]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_mir_build/src/build/matches/test.rs
New upstream version 1.70.0+dfsg1
[rustc.git] / compiler / rustc_mir_build / src / build / matches / test.rs
1 // Testing candidates
2 //
3 // After candidates have been simplified, the only match pairs that
4 // remain are those that require some sort of test. The functions here
5 // identify what tests are needed, perform the tests, and then filter
6 // the candidates based on the result.
7
8 use crate::build::expr::as_place::PlaceBuilder;
9 use crate::build::matches::{Candidate, MatchPair, Test, TestKind};
10 use crate::build::Builder;
11 use crate::thir::pattern::compare_const_vals;
12 use rustc_data_structures::fx::FxIndexMap;
13 use rustc_hir::{LangItem, RangeEnd};
14 use rustc_index::bit_set::BitSet;
15 use rustc_middle::mir::*;
16 use rustc_middle::thir::*;
17 use rustc_middle::ty::util::IntTypeExt;
18 use rustc_middle::ty::GenericArg;
19 use rustc_middle::ty::{self, adjustment::PointerCast, Ty, TyCtxt};
20 use rustc_span::def_id::DefId;
21 use rustc_span::symbol::{sym, Symbol};
22 use rustc_span::Span;
23 use rustc_target::abi::VariantIdx;
24
25 use std::cmp::Ordering;
26
27 impl<'a, 'tcx> Builder<'a, 'tcx> {
28 /// Identifies what test is needed to decide if `match_pair` is applicable.
29 ///
30 /// It is a bug to call this with a not-fully-simplified pattern.
31 pub(super) fn test<'pat>(&mut self, match_pair: &MatchPair<'pat, 'tcx>) -> Test<'tcx> {
32 match match_pair.pattern.kind {
33 PatKind::Variant { adt_def, substs: _, variant_index: _, subpatterns: _ } => Test {
34 span: match_pair.pattern.span,
35 kind: TestKind::Switch {
36 adt_def,
37 variants: BitSet::new_empty(adt_def.variants().len()),
38 },
39 },
40
41 PatKind::Constant { .. } if is_switch_ty(match_pair.pattern.ty) => {
42 // For integers, we use a `SwitchInt` match, which allows
43 // us to handle more cases.
44 Test {
45 span: match_pair.pattern.span,
46 kind: TestKind::SwitchInt {
47 switch_ty: match_pair.pattern.ty,
48
49 // these maps are empty to start; cases are
50 // added below in add_cases_to_switch
51 options: Default::default(),
52 },
53 }
54 }
55
56 PatKind::Constant { value } => Test {
57 span: match_pair.pattern.span,
58 kind: TestKind::Eq { value, ty: match_pair.pattern.ty },
59 },
60
61 PatKind::Range(ref range) => {
62 assert_eq!(range.lo.ty(), match_pair.pattern.ty);
63 assert_eq!(range.hi.ty(), match_pair.pattern.ty);
64 Test { span: match_pair.pattern.span, kind: TestKind::Range(range.clone()) }
65 }
66
67 PatKind::Slice { ref prefix, ref slice, ref suffix } => {
68 let len = prefix.len() + suffix.len();
69 let op = if slice.is_some() { BinOp::Ge } else { BinOp::Eq };
70 Test { span: match_pair.pattern.span, kind: TestKind::Len { len: len as u64, op } }
71 }
72
73 PatKind::Or { .. } => bug!("or-patterns should have already been handled"),
74
75 PatKind::AscribeUserType { .. }
76 | PatKind::Array { .. }
77 | PatKind::Wild
78 | PatKind::Binding { .. }
79 | PatKind::Leaf { .. }
80 | PatKind::Deref { .. } => self.error_simplifyable(match_pair),
81 }
82 }
83
84 pub(super) fn add_cases_to_switch<'pat>(
85 &mut self,
86 test_place: &PlaceBuilder<'tcx>,
87 candidate: &Candidate<'pat, 'tcx>,
88 switch_ty: Ty<'tcx>,
89 options: &mut FxIndexMap<ConstantKind<'tcx>, u128>,
90 ) -> bool {
91 let Some(match_pair) = candidate.match_pairs.iter().find(|mp| mp.place == *test_place) else {
92 return false;
93 };
94
95 match match_pair.pattern.kind {
96 PatKind::Constant { value } => {
97 options
98 .entry(value)
99 .or_insert_with(|| value.eval_bits(self.tcx, self.param_env, switch_ty));
100 true
101 }
102 PatKind::Variant { .. } => {
103 panic!("you should have called add_variants_to_switch instead!");
104 }
105 PatKind::Range(ref range) => {
106 // Check that none of the switch values are in the range.
