]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_const_eval/src/interpret/intern.rs
New upstream version 1.69.0+dfsg1
[rustc.git] / compiler / rustc_const_eval / src / interpret / intern.rs
1 //! This module specifies the type based interner for constants.
2 //!
3 //! After a const evaluation has computed a value, before we destroy the const evaluator's session
4 //! memory, we need to extract all memory allocations to the global memory pool so they stay around.
5 //!
6 //! In principle, this is not very complicated: we recursively walk the final value, follow all the
7 //! pointers, and move all reachable allocations to the global `tcx` memory. The only complication
8 //! is picking the right mutability for the allocations in a `static` initializer: we want to make
9 //! as many allocations as possible immutable so LLVM can put them into read-only memory. At the
10 //! same time, we need to make memory that could be mutated by the program mutable to avoid
11 //! incorrect compilations. To achieve this, we do a type-based traversal of the final value,
12 //! tracking mutable and shared references and `UnsafeCell` to determine the current mutability.
13 //! (In principle, we could skip this type-based part for `const` and promoteds, as they need to be
14 //! always immutable. At least for `const` however we use this opportunity to reject any `const`
15 //! that contains allocations whose mutability we cannot identify.)
16
17 use super::validity::RefTracking;
18 use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
19 use rustc_errors::ErrorGuaranteed;
20 use rustc_hir as hir;
21 use rustc_middle::mir::interpret::InterpResult;
22 use rustc_middle::ty::{self, layout::TyAndLayout, Ty};
23
24 use rustc_ast::Mutability;
25
26 use super::{
27 AllocId, Allocation, ConstAllocation, InterpCx, MPlaceTy, Machine, MemoryKind, PlaceTy,
28 ValueVisitor,
29 };
30 use crate::const_eval;
31
32 pub trait CompileTimeMachine<'mir, 'tcx, T> = Machine<
33 'mir,
34 'tcx,
35 MemoryKind = T,
36 Provenance = AllocId,
37 ExtraFnVal = !,
38 FrameExtra = (),
39 AllocExtra = (),
40 MemoryMap = FxIndexMap<AllocId, (MemoryKind<T>, Allocation)>,
41 >;
42
43 struct InternVisitor<'rt, 'mir, 'tcx, M: CompileTimeMachine<'mir, 'tcx, const_eval::MemoryKind>> {
44 /// The ectx from which we intern.
45 ecx: &'rt mut InterpCx<'mir, 'tcx, M>,
46 /// Previously encountered safe references.
47 ref_tracking: &'rt mut RefTracking<(MPlaceTy<'tcx>, InternMode)>,
48 /// A list of all encountered allocations. After type-based interning, we traverse this list to
49 /// also intern allocations that are only referenced by a raw pointer or inside a union.
50 leftover_allocations: &'rt mut FxIndexSet<AllocId>,
51 /// The root kind of the value that we're looking at. This field is never mutated for a
52 /// particular allocation. It is primarily used to make as many allocations as possible
53 /// read-only so LLVM can place them in const memory.
54 mode: InternMode,
55 /// This field stores whether we are *currently* inside an `UnsafeCell`. This can affect
56 /// the intern mode of references we encounter.
57 inside_unsafe_cell: bool,
58 }
59
60 #[derive(Copy, Clone, Debug, PartialEq, Hash, Eq)]
61 enum InternMode {
62 /// A static and its current mutability. Below shared references inside a `static mut`,
63 /// this is *immutable*, and below mutable references inside an `UnsafeCell`, this
64 /// is *mutable*.
65 Static(hir::Mutability),
66 /// A `const`.
67 Const,
68 }
69
70 /// Signalling data structure to ensure we don't recurse
71 /// into the memory of other constants or statics
72 struct IsStaticOrFn;
73
74 /// Intern an allocation without looking at its children.
75 /// `mode` is the mode of the environment where we found this pointer.
76 /// `mutability` is the mutability of the place to be interned; even if that says
77 /// `immutable` things might become mutable if `ty` is not frozen.
78 /// `ty` can be `None` if there is no potential interior mutability
79 /// to account for (e.g. for vtables).
80 fn intern_shallow<'rt, 'mir, 'tcx, M: CompileTimeMachine<'mir, 'tcx, const_eval::MemoryKind>>(
81 ecx: &'rt mut InterpCx<'mir, 'tcx, M>,
82 leftover_allocations: &'rt mut FxIndexSet<AllocId>,
83 alloc_id: AllocId,
84 mode: InternMode,
85 ty: Option<Ty<'tcx>>,
86 ) -> Option<IsStaticOrFn> {
87 trace!("intern_shallow {:?} with {:?}", alloc_id, mode);
88 // remove allocation
89 let tcx = ecx.tcx;
90 let Some((kind, mut alloc)) = ecx.memory.alloc_map.remove(&alloc_id) else {
91 // Pointer not found in local memory map. It is either a pointer to the global
92 // map, or dangling.
