]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_hir_typeck/src/fn_ctxt/mod.rs
New upstream version 1.70.0+dfsg1
[rustc.git] / compiler / rustc_hir_typeck / src / fn_ctxt / mod.rs
1 mod _impl;
2 mod adjust_fulfillment_errors;
3 mod arg_matrix;
4 mod checks;
5 mod suggestions;
6
7 pub use _impl::*;
8 use rustc_errors::ErrorGuaranteed;
9 pub use suggestions::*;
10
11 use crate::coercion::DynamicCoerceMany;
12 use crate::{Diverges, EnclosingBreakables, Inherited};
13 use rustc_hir as hir;
14 use rustc_hir::def_id::{DefId, LocalDefId};
15 use rustc_hir_analysis::astconv::AstConv;
16 use rustc_infer::infer;
17 use rustc_infer::infer::error_reporting::TypeErrCtxt;
18 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
19 use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
20 use rustc_middle::ty::subst::GenericArgKind;
21 use rustc_middle::ty::{self, Const, Ty, TyCtxt, TypeVisitableExt};
22 use rustc_session::Session;
23 use rustc_span::symbol::Ident;
24 use rustc_span::{self, Span, DUMMY_SP};
25 use rustc_trait_selection::traits::{ObligationCause, ObligationCauseCode, ObligationCtxt};
26
27 use std::cell::{Cell, RefCell};
28 use std::ops::Deref;
29
30 /// The `FnCtxt` stores type-checking context needed to type-check bodies of
31 /// functions, closures, and `const`s, including performing type inference
32 /// with [`InferCtxt`].
33 ///
34 /// This is in contrast to [`ItemCtxt`], which is used to type-check item *signatures*
35 /// and thus does not perform type inference.
36 ///
37 /// See [`ItemCtxt`]'s docs for more.
38 ///
39 /// [`ItemCtxt`]: rustc_hir_analysis::collect::ItemCtxt
40 /// [`InferCtxt`]: infer::InferCtxt
41 pub struct FnCtxt<'a, 'tcx> {
42 pub(super) body_id: LocalDefId,
43
44 /// The parameter environment used for proving trait obligations
45 /// in this function. This can change when we descend into
46 /// closures (as they bring new things into scope), hence it is
47 /// not part of `Inherited` (as of the time of this writing,
48 /// closures do not yet change the environment, but they will
49 /// eventually).
50 pub(super) param_env: ty::ParamEnv<'tcx>,
51
52 /// Number of errors that had been reported when we started
53 /// checking this function. On exit, if we find that *more* errors
54 /// have been reported, we will skip regionck and other work that
55 /// expects the types within the function to be consistent.
56 // FIXME(matthewjasper) This should not exist, and it's not correct
57 // if type checking is run in parallel.
58 err_count_on_creation: usize,
59
60 /// If `Some`, this stores coercion information for returned
61 /// expressions. If `None`, this is in a context where return is
62 /// inappropriate, such as a const expression.
63 ///
64 /// This is a `RefCell<DynamicCoerceMany>`, which means that we
65 /// can track all the return expressions and then use them to
66 /// compute a useful coercion from the set, similar to a match
67 /// expression or other branching context. You can use methods
68 /// like `expected_ty` to access the declared return type (if
69 /// any).
70 pub(super) ret_coercion: Option<RefCell<DynamicCoerceMany<'tcx>>>,
71
72 /// First span of a return site that we find. Used in error messages.
73 pub(super) ret_coercion_span: Cell<Option<Span>>,
74
75 pub(super) resume_yield_tys: Option<(Ty<'tcx>, Ty<'tcx>)>,
76
77 /// Whether the last checked node generates a divergence (e.g.,
78 /// `return` will set this to `Always`). In general, when entering
79 /// an expression or other node in the tree, the initial value
80 /// indicates whether prior parts of the containing expression may
81 /// have diverged. It is then typically set to `Maybe` (and the
82 /// old value remembered) for processing the subparts of the
83 /// current expression. As each subpart is processed, they may set
84 /// the flag to `Always`, etc. Finally, at the end, we take the
85 /// result and "union" it with the original value, so that when we
86 /// return the flag indicates if any subpart of the parent
87 /// expression (up to and including this part) has diverged. So,
88 /// if you read it after evaluating a subexpression `X`, the value
89 /// you get indicates whether any subexpression that was
90 /// evaluating up to and including `X` diverged.
