]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-core.c
Include: Uapi: Add user ABI for Sed/Opal
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
55782138
LZ
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
1da177e4 39
8324aa91 40#include "blk.h"
43a5e4e2 41#include "blk-mq.h"
bd166ef1 42#include "blk-mq-sched.h"
87760e5e 43#include "blk-wbt.h"
8324aa91 44
d07335e5 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 48EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 49EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 50
a73f730d
TH
51DEFINE_IDA(blk_queue_ida);
52
1da177e4
LT
53/*
54 * For the allocated request tables
55 */
d674d414 56struct kmem_cache *request_cachep;
1da177e4
LT
57
58/*
59 * For queue allocation
60 */
6728cb0e 61struct kmem_cache *blk_requestq_cachep;
1da177e4 62
1da177e4
LT
63/*
64 * Controlling structure to kblockd
65 */
ff856bad 66static struct workqueue_struct *kblockd_workqueue;
1da177e4 67
d40f75a0
TH
68static void blk_clear_congested(struct request_list *rl, int sync)
69{
d40f75a0
TH
70#ifdef CONFIG_CGROUP_WRITEBACK
71 clear_wb_congested(rl->blkg->wb_congested, sync);
72#else
482cf79c
TH
73 /*
74 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
75 * flip its congestion state for events on other blkcgs.
76 */
77 if (rl == &rl->q->root_rl)
78 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
79#endif
80}
81
82static void blk_set_congested(struct request_list *rl, int sync)
83{
d40f75a0
TH
84#ifdef CONFIG_CGROUP_WRITEBACK
85 set_wb_congested(rl->blkg->wb_congested, sync);
86#else
482cf79c
TH
87 /* see blk_clear_congested() */
88 if (rl == &rl->q->root_rl)
89 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
90#endif
91}
92
8324aa91 93void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
94{
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106}
107
1da177e4
LT
108/**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
113 * backing_dev_info. This function can only be called if @bdev is opened
114 * and the return value is never NULL.
1da177e4
LT
115 */
116struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
117{
165125e1 118 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 119
ff9ea323 120 return &q->backing_dev_info;
1da177e4 121}
1da177e4
LT
122EXPORT_SYMBOL(blk_get_backing_dev_info);
123
2a4aa30c 124void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 125{
1afb20f3
FT
126 memset(rq, 0, sizeof(*rq));
127
1da177e4 128 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 129 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 130 rq->cpu = -1;
63a71386 131 rq->q = q;
a2dec7b3 132 rq->__sector = (sector_t) -1;
2e662b65
JA
133 INIT_HLIST_NODE(&rq->hash);
134 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 135 rq->cmd = rq->__cmd;
e2494e1b 136 rq->cmd_len = BLK_MAX_CDB;
63a71386 137 rq->tag = -1;
bd166ef1 138 rq->internal_tag = -1;
b243ddcb 139 rq->start_time = jiffies;
9195291e 140 set_start_time_ns(rq);
09e099d4 141 rq->part = NULL;
1da177e4 142}
2a4aa30c 143EXPORT_SYMBOL(blk_rq_init);
1da177e4 144
5bb23a68
N
145static void req_bio_endio(struct request *rq, struct bio *bio,
146 unsigned int nbytes, int error)
1da177e4 147{
78d8e58a 148 if (error)
4246a0b6 149 bio->bi_error = error;
797e7dbb 150
e8064021 151 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 152 bio_set_flag(bio, BIO_QUIET);
08bafc03 153
f79ea416 154 bio_advance(bio, nbytes);
7ba1ba12 155
143a87f4 156 /* don't actually finish bio if it's part of flush sequence */
e8064021 157 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 158 bio_endio(bio);
1da177e4 159}
1da177e4 160
1da177e4
LT
161void blk_dump_rq_flags(struct request *rq, char *msg)
162{
163 int bit;
164
5953316d 165 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 166 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 167 (unsigned long long) rq->cmd_flags);
1da177e4 168
83096ebf
TH
169 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
170 (unsigned long long)blk_rq_pos(rq),
171 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
172 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
