]> git.proxmox.com Git - mirror_edk2.git/blame - OvmfPkg/PlatformPei/MemDetect.c
OvmfPkg/PlatformPei: assert there's no permanent PEI RAM at default SMBASE
[mirror_edk2.git] / OvmfPkg / PlatformPei / MemDetect.c
CommitLineData
49ba9447 1/**@file\r
2 Memory Detection for Virtual Machines.\r
3\r
035ce3b3 4 Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>\r
b26f0cf9 5 SPDX-License-Identifier: BSD-2-Clause-Patent\r
49ba9447 6\r
7Module Name:\r
8\r
9 MemDetect.c\r
10\r
11**/\r
12\r
13//\r
14// The package level header files this module uses\r
15//\r
1fceaddb 16#include <IndustryStandard/E820.h>\r
49edde15 17#include <IndustryStandard/I440FxPiix4.h>\r
d5e06444 18#include <IndustryStandard/Q35MchIch9.h>\r
49ba9447 19#include <PiPei.h>\r
adec2bd5 20#include <Register/Intel/SmramSaveStateMap.h>\r
49ba9447 21\r
22//\r
23// The Library classes this module consumes\r
24//\r
d5e06444 25#include <Library/BaseLib.h>\r
6a7cba79 26#include <Library/BaseMemoryLib.h>\r
49ba9447 27#include <Library/DebugLib.h>\r
28#include <Library/HobLib.h>\r
29#include <Library/IoLib.h>\r
c1c2669c 30#include <Library/PcdLib.h>\r
d5e06444 31#include <Library/PciLib.h>\r
49ba9447 32#include <Library/PeimEntryPoint.h>\r
33#include <Library/ResourcePublicationLib.h>\r
e8e5cd4a 34#include <Library/MtrrLib.h>\r
7e5b1b67 35#include <Library/QemuFwCfgLib.h>\r
49ba9447 36\r
37#include "Platform.h"\r
38#include "Cmos.h"\r
39\r
bc89fe48
LE
40UINT8 mPhysMemAddressWidth;\r
41\r
45d87081
LE
42STATIC UINT32 mS3AcpiReservedMemoryBase;\r
43STATIC UINT32 mS3AcpiReservedMemorySize;\r
44\r
23bfb5c0
LE
45STATIC UINT16 mQ35TsegMbytes;\r
46\r
73974f80
LE
47BOOLEAN mQ35SmramAtDefaultSmbase;\r
48\r
49edde15
LE
49UINT32 mQemuUc32Base;\r
50\r
23bfb5c0
LE
51VOID\r
52Q35TsegMbytesInitialization (\r
53 VOID\r
54 )\r
55{\r
d5e06444
LE
56 UINT16 ExtendedTsegMbytes;\r
57 RETURN_STATUS PcdStatus;\r
58\r
e0ed7a9b 59 ASSERT (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID);\r
d5e06444
LE
60\r
61 //\r
62 // Check if QEMU offers an extended TSEG.\r
63 //\r
64 // This can be seen from writing MCH_EXT_TSEG_MB_QUERY to the MCH_EXT_TSEG_MB\r
65 // register, and reading back the register.\r
66 //\r
67 // On a QEMU machine type that does not offer an extended TSEG, the initial\r
68 // write overwrites whatever value a malicious guest OS may have placed in\r
69 // the (unimplemented) register, before entering S3 or rebooting.\r
70 // Subsequently, the read returns MCH_EXT_TSEG_MB_QUERY unchanged.\r
71 //\r
72 // On a QEMU machine type that offers an extended TSEG, the initial write\r
73 // triggers an update to the register. Subsequently, the value read back\r
74 // (which is guaranteed to differ from MCH_EXT_TSEG_MB_QUERY) tells us the\r
75 // number of megabytes.\r
76 //\r
77 PciWrite16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB), MCH_EXT_TSEG_MB_QUERY);\r
78 ExtendedTsegMbytes = PciRead16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB));\r
79 if (ExtendedTsegMbytes == MCH_EXT_TSEG_MB_QUERY) {\r
80 mQ35TsegMbytes = PcdGet16 (PcdQ35TsegMbytes);\r
81 return;\r
82 }\r
83\r
84 DEBUG ((\r
85 DEBUG_INFO,\r
86 "%a: QEMU offers an extended TSEG (%d MB)\n",\r
87 __FUNCTION__,\r
88 ExtendedTsegMbytes\r
89 ));\r
90 PcdStatus = PcdSet16S (PcdQ35TsegMbytes, ExtendedTsegMbytes);\r
91 ASSERT_RETURN_ERROR (PcdStatus);\r
92 mQ35TsegMbytes = ExtendedTsegMbytes;\r
23bfb5c0
LE
93}\r
94\r
95\r
73974f80
LE
96VOID\r
97Q35SmramAtDefaultSmbaseInitialization (\r
98 VOID\r
99 )\r
100{\r
101 RETURN_STATUS PcdStatus;\r
102\r
103 ASSERT (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID);\r
104\r
105 mQ35SmramAtDefaultSmbase = FALSE;\r
106 PcdStatus = PcdSetBoolS (PcdQ35SmramAtDefaultSmbase,\r
