]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/bio.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
1da177e4 31
55782138 32#include <trace/events/block.h>
0bfc2455 33
392ddc32
JA
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
1da177e4
LT
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
1da177e4 45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 46static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
1da177e4
LT
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
51d654e1 55struct bio_set *fs_bio_set;
3f86a82a 56EXPORT_SYMBOL(fs_bio_set);
1da177e4 57
bb799ca0
JA
58/*
59 * Our slab pool management
60 */
61struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66};
67static DEFINE_MUTEX(bio_slab_lock);
68static struct bio_slab *bio_slabs;
69static unsigned int bio_slab_nr, bio_slab_max;
70
71static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72{
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
389d7b26 75 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 76 unsigned int new_bio_slab_max;
bb799ca0
JA
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
f06f135d 83 bslab = &bio_slabs[i];
bb799ca0
JA
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 99 new_bio_slab_max = bio_slab_max << 1;
389d7b26 100 new_bio_slabs = krealloc(bio_slabs,
386bc35a 101 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
102 GFP_KERNEL);
103 if (!new_bio_slabs)
bb799ca0 104 goto out_unlock;
386bc35a 105 bio_slab_max = new_bio_slab_max;
389d7b26 106 bio_slabs = new_bio_slabs;
bb799ca0
JA
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
116 if (!slab)
117 goto out_unlock;
118
bb799ca0
JA
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125}
126
127static void bio_put_slab(struct bio_set *bs)
128{
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152out:
153 mutex_unlock(&bio_slab_lock);
154}
155
7ba1ba12
MP
156unsigned int bvec_nr_vecs(unsigned short idx)
157{
158 return bvec_slabs[idx].nr_vecs;
159}
160
9f060e22 161void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0
JA
162{
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
9f060e22 166 mempool_free(bv, pool);
bb799ca0
JA
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172}
173
9f060e22
KO
174struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
1da177e4
LT
176{
177 struct bio_vec *bvl;
1da177e4 178
7ff9345f
JA
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210fallback:
9f060e22 211 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 215
0a0d96b0 216 /*
7ff9345f
JA
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
0a0d96b0 220 */
7ff9345f 221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 222
0a0d96b0 223 /*
d0164adc 224 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 225 * is set, retry with the 1-entry mempool
0a0d96b0 226 */
7ff9345f 227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 228 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
7ff9345f
JA
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
1da177e4
LT
234 return bvl;
235}
236
4254bba1 237static void __bio_free(struct bio *bio)
1da177e4 238{
4254bba1 239 bio_disassociate_task(bio);
1da177e4 240
7ba1ba12 241 if (bio_integrity(bio))
1e2a410f 242 bio_integrity_free(bio);
4254bba1 243}
7ba1ba12 244
4254bba1
KO
245static void bio_free(struct bio *bio)
246{
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
a38352e0 253 if (bio_flagged(bio, BIO_OWNS_VEC))
9f060e22 254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
4254bba1
KO
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
bb799ca0
JA
260 p -= bs->front_pad;
261
4254bba1
KO
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
3676347a
PO
267}
268
858119e1 269void bio_init(struct bio *bio)
1da177e4 270{
2b94de55 271 memset(bio, 0, sizeof(*bio));
c4cf5261 272 atomic_set(&bio->__bi_remaining, 1);
dac56212 273 atomic_set(&bio->__bi_cnt, 1);
1da177e4 274}
a112a71d 275EXPORT_SYMBOL(bio_init);
1da177e4 276
f44b48c7
KO
277/**
278 * bio_reset - reinitialize a bio
279 * @bio: bio to reset
280 *
281 * Description:
282 * After calling bio_reset(), @bio will be in the same state as a freshly
283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
284 * preserved are the ones that are initialized by bio_alloc_bioset(). See
285 * comment in struct bio.
286 */
287void bio_reset(struct bio *bio)
288{
289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290
4254bba1 291 __bio_free(bio);
f44b48c7
KO
292
293 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 294 bio->bi_flags = flags;
c4cf5261 295 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
296}
297EXPORT_SYMBOL(bio_reset);
298
4246a0b6 299static void bio_chain_endio(struct bio *bio)
196d38bc 300{
4246a0b6
CH
301 struct bio *parent = bio->bi_private;
302
303 parent->bi_error = bio->bi_error;
304 bio_endio(parent);
196d38bc
KO
305 bio_put(bio);
306}
307
326e1dbb
MS
308/*
309 * Increment chain count for the bio. Make sure the CHAIN flag update
310 * is visible before the raised count.
311 */
312static inline void bio_inc_remaining(struct bio *bio)
313{
b7c44ed9 314 bio_set_flag(bio, BIO_CHAIN);
326e1dbb
MS
315 smp_mb__before_atomic();
316 atomic_inc(&bio->__bi_remaining);
317}
318
196d38bc
KO
319/**
320 * bio_chain - chain bio completions
1051a902
RD
321 * @bio: the target bio
322 * @parent: the @bio's parent bio
196d38bc
KO
323 *
324 * The caller won't have a bi_end_io called when @bio completes - instead,
325 * @parent's bi_end_io won't be called until both @parent and @bio have
326 * completed; the chained bio will also be freed when it completes.
327 *
328 * The caller must not set bi_private or bi_end_io in @bio.
329 */
330void bio_chain(struct bio *bio, struct bio *parent)
331{
332 BUG_ON(bio->bi_private || bio->bi_end_io);
333
334 bio->bi_private = parent;
335 bio->bi_end_io = bio_chain_endio;
c4cf5261 336 bio_inc_remaining(parent);
196d38bc
KO
337}
338EXPORT_SYMBOL(bio_chain);
339
df2cb6da
KO
340static void bio_alloc_rescue(struct work_struct *work)
341{
342 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
343 struct bio *bio;
344
345 while (1) {
346 spin_lock(&bs->rescue_lock);
347 bio = bio_list_pop(&bs->rescue_list);
348 spin_unlock(&bs->rescue_lock);
349
350 if (!bio)
351 break;
352
353 generic_make_request(bio);
354 }
355}
356
357static void punt_bios_to_rescuer(struct bio_set *bs)
358{
359 struct bio_list punt, nopunt;
360 struct bio *bio;
361
362 /*
363 * In order to guarantee forward progress we must punt only bios that
364 * were allocated from this bio_set; otherwise, if there was a bio on
365 * there for a stacking driver higher up in the stack, processing it
366 * could require allocating bios from this bio_set, and doing that from
367 * our own rescuer would be bad.
368 *
369 * Since bio lists are singly linked, pop them all instead of trying to
370 * remove from the middle of the list:
371 */
372
373 bio_list_init(&punt);
374 bio_list_init(&nopunt);
375
0adeb9aa 376 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 377 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
0adeb9aa 378 current->bio_list[0] = nopunt;
df2cb6da 379
0adeb9aa
N
380 bio_list_init(&nopunt);
381 while ((bio = bio_list_pop(&current->bio_list[1])))
382 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
383 current->bio_list[1] = nopunt;
df2cb6da
KO
384
385 spin_lock(&bs->rescue_lock);
386 bio_list_merge(&bs->rescue_list, &punt);
387 spin_unlock(&bs->rescue_lock);
388
389 queue_work(bs->rescue_workqueue, &bs->rescue_work);
390}
391
1da177e4
LT
392/**
393 * bio_alloc_bioset - allocate a bio for I/O
394 * @gfp_mask: the GFP_ mask given to the slab allocator
395 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 396 * @bs: the bio_set to allocate from.
1da177e4
LT
397 *
398 * Description:
3f86a82a
KO
399 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
400 * backed by the @bs's mempool.
401 *
d0164adc
MG
402 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
403 * always be able to allocate a bio. This is due to the mempool guarantees.
404 * To make this work, callers must never allocate more than 1 bio at a time
405 * from this pool. Callers that need to allocate more than 1 bio must always
406 * submit the previously allocated bio for IO before attempting to allocate
407 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 408 *
df2cb6da
KO
409 * Note that when running under generic_make_request() (i.e. any block
410 * driver), bios are not submitted until after you return - see the code in
411 * generic_make_request() that converts recursion into iteration, to prevent
412 * stack overflows.