173 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 174
33659ebb 175 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 176 printk(KERN_INFO " cdb: ");
d34c87e4 177 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
178 printk("%02x ", rq->cmd[bit]);
179 printk("\n");
180 }
181}
1da177e4
LT
182EXPORT_SYMBOL(blk_dump_rq_flags);
183
3cca6dc1 184static void blk_delay_work(struct work_struct *work)
1da177e4 185{
3cca6dc1 186 struct request_queue *q;
1da177e4 187
3cca6dc1
JA
188 q = container_of(work, struct request_queue, delay_work.work);
189 spin_lock_irq(q->queue_lock);
24ecfbe2 190 __blk_run_queue(q);
3cca6dc1 191 spin_unlock_irq(q->queue_lock);
1da177e4 192}
1da177e4
LT
193
194/**
3cca6dc1
JA
195 * blk_delay_queue - restart queueing after defined interval
196 * @q: The &struct request_queue in question
197 * @msecs: Delay in msecs
1da177e4
LT
198 *
199 * Description:
3cca6dc1
JA
200 * Sometimes queueing needs to be postponed for a little while, to allow
201 * resources to come back. This function will make sure that queueing is
70460571 202 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
203 */
204void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 205{
70460571
BVA
206 if (likely(!blk_queue_dead(q)))
207 queue_delayed_work(kblockd_workqueue, &q->delay_work,
208 msecs_to_jiffies(msecs));
2ad8b1ef 209}
3cca6dc1 210EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 211
21491412
JA
212/**
213 * blk_start_queue_async - asynchronously restart a previously stopped queue
214 * @q: The &struct request_queue in question
215 *
216 * Description:
217 * blk_start_queue_async() will clear the stop flag on the queue, and
218 * ensure that the request_fn for the queue is run from an async
219 * context.
220 **/
221void blk_start_queue_async(struct request_queue *q)
222{
223 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
224 blk_run_queue_async(q);
225}
226EXPORT_SYMBOL(blk_start_queue_async);
227
1da177e4
LT
228/**
229 * blk_start_queue - restart a previously stopped queue
165125e1 230 * @q: The &struct request_queue in question
1da177e4
LT
231 *
232 * Description:
233 * blk_start_queue() will clear the stop flag on the queue, and call
234 * the request_fn for the queue if it was in a stopped state when
235 * entered. Also see blk_stop_queue(). Queue lock must be held.
236 **/
165125e1 237void blk_start_queue(struct request_queue *q)
1da177e4 238{
a038e253
PBG
239 WARN_ON(!irqs_disabled());
240
75ad23bc 241 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 242 __blk_run_queue(q);
1da177e4 243}
1da177e4
LT
244EXPORT_SYMBOL(blk_start_queue);
245
246/**
247 * blk_stop_queue - stop a queue
165125e1 248 * @q: The &struct request_queue in question
1da177e4
LT
249 *
250 * Description:
251 * The Linux block layer assumes that a block driver will consume all
252 * entries on the request queue when the request_fn strategy is called.
253 * Often this will not happen, because of hardware limitations (queue
254 * depth settings). If a device driver gets a 'queue full' response,
255 * or if it simply chooses not to queue more I/O at one point, it can
256 * call this function to prevent the request_fn from being called until
257 * the driver has signalled it's ready to go again. This happens by calling
258 * blk_start_queue() to restart queue operations. Queue lock must be held.
259 **/
165125e1 260void blk_stop_queue(struct request_queue *q)
1da177e4 261{
136b5721 262 cancel_delayed_work(&q->delay_work);
75ad23bc 263 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
264}
265EXPORT_SYMBOL(blk_stop_queue);
266
267/**
268 * blk_sync_queue - cancel any pending callbacks on a queue
269 * @q: the queue
270 *
271 * Description:
272 * The block layer may perform asynchronous callback activity
273 * on a queue, such as calling the unplug function after a timeout.
274 * A block device may call blk_sync_queue to ensure that any
275 * such activity is cancelled, thus allowing it to release resources
59c51591 276 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
277 * that its ->make_request_fn will not re-add plugging prior to calling
278 * this function.
