]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/cpu/common.c
x86/entry/64: Create a per-CPU SYSCALL entry trampoline
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
CommitLineData
f0fc4aff 1#include <linux/bootmem.h>
9766cdbc 2#include <linux/linkage.h>
f0fc4aff 3#include <linux/bitops.h>
9766cdbc 4#include <linux/kernel.h>
186f4360 5#include <linux/export.h>
9766cdbc
JSR
6#include <linux/percpu.h>
7#include <linux/string.h>
ee098e1a 8#include <linux/ctype.h>
1da177e4 9#include <linux/delay.h>
68e21be2 10#include <linux/sched/mm.h>
e6017571 11#include <linux/sched/clock.h>
9164bb4a 12#include <linux/sched/task.h>
9766cdbc 13#include <linux/init.h>
0f46efeb 14#include <linux/kprobes.h>
9766cdbc 15#include <linux/kgdb.h>
1da177e4 16#include <linux/smp.h>
9766cdbc 17#include <linux/io.h>
b51ef52d 18#include <linux/syscore_ops.h>
9766cdbc
JSR
19
20#include <asm/stackprotector.h>
cdd6c482 21#include <asm/perf_event.h>
1da177e4 22#include <asm/mmu_context.h>
49d859d7 23#include <asm/archrandom.h>
9766cdbc
JSR
24#include <asm/hypervisor.h>
25#include <asm/processor.h>
1e02ce4c 26#include <asm/tlbflush.h>
f649e938 27#include <asm/debugreg.h>
9766cdbc 28#include <asm/sections.h>
f40c3300 29#include <asm/vsyscall.h>
8bdbd962
AC
30#include <linux/topology.h>
31#include <linux/cpumask.h>
9766cdbc 32#include <asm/pgtable.h>
60063497 33#include <linux/atomic.h>
9766cdbc
JSR
34#include <asm/proto.h>
35#include <asm/setup.h>
36#include <asm/apic.h>
37#include <asm/desc.h>
78f7f1e5 38#include <asm/fpu/internal.h>
27b07da7 39#include <asm/mtrr.h>
0274f955 40#include <asm/hwcap2.h>
8bdbd962 41#include <linux/numa.h>
9766cdbc 42#include <asm/asm.h>
0f6ff2bc 43#include <asm/bugs.h>
9766cdbc 44#include <asm/cpu.h>
a03a3e28 45#include <asm/mce.h>
9766cdbc 46#include <asm/msr.h>
8d4a4300 47#include <asm/pat.h>
d288e1cf
FY
48#include <asm/microcode.h>
49#include <asm/microcode_intel.h>
e641f5f5
IM
50
51#ifdef CONFIG_X86_LOCAL_APIC
bdbcdd48 52#include <asm/uv/uv.h>
1da177e4
LT
53#endif
54
55#include "cpu.h"
56
0274f955
GA
57u32 elf_hwcap2 __read_mostly;
58
c2d1cec1 59/* all of these masks are initialized in setup_cpu_local_masks() */
c2d1cec1 60cpumask_var_t cpu_initialized_mask;
9766cdbc
JSR
61cpumask_var_t cpu_callout_mask;
62cpumask_var_t cpu_callin_mask;
c2d1cec1
MT
63
64/* representing cpus for which sibling maps can be computed */
65cpumask_var_t cpu_sibling_setup_mask;
66
2f2f52ba 67/* correctly size the local cpu masks */
4369f1fb 68void __init setup_cpu_local_masks(void)
2f2f52ba
BG
69{
70 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74}
75
148f9bb8 76static void default_init(struct cpuinfo_x86 *c)
e8055139
OZ
77{
78#ifdef CONFIG_X86_64
27c13ece 79 cpu_detect_cache_sizes(c);
e8055139
OZ
80#else
81 /* Not much we can do here... */
82 /* Check if at least it has cpuid */
83 if (c->cpuid_level == -1) {
84 /* No cpuid. It must be an ancient CPU */
85 if (c->x86 == 4)
86 strcpy(c->x86_model_id, "486");
87 else if (c->x86 == 3)
88 strcpy(c->x86_model_id, "386");
89 }
90#endif
91}
92
148f9bb8 93static const struct cpu_dev default_cpu = {
e8055139
OZ
94 .c_init = default_init,
95 .c_vendor = "Unknown",
96 .c_x86_vendor = X86_VENDOR_UNKNOWN,
97};
98
148f9bb8 99static const struct cpu_dev *this_cpu = &default_cpu;
0a488a53 100
06deef89 101DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
950ad7ff 102#ifdef CONFIG_X86_64
06deef89
BG
103 /*
104 * We need valid kernel segments for data and code in long mode too
105 * IRET will check the segment types kkeil 2000/10/28
106 * Also sysret mandates a special GDT layout
107 *
9766cdbc 108 * TLS descriptors are currently at a different place compared to i386.
06deef89
BG
109 * Hopefully nobody expects them at a fixed place (Wine?)
110 */
1e5de182
AM
111 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
950ad7ff 117#else
1e5de182
AM
118 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
bf504672
RR
122 /*
123 * Segments used for calling PnP BIOS have byte granularity.
124 * They code segments and data segments have fixed 64k limits,
125 * the transfer segment sizes are set at run time.
126 */
6842ef0e 127 /* 32-bit code */
1e5de182 128 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
6842ef0e 129 /* 16-bit code */
1e5de182 130 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 131 /* 16-bit data */
1e5de182 132 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
6842ef0e 133 /* 16-bit data */
1e5de182 134 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
6842ef0e 135 /* 16-bit data */
1e5de182 136 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
bf504672
RR
137 /*
138 * The APM segments have byte granularity and their bases
139 * are set at run time. All have 64k limits.
140 */
6842ef0e 141 /* 32-bit code */
1e5de182 142 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
bf504672 143 /* 16-bit code */
1e5de182 144 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
6842ef0e 145 /* data */
72c4d853 146 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
bf504672 147
1e5de182
AM
148 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
60a5317f 150 GDT_STACK_CANARY_INIT
950ad7ff 151#endif
06deef89 152} };
7a61d35d 153EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
ae1ee11b 154
8c3641e9 155static int __init x86_mpx_setup(char *s)
0c752a93 156{
8c3641e9 157 /* require an exact match without trailing characters */
2cd3949f
DH
158 if (strlen(s))
159 return 0;
0c752a93 160
8c3641e9
DH
161 /* do not emit a message if the feature is not present */
162 if (!boot_cpu_has(X86_FEATURE_MPX))
163 return 1;
6bad06b7 164
8c3641e9
DH
165 setup_clear_cpu_cap(X86_FEATURE_MPX);
166 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
b6f42a4a
FY
167 return 1;
168}
8c3641e9 169__setup("nompx", x86_mpx_setup);
b6f42a4a 170
62d3a636 171#ifdef CONFIG_X86_64
0e6a37a4 172static int __init x86_nopcid_setup(char *s)
62d3a636 173{
0e6a37a4
AL
174 /* nopcid doesn't accept parameters */
175 if (s)
176 return -EINVAL;
62d3a636
AL
177
178 /* do not emit a message if the feature is not present */
179 if (!boot_cpu_has(X86_FEATURE_PCID))
0e6a37a4 180 return 0;
62d3a636
AL
181
182 setup_clear_cpu_cap(X86_FEATURE_PCID);
183 pr_info("nopcid: PCID feature disabled\n");
0e6a37a4 184 return 0;
62d3a636 185}
0e6a37a4 186early_param("nopcid", x86_nopcid_setup);
62d3a636
AL
187#endif
188
d12a72b8
AL
189static int __init x86_noinvpcid_setup(char *s)
190{
191 /* noinvpcid doesn't accept parameters */
192 if (s)
193 return -EINVAL;
194
195 /* do not emit a message if the feature is not present */
196 if (!boot_cpu_has(X86_FEATURE_INVPCID))
197 return 0;
198
199 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
200 pr_info("noinvpcid: INVPCID feature disabled\n");
201 return 0;
202}
203early_param("noinvpcid", x86_noinvpcid_setup);
204
ba51dced 205#ifdef CONFIG_X86_32
148f9bb8
PG
206static int cachesize_override = -1;
207static int disable_x86_serial_nr = 1;
1da177e4 208
0a488a53
YL
209static int __init cachesize_setup(char *str)
210{
211 get_option(&str, &cachesize_override);
212 return 1;
213}
214__setup("cachesize=", cachesize_setup);
215
0a488a53
YL
216static int __init x86_sep_setup(char *s)
217{
218 setup_clear_cpu_cap(X86_FEATURE_SEP);
219 return 1;
220}
221__setup("nosep", x86_sep_setup);
222
223/* Standard macro to see if a specific flag is changeable */
224static inline int flag_is_changeable_p(u32 flag)
225{
226 u32 f1, f2;
227
94f6bac1
KH
228 /*
229 * Cyrix and IDT cpus allow disabling of CPUID
230 * so the code below may return different results
231 * when it is executed before and after enabling
232 * the CPUID. Add "volatile" to not allow gcc to
233 * optimize the subsequent calls to this function.