413 *
414 * This would normally mean allocating multiple bios under
415 * generic_make_request() would be susceptible to deadlocks, but we have
416 * deadlock avoidance code that resubmits any blocked bios from a rescuer
417 * thread.
418 *
419 * However, we do not guarantee forward progress for allocations from other
420 * mempools. Doing multiple allocations from the same mempool under
421 * generic_make_request() should be avoided - instead, use bio_set's front_pad
422 * for per bio allocations.
423 *
3f86a82a
KO
424 * RETURNS:
425 * Pointer to new bio on success, NULL on failure.
426 */
dd0fc66f 427struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 428{
df2cb6da 429 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
430 unsigned front_pad;
431 unsigned inline_vecs;
451a9ebf 432 unsigned long idx = BIO_POOL_NONE;
34053979 433 struct bio_vec *bvl = NULL;
451a9ebf
TH
434 struct bio *bio;
435 void *p;
436
3f86a82a
KO
437 if (!bs) {
438 if (nr_iovecs > UIO_MAXIOV)
439 return NULL;
440
441 p = kmalloc(sizeof(struct bio) +
442 nr_iovecs * sizeof(struct bio_vec),
443 gfp_mask);
444 front_pad = 0;
445 inline_vecs = nr_iovecs;
446 } else {
d8f429e1
JN
447 /* should not use nobvec bioset for nr_iovecs > 0 */
448 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
449 return NULL;
df2cb6da
KO
450 /*
451 * generic_make_request() converts recursion to iteration; this
452 * means if we're running beneath it, any bios we allocate and
453 * submit will not be submitted (and thus freed) until after we
454 * return.
455 *
456 * This exposes us to a potential deadlock if we allocate
457 * multiple bios from the same bio_set() while running
458 * underneath generic_make_request(). If we were to allocate
459 * multiple bios (say a stacking block driver that was splitting
460 * bios), we would deadlock if we exhausted the mempool's
461 * reserve.
462 *
463 * We solve this, and guarantee forward progress, with a rescuer
464 * workqueue per bio_set. If we go to allocate and there are
465 * bios on current->bio_list, we first try the allocation
d0164adc
MG
466 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
467 * bios we would be blocking to the rescuer workqueue before
468 * we retry with the original gfp_flags.
df2cb6da
KO
469 */
470
0adeb9aa
N
471 if (current->bio_list &&
472 (!bio_list_empty(&current->bio_list[0]) ||
473 !bio_list_empty(&current->bio_list[1])))
d0164adc 474 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 475
3f86a82a 476 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
477 if (!p && gfp_mask != saved_gfp) {
478 punt_bios_to_rescuer(bs);
479 gfp_mask = saved_gfp;
480 p = mempool_alloc(bs->bio_pool, gfp_mask);
481 }
482
3f86a82a
KO
483 front_pad = bs->front_pad;
484 inline_vecs = BIO_INLINE_VECS;
485 }
486
451a9ebf
TH
487 if (unlikely(!p))
488 return NULL;
1da177e4 489
3f86a82a 490 bio = p + front_pad;
34053979
IM
491 bio_init(bio);
492
3f86a82a 493 if (nr_iovecs > inline_vecs) {
9f060e22 494 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
495 if (!bvl && gfp_mask != saved_gfp) {
496 punt_bios_to_rescuer(bs);
497 gfp_mask = saved_gfp;
9f060e22 498 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
499 }
500
34053979
IM
501 if (unlikely(!bvl))
502 goto err_free;
a38352e0 503
b7c44ed9 504 bio_set_flag(bio, BIO_OWNS_VEC);
3f86a82a
KO
505 } else if (nr_iovecs) {
506 bvl = bio->bi_inline_vecs;
1da177e4 507 }
3f86a82a
KO
508
509 bio->bi_pool = bs;
34053979
IM
510 bio->bi_flags |= idx << BIO_POOL_OFFSET;
511 bio->bi_max_vecs = nr_iovecs;
34053979 512 bio->bi_io_vec = bvl;
1da177e4 513 return bio;
34053979
IM
514
515err_free:
451a9ebf 516 mempool_free(p, bs->bio_pool);
34053979 517 return NULL;
1da177e4 518}
a112a71d 519EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 520
1da177e4
LT
521void zero_fill_bio(struct bio *bio)
522{
523 unsigned long flags;
7988613b
KO
524 struct bio_vec bv;
525 struct bvec_iter iter;
1da177e4 526
7988613b
KO
527 bio_for_each_segment(bv, bio, iter) {
528 char *data = bvec_kmap_irq(&bv, &flags);
529 memset(data, 0, bv.bv_len);
530 flush_dcache_page(bv.bv_page);
1da177e4
LT
531 bvec_kunmap_irq(data, &flags);
532 }
533}
534EXPORT_SYMBOL(zero_fill_bio);
535
536/**
537 * bio_put - release a reference to a bio
538 * @bio: bio to release reference to
539 *
540 * Description:
541 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 542 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
543 **/
544void bio_put(struct bio *bio)
545{
dac56212 546 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 547 bio_free(bio);
dac56212
JA
548 else {
549 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
550
551 /*
552 * last put frees it
553 */
554 if (atomic_dec_and_test(&bio->__bi_cnt))
555 bio_free(bio);
556 }
1da177e4 557}
a112a71d 558EXPORT_SYMBOL(bio_put);
1da177e4 559
165125e1 560inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
561{
562 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
563 blk_recount_segments(q, bio);
564
565 return bio->bi_phys_segments;
566}
a112a71d 567EXPORT_SYMBOL(bio_phys_segments);
1da177e4 568
59d276fe
KO
569/**
570 * __bio_clone_fast - clone a bio that shares the original bio's biovec
571 * @bio: destination bio
572 * @bio_src: bio to clone
573 *
574 * Clone a &bio. Caller will own the returned bio, but not
575 * the actual data it points to. Reference count of returned
576 * bio will be one.
577 *
578 * Caller must ensure that @bio_src is not freed before @bio.
579 */
580void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
581{
582 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
583
584 /*
585 * most users will be overriding ->bi_bdev with a new target,
586 * so we don't set nor calculate new physical/hw segment counts here
587 */
588 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 589 bio_set_flag(bio, BIO_CLONED);
59d276fe
KO
590 bio->bi_rw = bio_src->bi_rw;
591 bio->bi_iter = bio_src->bi_iter;
592 bio->bi_io_vec = bio_src->bi_io_vec;
9145ae89
PV
593
594 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
595}
596EXPORT_SYMBOL(__bio_clone_fast);
597
598/**
599 * bio_clone_fast - clone a bio that shares the original bio's biovec
600 * @bio: bio to clone
601 * @gfp_mask: allocation priority
602 * @bs: bio_set to allocate from
603 *
604 * Like __bio_clone_fast, only also allocates the returned bio
605 */
606struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
607{
608 struct bio *b;
609
610 b = bio_alloc_bioset(gfp_mask, 0, bs);
611 if (!b)
612 return NULL;
613
614 __bio_clone_fast(b, bio);
615
616 if (bio_integrity(bio)) {
617 int ret;
618
619 ret = bio_integrity_clone(b, bio, gfp_mask);
620
621 if (ret < 0) {
622 bio_put(b);
623 return NULL;
624 }
625 }
626
627 return b;
628}
629EXPORT_SYMBOL(bio_clone_fast);
630
1da177e4 631/**
bdb53207
KO
632 * bio_clone_bioset - clone a bio
633 * @bio_src: bio to clone
1da177e4 634 * @gfp_mask: allocation priority
bf800ef1 635 * @bs: bio_set to allocate from
1da177e4 636 *
bdb53207
KO
637 * Clone bio. Caller will own the returned bio, but not the actual data it
638 * points to. Reference count of returned bio will be one.