107 self.values_not_contained_in_range(&*range, options).unwrap_or(false)
108 }
109 PatKind::Slice { .. }
110 | PatKind::Array { .. }
111 | PatKind::Wild
112 | PatKind::Or { .. }
113 | PatKind::Binding { .. }
114 | PatKind::AscribeUserType { .. }
115 | PatKind::Leaf { .. }
116 | PatKind::Deref { .. } => {
117 // don't know how to add these patterns to a switch
118 false
119 }
120 }
121 }
122
123 pub(super) fn add_variants_to_switch<'pat>(
124 &mut self,
125 test_place: &PlaceBuilder<'tcx>,
126 candidate: &Candidate<'pat, 'tcx>,
127 variants: &mut BitSet<VariantIdx>,
128 ) -> bool {
129 let Some(match_pair) = candidate.match_pairs.iter().find(|mp| mp.place == *test_place) else {
130 return false;
131 };
132
133 match match_pair.pattern.kind {
134 PatKind::Variant { adt_def: _, variant_index, .. } => {
135 // We have a pattern testing for variant `variant_index`
136 // set the corresponding index to true
137 variants.insert(variant_index);
138 true
139 }
140 _ => {
141 // don't know how to add these patterns to a switch
142 false
143 }
144 }
145 }
146
147 #[instrument(skip(self, make_target_blocks, place_builder), level = "debug")]
148 pub(super) fn perform_test(
149 &mut self,
150 match_start_span: Span,
151 scrutinee_span: Span,
152 block: BasicBlock,
153 place_builder: &PlaceBuilder<'tcx>,
154 test: &Test<'tcx>,
155 make_target_blocks: impl FnOnce(&mut Self) -> Vec<BasicBlock>,
156 ) {
157 let place = place_builder.to_place(self);
158 let place_ty = place.ty(&self.local_decls, self.tcx);
159 debug!(?place, ?place_ty,);
160
161 let source_info = self.source_info(test.span);
162 match test.kind {
163 TestKind::Switch { adt_def, ref variants } => {
164 let target_blocks = make_target_blocks(self);
165 // Variants is a BitVec of indexes into adt_def.variants.
166 let num_enum_variants = adt_def.variants().len();
167 debug_assert_eq!(target_blocks.len(), num_enum_variants + 1);
168 let otherwise_block = *target_blocks.last().unwrap();
169 let tcx = self.tcx;
170 let switch_targets = SwitchTargets::new(
171 adt_def.discriminants(tcx).filter_map(|(idx, discr)| {
172 if variants.contains(idx) {
173 debug_assert_ne!(
174 target_blocks[idx.index()],
175 otherwise_block,
176 "no canididates for tested discriminant: {:?}",
177 discr,
178 );
179 Some((discr.val, target_blocks[idx.index()]))
180 } else {
181 debug_assert_eq!(
182 target_blocks[idx.index()],
183 otherwise_block,
184 "found canididates for untested discriminant: {:?}",
185 discr,
186 );
187 None
188 }
189 }),
190 otherwise_block,
191 );
192 debug!("num_enum_variants: {}, variants: {:?}", num_enum_variants, variants);
193 let discr_ty = adt_def.repr().discr_type().to_ty(tcx);
194 let discr = self.temp(discr_ty, test.span);
195 self.cfg.push_assign(
196 block,
197 self.source_info(scrutinee_span),
198 discr,
199 Rvalue::Discriminant(place),
200 );
201 self.cfg.terminate(
202 block,
203 self.source_info(match_start_span),
204 TerminatorKind::SwitchInt {
205 discr: Operand::Move(discr),
206 targets: switch_targets,
207 },
208 );
209 }
210
211 TestKind::SwitchInt { switch_ty, ref options } => {
212 let target_blocks = make_target_blocks(self);
