}). Then a compile time tool
-(@file{dyngen}) takes the corresponding object file (@file{op.o})
-to generate a dynamic code generator which concatenates the simple
-instructions to build a function (see @file{op.h:dyngen_code()}).
-
-In essence, the process is similar to [1], but more work is done at
-compile time. 
-
-A key idea to get optimal performances is that constant parameters can
-be passed to the simple operations. For that purpose, dummy ELF
-relocations are generated with gcc for each constant parameter. Then,
-the tool (@file{dyngen}) can locate the relocations and generate the
-appriopriate C code to resolve them when building the dynamic code.
-
-That way, QEMU is no more difficult to port than a dynamic linker.
-
-To go even faster, GCC static register variables are used to keep the
-state of the virtual CPU.
-
-@section Register allocation
-
-Since QEMU uses fixed simple instructions, no efficient register
-allocation can be done. However, because RISC CPUs have a lot of
-register, most of the virtual CPU state can be put in registers without
-doing complicated register allocation.
-
+After the release of version 0.9.1, QEMU switched to a new method of
+generating code, Tiny Code Generator or TCG. TCG relaxes the
+dependency on the exact version of the compiler used. The basic idea
+is to split every target instruction into a couple of RISC-like TCG
+ops (see @code{target-i386/translate.c}). Some optimizations can be
+performed at this stage, including liveness analysis and trivial
+constant expression evaluation. TCG ops are then implemented in the
+host CPU back end, also known as TCG target (see
+@code{tcg/i386/tcg-target.c}). For more information, please take a
+look at @code{tcg/README}.
+
+@node Condition code optimisations
 @section Condition code optimisations
 
-Good CPU condition codes emulation (@code{EFLAGS} register on x86) is a
-critical point to get good performances. QEMU uses lazy condition code
-evaluation: instead of computing the condition codes after each x86
-instruction, it just stores one operand (called @code{CC_SRC}), the
-result (called @code{CC_DST}) and the type of operation (called
-@code{CC_OP}).
-
-@code{CC_OP} is almost never explicitely set in the generated code
+Lazy evaluation of CPU condition codes (@code{EFLAGS} register on x86)
+is important for CPUs where every instruction sets the condition
+codes. It tends to be less important on conventional RISC systems
+where condition codes are only updated when explicitly requested. On
+Sparc64, costly update of both 32 and 64 bit condition codes can be
+avoided with lazy evaluation.
+
+Instead of computing the condition codes after each x86 instruction,
+QEMU just stores one operand (called @code{CC_SRC}), the result
+(called @code{CC_DST}) and the type of operation (called
+@code{CC_OP}). When the condition codes are needed, the condition
+codes can be calculated using this information. In addition, an
+optimized calculation can be performed for some instruction types like
+conditional branches.
+
+@code{CC_OP} is almost never explicitly set in the generated code
 because it is known at translation time.
 
-In order to increase performances, a backward pass is performed on the
-generated simple instructions (see
-@code{target-i386/translate.c:optimize_flags()}). When it can be proved that
-the condition codes are not needed by the next instructions, no
-condition codes are computed at all.
+The lazy condition code evaluation is used on x86, m68k, cris and
+Sparc. ARM uses a simplified variant for the N and Z flags.
 
+@node CPU state optimisations
 @section CPU state optimisations
 
-The x86 CPU has many internal states which change the way it evaluates
-instructions. In order to achieve a good speed, the translation phase
-considers that some state information of the virtual x86 CPU cannot
-change in it. For example, if the SS, DS and ES segments have a zero
-base, then the translator does not even generate an addition for the
-segment base.
+The target CPUs have many internal states which change the way it
+evaluates instructions. In order to achieve a good speed, the
+translation phase considers that some state information of the virtual
+CPU cannot change in it. The state is recorded in the Translation
+Block (TB). If the state changes (e.g. privilege level), a new TB will
+be generated and the previous TB won't be used anymore until the state
+matches the state recorded in the previous TB. For example, if the SS,
+DS and ES segments have a zero base, then the translator does not even
+generate an addition for the segment base.
 
 [The FPU stack pointer register is not handled that way yet].
 
+@node Translation cache
 @section Translation cache
 
-A 2MByte cache holds the most recently used translations. For
+A 32 MByte cache holds the most recently used translations. For
 simplicity, it is completely flushed when it is full. A translation unit
 contains just a single basic block (a block of x86 instructions
 terminated by a jump or by a virtual CPU state change which the
 translator cannot deduce statically).
 
+@node Direct block chaining
 @section Direct block chaining
 
 After each translated basic block is executed, QEMU uses the simulated
@@ -279,6 +452,7 @@ it easier to make the jump target modification atomic. On some host
 architectures (such as x86 or PowerPC), the @code{JUMP} opcode is
 directly patched so that the block chaining has no overhead.
 