234 */
0f3fa48a
IM
235 asm volatile ("pushfl \n\t"
236 "pushfl \n\t"
237 "popl %0 \n\t"
238 "movl %0, %1 \n\t"
239 "xorl %2, %0 \n\t"
240 "pushl %0 \n\t"
241 "popfl \n\t"
242 "pushfl \n\t"
243 "popl %0 \n\t"
244 "popfl \n\t"
245
94f6bac1
KH
246 : "=&r" (f1), "=&r" (f2)
247 : "ir" (flag));
0a488a53
YL
248
249 return ((f1^f2) & flag) != 0;
250}
251
252/* Probe for the CPUID instruction */
148f9bb8 253int have_cpuid_p(void)
0a488a53
YL
254{
255 return flag_is_changeable_p(X86_EFLAGS_ID);
256}
257
148f9bb8 258static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
0a488a53 259{
0f3fa48a
IM
260 unsigned long lo, hi;
261
262 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
263 return;
264
265 /* Disable processor serial number: */
266
267 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268 lo |= 0x200000;
269 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270
1b74dde7 271 pr_notice("CPU serial number disabled.\n");
0f3fa48a
IM
272 clear_cpu_cap(c, X86_FEATURE_PN);
273
274 /* Disabling the serial number may affect the cpuid level */
275 c->cpuid_level = cpuid_eax(0);
0a488a53
YL
276}
277
278static int __init x86_serial_nr_setup(char *s)
279{
280 disable_x86_serial_nr = 0;
281 return 1;
282}
283__setup("serialnumber", x86_serial_nr_setup);
ba51dced 284#else
102bbe3a
YL
285static inline int flag_is_changeable_p(u32 flag)
286{
287 return 1;
288}
102bbe3a
YL
289static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
290{
291}
ba51dced 292#endif
0a488a53 293
de5397ad
FY
294static __init int setup_disable_smep(char *arg)
295{
b2cc2a07 296 setup_clear_cpu_cap(X86_FEATURE_SMEP);
0f6ff2bc
DH
297 /* Check for things that depend on SMEP being enabled: */
298 check_mpx_erratum(&boot_cpu_data);
de5397ad
FY
299 return 1;
300}
301__setup("nosmep", setup_disable_smep);
302
b2cc2a07 303static __always_inline void setup_smep(struct cpuinfo_x86 *c)
de5397ad 304{
b2cc2a07 305 if (cpu_has(c, X86_FEATURE_SMEP))
375074cc 306 cr4_set_bits(X86_CR4_SMEP);
de5397ad
FY
307}
308
52b6179a
PA
309static __init int setup_disable_smap(char *arg)
310{
b2cc2a07 311 setup_clear_cpu_cap(X86_FEATURE_SMAP);
52b6179a
PA
312 return 1;
313}
314__setup("nosmap", setup_disable_smap);
315
b2cc2a07
PA
316static __always_inline void setup_smap(struct cpuinfo_x86 *c)
317{
581b7f15 318 unsigned long eflags = native_save_fl();
b2cc2a07
PA
319
320 /* This should have been cleared long ago */
b2cc2a07
PA
321 BUG_ON(eflags & X86_EFLAGS_AC);
322
03bbd596
PA
323 if (cpu_has(c, X86_FEATURE_SMAP)) {
324#ifdef CONFIG_X86_SMAP
375074cc 325 cr4_set_bits(X86_CR4_SMAP);
03bbd596 326#else
375074cc 327 cr4_clear_bits(X86_CR4_SMAP);
03bbd596
PA
328#endif
329 }
de5397ad
FY
330}
331
06976945
DH
332/*
333 * Protection Keys are not available in 32-bit mode.
334 */
335static bool pku_disabled;
336
337static __always_inline void setup_pku(struct cpuinfo_x86 *c)
338{
e8df1a95
DH
339 /* check the boot processor, plus compile options for PKU: */
340 if (!cpu_feature_enabled(X86_FEATURE_PKU))
341 return;
342 /* checks the actual processor's cpuid bits: */
06976945
DH
343 if (!cpu_has(c, X86_FEATURE_PKU))
344 return;
345 if (pku_disabled)
346 return;
347
348 cr4_set_bits(X86_CR4_PKE);
349 /*
350 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
351 * cpuid bit to be set. We need to ensure that we
352 * update that bit in this CPU's "cpu_info".
353 */
354 get_cpu_cap(c);
355}
356
357#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
358static __init int setup_disable_pku(char *arg)
359{
360 /*
361 * Do not clear the X86_FEATURE_PKU bit. All of the
362 * runtime checks are against OSPKE so clearing the
363 * bit does nothing.
364 *
365 * This way, we will see "pku" in cpuinfo, but not
366 * "ospke", which is exactly what we want. It shows
367 * that the CPU has PKU, but the OS has not enabled it.
368 * This happens to be exactly how a system would look
369 * if we disabled the config option.
370 */
371 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
372 pku_disabled = true;
373 return 1;
374}
375__setup("nopku", setup_disable_pku);
376#endif /* CONFIG_X86_64 */
377
b38b0665
PA
378/*
379 * Some CPU features depend on higher CPUID levels, which may not always
380 * be available due to CPUID level capping or broken virtualization
381 * software. Add those features to this table to auto-disable them.
382 */
383struct cpuid_dependent_feature {
384 u32 feature;
385 u32 level;
386};
0f3fa48a 387
148f9bb8 388static const struct cpuid_dependent_feature
b38b0665
PA
389cpuid_dependent_features[] = {
390 { X86_FEATURE_MWAIT, 0x00000005 },
391 { X86_FEATURE_DCA, 0x00000009 },
392 { X86_FEATURE_XSAVE, 0x0000000d },
393 { 0, 0 }
394};
395
148f9bb8 396static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
b38b0665
PA
397{
398 const struct cpuid_dependent_feature *df;
9766cdbc 399
b38b0665 400 for (df = cpuid_dependent_features; df->feature; df++) {
0f3fa48a
IM
401
402 if (!cpu_has(c, df->feature))
403 continue;
b38b0665
PA
404 /*
405 * Note: cpuid_level is set to -1 if unavailable, but
406 * extended_extended_level is set to 0 if unavailable
407 * and the legitimate extended levels are all negative
408 * when signed; hence the weird messing around with
409 * signs here...
410 */
0f3fa48a 411 if (!((s32)df->level < 0 ?