213 let terminator = if *switch_ty.kind() == ty::Bool {
214 assert!(!options.is_empty() && options.len() <= 2);
215 let [first_bb, second_bb] = *target_blocks else {
216 bug!("`TestKind::SwitchInt` on `bool` should have two targets")
217 };
218 let (true_bb, false_bb) = match options[0] {
219 1 => (first_bb, second_bb),
220 0 => (second_bb, first_bb),
221 v => span_bug!(test.span, "expected boolean value but got {:?}", v),
222 };
223 TerminatorKind::if_(Operand::Copy(place), true_bb, false_bb)
224 } else {
225 // The switch may be inexhaustive so we have a catch all block
226 debug_assert_eq!(options.len() + 1, target_blocks.len());
227 let otherwise_block = *target_blocks.last().unwrap();
228 let switch_targets = SwitchTargets::new(
229 options.values().copied().zip(target_blocks),
230 otherwise_block,
231 );
232 TerminatorKind::SwitchInt {
233 discr: Operand::Copy(place),
234 targets: switch_targets,
235 }
236 };
237 self.cfg.terminate(block, self.source_info(match_start_span), terminator);
238 }
239
240 TestKind::Eq { value, ty } => {
241 let tcx = self.tcx;
242 if let ty::Adt(def, _) = ty.kind() && Some(def.did()) == tcx.lang_items().string() {
243 if !tcx.features().string_deref_patterns {
244 bug!("matching on `String` went through without enabling string_deref_patterns");
245 }
246 let re_erased = tcx.lifetimes.re_erased;
247 let ref_string = self.temp(tcx.mk_imm_ref(re_erased, ty), test.span);
248 let ref_str_ty = tcx.mk_imm_ref(re_erased, tcx.types.str_);
249 let ref_str = self.temp(ref_str_ty, test.span);
250 let deref = tcx.require_lang_item(LangItem::Deref, None);
251 let method = trait_method(tcx, deref, sym::deref, [ty]);
252 let eq_block = self.cfg.start_new_block();
253 self.cfg.push_assign(block, source_info, ref_string, Rvalue::Ref(re_erased, BorrowKind::Shared, place));
254 self.cfg.terminate(
255 block,
256 source_info,
257 TerminatorKind::Call {
258 func: Operand::Constant(Box::new(Constant {
259 span: test.span,
260 user_ty: None,
261 literal: method,
262 })),
263 args: vec![Operand::Move(ref_string)],
264 destination: ref_str,
265 target: Some(eq_block),
266 unwind: UnwindAction::Continue,
267 from_hir_call: false,
268 fn_span: source_info.span
269 }
270 );
271 self.non_scalar_compare(eq_block, make_target_blocks, source_info, value, ref_str, ref_str_ty);
272 return;
273 }
274 if !ty.is_scalar() {
275 // Use `PartialEq::eq` instead of `BinOp::Eq`
276 // (the binop can only handle primitives)
277 self.non_scalar_compare(
278 block,
279 make_target_blocks,
280 source_info,
281 value,
282 place,
283 ty,
284 );
285 } else if let [success, fail] = *make_target_blocks(self) {
286 assert_eq!(value.ty(), ty);
287 let expect = self.literal_operand(test.span, value);
288 let val = Operand::Copy(place);
289 self.compare(block, success, fail, source_info, BinOp::Eq, expect, val);
290 } else {
291 bug!("`TestKind::Eq` should have two target blocks");
292 }
293 }
294
295 TestKind::Range(box PatRange { lo, hi, ref end }) => {
296 let lower_bound_success = self.cfg.start_new_block();
297 let target_blocks = make_target_blocks(self);
298
299 // Test `val` by computing `lo <= val && val <= hi`, using primitive comparisons.