91 ///
92 /// We currently use this flag only for diagnostic purposes:
93 ///
94 /// - To warn about unreachable code: if, after processing a
95 /// sub-expression but before we have applied the effects of the
96 /// current node, we see that the flag is set to `Always`, we
97 /// can issue a warning. This corresponds to something like
98 /// `foo(return)`; we warn on the `foo()` expression. (We then
99 /// update the flag to `WarnedAlways` to suppress duplicate
100 /// reports.) Similarly, if we traverse to a fresh statement (or
101 /// tail expression) from an `Always` setting, we will issue a
102 /// warning. This corresponds to something like `{return;
103 /// foo();}` or `{return; 22}`, where we would warn on the
104 /// `foo()` or `22`.
105 ///
106 /// An expression represents dead code if, after checking it,
107 /// the diverges flag is set to something other than `Maybe`.
108 pub(super) diverges: Cell<Diverges>,
109
110 pub(super) enclosing_breakables: RefCell<EnclosingBreakables<'tcx>>,
111
112 pub(super) inh: &'a Inherited<'tcx>,
113
114 pub(super) fallback_has_occurred: Cell<bool>,
115 }
116
117 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
118 pub fn new(
119 inh: &'a Inherited<'tcx>,
120 param_env: ty::ParamEnv<'tcx>,
121 body_id: LocalDefId,
122 ) -> FnCtxt<'a, 'tcx> {
123 FnCtxt {
124 body_id,
125 param_env,
126 err_count_on_creation: inh.tcx.sess.err_count(),
127 ret_coercion: None,
128 ret_coercion_span: Cell::new(None),
129 resume_yield_tys: None,
130 diverges: Cell::new(Diverges::Maybe),
131 enclosing_breakables: RefCell::new(EnclosingBreakables {
132 stack: Vec::new(),
133 by_id: Default::default(),
134 }),
135 inh,
136 fallback_has_occurred: Cell::new(false),
137 }
138 }
139
140 pub fn cause(&self, span: Span, code: ObligationCauseCode<'tcx>) -> ObligationCause<'tcx> {
141 ObligationCause::new(span, self.body_id, code)
142 }
143
144 pub fn misc(&self, span: Span) -> ObligationCause<'tcx> {
145 self.cause(span, ObligationCauseCode::MiscObligation)
146 }
147
148 pub fn sess(&self) -> &Session {
149 &self.tcx.sess
150 }
151
152 /// Creates an `TypeErrCtxt` with a reference to the in-progress
153 /// `TypeckResults` which is used for diagnostics.
154 /// Use [`InferCtxt::err_ctxt`] to start one without a `TypeckResults`.
155 ///
156 /// [`InferCtxt::err_ctxt`]: infer::InferCtxt::err_ctxt
157 pub fn err_ctxt(&'a self) -> TypeErrCtxt<'a, 'tcx> {
158 TypeErrCtxt {
159 infcx: &self.infcx,
160 typeck_results: Some(self.typeck_results.borrow()),
161 fallback_has_occurred: self.fallback_has_occurred.get(),
162 normalize_fn_sig: Box::new(|fn_sig| {
163 if fn_sig.has_escaping_bound_vars() {
164 return fn_sig;
165 }
166 self.probe(|_| {
167 let ocx = ObligationCtxt::new_in_snapshot(self);
168 let normalized_fn_sig =
169 ocx.normalize(&ObligationCause::dummy(), self.param_env, fn_sig);
170 if ocx.select_all_or_error().is_empty() {
171 let normalized_fn_sig = self.resolve_vars_if_possible(normalized_fn_sig);
172 if !normalized_fn_sig.needs_infer() {
173 return normalized_fn_sig;
174 }
175 }
176 fn_sig
177 })
178 }),
179 autoderef_steps: Box::new(|ty| {
180 let mut autoderef = self.autoderef(DUMMY_SP, ty).silence_errors();
181 let mut steps = vec![];
182 while let Some((ty, _)) = autoderef.next() {
183 steps.push((ty, autoderef.current_obligations()));
184 }
185 steps
186 }),
187 }
188 }
189
190 pub fn errors_reported_since_creation(&self) -> bool {
191 self.tcx.sess.err_count() > self.err_count_on_creation
192 }
193 }
194
195 impl<'a, 'tcx> Deref for FnCtxt<'a, 'tcx> {
196 type Target = Inherited<'tcx>;
197 fn deref(&self) -> &Self::Target {
198 &self.inh
199 }
200 }
201
202 impl<'a, 'tcx> AstConv<'tcx> for FnCtxt<'a, 'tcx> {
203 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
204 self.tcx
205 }
206
207 fn item_def_id(&self) -> DefId {
208 self.body_id.to_def_id()
209 }
210
211 fn get_type_parameter_bounds(
212 &self,
213 _: Span,
214 def_id: LocalDefId,
215 _: Ident,
216 ) -> ty::GenericPredicates<'tcx> {
217 let tcx = self.tcx;
218 let item_def_id = tcx.hir().ty_param_owner(def_id);
219 let generics = tcx.generics_of(item_def_id);
220 let index = generics.param_def_id_to_index[&def_id.to_def_id()];
221 ty::GenericPredicates {
222 parent: None,
223 predicates: tcx.arena.alloc_from_iter(
224 self.param_env.caller_bounds().iter().filter_map(|predicate| {
225 match predicate.kind().skip_binder() {
226 ty::PredicateKind::Clause(ty::Clause::Trait(data))
227 if data.self_ty().is_param(index) =>
228 {
229 // HACK(eddyb) should get the original `Span`.