107 mQ35SmramAtDefaultSmbase);\r
108 ASSERT_RETURN_ERROR (PcdStatus);\r
109}\r
110\r
111\r
49edde15
LE
112VOID\r
113QemuUc32BaseInitialization (\r
114 VOID\r
115 )\r
116{\r
117 UINT32 LowerMemorySize;\r
118 UINT32 Uc32Size;\r
119\r
120 if (mXen) {\r
121 return;\r
122 }\r
123\r
124 if (mHostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) {\r
125 //\r
126 // On q35, the 32-bit area that we'll mark as UC, through variable MTRRs,\r
127 // starts at PcdPciExpressBaseAddress. The platform DSC is responsible for\r
128 // setting PcdPciExpressBaseAddress such that describing the\r
129 // [PcdPciExpressBaseAddress, 4GB) range require a very small number of\r
130 // variable MTRRs (preferably 1 or 2).\r
131 //\r
132 ASSERT (FixedPcdGet64 (PcdPciExpressBaseAddress) <= MAX_UINT32);\r
133 mQemuUc32Base = (UINT32)FixedPcdGet64 (PcdPciExpressBaseAddress);\r
134 return;\r
135 }\r
136\r
137 ASSERT (mHostBridgeDevId == INTEL_82441_DEVICE_ID);\r
138 //\r
139 // On i440fx, start with the [LowerMemorySize, 4GB) range. Make sure one\r
140 // variable MTRR suffices by truncating the size to a whole power of two,\r
141 // while keeping the end affixed to 4GB. This will round the base up.\r
142 //\r
143 LowerMemorySize = GetSystemMemorySizeBelow4gb ();\r
144 Uc32Size = GetPowerOfTwo32 ((UINT32)(SIZE_4GB - LowerMemorySize));\r
145 mQemuUc32Base = (UINT32)(SIZE_4GB - Uc32Size);\r
146 //\r
147 // Assuming that LowerMemorySize is at least 1 byte, Uc32Size is at most 2GB.\r
148 // Therefore mQemuUc32Base is at least 2GB.\r
149 //\r
150 ASSERT (mQemuUc32Base >= BASE_2GB);\r
151\r
152 if (mQemuUc32Base != LowerMemorySize) {\r
153 DEBUG ((DEBUG_VERBOSE, "%a: rounded UC32 base from 0x%x up to 0x%x, for "\r
154 "an UC32 size of 0x%x\n", __FUNCTION__, LowerMemorySize, mQemuUc32Base,\r
155 Uc32Size));\r
156 }\r
157}\r
158\r
159\r
1fceaddb
LE
160/**\r
161 Iterate over the RAM entries in QEMU's fw_cfg E820 RAM map that start outside\r
162 of the 32-bit address range.\r
163\r
164 Find the highest exclusive >=4GB RAM address, or produce memory resource\r
165 descriptor HOBs for RAM entries that start at or above 4GB.\r
166\r
167 @param[out] MaxAddress If MaxAddress is NULL, then ScanOrAdd64BitE820Ram()\r
168 produces memory resource descriptor HOBs for RAM\r
169 entries that start at or above 4GB.\r
170\r
171 Otherwise, MaxAddress holds the highest exclusive\r
172 >=4GB RAM address on output. If QEMU's fw_cfg E820\r
173 RAM map contains no RAM entry that starts outside of\r
174 the 32-bit address range, then MaxAddress is exactly\r
175 4GB on output.\r
176\r
177 @retval EFI_SUCCESS The fw_cfg E820 RAM map was found and processed.\r
178\r
179 @retval EFI_PROTOCOL_ERROR The RAM map was found, but its size wasn't a\r
180 whole multiple of sizeof(EFI_E820_ENTRY64). No\r
181 RAM entry was processed.\r
182\r
183 @return Error codes from QemuFwCfgFindFile(). No RAM\r
184 entry was processed.\r
185**/\r
186STATIC\r
187EFI_STATUS\r
188ScanOrAdd64BitE820Ram (\r
189 OUT UINT64 *MaxAddress OPTIONAL\r
190 )\r
191{\r
192 EFI_STATUS Status;\r
193 FIRMWARE_CONFIG_ITEM FwCfgItem;\r
194 UINTN FwCfgSize;\r
195 EFI_E820_ENTRY64 E820Entry;\r
196 UINTN Processed;\r
197\r
198 Status = QemuFwCfgFindFile ("etc/e820", &FwCfgItem, &FwCfgSize);\r
199 if (EFI_ERROR (Status)) {\r
200 return Status;\r
201 }\r
202 if (FwCfgSize % sizeof E820Entry != 0) {\r
203 return EFI_PROTOCOL_ERROR;\r
204 }\r
205\r
206 if (MaxAddress != NULL) {\r
207 *MaxAddress = BASE_4GB;\r
208 }\r
209\r
210 QemuFwCfgSelectItem (FwCfgItem);\r
211 for (Processed = 0; Processed < FwCfgSize; Processed += sizeof E820Entry) {\r
212 QemuFwCfgReadBytes (sizeof E820Entry, &E820Entry);\r
213 DEBUG ((\r
214 DEBUG_VERBOSE,\r