300 let lo = self.literal_operand(test.span, lo);
301 let hi = self.literal_operand(test.span, hi);
302 let val = Operand::Copy(place);
303
304 let [success, fail] = *target_blocks else {
305 bug!("`TestKind::Range` should have two target blocks");
306 };
307 self.compare(
308 block,
309 lower_bound_success,
310 fail,
311 source_info,
312 BinOp::Le,
313 lo,
314 val.clone(),
315 );
316 let op = match *end {
317 RangeEnd::Included => BinOp::Le,
318 RangeEnd::Excluded => BinOp::Lt,
319 };
320 self.compare(lower_bound_success, success, fail, source_info, op, val, hi);
321 }
322
323 TestKind::Len { len, op } => {
324 let target_blocks = make_target_blocks(self);
325
326 let usize_ty = self.tcx.types.usize;
327 let actual = self.temp(usize_ty, test.span);
328
329 // actual = len(place)
330 self.cfg.push_assign(block, source_info, actual, Rvalue::Len(place));
331
332 // expected = <N>
333 let expected = self.push_usize(block, source_info, len);
334
335 let [true_bb, false_bb] = *target_blocks else {
336 bug!("`TestKind::Len` should have two target blocks");
337 };
338 // result = actual == expected OR result = actual < expected
339 // branch based on result
340 self.compare(
341 block,
342 true_bb,
343 false_bb,
344 source_info,
345 op,
346 Operand::Move(actual),
347 Operand::Move(expected),
348 );
349 }
350 }
351 }
352
353 /// Compare using the provided built-in comparison operator
354 fn compare(
355 &mut self,
356 block: BasicBlock,
357 success_block: BasicBlock,
358 fail_block: BasicBlock,
359 source_info: SourceInfo,
360 op: BinOp,
361 left: Operand<'tcx>,
362 right: Operand<'tcx>,
363 ) {
364 let bool_ty = self.tcx.types.bool;
365 let result = self.temp(bool_ty, source_info.span);
366
367 // result = op(left, right)
368 self.cfg.push_assign(
369 block,
370 source_info,
371 result,
372 Rvalue::BinaryOp(op, Box::new((left, right))),
373 );
374
375 // branch based on result
376 self.cfg.terminate(
377 block,
378 source_info,
379 TerminatorKind::if_(Operand::Move(result), success_block, fail_block),
380 );
381 }
382
383 /// Compare two `&T` values using `<T as std::compare::PartialEq>::eq`
384 fn non_scalar_compare(
385 &mut self,
386 block: BasicBlock,
387 make_target_blocks: impl FnOnce(&mut Self) -> Vec<BasicBlock>,
388 source_info: SourceInfo,
389 value: ConstantKind<'tcx>,
390 place: Place<'tcx>,
391 mut ty: Ty<'tcx>,
392 ) {
393 let mut expect = self.literal_operand(source_info.span, value);
394 let mut val = Operand::Copy(place);
395
396 // If we're using `b"..."` as a pattern, we need to insert an
397 // unsizing coercion, as the byte string has the type `&[u8; N]`.
398 //
399 // We want to do this even when the scrutinee is a reference to an
400 // array, so we can call `<[u8]>::eq` rather than having to find an
401 // `<[u8; N]>::eq`.