f6db44df 412 (u32)df->level > (u32)c->extended_cpuid_level :
0f3fa48a
IM
413 (s32)df->level > (s32)c->cpuid_level))
414 continue;
415
416 clear_cpu_cap(c, df->feature);
417 if (!warn)
418 continue;
419
1b74dde7
CY
420 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
421 x86_cap_flag(df->feature), df->level);
b38b0665 422 }
f6db44df 423}
b38b0665 424
102bbe3a
YL
425/*
426 * Naming convention should be: <Name> [(<Codename>)]
427 * This table only is used unless init_<vendor>() below doesn't set it;
0f3fa48a
IM
428 * in particular, if CPUID levels 0x80000002..4 are supported, this
429 * isn't used
102bbe3a
YL
430 */
431
432/* Look up CPU names by table lookup. */
148f9bb8 433static const char *table_lookup_model(struct cpuinfo_x86 *c)
102bbe3a 434{
09dc68d9
JB
435#ifdef CONFIG_X86_32
436 const struct legacy_cpu_model_info *info;
102bbe3a
YL
437
438 if (c->x86_model >= 16)
439 return NULL; /* Range check */
440
441 if (!this_cpu)
442 return NULL;
443
09dc68d9 444 info = this_cpu->legacy_models;
102bbe3a 445
09dc68d9 446 while (info->family) {
102bbe3a
YL
447 if (info->family == c->x86)
448 return info->model_names[c->x86_model];
449 info++;
450 }
09dc68d9 451#endif
102bbe3a
YL
452 return NULL; /* Not found */
453}
454
148f9bb8
PG
455__u32 cpu_caps_cleared[NCAPINTS];
456__u32 cpu_caps_set[NCAPINTS];
7d851c8d 457
11e3a840
JF
458void load_percpu_segment(int cpu)
459{
460#ifdef CONFIG_X86_32
461 loadsegment(fs, __KERNEL_PERCPU);
462#else
45e876f7 463 __loadsegment_simple(gs, 0);
11e3a840
JF
464 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
465#endif
60a5317f 466 load_stack_canary_segment();
11e3a840
JF
467}
468
475b37e7
AL
469static void set_percpu_fixmap_pages(int fixmap_index, void *ptr,
470 int pages, pgprot_t prot)
471{
472 int i;
473
474 for (i = 0; i < pages; i++) {
475 __set_fixmap(fixmap_index - i,
476 per_cpu_ptr_to_phys(ptr + i * PAGE_SIZE), prot);
477 }
478}
479
480#ifdef CONFIG_X86_32
481/* The 32-bit entry code needs to find cpu_entry_area. */
482DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
483#endif
484
b17894f1
AL
485/* Setup the fixmap mappings only once per-processor */
486static inline void setup_cpu_entry_area(int cpu)
b23adb7d 487{
45fc8757 488#ifdef CONFIG_X86_64
9fec5954
AL
489 extern char _entry_trampoline[];
490
b23adb7d 491 /* On 64-bit systems, we use a read-only fixmap GDT. */
b17894f1 492 pgprot_t gdt_prot = PAGE_KERNEL_RO;
45fc8757 493#else
b23adb7d
AL
494 /*
495 * On native 32-bit systems, the GDT cannot be read-only because
496 * our double fault handler uses a task gate, and entering through
497 * a task gate needs to change an available TSS to busy. If the GDT
498 * is read-only, that will triple fault.
499 *
500 * On Xen PV, the GDT must be read-only because the hypervisor requires
501 * it.
502 */
b17894f1 503 pgprot_t gdt_prot = boot_cpu_has(X86_FEATURE_XENPV) ?
b23adb7d 504 PAGE_KERNEL_RO : PAGE_KERNEL;
45fc8757 505#endif
69218e47 506
b17894f1 507 __set_fixmap(get_cpu_entry_area_index(cpu, gdt), get_cpu_gdt_paddr(cpu), gdt_prot);
57d6cfd9
AL
508
509 /*
510 * The Intel SDM says (Volume 3, 7.2.1):
511 *
512 * Avoid placing a page boundary in the part of the TSS that the
513 * processor reads during a task switch (the first 104 bytes). The
514 * processor may not correctly perform address translations if a
515 * boundary occurs in this area. During a task switch, the processor
516 * reads and writes into the first 104 bytes of each TSS (using
517 * contiguous physical addresses beginning with the physical address
518 * of the first byte of the TSS). So, after TSS access begins, if
519 * part of the 104 bytes is not physically contiguous, the processor
520 * will access incorrect information without generating a page-fault
521 * exception.
522 *
523 * There are also a lot of errata involving the TSS spanning a page
524 * boundary. Assert that we're not doing that.
525 */
526 BUILD_BUG_ON((offsetof(struct tss_struct, x86_tss) ^
527 offsetofend(struct tss_struct, x86_tss)) & PAGE_MASK);
475b37e7
AL
528 BUILD_BUG_ON(sizeof(struct tss_struct) % PAGE_SIZE != 0);
529 set_percpu_fixmap_pages(get_cpu_entry_area_index(cpu, tss),
530 &per_cpu(cpu_tss, cpu),
531 sizeof(struct tss_struct) / PAGE_SIZE,
532 PAGE_KERNEL);
57d6cfd9 533
475b37e7
AL
534#ifdef CONFIG_X86_32
535 this_cpu_write(cpu_entry_area, get_cpu_entry_area(cpu));
536#endif
9fec5954
AL
537
538#ifdef CONFIG_X86_64
539 __set_fixmap(get_cpu_entry_area_index(cpu, entry_trampoline),
540 __pa_symbol(_entry_trampoline), PAGE_KERNEL_RX);
541#endif
69218e47
TG
542}
543
45fc8757
TG
544/* Load the original GDT from the per-cpu structure */
545void load_direct_gdt(int cpu)
546{
547 struct desc_ptr gdt_descr;
548
549 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
550 gdt_descr.size = GDT_SIZE - 1;
551 load_gdt(&gdt_descr);
552}
553EXPORT_SYMBOL_GPL(load_direct_gdt);
554
69218e47
TG
555/* Load a fixmap remapping of the per-cpu GDT */
556void load_fixmap_gdt(int cpu)
557{
558 struct desc_ptr gdt_descr;
559
560 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
561 gdt_descr.size = GDT_SIZE - 1;
562 load_gdt(&gdt_descr);
563}
45fc8757 564EXPORT_SYMBOL_GPL(load_fixmap_gdt);
69218e47 565
0f3fa48a
IM
566/*
567 * Current gdt points %fs at the "master" per-cpu area: after this,
568 * it's on the real one.
569 */
552be871 570void switch_to_new_gdt(int cpu)
9d31d35b 571{
45fc8757
TG
572 /* Load the original GDT */
573 load_direct_gdt(cpu);
2697fbd5 574 /* Reload the per-cpu base */
11e3a840 575 load_percpu_segment(cpu);
9d31d35b
YL
576}
577
148f9bb8 578static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
1da177e4 579
148f9bb8 580static void get_model_name(struct cpuinfo_x86 *c)
1da177e4
LT
581{
582 unsigned int *v;
ee098e1a 583 char *p, *q, *s;
1da177e4 584
3da99c97 585 if (c->extended_cpuid_level < 0x80000004)
1b05d60d 586 return;
1da177e4 587
0f3fa48a 588 v = (unsigned int *)c->x86_model_id;
1da177e4
LT
589 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
590 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
591 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
592 c->x86_model_id[48] = 0;
593
ee098e1a
BP
594 /* Trim whitespace */
595 p = q = s = &c->x86_model_id[0];
596
597 while (*p == ' ')
598 p++;
599
600 while (*p) {
601 /* Note the last non-whitespace index */
602 if (!isspace(*p))
603 s = q;
604
605 *q++ = *p++;
606 }
607
608 *(s + 1) = '\0';
1da177e4
LT
609}
610
148f9bb8 611void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
1da177e4 612{
9d31d35b 613 unsigned int n, dummy, ebx, ecx, edx, l2size;
1da177e4 614
3da99c97 615 n = c->extended_cpuid_level;
1da177e4
LT
616
617 if (n >= 0x80000005) {
9d31d35b 618 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
9d31d35b 619 c->x86_cache_size = (ecx>>24) + (edx>>24);
140fc727
YL
620#ifdef CONFIG_X86_64
621 /* On K8 L1 TLB is inclusive, so don't count it */
622 c->x86_tlbsize = 0;
623#endif
1da177e4
LT
624 }
625
626 if (n < 0x80000006) /* Some chips just has a large L1. */
627 return;
628
0a488a53 629 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
1da177e4 630 l2size = ecx >> 16;
34048c9e 631
140fc727
YL
632#ifdef CONFIG_X86_64
633 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
634#else
1da177e4 635 /* do processor-specific cache resizing */
09dc68d9
JB
636 if (this_cpu->legacy_cache_size)
637 l2size = this_cpu->legacy_cache_size(c, l2size);
1da177e4
LT
638
639 /* Allow user to override all this if necessary. */
640 if (cachesize_override != -1)
641 l2size = cachesize_override;
642
34048c9e 643 if (l2size == 0)
1da177e4 644 return; /* Again, no L2 cache is possible */
140fc727 645#endif
1da177e4
LT
646
647 c->x86_cache_size = l2size;
1da177e4
LT
648}
649
e0ba94f1
AS
650u16 __read_mostly tlb_lli_4k[NR_INFO];
651u16 __read_mostly tlb_lli_2m[NR_INFO];
652u16 __read_mostly tlb_lli_4m[NR_INFO];
653u16 __read_mostly tlb_lld_4k[NR_INFO];