215 "%a: Base=0x%Lx Length=0x%Lx Type=%u\n",\r
216 __FUNCTION__,\r
217 E820Entry.BaseAddr,\r
218 E820Entry.Length,\r
219 E820Entry.Type\r
220 ));\r
221 if (E820Entry.Type == EfiAcpiAddressRangeMemory &&\r
222 E820Entry.BaseAddr >= BASE_4GB) {\r
223 if (MaxAddress == NULL) {\r
224 UINT64 Base;\r
225 UINT64 End;\r
226\r
227 //\r
228 // Round up the start address, and round down the end address.\r
229 //\r
230 Base = ALIGN_VALUE (E820Entry.BaseAddr, (UINT64)EFI_PAGE_SIZE);\r
231 End = (E820Entry.BaseAddr + E820Entry.Length) &\r
232 ~(UINT64)EFI_PAGE_MASK;\r
233 if (Base < End) {\r
234 AddMemoryRangeHob (Base, End);\r
235 DEBUG ((\r
236 DEBUG_VERBOSE,\r
237 "%a: AddMemoryRangeHob [0x%Lx, 0x%Lx)\n",\r
238 __FUNCTION__,\r
239 Base,\r
240 End\r
241 ));\r
242 }\r
243 } else {\r
244 UINT64 Candidate;\r
245\r
246 Candidate = E820Entry.BaseAddr + E820Entry.Length;\r
247 if (Candidate > *MaxAddress) {\r
248 *MaxAddress = Candidate;\r
249 DEBUG ((\r
250 DEBUG_VERBOSE,\r
251 "%a: MaxAddress=0x%Lx\n",\r
252 __FUNCTION__,\r
253 *MaxAddress\r
254 ));\r
255 }\r
256 }\r
257 }\r
258 }\r
259 return EFI_SUCCESS;\r
260}\r
261\r
262\r
4b455f7b 263UINT32\r
c0e10976 264GetSystemMemorySizeBelow4gb (\r
4b455f7b 265 VOID\r
49ba9447 266 )\r
267{\r
268 UINT8 Cmos0x34;\r
269 UINT8 Cmos0x35;\r
270\r
271 //\r
272 // CMOS 0x34/0x35 specifies the system memory above 16 MB.\r
273 // * CMOS(0x35) is the high byte\r
274 // * CMOS(0x34) is the low byte\r
275 // * The size is specified in 64kb chunks\r
276 // * Since this is memory above 16MB, the 16MB must be added\r
277 // into the calculation to get the total memory size.\r
278 //\r
279\r
280 Cmos0x34 = (UINT8) CmosRead8 (0x34);\r
281 Cmos0x35 = (UINT8) CmosRead8 (0x35);\r
282\r
c4046161 283 return (UINT32) (((UINTN)((Cmos0x35 << 8) + Cmos0x34) << 16) + SIZE_16MB);\r
49ba9447 284}\r
285\r
286\r
c0e10976 287STATIC\r
288UINT64\r
289GetSystemMemorySizeAbove4gb (\r
290 )\r
291{\r
292 UINT32 Size;\r
293 UINTN CmosIndex;\r
294\r
295 //\r
296 // CMOS 0x5b-0x5d specifies the system memory above 4GB MB.\r
297 // * CMOS(0x5d) is the most significant size byte\r
298 // * CMOS(0x5c) is the middle size byte\r
299 // * CMOS(0x5b) is the least significant size byte\r
300 // * The size is specified in 64kb chunks\r
301 //\r
302\r
303 Size = 0;\r
304 for (CmosIndex = 0x5d; CmosIndex >= 0x5b; CmosIndex--) {\r
305 Size = (UINT32) (Size << 8) + (UINT32) CmosRead8 (CmosIndex);\r
306 }\r
307\r
308 return LShiftU64 (Size, 16);\r
309}\r
310\r
bc89fe48 311\r
d5371680
LE
312/**\r
313 Return the highest address that DXE could possibly use, plus one.\r
314**/\r
315STATIC\r
316UINT64\r
317GetFirstNonAddress (\r
318 VOID\r
319 )\r
320{\r
321 UINT64 FirstNonAddress;\r
7e5b1b67
LE
322 UINT64 Pci64Base, Pci64Size;\r
323 CHAR8 MbString[7 + 1];\r
324 EFI_STATUS Status;\r
325 FIRMWARE_CONFIG_ITEM FwCfgItem;\r
326 UINTN FwCfgSize;\r
327 UINT64 HotPlugMemoryEnd;\r
32e083c7 328 RETURN_STATUS PcdStatus;\r
d5371680 329\r
1fceaddb
LE
330 //\r
331 // set FirstNonAddress to suppress incorrect compiler/analyzer warnings\r
332 //\r
333 FirstNonAddress = 0;\r
334\r
335 //\r
336 // If QEMU presents an E820 map, then get the highest exclusive >=4GB RAM\r
337 // address from it. This can express an address >= 4GB+1TB.\r
338 //\r
339 // Otherwise, get the flat size of the memory above 4GB from the CMOS (which\r
340 // can only express a size smaller than 1TB), and add it to 4GB.\r
341 //\r
342 Status = ScanOrAdd64BitE820Ram (&FirstNonAddress);\r
343 if (EFI_ERROR (Status)) {\r
344 FirstNonAddress = BASE_4GB + GetSystemMemorySizeAbove4gb ();\r
345 }\r
7e5b1b67
LE
346\r
347 //\r
348 // If DXE is 32-bit, then we're done; PciBusDxe will degrade 64-bit MMIO\r