402 let unsize = |ty: Ty<'tcx>| match ty.kind() {
403 ty::Ref(region, rty, _) => match rty.kind() {
404 ty::Array(inner_ty, n) => Some((region, inner_ty, n)),
405 _ => None,
406 },
407 _ => None,
408 };
409 let opt_ref_ty = unsize(ty);
410 let opt_ref_test_ty = unsize(value.ty());
411 match (opt_ref_ty, opt_ref_test_ty) {
412 // nothing to do, neither is an array
413 (None, None) => {}
414 (Some((region, elem_ty, _)), _) | (None, Some((region, elem_ty, _))) => {
415 let tcx = self.tcx;
416 // make both a slice
417 ty = tcx.mk_imm_ref(*region, tcx.mk_slice(*elem_ty));
418 if opt_ref_ty.is_some() {
419 let temp = self.temp(ty, source_info.span);
420 self.cfg.push_assign(
421 block,
422 source_info,
423 temp,
424 Rvalue::Cast(CastKind::Pointer(PointerCast::Unsize), val, ty),
425 );
426 val = Operand::Move(temp);
427 }
428 if opt_ref_test_ty.is_some() {
429 let slice = self.temp(ty, source_info.span);
430 self.cfg.push_assign(
431 block,
432 source_info,
433 slice,
434 Rvalue::Cast(CastKind::Pointer(PointerCast::Unsize), expect, ty),
435 );
436 expect = Operand::Move(slice);
437 }
438 }
439 }
440
441 let ty::Ref(_, deref_ty, _) = *ty.kind() else {
442 bug!("non_scalar_compare called on non-reference type: {}", ty);
443 };
444
445 let eq_def_id = self.tcx.require_lang_item(LangItem::PartialEq, Some(source_info.span));
446 let method = trait_method(self.tcx, eq_def_id, sym::eq, [deref_ty, deref_ty]);
447
448 let bool_ty = self.tcx.types.bool;
449 let eq_result = self.temp(bool_ty, source_info.span);
450 let eq_block = self.cfg.start_new_block();
451 self.cfg.terminate(
452 block,
453 source_info,
454 TerminatorKind::Call {
455 func: Operand::Constant(Box::new(Constant {
456 span: source_info.span,
457
458 // FIXME(#54571): This constant comes from user input (a
459 // constant in a pattern). Are there forms where users can add
460 // type annotations here? For example, an associated constant?
461 // Need to experiment.
462 user_ty: None,
463
464 literal: method,
465 })),
466 args: vec![val, expect],
467 destination: eq_result,
468 target: Some(eq_block),
469 unwind: UnwindAction::Continue,
470 from_hir_call: false,
471 fn_span: source_info.span,
472 },
473 );
474 self.diverge_from(block);
475
476 let [success_block, fail_block] = *make_target_blocks(self) else {
477 bug!("`TestKind::Eq` should have two target blocks")
478 };
479 // check the result
480 self.cfg.terminate(
481 eq_block,
482 source_info,
483 TerminatorKind::if_(Operand::Move(eq_result), success_block, fail_block),
484 );
485 }
486
487 /// Given that we are performing `test` against `test_place`, this job
488 /// sorts out what the status of `candidate` will be after the test. See
489 /// `test_candidates` for the usage of this function. The returned index is
490 /// the index that this candidate should be placed in the
491 /// `target_candidates` vec. The candidate may be modified to update its
492 /// `match_pairs`.
493 ///
494 /// So, for example, if this candidate is `x @ Some(P0)` and the `Test` is
495 /// a variant test, then we would modify the candidate to be `(x as
496 /// Option).0 @ P0` and return the index corresponding to the variant
497 /// `Some`.
498 ///
499 /// However, in some cases, the test may just not be relevant to candidate.
500 /// For example, suppose we are testing whether `foo.x == 22`, but in one
501 /// match arm we have `Foo { x: _, ... }`... in that case, the test for
502 /// what value `x` has has no particular relevance to this candidate. In
503 /// such cases, this function just returns None without doing anything.
504 /// This is used by the overall `match_candidates` algorithm to structure
505 /// the match as a whole. See `match_candidates` for more details.
506 ///
507 /// FIXME(#29623). In some cases, we have some tricky choices to make. for
508 /// example, if we are testing that `x == 22`, but the candidate is `x @
509 /// 13..55`, what should we do? In the event that the test is true, we know
510 /// that the candidate applies, but in the event of false, we don't know
511 /// that it *doesn't* apply. For now, we return false, indicate that the
512 /// test does not apply to this candidate, but it might be we can get
513 /// tighter match code if we do something a bit different.