1da177e4 639 */
bdb53207 640struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
bf800ef1 641 struct bio_set *bs)
1da177e4 642{
bdb53207
KO
643 struct bvec_iter iter;
644 struct bio_vec bv;
645 struct bio *bio;
1da177e4 646
bdb53207
KO
647 /*
648 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
649 * bio_src->bi_io_vec to bio->bi_io_vec.
650 *
651 * We can't do that anymore, because:
652 *
653 * - The point of cloning the biovec is to produce a bio with a biovec
654 * the caller can modify: bi_idx and bi_bvec_done should be 0.
655 *
656 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
657 * we tried to clone the whole thing bio_alloc_bioset() would fail.
658 * But the clone should succeed as long as the number of biovecs we
659 * actually need to allocate is fewer than BIO_MAX_PAGES.
660 *
661 * - Lastly, bi_vcnt should not be looked at or relied upon by code
662 * that does not own the bio - reason being drivers don't use it for
663 * iterating over the biovec anymore, so expecting it to be kept up
664 * to date (i.e. for clones that share the parent biovec) is just
665 * asking for trouble and would force extra work on
666 * __bio_clone_fast() anyways.
667 */
668
8423ae3d 669 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 670 if (!bio)
7ba1ba12
MP
671 return NULL;
672
bdb53207
KO
673 bio->bi_bdev = bio_src->bi_bdev;
674 bio->bi_rw = bio_src->bi_rw;
675 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
676 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 677
8423ae3d
KO
678 if (bio->bi_rw & REQ_DISCARD)
679 goto integrity_clone;
680
681 if (bio->bi_rw & REQ_WRITE_SAME) {
682 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
683 goto integrity_clone;
684 }
685
bdb53207
KO
686 bio_for_each_segment(bv, bio_src, iter)
687 bio->bi_io_vec[bio->bi_vcnt++] = bv;
7ba1ba12 688
8423ae3d 689integrity_clone:
bdb53207
KO
690 if (bio_integrity(bio_src)) {
691 int ret;
7ba1ba12 692
bdb53207 693 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 694 if (ret < 0) {
bdb53207 695 bio_put(bio);
7ba1ba12 696 return NULL;
059ea331 697 }
3676347a 698 }
1da177e4 699
9145ae89
PV
700 bio_clone_blkcg_association(bio, bio_src);
701
bdb53207 702 return bio;
1da177e4 703}
bf800ef1 704EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
705
706/**
c66a14d0
KO
707 * bio_add_pc_page - attempt to add page to bio
708 * @q: the target queue
709 * @bio: destination bio
710 * @page: page to add
711 * @len: vec entry length
712 * @offset: vec entry offset
1da177e4 713 *
c66a14d0
KO
714 * Attempt to add a page to the bio_vec maplist. This can fail for a
715 * number of reasons, such as the bio being full or target block device
716 * limitations. The target block device must allow bio's up to PAGE_SIZE,
717 * so it is always possible to add a single page to an empty bio.
718 *
719 * This should only be used by REQ_PC bios.
1da177e4 720 */
c66a14d0
KO
721int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
722 *page, unsigned int len, unsigned int offset)
1da177e4
LT
723{
724 int retried_segments = 0;
725 struct bio_vec *bvec;
726
727 /*
728 * cloned bio must not modify vec list
729 */
730 if (unlikely(bio_flagged(bio, BIO_CLONED)))
731 return 0;
732
c66a14d0 733 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
734 return 0;
735
80cfd548
JA
736 /*
737 * For filesystems with a blocksize smaller than the pagesize
738 * we will often be called with the same page as last time and
739 * a consecutive offset. Optimize this special case.
740 */
741 if (bio->bi_vcnt > 0) {
742 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
743
744 if (page == prev->bv_page &&
745 offset == prev->bv_offset + prev->bv_len) {
746 prev->bv_len += len;
fcbf6a08 747 bio->bi_iter.bi_size += len;
80cfd548
JA
748 goto done;
749 }
66cb45aa
JA
750
751 /*
752 * If the queue doesn't support SG gaps and adding this
753 * offset would create a gap, disallow it.
754 */
03100aad 755 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 756 return 0;
80cfd548
JA
757 }
758
759 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
760 return 0;
761
762 /*
fcbf6a08
ML
763 * setup the new entry, we might clear it again later if we
764 * cannot add the page
765 */
766 bvec = &bio->bi_io_vec[bio->bi_vcnt];
767 bvec->bv_page = page;
768 bvec->bv_len = len;
769 bvec->bv_offset = offset;
770 bio->bi_vcnt++;
771 bio->bi_phys_segments++;
772 bio->bi_iter.bi_size += len;
773
774 /*
775 * Perform a recount if the number of segments is greater
776 * than queue_max_segments(q).
1da177e4
LT
777 */
778
fcbf6a08 779 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
780
781 if (retried_segments)
fcbf6a08 782 goto failed;
1da177e4
LT
783
784 retried_segments = 1;
785 blk_recount_segments(q, bio);
786 }
787
1da177e4 788 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 789 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 790 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 791
80cfd548 792 done:
1da177e4 793 return len;
fcbf6a08
ML
794
795 failed:
796 bvec->bv_page = NULL;
797 bvec->bv_len = 0;
798 bvec->bv_offset = 0;
799 bio->bi_vcnt--;
800 bio->bi_iter.bi_size -= len;
801 blk_recount_segments(q, bio);
802 return 0;
1da177e4 803}
a112a71d 804EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 805
1da177e4
LT
806/**
807 * bio_add_page - attempt to add page to bio
808 * @bio: destination bio
809 * @page: page to add
810 * @len: vec entry length
811 * @offset: vec entry offset
812 *
c66a14d0
KO
813 * Attempt to add a page to the bio_vec maplist. This will only fail
814 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1da177e4 815 */
c66a14d0
KO
816int bio_add_page(struct bio *bio, struct page *page,
817 unsigned int len, unsigned int offset)
1da177e4 818{
c66a14d0
KO
819 struct bio_vec *bv;
820
821 /*
822 * cloned bio must not modify vec list
823 */
824 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
825 return 0;
762380ad 826
c66a14d0
KO
827 /*
828 * For filesystems with a blocksize smaller than the pagesize
829 * we will often be called with the same page as last time and
830 * a consecutive offset. Optimize this special case.
831 */
832 if (bio->bi_vcnt > 0) {
833 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 834
c66a14d0
KO
835 if (page == bv->bv_page &&
836 offset == bv->bv_offset + bv->bv_len) {
837 bv->bv_len += len;
838 goto done;
839 }
840 }
841
842 if (bio->bi_vcnt >= bio->bi_max_vecs)
843 return 0;
844
845 bv = &bio->bi_io_vec[bio->bi_vcnt];
846 bv->bv_page = page;
847 bv->bv_len = len;
848 bv->bv_offset = offset;
849
850 bio->bi_vcnt++;
851done:
852 bio->bi_iter.bi_size += len;
853 return len;
1da177e4 854}
a112a71d 855EXPORT_SYMBOL(bio_add_page);
1da177e4 856
9e882242
KO
857struct submit_bio_ret {
858 struct completion event;
859 int error;
860};
861
4246a0b6 862static void submit_bio_wait_endio(struct bio *bio)
9e882242
KO
863{
864 struct submit_bio_ret *ret = bio->bi_private;
865
4246a0b6 866 ret->error = bio->bi_error;
9e882242
KO
867 complete(&ret->event);
868}
869
870/**
871 * submit_bio_wait - submit a bio, and wait until it completes
872 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
873 * @bio: The &struct bio which describes the I/O
874 *
875 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
876 * bio_endio() on failure.
877 */
878int submit_bio_wait(int rw, struct bio *bio)
879{
880 struct submit_bio_ret ret;
881
882 rw |= REQ_SYNC;
883 init_completion(&ret.event);
884 bio->bi_private = &ret;
885 bio->bi_end_io = submit_bio_wait_endio;
886 submit_bio(rw, bio);
887 wait_for_completion(&ret.event);
888
889 return ret.error;
890}
891EXPORT_SYMBOL(submit_bio_wait);
892
054bdf64
KO
893/**
894 * bio_advance - increment/complete a bio by some number of bytes
895 * @bio: bio to advance
896 * @bytes: number of bytes to complete
897 *
898 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
899 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
900 * be updated on the last bvec as well.