349 // resources to 32-bit anyway. See DegradeResource() in\r
350 // "PciResourceSupport.c".\r
351 //\r
352#ifdef MDE_CPU_IA32\r
353 if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {\r
354 return FirstNonAddress;\r
355 }\r
356#endif\r
357\r
358 //\r
359 // Otherwise, in order to calculate the highest address plus one, we must\r
360 // consider the 64-bit PCI host aperture too. Fetch the default size.\r
361 //\r
362 Pci64Size = PcdGet64 (PcdPciMmio64Size);\r
363\r
364 //\r
365 // See if the user specified the number of megabytes for the 64-bit PCI host\r
366 // aperture. The number of non-NUL characters in MbString allows for\r
367 // 9,999,999 MB, which is approximately 10 TB.\r
368 //\r
369 // As signaled by the "X-" prefix, this knob is experimental, and might go\r
370 // away at any time.\r
371 //\r
372 Status = QemuFwCfgFindFile ("opt/ovmf/X-PciMmio64Mb", &FwCfgItem,\r
373 &FwCfgSize);\r
374 if (!EFI_ERROR (Status)) {\r
375 if (FwCfgSize >= sizeof MbString) {\r
376 DEBUG ((EFI_D_WARN,\r
377 "%a: ignoring malformed 64-bit PCI host aperture size from fw_cfg\n",\r
378 __FUNCTION__));\r
379 } else {\r
380 QemuFwCfgSelectItem (FwCfgItem);\r
381 QemuFwCfgReadBytes (FwCfgSize, MbString);\r
382 MbString[FwCfgSize] = '\0';\r
383 Pci64Size = LShiftU64 (AsciiStrDecimalToUint64 (MbString), 20);\r
384 }\r
385 }\r
386\r
387 if (Pci64Size == 0) {\r
388 if (mBootMode != BOOT_ON_S3_RESUME) {\r
389 DEBUG ((EFI_D_INFO, "%a: disabling 64-bit PCI host aperture\n",\r
390 __FUNCTION__));\r
32e083c7
LE
391 PcdStatus = PcdSet64S (PcdPciMmio64Size, 0);\r
392 ASSERT_RETURN_ERROR (PcdStatus);\r
7e5b1b67
LE
393 }\r
394\r
395 //\r
396 // There's nothing more to do; the amount of memory above 4GB fully\r
397 // determines the highest address plus one. The memory hotplug area (see\r
398 // below) plays no role for the firmware in this case.\r
399 //\r
400 return FirstNonAddress;\r
401 }\r
402\r
403 //\r
404 // The "etc/reserved-memory-end" fw_cfg file, when present, contains an\r
405 // absolute, exclusive end address for the memory hotplug area. This area\r
406 // starts right at the end of the memory above 4GB. The 64-bit PCI host\r
407 // aperture must be placed above it.\r
408 //\r
409 Status = QemuFwCfgFindFile ("etc/reserved-memory-end", &FwCfgItem,\r
410 &FwCfgSize);\r
411 if (!EFI_ERROR (Status) && FwCfgSize == sizeof HotPlugMemoryEnd) {\r
412 QemuFwCfgSelectItem (FwCfgItem);\r
413 QemuFwCfgReadBytes (FwCfgSize, &HotPlugMemoryEnd);\r
c27c0003
LE
414 DEBUG ((DEBUG_VERBOSE, "%a: HotPlugMemoryEnd=0x%Lx\n", __FUNCTION__,\r
415 HotPlugMemoryEnd));\r
7e5b1b67
LE
416\r
417 ASSERT (HotPlugMemoryEnd >= FirstNonAddress);\r
418 FirstNonAddress = HotPlugMemoryEnd;\r
419 }\r
420\r
421 //\r
422 // SeaBIOS aligns both boundaries of the 64-bit PCI host aperture to 1GB, so\r
423 // that the host can map it with 1GB hugepages. Follow suit.\r
424 //\r
425 Pci64Base = ALIGN_VALUE (FirstNonAddress, (UINT64)SIZE_1GB);\r
426 Pci64Size = ALIGN_VALUE (Pci64Size, (UINT64)SIZE_1GB);\r
427\r
428 //\r
429 // The 64-bit PCI host aperture should also be "naturally" aligned. The\r
430 // alignment is determined by rounding the size of the aperture down to the\r
431 // next smaller or equal power of two. That is, align the aperture by the\r
432 // largest BAR size that can fit into it.\r
433 //\r
434 Pci64Base = ALIGN_VALUE (Pci64Base, GetPowerOfTwo64 (Pci64Size));\r
435\r
436 if (mBootMode != BOOT_ON_S3_RESUME) {\r
437 //\r
438 // The core PciHostBridgeDxe driver will automatically add this range to\r
439 // the GCD memory space map through our PciHostBridgeLib instance; here we\r
440 // only need to set the PCDs.\r
441 //\r
32e083c7
LE
442 PcdStatus = PcdSet64S (PcdPciMmio64Base, Pci64Base);\r