514 pub(super) fn sort_candidate<'pat>(
515 &mut self,
516 test_place: &PlaceBuilder<'tcx>,
517 test: &Test<'tcx>,
518 candidate: &mut Candidate<'pat, 'tcx>,
519 ) -> Option<usize> {
520 // Find the match_pair for this place (if any). At present,
521 // afaik, there can be at most one. (In the future, if we
522 // adopted a more general `@` operator, there might be more
523 // than one, but it'd be very unusual to have two sides that
524 // both require tests; you'd expect one side to be simplified
525 // away.)
526 let (match_pair_index, match_pair) =
527 candidate.match_pairs.iter().enumerate().find(|&(_, mp)| mp.place == *test_place)?;
528
529 match (&test.kind, &match_pair.pattern.kind) {
530 // If we are performing a variant switch, then this
531 // informs variant patterns, but nothing else.
532 (
533 &TestKind::Switch { adt_def: tested_adt_def, .. },
534 &PatKind::Variant { adt_def, variant_index, ref subpatterns, .. },
535 ) => {
536 assert_eq!(adt_def, tested_adt_def);
537 self.candidate_after_variant_switch(
538 match_pair_index,
539 adt_def,
540 variant_index,
541 subpatterns,
542 candidate,
543 );
544 Some(variant_index.as_usize())
545 }
546
547 (&TestKind::Switch { .. }, _) => None,
548
549 // If we are performing a switch over integers, then this informs integer
550 // equality, but nothing else.
551 //
552 // FIXME(#29623) we could use PatKind::Range to rule
553 // things out here, in some cases.
554 (TestKind::SwitchInt { switch_ty: _, options }, PatKind::Constant { value })
555 if is_switch_ty(match_pair.pattern.ty) =>
556 {
557 let index = options.get_index_of(value).unwrap();
558 self.candidate_without_match_pair(match_pair_index, candidate);
559 Some(index)
560 }
561
562 (TestKind::SwitchInt { switch_ty: _, options }, PatKind::Range(range)) => {
563 let not_contained =
564 self.values_not_contained_in_range(&*range, options).unwrap_or(false);
565
566 not_contained.then(|| {
567 // No switch values are contained in the pattern range,
568 // so the pattern can be matched only if this test fails.
569 options.len()
570 })
571 }
572
573 (&TestKind::SwitchInt { .. }, _) => None,
574
575 (
576 &TestKind::Len { len: test_len, op: BinOp::Eq },
577 PatKind::Slice { prefix, slice, suffix },
578 ) => {
579 let pat_len = (prefix.len() + suffix.len()) as u64;
580 match (test_len.cmp(&pat_len), slice) {
581 (Ordering::Equal, &None) => {
582 // on true, min_len = len = $actual_length,
583 // on false, len != $actual_length
584 self.candidate_after_slice_test(
585 match_pair_index,
586 candidate,
587 prefix,
588 slice,
589 suffix,
590 );
591 Some(0)
592 }
593 (Ordering::Less, _) => {
594 // test_len < pat_len. If $actual_len = test_len,
595 // then $actual_len < pat_len and we don't have
596 // enough elements.
597 Some(1)
598 }
599 (Ordering::Equal | Ordering::Greater, &Some(_)) => {
600 // This can match both if $actual_len = test_len >= pat_len,
601 // and if $actual_len > test_len. We can't advance.
602 None
603 }
604 (Ordering::Greater, &None) => {
605 // test_len != pat_len, so if $actual_len = test_len, then
606 // $actual_len != pat_len.
607 Some(1)
608 }
609 }
610 }
611
612 (
613 &TestKind::Len { len: test_len, op: BinOp::Ge },
614 PatKind::Slice { prefix, slice, suffix },
615 ) => {
616 // the test is `$actual_len >= test_len`
617 let pat_len = (prefix.len() + suffix.len()) as u64;
618 match (test_len.cmp(&pat_len), slice) {
619 (Ordering::Equal, &Some(_)) => {
620 // $actual_len >= test_len = pat_len,
621 // so we can match.