901 *
902 * @bio will then represent the remaining, uncompleted portion of the io.
903 */
904void bio_advance(struct bio *bio, unsigned bytes)
905{
906 if (bio_integrity(bio))
907 bio_integrity_advance(bio, bytes);
908
4550dd6c 909 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
910}
911EXPORT_SYMBOL(bio_advance);
912
a0787606
KO
913/**
914 * bio_alloc_pages - allocates a single page for each bvec in a bio
915 * @bio: bio to allocate pages for
916 * @gfp_mask: flags for allocation
917 *
918 * Allocates pages up to @bio->bi_vcnt.
919 *
920 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
921 * freed.
922 */
923int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
924{
925 int i;
926 struct bio_vec *bv;
927
928 bio_for_each_segment_all(bv, bio, i) {
929 bv->bv_page = alloc_page(gfp_mask);
930 if (!bv->bv_page) {
931 while (--bv >= bio->bi_io_vec)
932 __free_page(bv->bv_page);
933 return -ENOMEM;
934 }
935 }
936
937 return 0;
938}
939EXPORT_SYMBOL(bio_alloc_pages);
940
16ac3d63
KO
941/**
942 * bio_copy_data - copy contents of data buffers from one chain of bios to
943 * another
944 * @src: source bio list
945 * @dst: destination bio list
946 *
947 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
948 * @src and @dst as linked lists of bios.
949 *
950 * Stops when it reaches the end of either @src or @dst - that is, copies
951 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
952 */
953void bio_copy_data(struct bio *dst, struct bio *src)
954{
1cb9dda4
KO
955 struct bvec_iter src_iter, dst_iter;
956 struct bio_vec src_bv, dst_bv;
16ac3d63 957 void *src_p, *dst_p;
1cb9dda4 958 unsigned bytes;
16ac3d63 959
1cb9dda4
KO
960 src_iter = src->bi_iter;
961 dst_iter = dst->bi_iter;
16ac3d63
KO
962
963 while (1) {
1cb9dda4
KO
964 if (!src_iter.bi_size) {
965 src = src->bi_next;
966 if (!src)
967 break;
16ac3d63 968
1cb9dda4 969 src_iter = src->bi_iter;
16ac3d63
KO
970 }
971
1cb9dda4
KO
972 if (!dst_iter.bi_size) {
973 dst = dst->bi_next;
974 if (!dst)
975 break;
16ac3d63 976
1cb9dda4 977 dst_iter = dst->bi_iter;
16ac3d63
KO
978 }
979
1cb9dda4
KO
980 src_bv = bio_iter_iovec(src, src_iter);
981 dst_bv = bio_iter_iovec(dst, dst_iter);
982
983 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 984
1cb9dda4
KO
985 src_p = kmap_atomic(src_bv.bv_page);
986 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 987
1cb9dda4
KO
988 memcpy(dst_p + dst_bv.bv_offset,
989 src_p + src_bv.bv_offset,
16ac3d63
KO
990 bytes);
991
992 kunmap_atomic(dst_p);
993 kunmap_atomic(src_p);
994
1cb9dda4
KO
995 bio_advance_iter(src, &src_iter, bytes);
996 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
997 }
998}
999EXPORT_SYMBOL(bio_copy_data);
1000
1da177e4 1001struct bio_map_data {
152e283f 1002 int is_our_pages;
26e49cfc
KO
1003 struct iov_iter iter;
1004 struct iovec iov[];
1da177e4
LT
1005};
1006
7410b3c6 1007static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
76029ff3 1008 gfp_t gfp_mask)
1da177e4 1009{
f3f63c1c
JA
1010 if (iov_count > UIO_MAXIOV)
1011 return NULL;
1da177e4 1012
c8db4448 1013 return kmalloc(sizeof(struct bio_map_data) +
26e49cfc 1014 sizeof(struct iovec) * iov_count, gfp_mask);
1da177e4
LT
1015}
1016
9124d3fe
DP
1017/**
1018 * bio_copy_from_iter - copy all pages from iov_iter to bio
1019 * @bio: The &struct bio which describes the I/O as destination
1020 * @iter: iov_iter as source
1021 *
1022 * Copy all pages from iov_iter to bio.
1023 * Returns 0 on success, or error on failure.
1024 */
1025static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
c5dec1c3 1026{
9124d3fe 1027 int i;
c5dec1c3 1028 struct bio_vec *bvec;
c5dec1c3 1029
d74c6d51 1030 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1031 ssize_t ret;
c5dec1c3 1032
9124d3fe
DP
1033 ret = copy_page_from_iter(bvec->bv_page,
1034 bvec->bv_offset,
1035 bvec->bv_len,
1036 &iter);
1037
1038 if (!iov_iter_count(&iter))
1039 break;
1040
1041 if (ret < bvec->bv_len)
1042 return -EFAULT;
c5dec1c3
FT
1043 }
1044
9124d3fe
DP
1045 return 0;
1046}
1047
1048/**
1049 * bio_copy_to_iter - copy all pages from bio to iov_iter
1050 * @bio: The &struct bio which describes the I/O as source
1051 * @iter: iov_iter as destination
1052 *
1053 * Copy all pages from bio to iov_iter.
1054 * Returns 0 on success, or error on failure.
1055 */
1056static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1057{
1058 int i;
1059 struct bio_vec *bvec;
1060
1061 bio_for_each_segment_all(bvec, bio, i) {
1062 ssize_t ret;
1063
1064 ret = copy_page_to_iter(bvec->bv_page,
1065 bvec->bv_offset,
1066 bvec->bv_len,
1067 &iter);
1068
1069 if (!iov_iter_count(&iter))
1070 break;
1071
1072 if (ret < bvec->bv_len)
1073 return -EFAULT;
1074 }
1075
1076 return 0;
c5dec1c3
FT
1077}
1078
1dfa0f68
CH
1079static void bio_free_pages(struct bio *bio)
1080{
1081 struct bio_vec *bvec;
1082 int i;
1083
1084 bio_for_each_segment_all(bvec, bio, i)
1085 __free_page(bvec->bv_page);
1086}
1087
1da177e4
LT
1088/**
1089 * bio_uncopy_user - finish previously mapped bio
1090 * @bio: bio being terminated
1091 *
ddad8dd0 1092 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1093 * to user space in case of a read.
1094 */
1095int bio_uncopy_user(struct bio *bio)
1096{
1097 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1098 int ret = 0;
1da177e4 1099
35dc2483
RD
1100 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1101 /*
1102 * if we're in a workqueue, the request is orphaned, so
cf612021
HR
1103 * don't copy into a random user address space, just free
1104 * and return -EINTR so user space doesn't expect any data.
35dc2483 1105 */
cf612021
HR
1106 if (!current->mm)
1107 ret = -EINTR;
1108 else if (bio_data_dir(bio) == READ)
9124d3fe 1109 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1110 if (bmd->is_our_pages)
1111 bio_free_pages(bio);
35dc2483 1112 }
c8db4448 1113 kfree(bmd);
1da177e4
LT
1114 bio_put(bio);
1115 return ret;
1116}
a112a71d 1117EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
1118
1119/**
c5dec1c3 1120 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1121 * @q: destination block queue
1122 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1123 * @iter: iovec iterator
1124 * @gfp_mask: memory allocation flags
1da177e4
LT
1125 *
1126 * Prepares and returns a bio for indirect user io, bouncing data
1127 * to/from kernel pages as necessary. Must be paired with
1128 * call bio_uncopy_user() on io completion.