654u16 __read_mostly tlb_lld_2m[NR_INFO];
655u16 __read_mostly tlb_lld_4m[NR_INFO];
dd360393 656u16 __read_mostly tlb_lld_1g[NR_INFO];
e0ba94f1 657
f94fe119 658static void cpu_detect_tlb(struct cpuinfo_x86 *c)
e0ba94f1
AS
659{
660 if (this_cpu->c_detect_tlb)
661 this_cpu->c_detect_tlb(c);
662
f94fe119 663 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
e0ba94f1 664 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
f94fe119
SH
665 tlb_lli_4m[ENTRIES]);
666
667 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
668 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
669 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
e0ba94f1
AS
670}
671
148f9bb8 672void detect_ht(struct cpuinfo_x86 *c)
1da177e4 673{
c8e56d20 674#ifdef CONFIG_SMP
0a488a53
YL
675 u32 eax, ebx, ecx, edx;
676 int index_msb, core_bits;
2eaad1fd 677 static bool printed;
1da177e4 678
0a488a53 679 if (!cpu_has(c, X86_FEATURE_HT))
9d31d35b 680 return;
1da177e4 681
0a488a53
YL
682 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
683 goto out;
1da177e4 684
1cd78776
YL
685 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
686 return;
1da177e4 687
0a488a53 688 cpuid(1, &eax, &ebx, &ecx, &edx);
1da177e4 689
9d31d35b
YL
690 smp_num_siblings = (ebx & 0xff0000) >> 16;
691
692 if (smp_num_siblings == 1) {
1b74dde7 693 pr_info_once("CPU0: Hyper-Threading is disabled\n");
0f3fa48a
IM
694 goto out;
695 }
9d31d35b 696
0f3fa48a
IM
697 if (smp_num_siblings <= 1)
698 goto out;
9d31d35b 699
0f3fa48a
IM
700 index_msb = get_count_order(smp_num_siblings);
701 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
9d31d35b 702
0f3fa48a 703 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
9d31d35b 704
0f3fa48a 705 index_msb = get_count_order(smp_num_siblings);
9d31d35b 706
0f3fa48a 707 core_bits = get_count_order(c->x86_max_cores);
9d31d35b 708
0f3fa48a
IM
709 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
710 ((1 << core_bits) - 1);
1da177e4 711
0a488a53 712out:
2eaad1fd 713 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
1b74dde7
CY
714 pr_info("CPU: Physical Processor ID: %d\n",
715 c->phys_proc_id);
716 pr_info("CPU: Processor Core ID: %d\n",
717 c->cpu_core_id);
2eaad1fd 718 printed = 1;
9d31d35b 719 }
9d31d35b 720#endif
97e4db7c 721}
1da177e4 722
148f9bb8 723static void get_cpu_vendor(struct cpuinfo_x86 *c)
1da177e4
LT
724{
725 char *v = c->x86_vendor_id;
0f3fa48a 726 int i;
1da177e4
LT
727
728 for (i = 0; i < X86_VENDOR_NUM; i++) {
10a434fc
YL
729 if (!cpu_devs[i])
730 break;
731
732 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
733 (cpu_devs[i]->c_ident[1] &&
734 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
0f3fa48a 735
10a434fc
YL
736 this_cpu = cpu_devs[i];
737 c->x86_vendor = this_cpu->c_x86_vendor;
738 return;
1da177e4
LT
739 }
740 }
10a434fc 741
1b74dde7
CY
742 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
743 "CPU: Your system may be unstable.\n", v);
10a434fc 744
fe38d855
CE
745 c->x86_vendor = X86_VENDOR_UNKNOWN;
746 this_cpu = &default_cpu;
1da177e4
LT
747}
748
148f9bb8 749void cpu_detect(struct cpuinfo_x86 *c)
1da177e4 750{
1da177e4 751 /* Get vendor name */
4a148513
HH
752 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
753 (unsigned int *)&c->x86_vendor_id[0],
754 (unsigned int *)&c->x86_vendor_id[8],
755 (unsigned int *)&c->x86_vendor_id[4]);
1da177e4 756
1da177e4 757 c->x86 = 4;
9d31d35b 758 /* Intel-defined flags: level 0x00000001 */
1da177e4
LT
759 if (c->cpuid_level >= 0x00000001) {
760 u32 junk, tfms, cap0, misc;
0f3fa48a 761
1da177e4 762 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
99f925ce
BP
763 c->x86 = x86_family(tfms);
764 c->x86_model = x86_model(tfms);
765 c->x86_mask = x86_stepping(tfms);
0f3fa48a 766
d4387bd3 767 if (cap0 & (1<<19)) {
d4387bd3 768 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
9d31d35b 769 c->x86_cache_alignment = c->x86_clflush_size;
d4387bd3 770 }
1da177e4 771 }
1da177e4 772}
3da99c97 773
8bf1ebca
AL
774static void apply_forced_caps(struct cpuinfo_x86 *c)
775{
776 int i;
777
778 for (i = 0; i < NCAPINTS; i++) {
779 c->x86_capability[i] &= ~cpu_caps_cleared[i];
780 c->x86_capability[i] |= cpu_caps_set[i];
781 }
782}
783
148f9bb8 784void get_cpu_cap(struct cpuinfo_x86 *c)
093af8d7 785{
39c06df4 786 u32 eax, ebx, ecx, edx;
093af8d7 787
3da99c97
YL
788 /* Intel-defined flags: level 0x00000001 */
789 if (c->cpuid_level >= 0x00000001) {
39c06df4 790 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 791
39c06df4
BP
792 c->x86_capability[CPUID_1_ECX] = ecx;
793 c->x86_capability[CPUID_1_EDX] = edx;
3da99c97 794 }
093af8d7 795
3df8d920
AL
796 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
797 if (c->cpuid_level >= 0x00000006)
798 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
799
bdc802dc
PA
800 /* Additional Intel-defined flags: level 0x00000007 */
801 if (c->cpuid_level >= 0x00000007) {
bdc802dc 802 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
39c06df4 803 c->x86_capability[CPUID_7_0_EBX] = ebx;
dfb4a70f 804 c->x86_capability[CPUID_7_ECX] = ecx;
bdc802dc
PA
805 }
806
6229ad27
FY
807 /* Extended state features: level 0x0000000d */
808 if (c->cpuid_level >= 0x0000000d) {
6229ad27
FY
809 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
810
39c06df4 811 c->x86_capability[CPUID_D_1_EAX] = eax;
6229ad27
FY
812 }
813
cbc82b17
PWJ
814 /* Additional Intel-defined flags: level 0x0000000F */
815 if (c->cpuid_level >= 0x0000000F) {
cbc82b17
PWJ
816
817 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
818 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
39c06df4
BP
819 c->x86_capability[CPUID_F_0_EDX] = edx;
820
cbc82b17
PWJ
821 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
822 /* will be overridden if occupancy monitoring exists */
823 c->x86_cache_max_rmid = ebx;
824
825 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
826 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
39c06df4
BP
827 c->x86_capability[CPUID_F_1_EDX] = edx;
828
33c3cc7a
VS
829 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
830 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
831 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
cbc82b17
PWJ
832 c->x86_cache_max_rmid = ecx;
833 c->x86_cache_occ_scale = ebx;
834 }
835 } else {
836 c->x86_cache_max_rmid = -1;
837 c->x86_cache_occ_scale = -1;
838 }
839 }
840
3da99c97 841 /* AMD-defined flags: level 0x80000001 */
39c06df4
BP
842 eax = cpuid_eax(0x80000000);
843 c->extended_cpuid_level = eax;
844
845 if ((eax & 0xffff0000) == 0x80000000) {
846 if (eax >= 0x80000001) {
847 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
0f3fa48a 848
39c06df4
BP
849 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
850 c->x86_capability[CPUID_8000_0001_EDX] = edx;
093af8d7 851 }
093af8d7 852 }
093af8d7 853
71faad43
YG
854 if (c->extended_cpuid_level >= 0x80000007) {
855 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
856
857 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
858 c->x86_power = edx;
859 }
860
5122c890 861 if (c->extended_cpuid_level >= 0x80000008) {
39c06df4 862 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
5122c890
YL
863
864 c->x86_virt_bits = (eax >> 8) & 0xff;
865 c->x86_phys_bits = eax & 0xff;
39c06df4 866 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
093af8d7 867 }
13c6c532
JB
868#ifdef CONFIG_X86_32
869 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
870 c->x86_phys_bits = 36;
5122c890 871#endif
e3224234 872
2ccd71f1 873 if (c->extended_cpuid_level >= 0x8000000a)
39c06df4 874 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
093af8d7 875
1dedefd1 876 init_scattered_cpuid_features(c);
60d34501
AL
877
878 /*
879 * Clear/Set all flags overridden by options, after probe.
880 * This needs to happen each time we re-probe, which may happen
881 * several times during CPU initialization.