622 self.candidate_after_slice_test(
623 match_pair_index,
624 candidate,
625 prefix,
626 slice,
627 suffix,
628 );
629 Some(0)
630 }
631 (Ordering::Less, _) | (Ordering::Equal, &None) => {
632 // test_len <= pat_len. If $actual_len < test_len,
633 // then it is also < pat_len, so the test passing is
634 // necessary (but insufficient).
635 Some(0)
636 }
637 (Ordering::Greater, &None) => {
638 // test_len > pat_len. If $actual_len >= test_len > pat_len,
639 // then we know we won't have a match.
640 Some(1)
641 }
642 (Ordering::Greater, &Some(_)) => {
643 // test_len < pat_len, and is therefore less
644 // strict. This can still go both ways.
645 None
646 }
647 }
648 }
649
650 (TestKind::Range(test), PatKind::Range(pat)) => {
651 use std::cmp::Ordering::*;
652
653 if test == pat {
654 self.candidate_without_match_pair(match_pair_index, candidate);
655 return Some(0);
656 }
657
658 // For performance, it's important to only do the second
659 // `compare_const_vals` if necessary.
660 let no_overlap = if matches!(
661 (compare_const_vals(self.tcx, test.hi, pat.lo, self.param_env)?, test.end),
662 (Less, _) | (Equal, RangeEnd::Excluded) // test < pat
663 ) || matches!(
664 (compare_const_vals(self.tcx, test.lo, pat.hi, self.param_env)?, pat.end),
665 (Greater, _) | (Equal, RangeEnd::Excluded) // test > pat
666 ) {
667 Some(1)
668 } else {
669 None
670 };
671
672 // If the testing range does not overlap with pattern range,
673 // the pattern can be matched only if this test fails.
674 no_overlap
675 }
676
677 (TestKind::Range(range), &PatKind::Constant { value }) => {
678 if let Some(false) = self.const_range_contains(&*range, value) {
679 // `value` is not contained in the testing range,
680 // so `value` can be matched only if this test fails.
681 Some(1)
682 } else {
683 None
684 }
685 }
686
687 (&TestKind::Range { .. }, _) => None,
688
689 (&TestKind::Eq { .. } | &TestKind::Len { .. }, _) => {
690 // The call to `self.test(&match_pair)` below is not actually used to generate any
691 // MIR. Instead, we just want to compare with `test` (the parameter of the method)
692 // to see if it is the same.
693 //
694 // However, at this point we can still encounter or-patterns that were extracted
695 // from previous calls to `sort_candidate`, so we need to manually address that
696 // case to avoid panicking in `self.test()`.
697 if let PatKind::Or { .. } = &match_pair.pattern.kind {
698 return None;
699 }
700
701 // These are all binary tests.
702 //
703 // FIXME(#29623) we can be more clever here
704 let pattern_test = self.test(&match_pair);
705 if pattern_test.kind == test.kind {
706 self.candidate_without_match_pair(match_pair_index, candidate);
707 Some(0)
708 } else {
709 None
710 }
711 }
712 }
713 }
714
715 fn candidate_without_match_pair(
716 &mut self,
717 match_pair_index: usize,
718 candidate: &mut Candidate<'_, 'tcx>,
719 ) {
720 candidate.match_pairs.remove(match_pair_index);
721 }
722
723 fn candidate_after_slice_test<'pat>(
724 &mut self,
725 match_pair_index: usize,
726 candidate: &mut Candidate<'pat, 'tcx>,
727 prefix: &'pat [Box<Pat<'tcx>>],
728 opt_slice: &'pat Option<Box<Pat<'tcx>>>,
729 suffix: &'pat [Box<Pat<'tcx>>],
730 ) {
731 let removed_place = candidate.match_pairs.remove(match_pair_index).place;
732 self.prefix_slice_suffix(
733 &mut candidate.match_pairs,
734 &removed_place,
735 prefix,
736 opt_slice,
737 suffix,
738 );
739 }
740
741 fn candidate_after_variant_switch<'pat>(
742 &mut self,
743 match_pair_index: usize,
744 adt_def: ty::AdtDef<'tcx>,
745 variant_index: VariantIdx,
746 subpatterns: &'pat [FieldPat<'tcx>],
747 candidate: &mut Candidate<'pat, 'tcx>,
748 ) {
749 let match_pair = candidate.match_pairs.remove(match_pair_index);
750
751 // So, if we have a match-pattern like `x @ Enum::Variant(P1, P2)`,
752 // we want to create a set of derived match-patterns like
753 // `(x as Variant).0 @ P1` and `(x as Variant).1 @ P1`.