443 ASSERT_RETURN_ERROR (PcdStatus);\r
444 PcdStatus = PcdSet64S (PcdPciMmio64Size, Pci64Size);\r
445 ASSERT_RETURN_ERROR (PcdStatus);\r
446\r
7e5b1b67
LE
447 DEBUG ((EFI_D_INFO, "%a: Pci64Base=0x%Lx Pci64Size=0x%Lx\n",\r
448 __FUNCTION__, Pci64Base, Pci64Size));\r
449 }\r
450\r
451 //\r
452 // The useful address space ends with the 64-bit PCI host aperture.\r
453 //\r
454 FirstNonAddress = Pci64Base + Pci64Size;\r
d5371680
LE
455 return FirstNonAddress;\r
456}\r
457\r
458\r
bc89fe48
LE
459/**\r
460 Initialize the mPhysMemAddressWidth variable, based on guest RAM size.\r
461**/\r
462VOID\r
463AddressWidthInitialization (\r
464 VOID\r
465 )\r
466{\r
467 UINT64 FirstNonAddress;\r
468\r
469 //\r
470 // As guest-physical memory size grows, the permanent PEI RAM requirements\r
471 // are dominated by the identity-mapping page tables built by the DXE IPL.\r
472 // The DXL IPL keys off of the physical address bits advertized in the CPU\r
473 // HOB. To conserve memory, we calculate the minimum address width here.\r
474 //\r
d5371680 475 FirstNonAddress = GetFirstNonAddress ();\r
bc89fe48
LE
476 mPhysMemAddressWidth = (UINT8)HighBitSet64 (FirstNonAddress);\r
477\r
478 //\r
479 // If FirstNonAddress is not an integral power of two, then we need an\r
480 // additional bit.\r
481 //\r
482 if ((FirstNonAddress & (FirstNonAddress - 1)) != 0) {\r
483 ++mPhysMemAddressWidth;\r
484 }\r
485\r
486 //\r
487 // The minimum address width is 36 (covers up to and excluding 64 GB, which\r
488 // is the maximum for Ia32 + PAE). The theoretical architecture maximum for\r
489 // X64 long mode is 52 bits, but the DXE IPL clamps that down to 48 bits. We\r
490 // can simply assert that here, since 48 bits are good enough for 256 TB.\r
491 //\r
492 if (mPhysMemAddressWidth <= 36) {\r
493 mPhysMemAddressWidth = 36;\r
494 }\r
495 ASSERT (mPhysMemAddressWidth <= 48);\r
496}\r
497\r
498\r
499/**\r
500 Calculate the cap for the permanent PEI memory.\r
501**/\r
502STATIC\r
503UINT32\r
504GetPeiMemoryCap (\r
505 VOID\r
506 )\r
507{\r
508 BOOLEAN Page1GSupport;\r
509 UINT32 RegEax;\r
510 UINT32 RegEdx;\r
511 UINT32 Pml4Entries;\r
512 UINT32 PdpEntries;\r
513 UINTN TotalPages;\r
514\r
515 //\r
516 // If DXE is 32-bit, then just return the traditional 64 MB cap.\r
517 //\r
518#ifdef MDE_CPU_IA32\r
519 if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {\r
520 return SIZE_64MB;\r
521 }\r
522#endif\r
523\r
524 //\r
525 // Dependent on physical address width, PEI memory allocations can be\r
526 // dominated by the page tables built for 64-bit DXE. So we key the cap off\r
527 // of those. The code below is based on CreateIdentityMappingPageTables() in\r
528 // "MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c".\r
529 //\r
530 Page1GSupport = FALSE;\r
531 if (PcdGetBool (PcdUse1GPageTable)) {\r
532 AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);\r
533 if (RegEax >= 0x80000001) {\r
534 AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);\r
535 if ((RegEdx & BIT26) != 0) {\r
536 Page1GSupport = TRUE;\r
537 }\r
538 }\r
539 }\r
540\r
541 if (mPhysMemAddressWidth <= 39) {\r
542 Pml4Entries = 1;\r
543 PdpEntries = 1 << (mPhysMemAddressWidth - 30);\r
544 ASSERT (PdpEntries <= 0x200);\r
545 } else {\r
546 Pml4Entries = 1 << (mPhysMemAddressWidth - 39);\r
547 ASSERT (Pml4Entries <= 0x200);\r
548 PdpEntries = 512;\r
549 }\r
550\r
551 TotalPages = Page1GSupport ? Pml4Entries + 1 :\r
552 (PdpEntries + 1) * Pml4Entries + 1;\r
553 ASSERT (TotalPages <= 0x40201);\r
554\r
555 //\r
556 // Add 64 MB for miscellaneous allocations. Note that for\r
557 // mPhysMemAddressWidth values close to 36, the cap will actually be\r
558 // dominated by this increment.\r