882 */
883 apply_forced_caps(c);
093af8d7 884}
1da177e4 885
148f9bb8 886static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
aef93c8b
YL
887{
888#ifdef CONFIG_X86_32
889 int i;
890
891 /*
892 * First of all, decide if this is a 486 or higher
893 * It's a 486 if we can modify the AC flag
894 */
895 if (flag_is_changeable_p(X86_EFLAGS_AC))
896 c->x86 = 4;
897 else
898 c->x86 = 3;
899
900 for (i = 0; i < X86_VENDOR_NUM; i++)
901 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
902 c->x86_vendor_id[0] = 0;
903 cpu_devs[i]->c_identify(c);
904 if (c->x86_vendor_id[0]) {
905 get_cpu_vendor(c);
906 break;
907 }
908 }
909#endif
910}
911
34048c9e
PC
912/*
913 * Do minimum CPU detection early.
914 * Fields really needed: vendor, cpuid_level, family, model, mask,
915 * cache alignment.
916 * The others are not touched to avoid unwanted side effects.
917 *
918 * WARNING: this function is only called on the BP. Don't add code here
919 * that is supposed to run on all CPUs.
920 */
3da99c97 921static void __init early_identify_cpu(struct cpuinfo_x86 *c)
d7cd5611 922{
6627d242
YL
923#ifdef CONFIG_X86_64
924 c->x86_clflush_size = 64;
13c6c532
JB
925 c->x86_phys_bits = 36;
926 c->x86_virt_bits = 48;
6627d242 927#else
d4387bd3 928 c->x86_clflush_size = 32;
13c6c532
JB
929 c->x86_phys_bits = 32;
930 c->x86_virt_bits = 32;
6627d242 931#endif
0a488a53 932 c->x86_cache_alignment = c->x86_clflush_size;
d7cd5611 933
3da99c97 934 memset(&c->x86_capability, 0, sizeof c->x86_capability);
0a488a53 935 c->extended_cpuid_level = 0;
d7cd5611 936
aef93c8b 937 /* cyrix could have cpuid enabled via c_identify()*/
05fb3c19
AL
938 if (have_cpuid_p()) {
939 cpu_detect(c);
940 get_cpu_vendor(c);
941 get_cpu_cap(c);
78d1b296 942 setup_force_cpu_cap(X86_FEATURE_CPUID);
d7cd5611 943
05fb3c19
AL
944 if (this_cpu->c_early_init)
945 this_cpu->c_early_init(c);
12cf105c 946
05fb3c19
AL
947 c->cpu_index = 0;
948 filter_cpuid_features(c, false);
093af8d7 949
05fb3c19
AL
950 if (this_cpu->c_bsp_init)
951 this_cpu->c_bsp_init(c);
78d1b296
BP
952 } else {
953 identify_cpu_without_cpuid(c);
954 setup_clear_cpu_cap(X86_FEATURE_CPUID);
05fb3c19 955 }
c3b83598
BP
956
957 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
db52ef74 958 fpu__init_system(c);
d7cd5611
RR
959}
960
9d31d35b
YL
961void __init early_cpu_init(void)
962{
02dde8b4 963 const struct cpu_dev *const *cdev;
10a434fc
YL
964 int count = 0;
965
ac23f253 966#ifdef CONFIG_PROCESSOR_SELECT
1b74dde7 967 pr_info("KERNEL supported cpus:\n");
31c997ca
IM
968#endif
969
10a434fc 970 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
02dde8b4 971 const struct cpu_dev *cpudev = *cdev;
9d31d35b 972
10a434fc
YL
973 if (count >= X86_VENDOR_NUM)
974 break;
975 cpu_devs[count] = cpudev;
976 count++;
977
ac23f253 978#ifdef CONFIG_PROCESSOR_SELECT
31c997ca
IM
979 {
980 unsigned int j;
981
982 for (j = 0; j < 2; j++) {
983 if (!cpudev->c_ident[j])
984 continue;
1b74dde7 985 pr_info(" %s %s\n", cpudev->c_vendor,
31c997ca
IM
986 cpudev->c_ident[j]);
987 }
10a434fc 988 }
0388423d 989#endif
10a434fc 990 }
9d31d35b 991 early_identify_cpu(&boot_cpu_data);
d7cd5611 992}
093af8d7 993
b6734c35 994/*
366d4a43
BP
995 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
996 * unfortunately, that's not true in practice because of early VIA
997 * chips and (more importantly) broken virtualizers that are not easy
998 * to detect. In the latter case it doesn't even *fail* reliably, so
999 * probing for it doesn't even work. Disable it completely on 32-bit
ba0593bf 1000 * unless we can find a reliable way to detect all the broken cases.
366d4a43 1001 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
b6734c35 1002 */
148f9bb8 1003static void detect_nopl(struct cpuinfo_x86 *c)
b6734c35 1004{
366d4a43 1005#ifdef CONFIG_X86_32
b6734c35 1006 clear_cpu_cap(c, X86_FEATURE_NOPL);
366d4a43
BP
1007#else
1008 set_cpu_cap(c, X86_FEATURE_NOPL);
58a5aac5 1009#endif
d7cd5611 1010}
58a5aac5 1011
7a5d6704
AL
1012static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1013{
1014#ifdef CONFIG_X86_64
58a5aac5 1015 /*
7a5d6704
AL
1016 * Empirically, writing zero to a segment selector on AMD does
1017 * not clear the base, whereas writing zero to a segment
1018 * selector on Intel does clear the base. Intel's behavior
1019 * allows slightly faster context switches in the common case
1020 * where GS is unused by the prev and next threads.
58a5aac5 1021 *
7a5d6704
AL
1022 * Since neither vendor documents this anywhere that I can see,
1023 * detect it directly instead of hardcoding the choice by
1024 * vendor.
1025 *
1026 * I've designated AMD's behavior as the "bug" because it's
1027 * counterintuitive and less friendly.
58a5aac5 1028 */
7a5d6704
AL
1029
1030 unsigned long old_base, tmp;
1031 rdmsrl(MSR_FS_BASE, old_base);
1032 wrmsrl(MSR_FS_BASE, 1);
1033 loadsegment(fs, 0);
1034 rdmsrl(MSR_FS_BASE, tmp);
1035 if (tmp != 0)
1036 set_cpu_bug(c, X86_BUG_NULL_SEG);
1037 wrmsrl(MSR_FS_BASE, old_base);
366d4a43 1038#endif
d7cd5611
RR
1039}
1040
148f9bb8 1041static void generic_identify(struct cpuinfo_x86 *c)
1da177e4 1042{
aef93c8b 1043 c->extended_cpuid_level = 0;
1da177e4 1044
3da99c97 1045 if (!have_cpuid_p())
aef93c8b 1046 identify_cpu_without_cpuid(c);
1d67953f 1047
aef93c8b 1048 /* cyrix could have cpuid enabled via c_identify()*/
a9853dd6 1049 if (!have_cpuid_p())
aef93c8b 1050 return;
1da177e4 1051
3da99c97 1052 cpu_detect(c);
1da177e4 1053
3da99c97 1054 get_cpu_vendor(c);
1da177e4 1055
3da99c97 1056 get_cpu_cap(c);
1da177e4 1057
3da99c97
YL
1058 if (c->cpuid_level >= 0x00000001) {
1059 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
b89d3b3e 1060#ifdef CONFIG_X86_32
c8e56d20 1061# ifdef CONFIG_SMP
cb8cc442 1062 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
b89d3b3e 1063# else
3da99c97 1064 c->apicid = c->initial_apicid;
b89d3b3e
YL
1065# endif
1066#endif
b89d3b3e 1067 c->phys_proc_id = c->initial_apicid;
3da99c97 1068 }
1da177e4 1069
1b05d60d 1070 get_model_name(c); /* Default name */
1da177e4 1071
3da99c97 1072 detect_nopl(c);
7a5d6704
AL
1073
1074 detect_null_seg_behavior(c);
0230bb03
AL
1075
1076 /*
1077 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1078 * systems that run Linux at CPL > 0 may or may not have the
1079 * issue, but, even if they have the issue, there's absolutely
1080 * nothing we can do about it because we can't use the real IRET
1081 * instruction.
1082 *
1083 * NB: For the time being, only 32-bit kernels support
1084 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1085 * whether to apply espfix using paravirt hooks. If any
1086 * non-paravirt system ever shows up that does *not* have the
1087 * ESPFIX issue, we can change this.