279 *
da527770 280 * This function does not cancel any asynchronous activity arising
da3dae54 281 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 282 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 283 *
1da177e4
LT
284 */
285void blk_sync_queue(struct request_queue *q)
286{
70ed28b9 287 del_timer_sync(&q->timeout);
f04c1fe7
ML
288
289 if (q->mq_ops) {
290 struct blk_mq_hw_ctx *hctx;
291 int i;
292
70f4db63 293 queue_for_each_hw_ctx(q, hctx, i) {
27489a3c 294 cancel_work_sync(&hctx->run_work);
70f4db63
CH
295 cancel_delayed_work_sync(&hctx->delay_work);
296 }
f04c1fe7
ML
297 } else {
298 cancel_delayed_work_sync(&q->delay_work);
299 }
1da177e4
LT
300}
301EXPORT_SYMBOL(blk_sync_queue);
302
c246e80d
BVA
303/**
304 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
305 * @q: The queue to run
306 *
307 * Description:
308 * Invoke request handling on a queue if there are any pending requests.
309 * May be used to restart request handling after a request has completed.
310 * This variant runs the queue whether or not the queue has been
311 * stopped. Must be called with the queue lock held and interrupts
312 * disabled. See also @blk_run_queue.
313 */
314inline void __blk_run_queue_uncond(struct request_queue *q)
315{
316 if (unlikely(blk_queue_dead(q)))
317 return;
318
24faf6f6
BVA
319 /*
320 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
321 * the queue lock internally. As a result multiple threads may be
322 * running such a request function concurrently. Keep track of the
323 * number of active request_fn invocations such that blk_drain_queue()
324 * can wait until all these request_fn calls have finished.
325 */
326 q->request_fn_active++;
c246e80d 327 q->request_fn(q);
24faf6f6 328 q->request_fn_active--;
c246e80d 329}
a7928c15 330EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 331
1da177e4 332/**
80a4b58e 333 * __blk_run_queue - run a single device queue
1da177e4 334 * @q: The queue to run
80a4b58e
JA
335 *
336 * Description:
337 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 338 * held and interrupts disabled.
1da177e4 339 */
24ecfbe2 340void __blk_run_queue(struct request_queue *q)
1da177e4 341{
a538cd03
TH
342 if (unlikely(blk_queue_stopped(q)))
343 return;
344
c246e80d 345 __blk_run_queue_uncond(q);
75ad23bc
NP
346}
347EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 348
24ecfbe2
CH
349/**
350 * blk_run_queue_async - run a single device queue in workqueue context
351 * @q: The queue to run
352 *
353 * Description:
354 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 355 * of us. The caller must hold the queue lock.
24ecfbe2
CH
356 */
357void blk_run_queue_async(struct request_queue *q)
358{
70460571 359 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 360 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 361}
c21e6beb 362EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 363
75ad23bc
NP
364/**
365 * blk_run_queue - run a single device queue
366 * @q: The queue to run
80a4b58e
JA
367 *
368 * Description:
369 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 370 * May be used to restart queueing when a request has completed.
75ad23bc
NP
371 */
372void blk_run_queue(struct request_queue *q)
373{
374 unsigned long flags;
375
376 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 377 __blk_run_queue(q);
1da177e4
LT
378 spin_unlock_irqrestore(q->queue_lock, flags);
379}
380EXPORT_SYMBOL(blk_run_queue);
381
165125e1 382void blk_put_queue(struct request_queue *q)
483f4afc
AV
383{
384 kobject_put(&q->kobj);
385}
d86e0e83 386EXPORT_SYMBOL(blk_put_queue);
483f4afc 387
e3c78ca5 388/**
807592a4 389 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 390 * @q: queue to drain
c9a929dd 391 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 392 *
c9a929dd
TH
393 * Drain requests from @q. If @drain_all is set, all requests are drained.
394 * If not, only ELVPRIV requests are drained. The caller is responsible
395 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 396 */
807592a4
BVA
397static void __blk_drain_queue(struct request_queue *q, bool drain_all)
398 __releases(q->queue_lock)
399 __acquires(q->queue_lock)
e3c78ca5 400{
458f27a9
AH
401 int i;
402
807592a4
BVA
403 lockdep_assert_held(q->queue_lock);
404
e3c78ca5 405 while (true) {
481a7d64 406 bool drain = false;
e3c78ca5 407
b855b04a
TH
408 /*
409 * The caller might be trying to drain @q before its
410 * elevator is initialized.