1129 */
152e283f
FT
1130struct bio *bio_copy_user_iov(struct request_queue *q,
1131 struct rq_map_data *map_data,
26e49cfc
KO
1132 const struct iov_iter *iter,
1133 gfp_t gfp_mask)
1da177e4 1134{
1da177e4 1135 struct bio_map_data *bmd;
1da177e4
LT
1136 struct page *page;
1137 struct bio *bio;
1138 int i, ret;
c5dec1c3 1139 int nr_pages = 0;
26e49cfc 1140 unsigned int len = iter->count;
56c451f4 1141 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 1142
26e49cfc 1143 for (i = 0; i < iter->nr_segs; i++) {
c5dec1c3
FT
1144 unsigned long uaddr;
1145 unsigned long end;
1146 unsigned long start;
1147
26e49cfc
KO
1148 uaddr = (unsigned long) iter->iov[i].iov_base;
1149 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1150 >> PAGE_SHIFT;
c5dec1c3
FT
1151 start = uaddr >> PAGE_SHIFT;
1152
cb4644ca
JA
1153 /*
1154 * Overflow, abort
1155 */
1156 if (end < start)
1157 return ERR_PTR(-EINVAL);
1158
c5dec1c3 1159 nr_pages += end - start;
c5dec1c3
FT
1160 }
1161
69838727
FT
1162 if (offset)
1163 nr_pages++;
1164
26e49cfc 1165 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1da177e4
LT
1166 if (!bmd)
1167 return ERR_PTR(-ENOMEM);
1168
26e49cfc
KO
1169 /*
1170 * We need to do a deep copy of the iov_iter including the iovecs.
1171 * The caller provided iov might point to an on-stack or otherwise
1172 * shortlived one.
1173 */
1174 bmd->is_our_pages = map_data ? 0 : 1;
1175 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1176 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1177 iter->nr_segs, iter->count);
1178
1da177e4 1179 ret = -ENOMEM;
a9e9dc24 1180 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1181 if (!bio)
1182 goto out_bmd;
1183
26e49cfc 1184 if (iter->type & WRITE)
7b6d91da 1185 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
1186
1187 ret = 0;
56c451f4
FT
1188
1189 if (map_data) {
e623ddb4 1190 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1191 i = map_data->offset / PAGE_SIZE;
1192 }
1da177e4 1193 while (len) {
e623ddb4 1194 unsigned int bytes = PAGE_SIZE;
1da177e4 1195
56c451f4
FT
1196 bytes -= offset;
1197
1da177e4
LT
1198 if (bytes > len)
1199 bytes = len;
1200
152e283f 1201 if (map_data) {
e623ddb4 1202 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1203 ret = -ENOMEM;
1204 break;
1205 }
e623ddb4
FT
1206
1207 page = map_data->pages[i / nr_pages];
1208 page += (i % nr_pages);
1209
1210 i++;
1211 } else {
152e283f 1212 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1213 if (!page) {
1214 ret = -ENOMEM;
1215 break;
1216 }
1da177e4
LT
1217 }
1218
56c451f4 1219 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1220 break;
1da177e4
LT
1221
1222 len -= bytes;
56c451f4 1223 offset = 0;
1da177e4
LT
1224 }
1225
1226 if (ret)
1227 goto cleanup;
1228
1229 /*
1230 * success
1231 */
26e49cfc 1232 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1233 (map_data && map_data->from_user)) {
9124d3fe 1234 ret = bio_copy_from_iter(bio, *iter);
c5dec1c3
FT
1235 if (ret)
1236 goto cleanup;
1da177e4
LT
1237 }
1238
26e49cfc 1239 bio->bi_private = bmd;
1da177e4
LT
1240 return bio;
1241cleanup:
152e283f 1242 if (!map_data)
1dfa0f68 1243 bio_free_pages(bio);
1da177e4
LT
1244 bio_put(bio);
1245out_bmd:
c8db4448 1246 kfree(bmd);
1da177e4
LT
1247 return ERR_PTR(ret);
1248}
1249
37f19e57
CH
1250/**
1251 * bio_map_user_iov - map user iovec into bio
1252 * @q: the struct request_queue for the bio
1253 * @iter: iovec iterator
1254 * @gfp_mask: memory allocation flags
1255 *
1256 * Map the user space address into a bio suitable for io to a block
1257 * device. Returns an error pointer in case of error.
1258 */
1259struct bio *bio_map_user_iov(struct request_queue *q,
1260 const struct iov_iter *iter,
1261 gfp_t gfp_mask)
1da177e4 1262{
26e49cfc 1263 int j;
f1970baf 1264 int nr_pages = 0;
1da177e4
LT
1265 struct page **pages;
1266 struct bio *bio;
f1970baf
JB
1267 int cur_page = 0;
1268 int ret, offset;
26e49cfc
KO
1269 struct iov_iter i;
1270 struct iovec iov;
dc41cd4a 1271 struct bio_vec *bvec;
1da177e4 1272
26e49cfc
KO
1273 iov_for_each(iov, i, *iter) {
1274 unsigned long uaddr = (unsigned long) iov.iov_base;
1275 unsigned long len = iov.iov_len;
f1970baf
JB
1276 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1277 unsigned long start = uaddr >> PAGE_SHIFT;
1278
cb4644ca
JA
1279 /*
1280 * Overflow, abort
1281 */
1282 if (end < start)
1283 return ERR_PTR(-EINVAL);
1284
f1970baf
JB
1285 nr_pages += end - start;
1286 /*
ad2d7225 1287 * buffer must be aligned to at least hardsector size for now
f1970baf 1288 */
ad2d7225 1289 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1290 return ERR_PTR(-EINVAL);
1291 }
1292
1293 if (!nr_pages)
1da177e4
LT
1294 return ERR_PTR(-EINVAL);
1295
a9e9dc24 1296 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1297 if (!bio)
1298 return ERR_PTR(-ENOMEM);
1299
1300 ret = -ENOMEM;
a3bce90e 1301 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1302 if (!pages)
1303 goto out;
1304
26e49cfc
KO
1305 iov_for_each(iov, i, *iter) {
1306 unsigned long uaddr = (unsigned long) iov.iov_base;
1307 unsigned long len = iov.iov_len;
f1970baf
JB
1308 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1309 unsigned long start = uaddr >> PAGE_SHIFT;
1310 const int local_nr_pages = end - start;
1311 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1312
f5dd33c4 1313 ret = get_user_pages_fast(uaddr, local_nr_pages,
26e49cfc
KO
1314 (iter->type & WRITE) != WRITE,
1315 &pages[cur_page]);
dc41cd4a
AV
1316 if (unlikely(ret < local_nr_pages)) {
1317 for (j = cur_page; j < page_limit; j++) {
1318 if (!pages[j])
1319 break;
1320 put_page(pages[j]);
1321 }
99172157 1322 ret = -EFAULT;
f1970baf 1323 goto out_unmap;
99172157 1324 }
f1970baf
JB
1325
1326 offset = uaddr & ~PAGE_MASK;
1327 for (j = cur_page; j < page_limit; j++) {
1328 unsigned int bytes = PAGE_SIZE - offset;
66e42f1a 1329 unsigned short prev_bi_vcnt = bio->bi_vcnt;
f1970baf
JB
1330
1331 if (len <= 0)
1332 break;
1333
1334 if (bytes > len)
1335 bytes = len;
1336
1337 /*
1338 * sorry...
1339 */
defd94b7
MC
1340 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1341 bytes)
f1970baf
JB
1342 break;
1343
66e42f1a
VM
1344 /*
1345 * check if vector was merged with previous
1346 * drop page reference if needed
1347 */
1348 if (bio->bi_vcnt == prev_bi_vcnt)
1349 put_page(pages[j]);
1350
f1970baf
JB
1351 len -= bytes;
1352 offset = 0;
1353 }
1da177e4 1354
f1970baf 1355 cur_page = j;
1da177e4 1356 /*
f1970baf 1357 * release the pages we didn't map into the bio, if any
1da177e4 1358 */
f1970baf
JB
1359 while (j < page_limit)
1360 page_cache_release(pages[j++]);
1da177e4
LT
1361 }
1362
1da177e4
LT
1363 kfree(pages);
1364
1365 /*
1366 * set data direction, and check if mapped pages need bouncing
1367 */
26e49cfc 1368 if (iter->type & WRITE)
7b6d91da 1369 bio->bi_rw |= REQ_WRITE;
1da177e4 1370
b7c44ed9 1371 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1372
1373 /*
1374 * subtle -- if __bio_map_user() ended up bouncing a bio,
1375 * it would normally disappear when its bi_end_io is run.