559 //\r
560 return (UINT32)(EFI_PAGES_TO_SIZE (TotalPages) + SIZE_64MB);\r
561}\r
562\r
563\r
36658fff
WL
564/**\r
565 Publish PEI core memory\r
566\r
567 @return EFI_SUCCESS The PEIM initialized successfully.\r
568\r
569**/\r
570EFI_STATUS\r
571PublishPeiMemory (\r
572 VOID\r
573 )\r
574{\r
575 EFI_STATUS Status;\r
576 EFI_PHYSICAL_ADDRESS MemoryBase;\r
577 UINT64 MemorySize;\r
fc3f005a 578 UINT32 LowerMemorySize;\r
bc89fe48 579 UINT32 PeiMemoryCap;\r
36658fff 580\r
45d87081
LE
581 LowerMemorySize = GetSystemMemorySizeBelow4gb ();\r
582 if (FeaturePcdGet (PcdSmmSmramRequire)) {\r
583 //\r
584 // TSEG is chipped from the end of low RAM\r
585 //\r
23bfb5c0 586 LowerMemorySize -= mQ35TsegMbytes * SIZE_1MB;\r
45d87081
LE
587 }\r
588\r
589 //\r
590 // If S3 is supported, then the S3 permanent PEI memory is placed next,\r
591 // downwards. Its size is primarily dictated by CpuMpPei. The formula below\r
592 // is an approximation.\r
593 //\r
594 if (mS3Supported) {\r
595 mS3AcpiReservedMemorySize = SIZE_512KB +\r
45a70db3 596 mMaxCpuCount *\r
45d87081
LE
597 PcdGet32 (PcdCpuApStackSize);\r
598 mS3AcpiReservedMemoryBase = LowerMemorySize - mS3AcpiReservedMemorySize;\r
599 LowerMemorySize = mS3AcpiReservedMemoryBase;\r
600 }\r
601\r
8e54500f 602 if (mBootMode == BOOT_ON_S3_RESUME) {\r
45d87081
LE
603 MemoryBase = mS3AcpiReservedMemoryBase;\r
604 MemorySize = mS3AcpiReservedMemorySize;\r
8e54500f 605 } else {\r
bc89fe48
LE
606 PeiMemoryCap = GetPeiMemoryCap ();\r
607 DEBUG ((EFI_D_INFO, "%a: mPhysMemAddressWidth=%d PeiMemoryCap=%u KB\n",\r
608 __FUNCTION__, mPhysMemAddressWidth, PeiMemoryCap >> 10));\r
609\r
8e54500f
JJ
610 //\r
611 // Determine the range of memory to use during PEI\r
612 //\r
efb0f16e
LE
613 // Technically we could lay the permanent PEI RAM over SEC's temporary\r
614 // decompression and scratch buffer even if "secure S3" is needed, since\r
615 // their lifetimes don't overlap. However, PeiFvInitialization() will cover\r
616 // RAM up to PcdOvmfDecompressionScratchEnd with an EfiACPIMemoryNVS memory\r
617 // allocation HOB, and other allocations served from the permanent PEI RAM\r
618 // shouldn't overlap with that HOB.\r
619 //\r
620 MemoryBase = mS3Supported && FeaturePcdGet (PcdSmmSmramRequire) ?\r
621 PcdGet32 (PcdOvmfDecompressionScratchEnd) :\r
622 PcdGet32 (PcdOvmfDxeMemFvBase) + PcdGet32 (PcdOvmfDxeMemFvSize);\r
8e54500f 623 MemorySize = LowerMemorySize - MemoryBase;\r
bc89fe48
LE
624 if (MemorySize > PeiMemoryCap) {\r
625 MemoryBase = LowerMemorySize - PeiMemoryCap;\r
626 MemorySize = PeiMemoryCap;\r
8e54500f 627 }\r
36658fff
WL
628 }\r
629\r
adec2bd5
LE
630 //\r
631 // MEMFD_BASE_ADDRESS separates the SMRAM at the default SMBASE from the\r
632 // normal boot permanent PEI RAM. Regarding the S3 boot path, the S3\r
633 // permanent PEI RAM is located even higher.\r
634 //\r
635 if (FeaturePcdGet (PcdSmmSmramRequire) && mQ35SmramAtDefaultSmbase) {\r
636 ASSERT (SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE <= MemoryBase);\r
637 }\r
638\r
36658fff
WL
639 //\r
640 // Publish this memory to the PEI Core\r
641 //\r
642 Status = PublishSystemMemory(MemoryBase, MemorySize);\r
643 ASSERT_EFI_ERROR (Status);\r
644\r
645 return Status;\r
646}\r
647\r
c0e10976 648\r
49ba9447 649/**\r
c034906e 650 Peform Memory Detection for QEMU / KVM\r
49ba9447 651\r
652**/\r
c034906e
JJ
653STATIC\r
654VOID\r
655QemuInitializeRam (\r
656 VOID\r
49ba9447 657 )\r
658{\r
c0e10976 659 UINT64 LowerMemorySize;\r
660 UINT64 UpperMemorySize;\r
79d274b8
LE
661 MTRR_SETTINGS MtrrSettings;\r
662 EFI_STATUS Status;\r
49ba9447 663\r
c034906e 664 DEBUG ((EFI_D_INFO, "%a called\n", __FUNCTION__));\r
49ba9447 665\r
666 //\r