411 */
412 if (q->elevator)
413 elv_drain_elevator(q);
414
5efd6113 415 blkcg_drain_queue(q);
e3c78ca5 416
4eabc941
TH
417 /*
418 * This function might be called on a queue which failed
b855b04a
TH
419 * driver init after queue creation or is not yet fully
420 * active yet. Some drivers (e.g. fd and loop) get unhappy
421 * in such cases. Kick queue iff dispatch queue has
422 * something on it and @q has request_fn set.
4eabc941 423 */
b855b04a 424 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 425 __blk_run_queue(q);
c9a929dd 426
8a5ecdd4 427 drain |= q->nr_rqs_elvpriv;
24faf6f6 428 drain |= q->request_fn_active;
481a7d64
TH
429
430 /*
431 * Unfortunately, requests are queued at and tracked from
432 * multiple places and there's no single counter which can
433 * be drained. Check all the queues and counters.
434 */
435 if (drain_all) {
e97c293c 436 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
437 drain |= !list_empty(&q->queue_head);
438 for (i = 0; i < 2; i++) {
8a5ecdd4 439 drain |= q->nr_rqs[i];
481a7d64 440 drain |= q->in_flight[i];
7c94e1c1
ML
441 if (fq)
442 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
443 }
444 }
e3c78ca5 445
481a7d64 446 if (!drain)
e3c78ca5 447 break;
807592a4
BVA
448
449 spin_unlock_irq(q->queue_lock);
450
e3c78ca5 451 msleep(10);
807592a4
BVA
452
453 spin_lock_irq(q->queue_lock);
e3c78ca5 454 }
458f27a9
AH
455
456 /*
457 * With queue marked dead, any woken up waiter will fail the
458 * allocation path, so the wakeup chaining is lost and we're
459 * left with hung waiters. We need to wake up those waiters.
460 */
461 if (q->request_fn) {
a051661c
TH
462 struct request_list *rl;
463
a051661c
TH
464 blk_queue_for_each_rl(rl, q)
465 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
466 wake_up_all(&rl->wait[i]);
458f27a9 467 }
e3c78ca5
TH
468}
469
d732580b
TH
470/**
471 * blk_queue_bypass_start - enter queue bypass mode
472 * @q: queue of interest
473 *
474 * In bypass mode, only the dispatch FIFO queue of @q is used. This
475 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 476 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
477 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
478 * inside queue or RCU read lock.
d732580b
TH
479 */
480void blk_queue_bypass_start(struct request_queue *q)
481{
482 spin_lock_irq(q->queue_lock);
776687bc 483 q->bypass_depth++;
d732580b
TH
484 queue_flag_set(QUEUE_FLAG_BYPASS, q);
485 spin_unlock_irq(q->queue_lock);
486
776687bc
TH
487 /*
488 * Queues start drained. Skip actual draining till init is
489 * complete. This avoids lenghty delays during queue init which
490 * can happen many times during boot.
491 */
492 if (blk_queue_init_done(q)) {
807592a4
BVA
493 spin_lock_irq(q->queue_lock);
494 __blk_drain_queue(q, false);
495 spin_unlock_irq(q->queue_lock);
496
b82d4b19
TH
497 /* ensure blk_queue_bypass() is %true inside RCU read lock */
498 synchronize_rcu();
499 }
d732580b
TH
500}
501EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
502
503/**
504 * blk_queue_bypass_end - leave queue bypass mode
505 * @q: queue of interest
506 *
507 * Leave bypass mode and restore the normal queueing behavior.