230 let span = tcx.def_span(def_id);
231 Some((predicate, span))
232 }
233 _ => None,
234 }
235 }),
236 ),
237 }
238 }
239
240 fn re_infer(&self, def: Option<&ty::GenericParamDef>, span: Span) -> Option<ty::Region<'tcx>> {
241 let v = match def {
242 Some(def) => infer::EarlyBoundRegion(span, def.name),
243 None => infer::MiscVariable(span),
244 };
245 Some(self.next_region_var(v))
246 }
247
248 fn allow_ty_infer(&self) -> bool {
249 true
250 }
251
252 fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
253 if let Some(param) = param {
254 if let GenericArgKind::Type(ty) = self.var_for_def(span, param).unpack() {
255 return ty;
256 }
257 unreachable!()
258 } else {
259 self.next_ty_var(TypeVariableOrigin {
260 kind: TypeVariableOriginKind::TypeInference,
261 span,
262 })
263 }
264 }
265
266 fn ct_infer(
267 &self,
268 ty: Ty<'tcx>,
269 param: Option<&ty::GenericParamDef>,
270 span: Span,
271 ) -> Const<'tcx> {
272 if let Some(param) = param {
273 if let GenericArgKind::Const(ct) = self.var_for_def(span, param).unpack() {
274 return ct;
275 }
276 unreachable!()
277 } else {
278 self.next_const_var(
279 ty,
280 ConstVariableOrigin { kind: ConstVariableOriginKind::ConstInference, span },
281 )
282 }
283 }
284
285 fn projected_ty_from_poly_trait_ref(
286 &self,
287 span: Span,
288 item_def_id: DefId,
289 item_segment: &hir::PathSegment<'_>,
290 poly_trait_ref: ty::PolyTraitRef<'tcx>,
291 ) -> Ty<'tcx> {
292 let trait_ref = self.instantiate_binder_with_fresh_vars(
293 span,
294 infer::LateBoundRegionConversionTime::AssocTypeProjection(item_def_id),
295 poly_trait_ref,
296 );
297
298 let item_substs = self.astconv().create_substs_for_associated_item(
299 span,
300 item_def_id,
301 item_segment,
302 trait_ref.substs,
303 );
304
305 self.tcx().mk_projection(item_def_id, item_substs)
306 }
307
308 fn probe_adt(&self, span: Span, ty: Ty<'tcx>) -> Option<ty::AdtDef<'tcx>> {
309 match ty.kind() {
310 ty::Adt(adt_def, _) => Some(*adt_def),
311 // FIXME(#104767): Should we handle bound regions here?
312 ty::Alias(ty::Projection, _) if !ty.has_escaping_bound_vars() => {
313 self.normalize(span, ty).ty_adt_def()
314 }
315 _ => None,
316 }
317 }
318
319 fn set_tainted_by_errors(&self, e: ErrorGuaranteed) {
320 self.infcx.set_tainted_by_errors(e)
321 }
322
323 fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, span: Span) {
324 // FIXME: normalization and escaping regions
325 let ty = if !ty.has_escaping_bound_vars() { self.normalize(span, ty) } else { ty };
326 self.write_ty(hir_id, ty)
327 }
328
329 fn infcx(&self) -> Option<&infer::InferCtxt<'tcx>> {
330 Some(&self.infcx)
331 }
332 }
333
334 /// Represents a user-provided type in the raw form (never normalized).
335 ///
336 /// This is a bridge between the interface of `AstConv`, which outputs a raw `Ty`,
337 /// and the API in this module, which expect `Ty` to be fully normalized.
338 #[derive(Clone, Copy, Debug)]
339 pub struct RawTy<'tcx> {
340 pub raw: Ty<'tcx>,
341
342 /// The normalized form of `raw`, stored here for efficiency.
343 pub normalized: Ty<'tcx>,
344 }