1088 */
1089#ifdef CONFIG_X86_32
1090# ifdef CONFIG_PARAVIRT
1091 do {
1092 extern void native_iret(void);
1093 if (pv_cpu_ops.iret == native_iret)
1094 set_cpu_bug(c, X86_BUG_ESPFIX);
1095 } while (0);
1096# else
1097 set_cpu_bug(c, X86_BUG_ESPFIX);
1098# endif
1099#endif
1da177e4 1100}
1da177e4 1101
cbc82b17
PWJ
1102static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1103{
1104 /*
1105 * The heavy lifting of max_rmid and cache_occ_scale are handled
1106 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1107 * in case CQM bits really aren't there in this CPU.
1108 */
1109 if (c != &boot_cpu_data) {
1110 boot_cpu_data.x86_cache_max_rmid =
1111 min(boot_cpu_data.x86_cache_max_rmid,
1112 c->x86_cache_max_rmid);
1113 }
1114}
1115
d49597fd 1116/*
9d85eb91
TG
1117 * Validate that ACPI/mptables have the same information about the
1118 * effective APIC id and update the package map.
d49597fd 1119 */
9d85eb91 1120static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
d49597fd
TG
1121{
1122#ifdef CONFIG_SMP
9d85eb91 1123 unsigned int apicid, cpu = smp_processor_id();
d49597fd
TG
1124
1125 apicid = apic->cpu_present_to_apicid(cpu);
d49597fd 1126
9d85eb91
TG
1127 if (apicid != c->apicid) {
1128 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
d49597fd 1129 cpu, apicid, c->initial_apicid);
d49597fd 1130 }
9d85eb91 1131 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
d49597fd
TG
1132#else
1133 c->logical_proc_id = 0;
1134#endif
1135}
1136
1da177e4
LT
1137/*
1138 * This does the hard work of actually picking apart the CPU stuff...
1139 */
148f9bb8 1140static void identify_cpu(struct cpuinfo_x86 *c)
1da177e4
LT
1141{
1142 int i;
1143
1144 c->loops_per_jiffy = loops_per_jiffy;
1145 c->x86_cache_size = -1;
1146 c->x86_vendor = X86_VENDOR_UNKNOWN;
1da177e4
LT
1147 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1148 c->x86_vendor_id[0] = '\0'; /* Unset */
1149 c->x86_model_id[0] = '\0'; /* Unset */
94605eff 1150 c->x86_max_cores = 1;
102bbe3a 1151 c->x86_coreid_bits = 0;
79a8b9aa 1152 c->cu_id = 0xff;
11fdd252 1153#ifdef CONFIG_X86_64
102bbe3a 1154 c->x86_clflush_size = 64;
13c6c532
JB
1155 c->x86_phys_bits = 36;
1156 c->x86_virt_bits = 48;
102bbe3a
YL
1157#else
1158 c->cpuid_level = -1; /* CPUID not detected */
770d132f 1159 c->x86_clflush_size = 32;
13c6c532
JB
1160 c->x86_phys_bits = 32;
1161 c->x86_virt_bits = 32;
102bbe3a
YL
1162#endif
1163 c->x86_cache_alignment = c->x86_clflush_size;
1da177e4
LT
1164 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1165
1da177e4
LT
1166 generic_identify(c);
1167
3898534d 1168 if (this_cpu->c_identify)
1da177e4
LT
1169 this_cpu->c_identify(c);
1170
6a6256f9 1171 /* Clear/Set all flags overridden by options, after probe */
8bf1ebca 1172 apply_forced_caps(c);
2759c328 1173
102bbe3a 1174#ifdef CONFIG_X86_64
cb8cc442 1175 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
102bbe3a
YL
1176#endif
1177
1da177e4
LT
1178 /*
1179 * Vendor-specific initialization. In this section we
1180 * canonicalize the feature flags, meaning if there are
1181 * features a certain CPU supports which CPUID doesn't
1182 * tell us, CPUID claiming incorrect flags, or other bugs,
1183 * we handle them here.
1184 *
1185 * At the end of this section, c->x86_capability better
1186 * indicate the features this CPU genuinely supports!
1187 */
1188 if (this_cpu->c_init)
1189 this_cpu->c_init(c);
1190
1191 /* Disable the PN if appropriate */
1192 squash_the_stupid_serial_number(c);
1193
b2cc2a07
PA
1194 /* Set up SMEP/SMAP */
1195 setup_smep(c);
1196 setup_smap(c);
1197
1da177e4 1198 /*
0f3fa48a
IM
1199 * The vendor-specific functions might have changed features.
1200 * Now we do "generic changes."
1da177e4
LT
1201 */
1202
b38b0665
PA
1203 /* Filter out anything that depends on CPUID levels we don't have */
1204 filter_cpuid_features(c, true);
1205
1da177e4 1206 /* If the model name is still unset, do table lookup. */
34048c9e 1207 if (!c->x86_model_id[0]) {
02dde8b4 1208 const char *p;
1da177e4 1209 p = table_lookup_model(c);
34048c9e 1210 if (p)
1da177e4
LT
1211 strcpy(c->x86_model_id, p);
1212 else
1213 /* Last resort... */
1214 sprintf(c->x86_model_id, "%02x/%02x",
54a20f8c 1215 c->x86, c->x86_model);
1da177e4
LT
1216 }
1217
102bbe3a
YL
1218#ifdef CONFIG_X86_64
1219 detect_ht(c);
1220#endif
1221
49d859d7 1222 x86_init_rdrand(c);
cbc82b17 1223 x86_init_cache_qos(c);
06976945 1224 setup_pku(c);
3e0c3737
YL
1225
1226 /*
6a6256f9 1227 * Clear/Set all flags overridden by options, need do it
3e0c3737
YL
1228 * before following smp all cpus cap AND.
1229 */
8bf1ebca 1230 apply_forced_caps(c);
3e0c3737 1231
1da177e4
LT
1232 /*
1233 * On SMP, boot_cpu_data holds the common feature set between
1234 * all CPUs; so make sure that we indicate which features are
1235 * common between the CPUs. The first time this routine gets
1236 * executed, c == &boot_cpu_data.
1237 */
34048c9e 1238 if (c != &boot_cpu_data) {
1da177e4 1239 /* AND the already accumulated flags with these */
9d31d35b 1240 for (i = 0; i < NCAPINTS; i++)
1da177e4 1241 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
65fc985b
BP
1242
1243 /* OR, i.e. replicate the bug flags */
1244 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1245 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1da177e4
LT
1246 }
1247
1248 /* Init Machine Check Exception if available. */
5e09954a 1249 mcheck_cpu_init(c);
30d432df
AK
1250
1251 select_idle_routine(c);
102bbe3a 1252
de2d9445 1253#ifdef CONFIG_NUMA
102bbe3a
YL
1254 numa_add_cpu(smp_processor_id());
1255#endif
a6c4e076 1256}
31ab269a 1257
8b6c0ab1
IM
1258/*
1259 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1260 * on 32-bit kernels:
1261 */
cfda7bb9
AL
1262#ifdef CONFIG_X86_32
1263void enable_sep_cpu(void)
1264{
8b6c0ab1
IM
1265 struct tss_struct *tss;
1266 int cpu;
cfda7bb9 1267
b3edfda4
BP
1268 if (!boot_cpu_has(X86_FEATURE_SEP))
1269 return;
1270
8b6c0ab1
IM
1271 cpu = get_cpu();
1272 tss = &per_cpu(cpu_tss, cpu);
1273
8b6c0ab1 1274 /*
cf9328cc
AL
1275 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1276 * see the big comment in struct x86_hw_tss's definition.