754 let downcast_place = match_pair.place.downcast(adt_def, variant_index); // `(x as Variant)`
755 let consequent_match_pairs = subpatterns.iter().map(|subpattern| {
756 // e.g., `(x as Variant).0`
757 let place = downcast_place
758 .clone_project(PlaceElem::Field(subpattern.field, subpattern.pattern.ty));
759 // e.g., `(x as Variant).0 @ P1`
760 MatchPair::new(place, &subpattern.pattern, self)
761 });
762
763 candidate.match_pairs.extend(consequent_match_pairs);
764 }
765
766 fn error_simplifyable<'pat>(&mut self, match_pair: &MatchPair<'pat, 'tcx>) -> ! {
767 span_bug!(match_pair.pattern.span, "simplifyable pattern found: {:?}", match_pair.pattern)
768 }
769
770 fn const_range_contains(
771 &self,
772 range: &PatRange<'tcx>,
773 value: ConstantKind<'tcx>,
774 ) -> Option<bool> {
775 use std::cmp::Ordering::*;
776
777 // For performance, it's important to only do the second
778 // `compare_const_vals` if necessary.
779 Some(
780 matches!(compare_const_vals(self.tcx, range.lo, value, self.param_env)?, Less | Equal)
781 && matches!(
782 (compare_const_vals(self.tcx, value, range.hi, self.param_env)?, range.end),
783 (Less, _) | (Equal, RangeEnd::Included)
784 ),
785 )
786 }
787
788 fn values_not_contained_in_range(
789 &self,
790 range: &PatRange<'tcx>,
791 options: &FxIndexMap<ConstantKind<'tcx>, u128>,
792 ) -> Option<bool> {
793 for &val in options.keys() {
794 if self.const_range_contains(range, val)? {
795 return Some(false);
796 }
797 }
798
799 Some(true)
800 }
801 }
802
803 impl Test<'_> {
804 pub(super) fn targets(&self) -> usize {
805 match self.kind {
806 TestKind::Eq { .. } | TestKind::Range(_) | TestKind::Len { .. } => 2,
807 TestKind::Switch { adt_def, .. } => {
808 // While the switch that we generate doesn't test for all
809 // variants, we have a target for each variant and the
810 // otherwise case, and we make sure that all of the cases not
811 // specified have the same block.
812 adt_def.variants().len() + 1
813 }
814 TestKind::SwitchInt { switch_ty, ref options, .. } => {
815 if switch_ty.is_bool() {
816 // `bool` is special cased in `perform_test` to always
817 // branch to two blocks.
818 2
819 } else {
820 options.len() + 1
821 }
822 }
823 }
824 }
825 }
826
827 fn is_switch_ty(ty: Ty<'_>) -> bool {
828 ty.is_integral() || ty.is_char() || ty.is_bool()
829 }
830
831 fn trait_method<'tcx>(
832 tcx: TyCtxt<'tcx>,
833 trait_def_id: DefId,
834 method_name: Symbol,
835 substs: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
836 ) -> ConstantKind<'tcx> {
837 // The unhygienic comparison here is acceptable because this is only
838 // used on known traits.
839 let item = tcx
840 .associated_items(trait_def_id)
841 .filter_by_name_unhygienic(method_name)
842 .find(|item| item.kind == ty::AssocKind::Fn)
843 .expect("trait method not found");
844
845 let method_ty = tcx.mk_fn_def(item.def_id, substs);
846
847 ConstantKind::zero_sized(method_ty)
848 }