93 // If the pointer is dangling (neither in local nor global memory), we leave it
94 // to validation to error -- it has the much better error messages, pointing out where
95 // in the value the dangling reference lies.
96 // The `delay_span_bug` ensures that we don't forget such a check in validation.
97 if tcx.try_get_global_alloc(alloc_id).is_none() {
98 tcx.sess.delay_span_bug(ecx.tcx.span, "tried to intern dangling pointer");
99 }
100 // treat dangling pointers like other statics
101 // just to stop trying to recurse into them
102 return Some(IsStaticOrFn);
103 };
104 // This match is just a canary for future changes to `MemoryKind`, which most likely need
105 // changes in this function.
106 match kind {
107 MemoryKind::Stack
108 | MemoryKind::Machine(const_eval::MemoryKind::Heap)
109 | MemoryKind::CallerLocation => {}
110 }
111 // Set allocation mutability as appropriate. This is used by LLVM to put things into
112 // read-only memory, and also by Miri when evaluating other globals that
113 // access this one.
114 if let InternMode::Static(mutability) = mode {
115 // For this, we need to take into account `UnsafeCell`. When `ty` is `None`, we assume
116 // no interior mutability.
117 let frozen = ty.map_or(true, |ty| ty.is_freeze(*ecx.tcx, ecx.param_env));
118 // For statics, allocation mutability is the combination of place mutability and
119 // type mutability.
120 // The entire allocation needs to be mutable if it contains an `UnsafeCell` anywhere.
121 let immutable = mutability == Mutability::Not && frozen;
122 if immutable {
123 alloc.mutability = Mutability::Not;
124 } else {
125 // Just making sure we are not "upgrading" an immutable allocation to mutable.
126 assert_eq!(alloc.mutability, Mutability::Mut);
127 }
128 } else {
129 // No matter what, *constants are never mutable*. Mutating them is UB.
130 // See const_eval::machine::MemoryExtra::can_access_statics for why
131 // immutability is so important.
132
133 // Validation will ensure that there is no `UnsafeCell` on an immutable allocation.
134 alloc.mutability = Mutability::Not;
135 };
136 // link the alloc id to the actual allocation
137 leftover_allocations.extend(alloc.provenance().ptrs().iter().map(|&(_, alloc_id)| alloc_id));
138 let alloc = tcx.mk_const_alloc(alloc);
139 tcx.set_alloc_id_memory(alloc_id, alloc);
140 None
141 }
142
143 impl<'rt, 'mir, 'tcx, M: CompileTimeMachine<'mir, 'tcx, const_eval::MemoryKind>>
144 InternVisitor<'rt, 'mir, 'tcx, M>
145 {
146 fn intern_shallow(
147 &mut self,
148 alloc_id: AllocId,
149 mode: InternMode,
150 ty: Option<Ty<'tcx>>,
151 ) -> Option<IsStaticOrFn> {
152 intern_shallow(self.ecx, self.leftover_allocations, alloc_id, mode, ty)
153 }
154 }
155
156 impl<'rt, 'mir, 'tcx: 'mir, M: CompileTimeMachine<'mir, 'tcx, const_eval::MemoryKind>>
157 ValueVisitor<'mir, 'tcx, M> for InternVisitor<'rt, 'mir, 'tcx, M>
158 {
159 type V = MPlaceTy<'tcx>;
160
161 #[inline(always)]
162 fn ecx(&self) -> &InterpCx<'mir, 'tcx, M> {
163 &self.ecx
164 }
165
166 fn visit_aggregate(
167 &mut self,
168 mplace: &MPlaceTy<'tcx>,
169 fields: impl Iterator<Item = InterpResult<'tcx, Self::V>>,
170 ) -> InterpResult<'tcx> {
171 // We want to walk the aggregate to look for references to intern. While doing that we
172 // also need to take special care of interior mutability.
173 //
174 // As an optimization, however, if the allocation does not contain any references: we don't
175 // need to do the walk. It can be costly for big arrays for example (e.g. issue #93215).
176 let is_walk_needed = |mplace: &MPlaceTy<'tcx>| -> InterpResult<'tcx, bool> {
177 // ZSTs cannot contain pointers, we can avoid the interning walk.