8b6c0ab1 1277 */
cfda7bb9
AL
1278
1279 tss->x86_tss.ss1 = __KERNEL_CS;
8b6c0ab1
IM
1280 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1281
cf9328cc 1282 wrmsr(MSR_IA32_SYSENTER_ESP,
475b37e7
AL
1283 (unsigned long)&get_cpu_entry_area(cpu)->tss +
1284 offsetofend(struct tss_struct, SYSENTER_stack),
cf9328cc 1285 0);
8b6c0ab1 1286
4c8cd0c5 1287 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
8b6c0ab1 1288
cfda7bb9
AL
1289 put_cpu();
1290}
e04d645f
GC
1291#endif
1292
a6c4e076
JF
1293void __init identify_boot_cpu(void)
1294{
1295 identify_cpu(&boot_cpu_data);
102bbe3a 1296#ifdef CONFIG_X86_32
a6c4e076 1297 sysenter_setup();
6fe940d6 1298 enable_sep_cpu();
102bbe3a 1299#endif
5b556332 1300 cpu_detect_tlb(&boot_cpu_data);
a6c4e076 1301}
3b520b23 1302
148f9bb8 1303void identify_secondary_cpu(struct cpuinfo_x86 *c)
a6c4e076
JF
1304{
1305 BUG_ON(c == &boot_cpu_data);
1306 identify_cpu(c);
102bbe3a 1307#ifdef CONFIG_X86_32
a6c4e076 1308 enable_sep_cpu();
102bbe3a 1309#endif
a6c4e076 1310 mtrr_ap_init();
9d85eb91 1311 validate_apic_and_package_id(c);
1da177e4
LT
1312}
1313
191679fd
AK
1314static __init int setup_noclflush(char *arg)
1315{
840d2830 1316 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
da4aaa7d 1317 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
191679fd
AK
1318 return 1;
1319}
1320__setup("noclflush", setup_noclflush);
1321
148f9bb8 1322void print_cpu_info(struct cpuinfo_x86 *c)
1da177e4 1323{
02dde8b4 1324 const char *vendor = NULL;
1da177e4 1325
0f3fa48a 1326 if (c->x86_vendor < X86_VENDOR_NUM) {
1da177e4 1327 vendor = this_cpu->c_vendor;
0f3fa48a
IM
1328 } else {
1329 if (c->cpuid_level >= 0)
1330 vendor = c->x86_vendor_id;
1331 }
1da177e4 1332
bd32a8cf 1333 if (vendor && !strstr(c->x86_model_id, vendor))
1b74dde7 1334 pr_cont("%s ", vendor);
1da177e4 1335
9d31d35b 1336 if (c->x86_model_id[0])
1b74dde7 1337 pr_cont("%s", c->x86_model_id);
1da177e4 1338 else
1b74dde7 1339 pr_cont("%d86", c->x86);
1da177e4 1340
1b74dde7 1341 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
924e101a 1342
34048c9e 1343 if (c->x86_mask || c->cpuid_level >= 0)
1b74dde7 1344 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1da177e4 1345 else
1b74dde7 1346 pr_cont(")\n");
1da177e4
LT
1347}
1348
27deb452
AK
1349/*
1350 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1351 * But we need to keep a dummy __setup around otherwise it would
1352 * show up as an environment variable for init.
1353 */
1354static __init int setup_clearcpuid(char *arg)
ac72e788 1355{
ac72e788
AK
1356 return 1;
1357}
27deb452 1358__setup("clearcpuid=", setup_clearcpuid);
ac72e788 1359
d5494d4f 1360#ifdef CONFIG_X86_64
404f6aac
KC
1361struct desc_ptr idt_descr __ro_after_init = {
1362 .size = NR_VECTORS * 16 - 1,
1363 .address = (unsigned long) idt_table,
1364};
1365const struct desc_ptr debug_idt_descr = {
1366 .size = NR_VECTORS * 16 - 1,
1367 .address = (unsigned long) debug_idt_table,
1368};
d5494d4f 1369
947e76cd 1370DEFINE_PER_CPU_FIRST(union irq_stack_union,
277d5b40 1371 irq_stack_union) __aligned(PAGE_SIZE) __visible;
0f3fa48a 1372
bdf977b3 1373/*
a7fcf28d
AL
1374 * The following percpu variables are hot. Align current_task to
1375 * cacheline size such that they fall in the same cacheline.
bdf977b3
TH
1376 */
1377DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1378 &init_task;
1379EXPORT_PER_CPU_SYMBOL(current_task);
d5494d4f 1380
bdf977b3 1381DEFINE_PER_CPU(char *, irq_stack_ptr) =
4950d6d4 1382 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
bdf977b3 1383
277d5b40 1384DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
d5494d4f 1385
c2daa3be
PZ
1386DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1387EXPORT_PER_CPU_SYMBOL(__preempt_count);
1388
0f3fa48a
IM
1389/*
1390 * Special IST stacks which the CPU switches to when it calls
1391 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1392 * limit), all of them are 4K, except the debug stack which
1393 * is 8K.
1394 */
1395static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1396 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1397 [DEBUG_STACK - 1] = DEBUG_STKSZ
1398};
1399
92d65b23 1400static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
3e352aa8 1401 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
d5494d4f 1402
d5494d4f
YL
1403/* May not be marked __init: used by software suspend */
1404void syscall_init(void)
1da177e4 1405{
9fec5954
AL
1406 extern char _entry_trampoline[];
1407 extern char entry_SYSCALL_64_trampoline[];
1408
475b37e7 1409 int cpu = smp_processor_id();
9fec5954
AL
1410 unsigned long SYSCALL64_entry_trampoline =
1411 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1412 (entry_SYSCALL_64_trampoline - _entry_trampoline);
475b37e7 1413
31ac34ca 1414 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
9fec5954 1415 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
d56fe4bf
IM
1416
1417#ifdef CONFIG_IA32_EMULATION
47edb651 1418 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
a76c7f46 1419 /*
487d1edb
DV
1420 * This only works on Intel CPUs.
1421 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1422 * This does not cause SYSENTER to jump to the wrong location, because
1423 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
a76c7f46
DV
1424 */
1425 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
8e621515 1426 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
475b37e7 1427 (unsigned long)&get_cpu_entry_area(cpu)->tss +
8e621515 1428 offsetofend(struct tss_struct, SYSENTER_stack));
4c8cd0c5 1429 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
d56fe4bf 1430#else
47edb651 1431 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
6b51311c 1432 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
d56fe4bf
IM
1433 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1434 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
d5494d4f 1435#endif
03ae5768 1436
d5494d4f
YL
1437 /* Flags to clear on syscall */
1438 wrmsrl(MSR_SYSCALL_MASK,
63bcff2a 1439 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
8c7aa698 1440 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1da177e4 1441}
62111195 1442
d5494d4f
YL
1443/*
1444 * Copies of the original ist values from the tss are only accessed during
1445 * debugging, no special alignment required.
1446 */
1447DEFINE_PER_CPU(struct orig_ist, orig_ist);
1448
228bdaa9 1449static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
42181186 1450DEFINE_PER_CPU(int, debug_stack_usage);
228bdaa9
SR
1451
1452int is_debug_stack(unsigned long addr)
1453{
89cbc767
CL
1454 return __this_cpu_read(debug_stack_usage) ||
1455 (addr <= __this_cpu_read(debug_stack_addr) &&
1456 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
228bdaa9 1457}
0f46efeb 1458NOKPROBE_SYMBOL(is_debug_stack);
228bdaa9 1459
629f4f9d 1460DEFINE_PER_CPU(u32, debug_idt_ctr);
f8988175 1461
228bdaa9
SR
1462void debug_stack_set_zero(void)
1463{
629f4f9d
SA
1464 this_cpu_inc(debug_idt_ctr);
1465 load_current_idt();
228bdaa9 1466}
0f46efeb 1467NOKPROBE_SYMBOL(debug_stack_set_zero);
228bdaa9
SR
1468
1469void debug_stack_reset(void)
1470{
629f4f9d 1471 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
f8988175 1472 return;
629f4f9d
SA
1473 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1474 load_current_idt();
228bdaa9 1475}
0f46efeb 1476NOKPROBE_SYMBOL(debug_stack_reset);
228bdaa9 1477
0f3fa48a 1478#else /* CONFIG_X86_64 */
d5494d4f 1479
bdf977b3
TH
1480DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1481EXPORT_PER_CPU_SYMBOL(current_task);
c2daa3be
PZ
1482DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1483EXPORT_PER_CPU_SYMBOL(__preempt_count);
bdf977b3 1484
a7fcf28d
AL
1485/*
1486 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1487 * the top of the kernel stack. Use an extra percpu variable to track the
1488 * top of the kernel stack directly.
1489 */
1490DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1491 (unsigned long)&init_thread_union + THREAD_SIZE;
1492EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1493
60a5317f 1494#ifdef CONFIG_CC_STACKPROTECTOR
53f82452 1495DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
60a5317f 1496#endif
d5494d4f 1497
0f3fa48a 1498#endif /* CONFIG_X86_64 */
c5413fbe 1499
9766cdbc
JSR
1500/*
1501 * Clear all 6 debug registers:
1502 */
1503static void clear_all_debug_regs(void)
1504{
1505 int i;
1506
1507 for (i = 0; i < 8; i++) {
1508 /* Ignore db4, db5 */
1509 if ((i == 4) || (i == 5))
1510 continue;
1511
1512 set_debugreg(0, i);
1513 }
1514}
c5413fbe 1515
0bb9fef9
JW
1516#ifdef CONFIG_KGDB
1517/*
1518 * Restore debug regs if using kgdbwait and you have a kernel debugger
1519 * connection established.