508 */
509void blk_queue_bypass_end(struct request_queue *q)
510{
511 spin_lock_irq(q->queue_lock);
512 if (!--q->bypass_depth)
513 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
514 WARN_ON_ONCE(q->bypass_depth < 0);
515 spin_unlock_irq(q->queue_lock);
516}
517EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
518
aed3ea94
JA
519void blk_set_queue_dying(struct request_queue *q)
520{
1b856086
BVA
521 spin_lock_irq(q->queue_lock);
522 queue_flag_set(QUEUE_FLAG_DYING, q);
523 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
524
525 if (q->mq_ops)
526 blk_mq_wake_waiters(q);
527 else {
528 struct request_list *rl;
529
bbfc3c5d 530 spin_lock_irq(q->queue_lock);
aed3ea94
JA
531 blk_queue_for_each_rl(rl, q) {
532 if (rl->rq_pool) {
533 wake_up(&rl->wait[BLK_RW_SYNC]);
534 wake_up(&rl->wait[BLK_RW_ASYNC]);
535 }
536 }
bbfc3c5d 537 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
538 }
539}
540EXPORT_SYMBOL_GPL(blk_set_queue_dying);
541
c9a929dd
TH
542/**
543 * blk_cleanup_queue - shutdown a request queue
544 * @q: request queue to shutdown
545 *
c246e80d
BVA
546 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
547 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 548 */
6728cb0e 549void blk_cleanup_queue(struct request_queue *q)
483f4afc 550{
c9a929dd 551 spinlock_t *lock = q->queue_lock;
e3335de9 552
3f3299d5 553 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 554 mutex_lock(&q->sysfs_lock);
aed3ea94 555 blk_set_queue_dying(q);
c9a929dd 556 spin_lock_irq(lock);
6ecf23af 557
80fd9979 558 /*
3f3299d5 559 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
560 * that, unlike blk_queue_bypass_start(), we aren't performing
561 * synchronize_rcu() after entering bypass mode to avoid the delay
562 * as some drivers create and destroy a lot of queues while
563 * probing. This is still safe because blk_release_queue() will be
564 * called only after the queue refcnt drops to zero and nothing,
565 * RCU or not, would be traversing the queue by then.
566 */
6ecf23af
TH
567 q->bypass_depth++;
568 queue_flag_set(QUEUE_FLAG_BYPASS, q);
569
c9a929dd
TH
570 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
571 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 572 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
573 spin_unlock_irq(lock);
574 mutex_unlock(&q->sysfs_lock);
575
c246e80d
BVA
576 /*
577 * Drain all requests queued before DYING marking. Set DEAD flag to
578 * prevent that q->request_fn() gets invoked after draining finished.
579 */
3ef28e83
DW
580 blk_freeze_queue(q);
581 spin_lock_irq(lock);
582 if (!q->mq_ops)
43a5e4e2 583 __blk_drain_queue(q, true);
c246e80d 584 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 585 spin_unlock_irq(lock);
c9a929dd 586
5a48fc14
DW
587 /* for synchronous bio-based driver finish in-flight integrity i/o */
588 blk_flush_integrity();
589
c9a929dd
TH
590 /* @q won't process any more request, flush async actions */
591 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
592 blk_sync_queue(q);
593
45a9c9d9
BVA
594 if (q->mq_ops)
595 blk_mq_free_queue(q);
3ef28e83 596 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 597
5e5cfac0
AH
598 spin_lock_irq(lock);
599 if (q->queue_lock != &q->__queue_lock)
600 q->queue_lock = &q->__queue_lock;
601 spin_unlock_irq(lock);
602
b02176f3 603 bdi_unregister(&q->backing_dev_info);
6cd18e71 604
c9a929dd 605 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
606 blk_put_queue(q);
607}
1da177e4
LT
608EXPORT_SYMBOL(blk_cleanup_queue);
609
271508db
DR
610/* Allocate memory local to the request queue */
611static void *alloc_request_struct(gfp_t gfp_mask, void *data)
612{
613 int nid = (int)(long)data;
614 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
615}
616
617static void free_request_struct(void *element, void *unused)
618{
619 kmem_cache_free(request_cachep, element);
620}
621
5b788ce3
TH
622int blk_init_rl(struct request_list *rl, struct request_queue *q,
623 gfp_t gfp_mask)
1da177e4 624{
1abec4fd
MS
625 if (unlikely(rl->rq_pool))
626 return 0;
627
5b788ce3 628 rl->q = q;
1faa16d2
JA
629 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
630 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
631 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
632 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 633
271508db
DR
634 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
635 free_request_struct,
636 (void *)(long)q->node, gfp_mask,
637 q->node);
1da177e4
LT
638 if (!rl->rq_pool)
639 return -ENOMEM;
640
641 return 0;