1376 * however, we need it for the unmap, so grab an extra
1377 * reference to it
1378 */
1379 bio_get(bio);
1da177e4 1380 return bio;
f1970baf
JB
1381
1382 out_unmap:
dc41cd4a
AV
1383 bio_for_each_segment_all(bvec, bio, j) {
1384 page_cache_release(bvec->bv_page);
f1970baf
JB
1385 }
1386 out:
1da177e4
LT
1387 kfree(pages);
1388 bio_put(bio);
1389 return ERR_PTR(ret);
1390}
1391
1da177e4
LT
1392static void __bio_unmap_user(struct bio *bio)
1393{
1394 struct bio_vec *bvec;
1395 int i;
1396
1397 /*
1398 * make sure we dirty pages we wrote to
1399 */
d74c6d51 1400 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1401 if (bio_data_dir(bio) == READ)
1402 set_page_dirty_lock(bvec->bv_page);
1403
1404 page_cache_release(bvec->bv_page);
1405 }
1406
1407 bio_put(bio);
1408}
1409
1410/**
1411 * bio_unmap_user - unmap a bio
1412 * @bio: the bio being unmapped
1413 *
1414 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1415 * a process context.
1416 *
1417 * bio_unmap_user() may sleep.
1418 */
1419void bio_unmap_user(struct bio *bio)
1420{
1421 __bio_unmap_user(bio);
1422 bio_put(bio);
1423}
a112a71d 1424EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1425
4246a0b6 1426static void bio_map_kern_endio(struct bio *bio)
b823825e 1427{
b823825e 1428 bio_put(bio);
b823825e
JA
1429}
1430
75c72b83
CH
1431/**
1432 * bio_map_kern - map kernel address into bio
1433 * @q: the struct request_queue for the bio
1434 * @data: pointer to buffer to map
1435 * @len: length in bytes
1436 * @gfp_mask: allocation flags for bio allocation
1437 *
1438 * Map the kernel address into a bio suitable for io to a block
1439 * device. Returns an error pointer in case of error.
1440 */
1441struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1442 gfp_t gfp_mask)
df46b9a4
MC
1443{
1444 unsigned long kaddr = (unsigned long)data;
1445 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1446 unsigned long start = kaddr >> PAGE_SHIFT;
1447 const int nr_pages = end - start;
1448 int offset, i;
1449 struct bio *bio;
1450
a9e9dc24 1451 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1452 if (!bio)
1453 return ERR_PTR(-ENOMEM);
1454
1455 offset = offset_in_page(kaddr);
1456 for (i = 0; i < nr_pages; i++) {
1457 unsigned int bytes = PAGE_SIZE - offset;
1458
1459 if (len <= 0)
1460 break;
1461
1462 if (bytes > len)
1463 bytes = len;
1464
defd94b7 1465 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1466 offset) < bytes) {
1467 /* we don't support partial mappings */
1468 bio_put(bio);
1469 return ERR_PTR(-EINVAL);
1470 }
df46b9a4
MC
1471
1472 data += bytes;
1473 len -= bytes;
1474 offset = 0;
1475 }
1476
b823825e 1477 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1478 return bio;
1479}
a112a71d 1480EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1481
4246a0b6 1482static void bio_copy_kern_endio(struct bio *bio)
68154e90 1483{
1dfa0f68
CH
1484 bio_free_pages(bio);
1485 bio_put(bio);
1486}
1487
4246a0b6 1488static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1489{
42d2683a 1490 char *p = bio->bi_private;
1dfa0f68 1491 struct bio_vec *bvec;
68154e90
FT
1492 int i;
1493
d74c6d51 1494 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1495 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1496 p += bvec->bv_len;
68154e90
FT
1497 }
1498
4246a0b6 1499 bio_copy_kern_endio(bio);
68154e90
FT
1500}
1501
1502/**
1503 * bio_copy_kern - copy kernel address into bio
1504 * @q: the struct request_queue for the bio
1505 * @data: pointer to buffer to copy
1506 * @len: length in bytes
1507 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1508 * @reading: data direction is READ
68154e90
FT
1509 *
1510 * copy the kernel address into a bio suitable for io to a block
1511 * device. Returns an error pointer in case of error.
1512 */
1513struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1514 gfp_t gfp_mask, int reading)
1515{
42d2683a
CH
1516 unsigned long kaddr = (unsigned long)data;
1517 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1518 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1519 struct bio *bio;
1520 void *p = data;
1dfa0f68 1521 int nr_pages = 0;
68154e90 1522
42d2683a
CH
1523 /*
1524 * Overflow, abort
1525 */
1526 if (end < start)
1527 return ERR_PTR(-EINVAL);
68154e90 1528
42d2683a
CH
1529 nr_pages = end - start;
1530 bio = bio_kmalloc(gfp_mask, nr_pages);
1531 if (!bio)
1532 return ERR_PTR(-ENOMEM);
68154e90 1533
42d2683a
CH
1534 while (len) {
1535 struct page *page;
1536 unsigned int bytes = PAGE_SIZE;
68154e90 1537
42d2683a
CH
1538 if (bytes > len)
1539 bytes = len;
1540
1541 page = alloc_page(q->bounce_gfp | gfp_mask);
1542 if (!page)
1543 goto cleanup;
1544
1545 if (!reading)
1546 memcpy(page_address(page), p, bytes);
1547
1548 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1549 break;
1550
1551 len -= bytes;
1552 p += bytes;
68154e90
FT
1553 }
1554
1dfa0f68
CH
1555 if (reading) {
1556 bio->bi_end_io = bio_copy_kern_endio_read;
1557 bio->bi_private = data;
1558 } else {
1559 bio->bi_end_io = bio_copy_kern_endio;
42d2683a 1560 bio->bi_rw |= REQ_WRITE;
1dfa0f68 1561 }
76029ff3 1562
68154e90 1563 return bio;
42d2683a
CH
1564
1565cleanup:
1dfa0f68 1566 bio_free_pages(bio);
42d2683a
CH
1567 bio_put(bio);
1568 return ERR_PTR(-ENOMEM);
68154e90 1569}
a112a71d 1570EXPORT_SYMBOL(bio_copy_kern);
68154e90 1571
1da177e4
LT
1572/*
1573 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1574 * for performing direct-IO in BIOs.
1575 *
1576 * The problem is that we cannot run set_page_dirty() from interrupt context
1577 * because the required locks are not interrupt-safe. So what we can do is to
1578 * mark the pages dirty _before_ performing IO. And in interrupt context,
1579 * check that the pages are still dirty. If so, fine. If not, redirty them
1580 * in process context.
1581 *
1582 * We special-case compound pages here: normally this means reads into hugetlb
1583 * pages. The logic in here doesn't really work right for compound pages
1584 * because the VM does not uniformly chase down the head page in all cases.
1585 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1586 * handle them at all. So we skip compound pages here at an early stage.
1587 *
1588 * Note that this code is very hard to test under normal circumstances because
1589 * direct-io pins the pages with get_user_pages(). This makes
1590 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1591 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1592 * pagecache.
1593 *
1594 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1595 * deferred bio dirtying paths.