+@node Self-modifying code and translated code invalidation
 @section Self-modifying code and translated code invalidation
 
 Self-modifying code is a special challenge in x86 emulation because no
@@ -286,74 +460,91 @@ instruction cache invalidation is signaled by the application when code
 is modified.
 
 When translated code is generated for a basic block, the corresponding
-host page is write protected if it is not already read-only (with the
-system call @code{mprotect()}). Then, if a write access is done to the
-page, Linux raises a SEGV signal. QEMU then invalidates all the
-translated code in the page and enables write accesses to the page.
+host page is write protected if it is not already read-only. Then, if
+a write access is done to the page, Linux raises a SEGV signal. QEMU
+then invalidates all the translated code in the page and enables write
+accesses to the page.
 
 Correct translated code invalidation is done efficiently by maintaining
 a linked list of every translated block contained in a given page. Other
-linked lists are also maintained to undo direct block chaining. 
+linked lists are also maintained to undo direct block chaining.
 
-Although the overhead of doing @code{mprotect()} calls is important,
-most MSDOS programs can be emulated at reasonnable speed with QEMU and
-DOSEMU.
-
-Note that QEMU also invalidates pages of translated code when it detects
-that memory mappings are modified with @code{mmap()} or @code{munmap()}.
-
-When using a software MMU, the code invalidation is more efficient: if
-a given code page is invalidated too often because of write accesses,
-then a bitmap representing all the code inside the page is
-built. Every store into that page checks the bitmap to see if the code
-really needs to be invalidated. It avoids invalidating the code when
-only data is modified in the page.
+On RISC targets, correctly written software uses memory barriers and
+cache flushes, so some of the protection above would not be
+necessary. However, QEMU still requires that the generated code always
+matches the target instructions in memory in order to handle
+exceptions correctly.
 
+@node Exception support
 @section Exception support
 
 longjmp() is used when an exception such as division by zero is
-encountered. 
+encountered.
 
 The host SIGSEGV and SIGBUS signal handlers are used to get invalid
-memory accesses. The exact CPU state can be retrieved because all the
-x86 registers are stored in fixed host registers. The simulated program
-counter is found by retranslating the corresponding basic block and by
-looking where the host program counter was at the exception point.
+memory accesses. The simulated program counter is found by
+retranslating the corresponding basic block and by looking where the
+host program counter was at the exception point.
 
 The virtual CPU cannot retrieve the exact @code{EFLAGS} register because
 in some cases it is not computed because of condition code
 optimisations. It is not a big concern because the emulated code can
 still be restarted in any cases.
 
+@node MMU emulation
 @section MMU emulation
 
-For system emulation, QEMU uses the mmap() system call to emulate the
-target CPU MMU. It works as long the emulated OS does not use an area
-reserved by the host OS (such as the area above 0xc0000000 on x86
-Linux).
-
-In order to be able to launch any OS, QEMU also supports a soft
-MMU. In that mode, the MMU virtual to physical address translation is
-done at every memory access. QEMU uses an address translation cache to
-speed up the translation.
+For system emulation QEMU supports a soft MMU. In that mode, the MMU
+virtual to physical address translation is done at every memory
+access. QEMU uses an address translation cache to speed up the
+translation.
 
 In order to avoid flushing the translated code each time the MMU
 mappings change, QEMU uses a physically indexed translation cache. It
-means that each basic block is indexed with its physical address. 
+means that each basic block is indexed with its physical address.
 
 When MMU mappings change, only the chaining of the basic blocks is
 reset (i.e. a basic block can no longer jump directly to another one).
 
+@node Device emulation
+@section Device emulation
+
+Systems emulated by QEMU are organized by boards. At initialization
+phase, each board instantiates a number of CPUs, devices, RAM and
+ROM. Each device in turn can assign I/O ports or memory areas (for
+MMIO) to its handlers. When the emulation starts, an access to the
+ports or MMIO memory areas assigned to the device causes the
+corresponding handler to be called.
+
+RAM and ROM are handled more optimally, only the offset to the host
+memory needs to be added to the guest address.
+
+The video RAM of VGA and other display cards is special: it can be
+read or written directly like RAM, but write accesses cause the memory
+to be marked with VGA_DIRTY flag as well.
+
+QEMU supports some device classes like serial and parallel ports, USB,
+drives and network devices, by providing APIs for easier connection to
+the generic, higher level implementations. The API hides the
+implementation details from the devices, like native device use or
+advanced block device formats like QCOW.
+
+Usually the devices implement a reset method and register support for
+saving and loading of the device state. The devices can also use
+timers, especially together with the use of bottom halves (BHs).
+
+@node Hardware interrupts
 @section Hardware interrupts
 
-In order to be faster, QEMU does not check at every basic block if an
-hardware interrupt is pending. Instead, the user must asynchrously
+In order to be faster, QEMU does not check at every basic block if a
+hardware interrupt is pending. Instead, the user must asynchronously
 call a specific function to tell that an interrupt is pending. This
 function resets the chaining of the currently executing basic
 block. It ensures that the execution will return soon in the main loop
 of the CPU emulator. Then the main loop can test if the interrupt is
 pending and handle it.
 