178 if mplace.layout.is_zst() {
179 return Ok(false);
180 }
181
182 // Now, check whether this allocation could contain references.
183 //
184 // Note, this check may sometimes not be cheap, so we only do it when the walk we'd like
185 // to avoid could be expensive: on the potentially larger types, arrays and slices,
186 // rather than on all aggregates unconditionally.
187 if matches!(mplace.layout.ty.kind(), ty::Array(..) | ty::Slice(..)) {
188 let Some((size, align)) = self.ecx.size_and_align_of_mplace(&mplace)? else {
189 // We do the walk if we can't determine the size of the mplace: we may be
190 // dealing with extern types here in the future.
191 return Ok(true);
192 };
193
194 // If there is no provenance in this allocation, it does not contain references
195 // that point to another allocation, and we can avoid the interning walk.
196 if let Some(alloc) = self.ecx.get_ptr_alloc(mplace.ptr, size, align)? {
197 if !alloc.has_provenance() {
198 return Ok(false);
199 }
200 } else {
201 // We're encountering a ZST here, and can avoid the walk as well.
202 return Ok(false);
203 }
204 }
205
206 // In the general case, we do the walk.
207 Ok(true)
208 };
209
210 // If this allocation contains no references to intern, we avoid the potentially costly
211 // walk.
212 //
213 // We can do this before the checks for interior mutability below, because only references
214 // are relevant in that situation, and we're checking if there are any here.
215 if !is_walk_needed(mplace)? {
216 return Ok(());
217 }
218
219 if let Some(def) = mplace.layout.ty.ty_adt_def() {
220 if def.is_unsafe_cell() {
221 // We are crossing over an `UnsafeCell`, we can mutate again. This means that
222 // References we encounter inside here are interned as pointing to mutable
223 // allocations.
224 // Remember the `old` value to handle nested `UnsafeCell`.
225 let old = std::mem::replace(&mut self.inside_unsafe_cell, true);
226 let walked = self.walk_aggregate(mplace, fields);
227 self.inside_unsafe_cell = old;
228 return walked;
229 }
230 }
231
232 self.walk_aggregate(mplace, fields)
233 }
234
235 fn visit_value(&mut self, mplace: &MPlaceTy<'tcx>) -> InterpResult<'tcx> {
236 // Handle Reference types, as these are the only types with provenance supported by const eval.
237 // Raw pointers (and boxes) are handled by the `leftover_allocations` logic.
238 let tcx = self.ecx.tcx;
239 let ty = mplace.layout.ty;
240 if let ty::Ref(_, referenced_ty, ref_mutability) = *ty.kind() {
241 let value = self.ecx.read_immediate(&mplace.into())?;
242 let mplace = self.ecx.ref_to_mplace(&value)?;
243 assert_eq!(mplace.layout.ty, referenced_ty);
244 // Handle trait object vtables.
245 if let ty::Dynamic(_, _, ty::Dyn) =
246 tcx.struct_tail_erasing_lifetimes(referenced_ty, self.ecx.param_env).kind()
247 {
248 let ptr = mplace.meta.unwrap_meta().to_pointer(&tcx)?;
249 if let Some(alloc_id) = ptr.provenance {
250 // Explicitly choose const mode here, since vtables are immutable, even
251 // if the reference of the fat pointer is mutable.
252 self.intern_shallow(alloc_id, InternMode::Const, None);
253 } else {
254 // Validation will error (with a better message) on an invalid vtable pointer.
255 // Let validation show the error message, but make sure it *does* error.
256 tcx.sess
257 .delay_span_bug(tcx.span, "vtables pointers cannot be integer pointers");
258 }
259 }
260 // Check if we have encountered this pointer+layout combination before.
261 // Only recurse for allocation-backed pointers.
262 if let Some(alloc_id) = mplace.ptr.provenance {
263 // Compute the mode with which we intern this. Our goal here is to make as many
264 // statics as we can immutable so they can be placed in read-only memory by LLVM.
265 let ref_mode = match self.mode {
266 InternMode::Static(mutbl) => {
267 // In statics, merge outer mutability with reference mutability and
268 // take into account whether we are in an `UnsafeCell`.
269
270 // The only way a mutable reference actually works as a mutable reference is
271 // by being in a `static mut` directly or behind another mutable reference.
272 // If there's an immutable reference or we are inside a `static`, then our
273 // mutable reference is equivalent to an immutable one. As an example:
274 // `&&mut Foo` is semantically equivalent to `&&Foo`
275 match ref_mutability {
276 _ if self.inside_unsafe_cell => {
277 // Inside an `UnsafeCell` is like inside a `static mut`, the "outer"
278 // mutability does not matter.