1520 */
1521static void dbg_restore_debug_regs(void)
1522{
1523 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1524 arch_kgdb_ops.correct_hw_break();
1525}
1526#else /* ! CONFIG_KGDB */
1527#define dbg_restore_debug_regs()
1528#endif /* ! CONFIG_KGDB */
1529
ce4b1b16
IM
1530static void wait_for_master_cpu(int cpu)
1531{
1532#ifdef CONFIG_SMP
1533 /*
1534 * wait for ACK from master CPU before continuing
1535 * with AP initialization
1536 */
1537 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1538 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1539 cpu_relax();
1540#endif
1541}
1542
d2cbcc49
RR
1543/*
1544 * cpu_init() initializes state that is per-CPU. Some data is already
1545 * initialized (naturally) in the bootstrap process, such as the GDT
1546 * and IDT. We reload them nevertheless, this function acts as a
1547 * 'CPU state barrier', nothing should get across.
1ba76586 1548 * A lot of state is already set up in PDA init for 64 bit
d2cbcc49 1549 */
1ba76586 1550#ifdef CONFIG_X86_64
0f3fa48a 1551
148f9bb8 1552void cpu_init(void)
1ba76586 1553{
0fe1e009 1554 struct orig_ist *oist;
1ba76586 1555 struct task_struct *me;
0f3fa48a
IM
1556 struct tss_struct *t;
1557 unsigned long v;
fb59831b 1558 int cpu = raw_smp_processor_id();
1ba76586
YL
1559 int i;
1560
ce4b1b16
IM
1561 wait_for_master_cpu(cpu);
1562
1e02ce4c
AL
1563 /*
1564 * Initialize the CR4 shadow before doing anything that could
1565 * try to read it.
1566 */
1567 cr4_init_shadow();
1568
777284b6
BP
1569 if (cpu)
1570 load_ucode_ap();
e6ebf5de 1571
24933b82 1572 t = &per_cpu(cpu_tss, cpu);
0fe1e009 1573 oist = &per_cpu(orig_ist, cpu);
0f3fa48a 1574
e7a22c1e 1575#ifdef CONFIG_NUMA
27fd185f 1576 if (this_cpu_read(numa_node) == 0 &&
e534c7c5
LS
1577 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1578 set_numa_node(early_cpu_to_node(cpu));
e7a22c1e 1579#endif
1ba76586
YL
1580
1581 me = current;
1582
2eaad1fd 1583 pr_debug("Initializing CPU#%d\n", cpu);
1ba76586 1584
375074cc 1585 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1ba76586
YL
1586
1587 /*
1588 * Initialize the per-CPU GDT with the boot GDT,
1589 * and set up the GDT descriptor:
1590 */
1591
552be871 1592 switch_to_new_gdt(cpu);
2697fbd5
BG
1593 loadsegment(fs, 0);
1594
cf910e83 1595 load_current_idt();
1ba76586
YL
1596
1597 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1598 syscall_init();
1599
1600 wrmsrl(MSR_FS_BASE, 0);
1601 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1602 barrier();
1603
4763ed4d 1604 x86_configure_nx();
659006bf 1605 x2apic_setup();
1ba76586
YL
1606
1607 /*
1608 * set up and load the per-CPU TSS
1609 */
0fe1e009 1610 if (!oist->ist[0]) {
92d65b23 1611 char *estacks = per_cpu(exception_stacks, cpu);
0f3fa48a 1612
1ba76586 1613 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
0f3fa48a 1614 estacks += exception_stack_sizes[v];
0fe1e009 1615 oist->ist[v] = t->x86_tss.ist[v] =
1ba76586 1616 (unsigned long)estacks;
228bdaa9
SR
1617 if (v == DEBUG_STACK-1)
1618 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1ba76586
YL
1619 }
1620 }
1621
7123a5de 1622 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
0f3fa48a 1623
1ba76586
YL
1624 /*
1625 * <= is required because the CPU will access up to
1626 * 8 bits beyond the end of the IO permission bitmap.
1627 */
1628 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1629 t->io_bitmap[i] = ~0UL;
1630
f1f10076 1631 mmgrab(&init_mm);
1ba76586 1632 me->active_mm = &init_mm;
8c5dfd25 1633 BUG_ON(me->mm);
1ba76586
YL
1634 enter_lazy_tlb(&init_mm, me);
1635
475b37e7
AL
1636 setup_cpu_entry_area(cpu);
1637
8c6b12e8 1638 /*
bfb2d0ed
AL
1639 * Initialize the TSS. sp0 points to the entry trampoline stack
1640 * regardless of what task is running.
8c6b12e8 1641 */
475b37e7 1642 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1ba76586 1643 load_TR_desc();
bfb2d0ed
AL
1644 load_sp0((unsigned long)&get_cpu_entry_area(cpu)->tss +
1645 offsetofend(struct tss_struct, SYSENTER_stack));
8c6b12e8 1646
37868fe1 1647 load_mm_ldt(&init_mm);
1ba76586 1648
0bb9fef9
JW
1649 clear_all_debug_regs();
1650 dbg_restore_debug_regs();
1ba76586 1651
21c4cd10 1652 fpu__init_cpu();
1ba76586 1653
1ba76586
YL
1654 if (is_uv_system())
1655 uv_cpu_init();
69218e47 1656
69218e47 1657 load_fixmap_gdt(cpu);
1ba76586
YL
1658}
1659
1660#else
1661
148f9bb8 1662void cpu_init(void)
9ee79a3d 1663{
d2cbcc49
RR
1664 int cpu = smp_processor_id();
1665 struct task_struct *curr = current;
24933b82 1666 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
62111195 1667
ce4b1b16 1668 wait_for_master_cpu(cpu);
e6ebf5de 1669
5b2bdbc8
SR
1670 /*
1671 * Initialize the CR4 shadow before doing anything that could
1672 * try to read it.
1673 */
1674 cr4_init_shadow();
1675
ce4b1b16 1676 show_ucode_info_early();
62111195 1677
1b74dde7 1678 pr_info("Initializing CPU#%d\n", cpu);
62111195 1679
362f924b 1680 if (cpu_feature_enabled(X86_FEATURE_VME) ||
59e21e3d 1681 boot_cpu_has(X86_FEATURE_TSC) ||
362f924b 1682 boot_cpu_has(X86_FEATURE_DE))
375074cc 1683 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
62111195 1684
cf910e83 1685 load_current_idt();
552be871 1686 switch_to_new_gdt(cpu);
1da177e4 1687
1da177e4
LT
1688 /*
1689 * Set up and load the per-CPU TSS and LDT
1690 */
f1f10076 1691 mmgrab(&init_mm);
62111195 1692 curr->active_mm = &init_mm;
8c5dfd25 1693 BUG_ON(curr->mm);
62111195 1694 enter_lazy_tlb(&init_mm, curr);
1da177e4 1695
475b37e7
AL
1696 setup_cpu_entry_area(cpu);
1697
8c6b12e8
AL
1698 /*
1699 * Initialize the TSS. Don't bother initializing sp0, as the initial
1700 * task never enters user mode.
1701 */
475b37e7 1702 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1da177e4 1703 load_TR_desc();
8c6b12e8 1704
37868fe1 1705 load_mm_ldt(&init_mm);
1da177e4 1706
7123a5de 1707 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
f9a196b8 1708
22c4e308 1709#ifdef CONFIG_DOUBLEFAULT
1da177e4
LT
1710 /* Set up doublefault TSS pointer in the GDT */
1711 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
22c4e308 1712#endif
1da177e4 1713
9766cdbc 1714 clear_all_debug_regs();
0bb9fef9 1715 dbg_restore_debug_regs();
1da177e4 1716
21c4cd10 1717 fpu__init_cpu();
69218e47 1718
69218e47 1719 load_fixmap_gdt(cpu);
1da177e4 1720}
1ba76586 1721#endif
5700f743 1722
b51ef52d
LA
1723static void bsp_resume(void)
1724{
1725 if (this_cpu->c_bsp_resume)
1726 this_cpu->c_bsp_resume(&boot_cpu_data);
1727}
1728
1729static struct syscore_ops cpu_syscore_ops = {
1730 .resume = bsp_resume,
1731};
1732
1733static int __init init_cpu_syscore(void)
1734{
1735 register_syscore_ops(&cpu_syscore_ops);
1736 return 0;
1737}
1738core_initcall(init_cpu_syscore);