667 // Determine total memory size available\r
668 //\r
c0e10976 669 LowerMemorySize = GetSystemMemorySizeBelow4gb ();\r
670 UpperMemorySize = GetSystemMemorySizeAbove4gb ();\r
49ba9447 671\r
e3e3090a
LE
672 if (mBootMode == BOOT_ON_S3_RESUME) {\r
673 //\r
674 // Create the following memory HOB as an exception on the S3 boot path.\r
675 //\r
676 // Normally we'd create memory HOBs only on the normal boot path. However,\r
677 // CpuMpPei specifically needs such a low-memory HOB on the S3 path as\r
678 // well, for "borrowing" a subset of it temporarily, for the AP startup\r
679 // vector.\r
680 //\r
681 // CpuMpPei saves the original contents of the borrowed area in permanent\r
682 // PEI RAM, in a backup buffer allocated with the normal PEI services.\r
683 // CpuMpPei restores the original contents ("returns" the borrowed area) at\r
684 // End-of-PEI. End-of-PEI in turn is emitted by S3Resume2Pei before\r
8c0b0b34 685 // transferring control to the OS's wakeup vector in the FACS.\r
e3e3090a
LE
686 //\r
687 // We expect any other PEIMs that "borrow" memory similarly to CpuMpPei to\r
688 // restore the original contents. Furthermore, we expect all such PEIMs\r
689 // (CpuMpPei included) to claim the borrowed areas by producing memory\r
690 // allocation HOBs, and to honor preexistent memory allocation HOBs when\r
691 // looking for an area to borrow.\r
692 //\r
693 AddMemoryRangeHob (0, BASE_512KB + BASE_128KB);\r
694 } else {\r
bd386eaf
JJ
695 //\r
696 // Create memory HOBs\r
697 //\r
bd386eaf 698 AddMemoryRangeHob (0, BASE_512KB + BASE_128KB);\r
b09c1c6f
LE
699\r
700 if (FeaturePcdGet (PcdSmmSmramRequire)) {\r
701 UINT32 TsegSize;\r
702\r
23bfb5c0 703 TsegSize = mQ35TsegMbytes * SIZE_1MB;\r
b09c1c6f
LE
704 AddMemoryRangeHob (BASE_1MB, LowerMemorySize - TsegSize);\r
705 AddReservedMemoryBaseSizeHob (LowerMemorySize - TsegSize, TsegSize,\r
706 TRUE);\r
707 } else {\r
708 AddMemoryRangeHob (BASE_1MB, LowerMemorySize);\r
709 }\r
710\r
1fceaddb
LE
711 //\r
712 // If QEMU presents an E820 map, then create memory HOBs for the >=4GB RAM\r
713 // entries. Otherwise, create a single memory HOB with the flat >=4GB\r
714 // memory size read from the CMOS.\r
715 //\r
716 Status = ScanOrAdd64BitE820Ram (NULL);\r
717 if (EFI_ERROR (Status) && UpperMemorySize != 0) {\r
035ce3b3 718 AddMemoryBaseSizeHob (BASE_4GB, UpperMemorySize);\r
cfc80e2e 719 }\r
bd386eaf 720 }\r
49ba9447 721\r
79d274b8
LE
722 //\r
723 // We'd like to keep the following ranges uncached:\r
724 // - [640 KB, 1 MB)\r
725 // - [LowerMemorySize, 4 GB)\r
726 //\r
727 // Everything else should be WB. Unfortunately, programming the inverse (ie.\r
728 // keeping the default UC, and configuring the complement set of the above as\r
729 // WB) is not reliable in general, because the end of the upper RAM can have\r
730 // practically any alignment, and we may not have enough variable MTRRs to\r
731 // cover it exactly.\r
732 //\r
733 if (IsMtrrSupported ()) {\r
734 MtrrGetAllMtrrs (&MtrrSettings);\r
735\r
736 //\r
737 // MTRRs disabled, fixed MTRRs disabled, default type is uncached\r
738 //\r
739 ASSERT ((MtrrSettings.MtrrDefType & BIT11) == 0);\r
740 ASSERT ((MtrrSettings.MtrrDefType & BIT10) == 0);\r
741 ASSERT ((MtrrSettings.MtrrDefType & 0xFF) == 0);\r
742\r
743 //\r
744 // flip default type to writeback\r
745 //\r
746 SetMem (&MtrrSettings.Fixed, sizeof MtrrSettings.Fixed, 0x06);\r
747 ZeroMem (&MtrrSettings.Variables, sizeof MtrrSettings.Variables);\r
748 MtrrSettings.MtrrDefType |= BIT11 | BIT10 | 6;\r
749 MtrrSetAllMtrrs (&MtrrSettings);\r
e8e5cd4a 750\r
79d274b8
LE
751 //\r
752 // Set memory range from 640KB to 1MB to uncacheable\r
753 //\r
754 Status = MtrrSetMemoryAttribute (BASE_512KB + BASE_128KB,\r