+@node User emulation specific details
 @section User emulation specific details
 
 @subsection Linux system call translation
@@ -378,7 +569,7 @@ Linux kernel does. The @code{sigreturn()} system call is emulated to return
 from the virtual signal handler.
 
 Some signals (such as SIGALRM) directly come from the host. Other
-signals are synthetized from the virtual CPU exceptions such as SIGFPE
+signals are synthesized from the virtual CPU exceptions such as SIGFPE
 when a division by zero is done (see @code{main.c:cpu_loop()}).
 
 The blocked signal mask is still handled by the host Linux kernel so
@@ -407,15 +598,16 @@ it is not very useful, it is an important test to show the power of the
 emulator.
 
 Achieving self-virtualization is not easy because there may be address
-space conflicts. QEMU solves this problem by being an executable ELF
-shared object as the ld-linux.so ELF interpreter. That way, it can be
-relocated at load time.
+space conflicts. QEMU user emulators solve this problem by being an
+executable ELF shared object as the ld-linux.so ELF interpreter. That
+way, it can be relocated at load time.
 
+@node Bibliography
 @section Bibliography
 
 @table @asis
 
-@item [1] 
+@item [1]
 @url{http://citeseer.nj.nec.com/piumarta98optimizing.html}, Optimizing
 direct threaded code by selective inlining (1998) by Ian Piumarta, Fabio
 Riccardi.
@@ -433,7 +625,7 @@ by Kevin Lawton et al.
 x86 emulator on Alpha-Linux.
 
 @item [5]
-@url{http://www.usenix.org/publications/library/proceedings/usenix-nt97/full_papers/chernoff/chernoff.pdf},
+@url{http://www.usenix.org/publications/library/proceedings/usenix-nt97/@/full_papers/chernoff/chernoff.pdf},
 DIGITAL FX!32: Running 32-Bit x86 Applications on Alpha NT, by Anton
 Chernoff and Ray Hookway.
 
@@ -442,32 +634,55 @@ Chernoff and Ray Hookway.
 Willows Software.
 
 @item [7]
-@url{http://user-mode-linux.sourceforge.net/}, 
+@url{http://user-mode-linux.sourceforge.net/},
 The User-mode Linux Kernel.
 
 @item [8]
-@url{http://www.plex86.org/}, 
+@url{http://www.plex86.org/},
 The new Plex86 project.
 
 @item [9]
-@url{http://www.vmware.com/}, 
+@url{http://www.vmware.com/},
 The VMWare PC virtualizer.
 
 @item [10]
-@url{http://www.microsoft.com/windowsxp/virtualpc/}, 
+@url{http://www.microsoft.com/windowsxp/virtualpc/},
 The VirtualPC PC virtualizer.
 
 @item [11]
-@url{http://www.twoostwo.org/}, 
+@url{http://www.twoostwo.org/},
 The TwoOStwo PC virtualizer.
 
+@item [12]
+@url{http://virtualbox.org/},
+The VirtualBox PC virtualizer.
+
+@item [13]
+@url{http://www.xen.org/},
+The Xen hypervisor.
+
+@item [14]
+@url{http://kvm.qumranet.com/kvmwiki/Front_Page},
+Kernel Based Virtual Machine (KVM).
+
+@item [15]
+@url{http://www.greensocs.com/projects/QEMUSystemC},
+QEMU-SystemC, a hardware co-simulator.
+
 @end table
 
+@node Regression Tests
 @chapter Regression Tests
 
 In the directory @file{tests/}, various interesting testing programs
-are available. There are used for regression testing.
+are available. They are used for regression testing.
+
+@menu
+* test-i386::
+* linux-test::
+@end menu
 
+@node test-i386
 @section @file{test-i386}
 
 This program executes most of the 16 bit and 32 bit x86 instructions and
@@ -483,25 +698,15 @@ The Linux system call @code{vm86()} is used to test vm86 emulation.
 Various exceptions are raised to test most of the x86 user space
 exception reporting.
 
+@node linux-test
 @section @file{linux-test}
 
 This program tests various Linux system calls. It is used to verify
 that the system call parameters are correctly converted between target
 and host CPUs.
 
-@section @file{hello-i386}
-
-Very simple statically linked x86 program, just to test QEMU during a
-port to a new host CPU.
-
-@section @file{hello-arm}
-
-Very simple statically linked ARM program, just to test QEMU during a
-port to a new host CPU.
-
-@section @file{sha1}
-
-It is a simple benchmark. Care must be taken to interpret the results
-because it mostly tests the ability of the virtual CPU to optimize the
-@code{rol} x86 instruction and the condition code computations.
+@node Index
+@chapter Index
+@printindex cp
 
+@bye