279 InternMode::Static(ref_mutability)
280 }
281 Mutability::Not => {
282 // A shared reference, things become immutable.
283 // We do *not* consider `freeze` here: `intern_shallow` considers
284 // `freeze` for the actual mutability of this allocation; the intern
285 // mode for references contained in this allocation is tracked more
286 // precisely when traversing the referenced data (by tracking
287 // `UnsafeCell`). This makes sure that `&(&i32, &Cell<i32>)` still
288 // has the left inner reference interned into a read-only
289 // allocation.
290 InternMode::Static(Mutability::Not)
291 }
292 Mutability::Mut => {
293 // Mutable reference.
294 InternMode::Static(mutbl)
295 }
296 }
297 }
298 InternMode::Const => {
299 // Ignore `UnsafeCell`, everything is immutable. Validity does some sanity
300 // checking for mutable references that we encounter -- they must all be
301 // ZST.
302 InternMode::Const
303 }
304 };
305 match self.intern_shallow(alloc_id, ref_mode, Some(referenced_ty)) {
306 // No need to recurse, these are interned already and statics may have
307 // cycles, so we don't want to recurse there
308 Some(IsStaticOrFn) => {}
309 // intern everything referenced by this value. The mutability is taken from the
310 // reference. It is checked above that mutable references only happen in
311 // `static mut`
312 None => self.ref_tracking.track((mplace, ref_mode), || ()),
313 }
314 }
315 Ok(())
316 } else {
317 // Not a reference -- proceed recursively.
318 self.walk_value(mplace)
319 }
320 }
321 }
322
323 #[derive(Copy, Clone, Debug, PartialEq, Hash, Eq)]
324 pub enum InternKind {
325 /// The `mutability` of the static, ignoring the type which may have interior mutability.
326 Static(hir::Mutability),
327 Constant,
328 Promoted,
329 }
330
331 /// Intern `ret` and everything it references.
332 ///
333 /// This *cannot raise an interpreter error*. Doing so is left to validation, which
334 /// tracks where in the value we are and thus can show much better error messages.
335 #[instrument(level = "debug", skip(ecx))]
336 pub fn intern_const_alloc_recursive<
337 'mir,
338 'tcx: 'mir,
339 M: CompileTimeMachine<'mir, 'tcx, const_eval::MemoryKind>,
340 >(
341 ecx: &mut InterpCx<'mir, 'tcx, M>,
342 intern_kind: InternKind,
343 ret: &MPlaceTy<'tcx>,
344 ) -> Result<(), ErrorGuaranteed> {
345 let tcx = ecx.tcx;
346 let base_intern_mode = match intern_kind {
347 InternKind::Static(mutbl) => InternMode::Static(mutbl),
348 // `Constant` includes array lengths.
349 InternKind::Constant | InternKind::Promoted => InternMode::Const,
350 };
351
352 // Type based interning.
353 // `ref_tracking` tracks typed references we have already interned and still need to crawl for
354 // more typed information inside them.
355 // `leftover_allocations` collects *all* allocations we see, because some might not
356 // be available in a typed way. They get interned at the end.
357 let mut ref_tracking = RefTracking::empty();
358 let leftover_allocations = &mut FxIndexSet::default();
359
360 // start with the outermost allocation
361 intern_shallow(
362 ecx,
363 leftover_allocations,
364 // The outermost allocation must exist, because we allocated it with
365 // `Memory::allocate`.
366 ret.ptr.provenance.unwrap(),
367 base_intern_mode,
368 Some(ret.layout.ty),
369 );
370
371 ref_tracking.track((*ret, base_intern_mode), || ());
372
373 while let Some(((mplace, mode), _)) = ref_tracking.todo.pop() {
374 let res = InternVisitor {
375 ref_tracking: &mut ref_tracking,
376 ecx,
377 mode,
378 leftover_allocations,
379 inside_unsafe_cell: false,
380 }
381 .visit_value(&mplace);
382 // We deliberately *ignore* interpreter errors here. When there is a problem, the remaining
383 // references are "leftover"-interned, and later validation will show a proper error
384 // and point at the right part of the value causing the problem.