755 BASE_1MB - (BASE_512KB + BASE_128KB), CacheUncacheable);\r
756 ASSERT_EFI_ERROR (Status);\r
e8e5cd4a 757\r
79d274b8 758 //\r
49edde15
LE
759 // Set the memory range from the start of the 32-bit MMIO area (32-bit PCI\r
760 // MMIO aperture on i440fx, PCIEXBAR on q35) to 4GB as uncacheable.\r
79d274b8 761 //\r
49edde15
LE
762 Status = MtrrSetMemoryAttribute (mQemuUc32Base, SIZE_4GB - mQemuUc32Base,\r
763 CacheUncacheable);\r
79d274b8 764 ASSERT_EFI_ERROR (Status);\r
c0e10976 765 }\r
49ba9447 766}\r
767\r
c034906e
JJ
768/**\r
769 Publish system RAM and reserve memory regions\r
770\r
771**/\r
772VOID\r
773InitializeRamRegions (\r
774 VOID\r
775 )\r
776{\r
2818c158
JJ
777 if (!mXen) {\r
778 QemuInitializeRam ();\r
779 } else {\r
2818c158
JJ
780 XenPublishRamRegions ();\r
781 }\r
8e54500f
JJ
782\r
783 if (mS3Supported && mBootMode != BOOT_ON_S3_RESUME) {\r
784 //\r
785 // This is the memory range that will be used for PEI on S3 resume\r
786 //\r
787 BuildMemoryAllocationHob (\r
45d87081
LE
788 mS3AcpiReservedMemoryBase,\r
789 mS3AcpiReservedMemorySize,\r
8e54500f
JJ
790 EfiACPIMemoryNVS\r
791 );\r
e249f906
LE
792\r
793 //\r
794 // Cover the initial RAM area used as stack and temporary PEI heap.\r
795 //\r
796 // This is reserved as ACPI NVS so it can be used on S3 resume.\r
797 //\r
798 BuildMemoryAllocationHob (\r
799 PcdGet32 (PcdOvmfSecPeiTempRamBase),\r
800 PcdGet32 (PcdOvmfSecPeiTempRamSize),\r
801 EfiACPIMemoryNVS\r
802 );\r
78a38b73 803\r
ad43bc6b
LE
804 //\r
805 // SEC stores its table of GUIDed section handlers here.\r
806 //\r
807 BuildMemoryAllocationHob (\r
808 PcdGet64 (PcdGuidedExtractHandlerTableAddress),\r
809 PcdGet32 (PcdGuidedExtractHandlerTableSize),\r
810 EfiACPIMemoryNVS\r
811 );\r
812\r
78a38b73
LE
813#ifdef MDE_CPU_X64\r
814 //\r
815 // Reserve the initial page tables built by the reset vector code.\r
816 //\r
817 // Since this memory range will be used by the Reset Vector on S3\r
818 // resume, it must be reserved as ACPI NVS.\r
819 //\r
820 BuildMemoryAllocationHob (\r
821 (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdOvmfSecPageTablesBase),\r
822 (UINT64)(UINTN) PcdGet32 (PcdOvmfSecPageTablesSize),\r
823 EfiACPIMemoryNVS\r
824 );\r
825#endif\r
0e8a31f5 826 }\r
6a7cba79 827\r
0e8a31f5 828 if (mBootMode != BOOT_ON_S3_RESUME) {\r
1a7edbbc
LE
829 if (!FeaturePcdGet (PcdSmmSmramRequire)) {\r
830 //\r
831 // Reserve the lock box storage area\r
832 //\r
833 // Since this memory range will be used on S3 resume, it must be\r
834 // reserved as ACPI NVS.\r
835 //\r
836 // If S3 is unsupported, then various drivers might still write to the\r
837 // LockBox area. We ought to prevent DXE from serving allocation requests\r
838 // such that they would overlap the LockBox storage.\r
839 //\r
840 ZeroMem (\r
841 (VOID*)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase),\r
842 (UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize)\r
843 );\r
844 BuildMemoryAllocationHob (\r
845 (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase),\r
846 (UINT64)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize),\r
847 mS3Supported ? EfiACPIMemoryNVS : EfiBootServicesData\r
848 );\r
849 }\r
b09c1c6f
LE
850\r
851 if (FeaturePcdGet (PcdSmmSmramRequire)) {\r
852 UINT32 TsegSize;\r
853\r
854 //\r
855 // Make sure the TSEG area that we reported as a reserved memory resource\r
856 // cannot be used for reserved memory allocations.\r
857 //\r
23bfb5c0 858 TsegSize = mQ35TsegMbytes * SIZE_1MB;\r
b09c1c6f
LE
859 BuildMemoryAllocationHob (\r
860 GetSystemMemorySizeBelow4gb() - TsegSize,\r
861 TsegSize,\r
862 EfiReservedMemoryType\r
863 );\r
864 }\r
8e54500f 865 }\r
c034906e 866}\r