1596 */
1597
1598/*
1599 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1600 */
1601void bio_set_pages_dirty(struct bio *bio)
1602{
cb34e057 1603 struct bio_vec *bvec;
1da177e4
LT
1604 int i;
1605
cb34e057
KO
1606 bio_for_each_segment_all(bvec, bio, i) {
1607 struct page *page = bvec->bv_page;
1da177e4
LT
1608
1609 if (page && !PageCompound(page))
1610 set_page_dirty_lock(page);
1611 }
1612}
1613
86b6c7a7 1614static void bio_release_pages(struct bio *bio)
1da177e4 1615{
cb34e057 1616 struct bio_vec *bvec;
1da177e4
LT
1617 int i;
1618
cb34e057
KO
1619 bio_for_each_segment_all(bvec, bio, i) {
1620 struct page *page = bvec->bv_page;
1da177e4
LT
1621
1622 if (page)
1623 put_page(page);
1624 }
1625}
1626
1627/*
1628 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1629 * If they are, then fine. If, however, some pages are clean then they must
1630 * have been written out during the direct-IO read. So we take another ref on
1631 * the BIO and the offending pages and re-dirty the pages in process context.
1632 *
1633 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1634 * here on. It will run one page_cache_release() against each page and will
1635 * run one bio_put() against the BIO.
1636 */
1637
65f27f38 1638static void bio_dirty_fn(struct work_struct *work);
1da177e4 1639
65f27f38 1640static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1641static DEFINE_SPINLOCK(bio_dirty_lock);
1642static struct bio *bio_dirty_list;
1643
1644/*
1645 * This runs in process context
1646 */
65f27f38 1647static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1648{
1649 unsigned long flags;
1650 struct bio *bio;
1651
1652 spin_lock_irqsave(&bio_dirty_lock, flags);
1653 bio = bio_dirty_list;
1654 bio_dirty_list = NULL;
1655 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1656
1657 while (bio) {
1658 struct bio *next = bio->bi_private;
1659
1660 bio_set_pages_dirty(bio);
1661 bio_release_pages(bio);
1662 bio_put(bio);
1663 bio = next;
1664 }
1665}
1666
1667void bio_check_pages_dirty(struct bio *bio)
1668{
cb34e057 1669 struct bio_vec *bvec;
1da177e4
LT
1670 int nr_clean_pages = 0;
1671 int i;
1672
cb34e057
KO
1673 bio_for_each_segment_all(bvec, bio, i) {
1674 struct page *page = bvec->bv_page;
1da177e4
LT
1675
1676 if (PageDirty(page) || PageCompound(page)) {
1677 page_cache_release(page);
cb34e057 1678 bvec->bv_page = NULL;
1da177e4
LT
1679 } else {
1680 nr_clean_pages++;
1681 }
1682 }
1683
1684 if (nr_clean_pages) {
1685 unsigned long flags;
1686
1687 spin_lock_irqsave(&bio_dirty_lock, flags);
1688 bio->bi_private = bio_dirty_list;
1689 bio_dirty_list = bio;
1690 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1691 schedule_work(&bio_dirty_work);
1692 } else {
1693 bio_put(bio);
1694 }
1695}
1696
394ffa50
GZ
1697void generic_start_io_acct(int rw, unsigned long sectors,
1698 struct hd_struct *part)
1699{
1700 int cpu = part_stat_lock();
1701
1702 part_round_stats(cpu, part);
1703 part_stat_inc(cpu, part, ios[rw]);
1704 part_stat_add(cpu, part, sectors[rw], sectors);
1705 part_inc_in_flight(part, rw);
1706
1707 part_stat_unlock();
1708}
1709EXPORT_SYMBOL(generic_start_io_acct);
1710
1711void generic_end_io_acct(int rw, struct hd_struct *part,
1712 unsigned long start_time)
1713{
1714 unsigned long duration = jiffies - start_time;
1715 int cpu = part_stat_lock();
1716
1717 part_stat_add(cpu, part, ticks[rw], duration);
1718 part_round_stats(cpu, part);
1719 part_dec_in_flight(part, rw);
1720
1721 part_stat_unlock();
1722}
1723EXPORT_SYMBOL(generic_end_io_acct);
1724
2d4dc890
IL
1725#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1726void bio_flush_dcache_pages(struct bio *bi)
1727{
7988613b
KO
1728 struct bio_vec bvec;
1729 struct bvec_iter iter;
2d4dc890 1730
7988613b
KO
1731 bio_for_each_segment(bvec, bi, iter)
1732 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1733}
1734EXPORT_SYMBOL(bio_flush_dcache_pages);
1735#endif
1736
c4cf5261
JA
1737static inline bool bio_remaining_done(struct bio *bio)
1738{
1739 /*
1740 * If we're not chaining, then ->__bi_remaining is always 1 and
1741 * we always end io on the first invocation.
1742 */
1743 if (!bio_flagged(bio, BIO_CHAIN))
1744 return true;
1745
1746 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1747
326e1dbb 1748 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1749 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1750 return true;
326e1dbb 1751 }
c4cf5261
JA
1752
1753 return false;
1754}
1755
1da177e4
LT
1756/**
1757 * bio_endio - end I/O on a bio
1758 * @bio: bio
1da177e4
LT
1759 *
1760 * Description:
4246a0b6
CH
1761 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1762 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1763 * bio unless they own it and thus know that it has an end_io function.
1da177e4 1764 **/
4246a0b6 1765void bio_endio(struct bio *bio)
1da177e4 1766{
196d38bc 1767 while (bio) {
c4cf5261
JA
1768 if (unlikely(!bio_remaining_done(bio)))
1769 break;
1da177e4 1770
196d38bc
KO
1771 /*
1772 * Need to have a real endio function for chained bios,
1773 * otherwise various corner cases will break (like stacking
1774 * block devices that save/restore bi_end_io) - however, we want
1775 * to avoid unbounded recursion and blowing the stack. Tail call
1776 * optimization would handle this, but compiling with frame
1777 * pointers also disables gcc's sibling call optimization.
1778 */
1779 if (bio->bi_end_io == bio_chain_endio) {
1780 struct bio *parent = bio->bi_private;
4246a0b6 1781 parent->bi_error = bio->bi_error;
196d38bc
KO
1782 bio_put(bio);
1783 bio = parent;
1784 } else {
1785 if (bio->bi_end_io)
4246a0b6 1786 bio->bi_end_io(bio);
196d38bc
KO
1787 bio = NULL;
1788 }
1789 }
1da177e4 1790}
a112a71d 1791EXPORT_SYMBOL(bio_endio);
1da177e4 1792
20d0189b
KO
1793/**
1794 * bio_split - split a bio
1795 * @bio: bio to split
1796 * @sectors: number of sectors to split from the front of @bio
1797 * @gfp: gfp mask
1798 * @bs: bio set to allocate from
1799 *
1800 * Allocates and returns a new bio which represents @sectors from the start of
1801 * @bio, and updates @bio to represent the remaining sectors.
1802 *
f3f5da62
MP
1803 * Unless this is a discard request the newly allocated bio will point
1804 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1805 * @bio is not freed before the split.
20d0189b
KO
1806 */
1807struct bio *bio_split(struct bio *bio, int sectors,
1808 gfp_t gfp, struct bio_set *bs)
1809{
1810 struct bio *split = NULL;
1811
1812 BUG_ON(sectors <= 0);
1813 BUG_ON(sectors >= bio_sectors(bio));
1814
f3f5da62
MP
1815 /*
1816 * Discards need a mutable bio_vec to accommodate the payload
1817 * required by the DSM TRIM and UNMAP commands.
1818 */
1819 if (bio->bi_rw & REQ_DISCARD)
1820 split = bio_clone_bioset(bio, gfp, bs);
1821 else
1822 split = bio_clone_fast(bio, gfp, bs);
1823
20d0189b
KO
1824 if (!split)
1825 return NULL;
1826
1827 split->bi_iter.bi_size = sectors << 9;
1828
1829 if (bio_integrity(split))
1830 bio_integrity_trim(split, 0, sectors);
1831
1832 bio_advance(bio, split->bi_iter.bi_size);
1833
1834 return split;
1835}
1836EXPORT_SYMBOL(bio_split);
1837
6678d83f
KO
1838/**
1839 * bio_trim - trim a bio
1840 * @bio: bio to trim
1841 * @offset: number of sectors to trim from the front of @bio
1842 * @size: size we want to trim @bio to, in sectors
1843 */
1844void bio_trim(struct bio *bio, int offset, int size)
1845{
1846 /* 'bio' is a cloned bio which we need to trim to match
1847 * the given offset and size.