642}
643
5b788ce3
TH
644void blk_exit_rl(struct request_list *rl)
645{
646 if (rl->rq_pool)
647 mempool_destroy(rl->rq_pool);
648}
649
165125e1 650struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 651{
c304a51b 652 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
653}
654EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 655
6f3b0e8b 656int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
657{
658 while (true) {
659 int ret;
660
661 if (percpu_ref_tryget_live(&q->q_usage_counter))
662 return 0;
663
6f3b0e8b 664 if (nowait)
3ef28e83
DW
665 return -EBUSY;
666
667 ret = wait_event_interruptible(q->mq_freeze_wq,
668 !atomic_read(&q->mq_freeze_depth) ||
669 blk_queue_dying(q));
670 if (blk_queue_dying(q))
671 return -ENODEV;
672 if (ret)
673 return ret;
674 }
675}
676
677void blk_queue_exit(struct request_queue *q)
678{
679 percpu_ref_put(&q->q_usage_counter);
680}
681
682static void blk_queue_usage_counter_release(struct percpu_ref *ref)
683{
684 struct request_queue *q =
685 container_of(ref, struct request_queue, q_usage_counter);
686
687 wake_up_all(&q->mq_freeze_wq);
688}
689
287922eb
CH
690static void blk_rq_timed_out_timer(unsigned long data)
691{
692 struct request_queue *q = (struct request_queue *)data;
693
694 kblockd_schedule_work(&q->timeout_work);
695}
696
165125e1 697struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 698{
165125e1 699 struct request_queue *q;
e0bf68dd 700 int err;
1946089a 701
8324aa91 702 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 703 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
704 if (!q)
705 return NULL;
706
00380a40 707 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 708 if (q->id < 0)
3d2936f4 709 goto fail_q;
a73f730d 710
54efd50b
KO
711 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
712 if (!q->bio_split)
713 goto fail_id;
714
0989a025 715 q->backing_dev_info.ra_pages =
09cbfeaf 716 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
89e9b9e0 717 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
d993831f 718 q->backing_dev_info.name = "block";
5151412d 719 q->node = node_id;
0989a025 720
e0bf68dd 721 err = bdi_init(&q->backing_dev_info);
a73f730d 722 if (err)
54efd50b 723 goto fail_split;
e0bf68dd 724
31373d09
MG
725 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
726 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 727 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 728 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 729 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 730 INIT_LIST_HEAD(&q->icq_list);
4eef3049 731#ifdef CONFIG_BLK_CGROUP
e8989fae 732 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 733#endif
3cca6dc1 734 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 735
8324aa91 736 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 737
483f4afc 738 mutex_init(&q->sysfs_lock);
e7e72bf6 739 spin_lock_init(&q->__queue_lock);
483f4afc 740
c94a96ac
VG
741 /*
742 * By default initialize queue_lock to internal lock and driver can
743 * override it later if need be.
744 */
745 q->queue_lock = &q->__queue_lock;
746
b82d4b19
TH
747 /*
748 * A queue starts its life with bypass turned on to avoid
749 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
750 * init. The initial bypass will be finished when the queue is
751 * registered by blk_register_queue().
b82d4b19
TH
752 */
753 q->bypass_depth = 1;
754 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
755
320ae51f
JA
756 init_waitqueue_head(&q->mq_freeze_wq);
757
3ef28e83
DW
758 /*
759 * Init percpu_ref in atomic mode so that it's faster to shutdown.
760 * See blk_register_queue() for details.
761 */
762 if (percpu_ref_init(&q->q_usage_counter,
763 blk_queue_usage_counter_release,
764 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 765 goto fail_bdi;
f51b802c 766
3ef28e83
DW
767 if (blkcg_init_queue(q))
768 goto fail_ref;
769
1da177e4 770 return q;
a73f730d 771
3ef28e83
DW
772fail_ref:
773 percpu_ref_exit(&q->q_usage_counter);
fff4996b
MP
774fail_bdi:
775 bdi_destroy(&q->backing_dev_info);
54efd50b
KO
776fail_split:
777 bioset_free(q->bio_split);
a73f730d
TH
778fail_id:
779 ida_simple_remove(&blk_queue_ida, q->id);
780fail_q:
781 kmem_cache_free(blk_requestq_cachep, q);
782 return NULL;
1da177e4 783}
1946089a 784EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
785
786/**
787 * blk_init_queue - prepare a request queue for use with a block device
788 * @rfn: The function to be called to process requests that have been
789 * placed on the queue.