385 match res {
386 Ok(()) => {}
387 Err(error) => {
388 ecx.tcx.sess.delay_span_bug(
389 ecx.tcx.span,
390 &format!(
391 "error during interning should later cause validation failure: {}",
392 error
393 ),
394 );
395 }
396 }
397 }
398
399 // Intern the rest of the allocations as mutable. These might be inside unions, padding, raw
400 // pointers, ... So we can't intern them according to their type rules
401
402 let mut todo: Vec<_> = leftover_allocations.iter().cloned().collect();
403 debug!(?todo);
404 debug!("dead_alloc_map: {:#?}", ecx.memory.dead_alloc_map);
405 while let Some(alloc_id) = todo.pop() {
406 if let Some((_, mut alloc)) = ecx.memory.alloc_map.remove(&alloc_id) {
407 // We can't call the `intern_shallow` method here, as its logic is tailored to safe
408 // references and a `leftover_allocations` set (where we only have a todo-list here).
409 // So we hand-roll the interning logic here again.
410 match intern_kind {
411 // Statics may point to mutable allocations.
412 // Even for immutable statics it would be ok to have mutable allocations behind
413 // raw pointers, e.g. for `static FOO: *const AtomicUsize = &AtomicUsize::new(42)`.
414 InternKind::Static(_) => {}
415 // Raw pointers in promoteds may only point to immutable things so we mark
416 // everything as immutable.
417 // It is UB to mutate through a raw pointer obtained via an immutable reference:
418 // Since all references and pointers inside a promoted must by their very definition
419 // be created from an immutable reference (and promotion also excludes interior
420 // mutability), mutating through them would be UB.
421 // There's no way we can check whether the user is using raw pointers correctly,
422 // so all we can do is mark this as immutable here.
423 InternKind::Promoted => {
424 // See const_eval::machine::MemoryExtra::can_access_statics for why
425 // immutability is so important.
426 alloc.mutability = Mutability::Not;
427 }
428 InternKind::Constant => {
429 // If it's a constant, we should not have any "leftovers" as everything
430 // is tracked by const-checking.
431 // FIXME: downgrade this to a warning? It rejects some legitimate consts,
432 // such as `const CONST_RAW: *const Vec<i32> = &Vec::new() as *const _;`.
433 ecx.tcx
434 .sess
435 .span_err(ecx.tcx.span, "untyped pointers are not allowed in constant");
436 // For better errors later, mark the allocation as immutable.
437 alloc.mutability = Mutability::Not;
438 }
439 }
440 let alloc = tcx.mk_const_alloc(alloc);
441 tcx.set_alloc_id_memory(alloc_id, alloc);
442 for &(_, alloc_id) in alloc.inner().provenance().ptrs().iter() {
443 if leftover_allocations.insert(alloc_id) {
444 todo.push(alloc_id);
445 }
446 }
447 } else if ecx.memory.dead_alloc_map.contains_key(&alloc_id) {
448 // Codegen does not like dangling pointers, and generally `tcx` assumes that
449 // all allocations referenced anywhere actually exist. So, make sure we error here.
450 let reported = ecx
451 .tcx
452 .sess
453 .span_err(ecx.tcx.span, "encountered dangling pointer in final constant");
454 return Err(reported);
455 } else if ecx.tcx.try_get_global_alloc(alloc_id).is_none() {
456 // We have hit an `AllocId` that is neither in local or global memory and isn't
457 // marked as dangling by local memory. That should be impossible.
458 span_bug!(ecx.tcx.span, "encountered unknown alloc id {:?}", alloc_id);
459 }
460 }
461 Ok(())
462 }
463
464 impl<'mir, 'tcx: 'mir, M: super::intern::CompileTimeMachine<'mir, 'tcx, !>>
465 InterpCx<'mir, 'tcx, M>
466 {
467 /// A helper function that allocates memory for the layout given and gives you access to mutate
468 /// it. Once your own mutation code is done, the backing `Allocation` is removed from the
469 /// current `Memory` and returned.
470 pub fn intern_with_temp_alloc(
471 &mut self,
472 layout: TyAndLayout<'tcx>,
473 f: impl FnOnce(
474 &mut InterpCx<'mir, 'tcx, M>,
475 &PlaceTy<'tcx, M::Provenance>,
476 ) -> InterpResult<'tcx, ()>,
477 ) -> InterpResult<'tcx, ConstAllocation<'tcx>> {
478 let dest = self.allocate(layout, MemoryKind::Stack)?;
479 f(self, &dest.into())?;
480 let mut alloc = self.memory.alloc_map.remove(&dest.ptr.provenance.unwrap()).unwrap().1;
481 alloc.mutability = Mutability::Not;
482 Ok(self.tcx.mk_const_alloc(alloc))
483 }
484 }