6678d83f 1848 */
6678d83f
KO
1849
1850 size <<= 9;
4f024f37 1851 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1852 return;
1853
b7c44ed9 1854 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1855
1856 bio_advance(bio, offset << 9);
1857
4f024f37 1858 bio->bi_iter.bi_size = size;
6678d83f
KO
1859}
1860EXPORT_SYMBOL_GPL(bio_trim);
1861
1da177e4
LT
1862/*
1863 * create memory pools for biovec's in a bio_set.
1864 * use the global biovec slabs created for general use.
1865 */
a6c39cb4 1866mempool_t *biovec_create_pool(int pool_entries)
1da177e4 1867{
7ff9345f 1868 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1869
9f060e22 1870 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1871}
1872
1873void bioset_free(struct bio_set *bs)
1874{
df2cb6da
KO
1875 if (bs->rescue_workqueue)
1876 destroy_workqueue(bs->rescue_workqueue);
1877
1da177e4
LT
1878 if (bs->bio_pool)
1879 mempool_destroy(bs->bio_pool);
1880
9f060e22
KO
1881 if (bs->bvec_pool)
1882 mempool_destroy(bs->bvec_pool);
1883
7878cba9 1884 bioset_integrity_free(bs);
bb799ca0 1885 bio_put_slab(bs);
1da177e4
LT
1886
1887 kfree(bs);
1888}
a112a71d 1889EXPORT_SYMBOL(bioset_free);
1da177e4 1890
d8f429e1
JN
1891static struct bio_set *__bioset_create(unsigned int pool_size,
1892 unsigned int front_pad,
1893 bool create_bvec_pool)
1da177e4 1894{
392ddc32 1895 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1896 struct bio_set *bs;
1da177e4 1897
1b434498 1898 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1899 if (!bs)
1900 return NULL;
1901
bb799ca0 1902 bs->front_pad = front_pad;
1b434498 1903
df2cb6da
KO
1904 spin_lock_init(&bs->rescue_lock);
1905 bio_list_init(&bs->rescue_list);
1906 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1907
392ddc32 1908 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1909 if (!bs->bio_slab) {
1910 kfree(bs);
1911 return NULL;
1912 }
1913
1914 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1915 if (!bs->bio_pool)
1916 goto bad;
1917
d8f429e1
JN
1918 if (create_bvec_pool) {
1919 bs->bvec_pool = biovec_create_pool(pool_size);
1920 if (!bs->bvec_pool)
1921 goto bad;
1922 }
df2cb6da
KO
1923
1924 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1925 if (!bs->rescue_workqueue)
1926 goto bad;
1da177e4 1927
df2cb6da 1928 return bs;
1da177e4
LT
1929bad:
1930 bioset_free(bs);
1931 return NULL;
1932}
d8f429e1
JN
1933
1934/**
1935 * bioset_create - Create a bio_set
1936 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1937 * @front_pad: Number of bytes to allocate in front of the returned bio
1938 *
1939 * Description:
1940 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1941 * to ask for a number of bytes to be allocated in front of the bio.
1942 * Front pad allocation is useful for embedding the bio inside
1943 * another structure, to avoid allocating extra data to go with the bio.
1944 * Note that the bio must be embedded at the END of that structure always,
1945 * or things will break badly.
1946 */
1947struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1948{
1949 return __bioset_create(pool_size, front_pad, true);
1950}
a112a71d 1951EXPORT_SYMBOL(bioset_create);
1da177e4 1952
d8f429e1
JN
1953/**
1954 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1955 * @pool_size: Number of bio to cache in the mempool
1956 * @front_pad: Number of bytes to allocate in front of the returned bio
1957 *
1958 * Description:
1959 * Same functionality as bioset_create() except that mempool is not
1960 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1961 */
1962struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1963{
1964 return __bioset_create(pool_size, front_pad, false);
1965}
1966EXPORT_SYMBOL(bioset_create_nobvec);
1967
852c788f 1968#ifdef CONFIG_BLK_CGROUP
1d933cf0
TH
1969
1970/**
1971 * bio_associate_blkcg - associate a bio with the specified blkcg
1972 * @bio: target bio
1973 * @blkcg_css: css of the blkcg to associate
1974 *
1975 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1976 * treat @bio as if it were issued by a task which belongs to the blkcg.
1977 *
1978 * This function takes an extra reference of @blkcg_css which will be put
1979 * when @bio is released. The caller must own @bio and is responsible for
1980 * synchronizing calls to this function.
1981 */
1982int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1983{
1984 if (unlikely(bio->bi_css))
1985 return -EBUSY;
1986 css_get(blkcg_css);
1987 bio->bi_css = blkcg_css;
1988 return 0;
1989}
5aa2a96b 1990EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 1991
852c788f
TH
1992/**
1993 * bio_associate_current - associate a bio with %current
1994 * @bio: target bio
1995 *
1996 * Associate @bio with %current if it hasn't been associated yet. Block
1997 * layer will treat @bio as if it were issued by %current no matter which
1998 * task actually issues it.
1999 *
2000 * This function takes an extra reference of @task's io_context and blkcg
2001 * which will be put when @bio is released. The caller must own @bio,
2002 * ensure %current->io_context exists, and is responsible for synchronizing
2003 * calls to this function.
2004 */
2005int bio_associate_current(struct bio *bio)
2006{
2007 struct io_context *ioc;
852c788f 2008
1d933cf0 2009 if (bio->bi_css)
852c788f
TH
2010 return -EBUSY;
2011
2012 ioc = current->io_context;
2013 if (!ioc)
2014 return -ENOENT;
2015
852c788f
TH
2016 get_io_context_active(ioc);
2017 bio->bi_ioc = ioc;
c165b3e3 2018 bio->bi_css = task_get_css(current, io_cgrp_id);
852c788f
TH
2019 return 0;
2020}
5aa2a96b 2021EXPORT_SYMBOL_GPL(bio_associate_current);
852c788f
TH
2022
2023/**
2024 * bio_disassociate_task - undo bio_associate_current()
2025 * @bio: target bio
2026 */
2027void bio_disassociate_task(struct bio *bio)
2028{
2029 if (bio->bi_ioc) {
2030 put_io_context(bio->bi_ioc);
2031 bio->bi_ioc = NULL;
2032 }
2033 if (bio->bi_css) {
2034 css_put(bio->bi_css);
2035 bio->bi_css = NULL;
2036 }
2037}
2038
9145ae89
PV
2039/**
2040 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2041 * @dst: destination bio
2042 * @src: source bio
2043 */
2044void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2045{
2046 if (src->bi_css)
2047 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2048}
2049
852c788f
TH
2050#endif /* CONFIG_BLK_CGROUP */
2051
1da177e4
LT
2052static void __init biovec_init_slabs(void)
2053{
2054 int i;
2055
2056 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2057 int size;
2058 struct biovec_slab *bvs = bvec_slabs + i;
2059
a7fcd37c
JA
2060 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2061 bvs->slab = NULL;
2062 continue;
2063 }
a7fcd37c 2064
1da177e4
LT
2065 size = bvs->nr_vecs * sizeof(struct bio_vec);
2066 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2067 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2068 }
2069}
2070
2071static int __init init_bio(void)
2072{
bb799ca0
JA
2073 bio_slab_max = 2;
2074 bio_slab_nr = 0;
2075 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2076 if (!bio_slabs)
2077 panic("bio: can't allocate bios\n");
1da177e4 2078
7878cba9 2079 bio_integrity_init();
1da177e4
LT
2080 biovec_init_slabs();
2081
bb799ca0 2082 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
2083 if (!fs_bio_set)
2084 panic("bio: can't allocate bios\n");
2085
a91a2785
MP
2086 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2087 panic("bio: can't create integrity pool\n");
2088
1da177e4
LT
2089 return 0;
2090}
1da177e4 2091subsys_initcall(init_bio);