790 * @lock: Request queue spin lock
791 *
792 * Description:
793 * If a block device wishes to use the standard request handling procedures,
794 * which sorts requests and coalesces adjacent requests, then it must
795 * call blk_init_queue(). The function @rfn will be called when there
796 * are requests on the queue that need to be processed. If the device
797 * supports plugging, then @rfn may not be called immediately when requests
798 * are available on the queue, but may be called at some time later instead.
799 * Plugged queues are generally unplugged when a buffer belonging to one
800 * of the requests on the queue is needed, or due to memory pressure.
801 *
802 * @rfn is not required, or even expected, to remove all requests off the
803 * queue, but only as many as it can handle at a time. If it does leave
804 * requests on the queue, it is responsible for arranging that the requests
805 * get dealt with eventually.
806 *
807 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
808 * request queue; this lock will be taken also from interrupt context, so irq
809 * disabling is needed for it.
1da177e4 810 *
710027a4 811 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
812 * it didn't succeed.
813 *
814 * Note:
815 * blk_init_queue() must be paired with a blk_cleanup_queue() call
816 * when the block device is deactivated (such as at module unload).
817 **/
1946089a 818
165125e1 819struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 820{
c304a51b 821 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
822}
823EXPORT_SYMBOL(blk_init_queue);
824
165125e1 825struct request_queue *
1946089a
CL
826blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
827{
c86d1b8a 828 struct request_queue *uninit_q, *q;
1da177e4 829
c86d1b8a
MS
830 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
831 if (!uninit_q)
832 return NULL;
833
5151412d 834 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 835 if (!q)
7982e90c 836 blk_cleanup_queue(uninit_q);
18741986 837
7982e90c 838 return q;
01effb0d
MS
839}
840EXPORT_SYMBOL(blk_init_queue_node);
841
dece1635 842static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 843
01effb0d
MS
844struct request_queue *
845blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
846 spinlock_t *lock)
01effb0d 847{
1da177e4
LT
848 if (!q)
849 return NULL;
850
f70ced09 851 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 852 if (!q->fq)
7982e90c
MS
853 return NULL;
854
a051661c 855 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 856 goto fail;
1da177e4 857
287922eb 858 INIT_WORK(&q->timeout_work, blk_timeout_work);
1da177e4 859 q->request_fn = rfn;
1da177e4 860 q->prep_rq_fn = NULL;
28018c24 861 q->unprep_rq_fn = NULL;
60ea8226 862 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
863
864 /* Override internal queue lock with supplied lock pointer */
865 if (lock)
866 q->queue_lock = lock;
1da177e4 867
f3b144aa
JA
868 /*
869 * This also sets hw/phys segments, boundary and size
870 */
c20e8de2 871 blk_queue_make_request(q, blk_queue_bio);
1da177e4 872
44ec9542
AS
873 q->sg_reserved_size = INT_MAX;
874
eb1c160b
TS
875 /* Protect q->elevator from elevator_change */
876 mutex_lock(&q->sysfs_lock);
877
b82d4b19 878 /* init elevator */
eb1c160b
TS
879 if (elevator_init(q, NULL)) {
880 mutex_unlock(&q->sysfs_lock);
708f04d2 881 goto fail;
eb1c160b
TS
882 }
883
884 mutex_unlock(&q->sysfs_lock);
885
b82d4b19 886 return q;
708f04d2
DJ
887
888fail:
ba483388 889 blk_free_flush_queue(q->fq);
87760e5e 890 wbt_exit(q);
708f04d2 891 return NULL;
1da177e4 892}
5151412d 893EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 894
09ac46c4 895bool blk_get_queue(struct request_queue *q)
1da177e4 896{
3f3299d5 897 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
898 __blk_get_queue(q);
899 return true;
1da177e4
LT
900 }
901
09ac46c4 902 return false;
1da177e4 903}
d86e0e83 904EXPORT_SYMBOL(blk_get_queue);
1da177e4 905
5b788ce3 906static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 907{
e8064021 908 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 909 elv_put_request(rl->q, rq);
f1f8cc94 910 if (rq->elv.icq)
11a3122f 911 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
912 }
913
5b788ce3 914 mempool_free(rq, rl->rq_pool);
1da177e4
LT
915}
916
1da177e4
LT
917/*
918 * ioc_batching returns true if the ioc is a valid batching request and
919 * should be given priority access to a request.
920 */
165125e1 921static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
922{
923 if (!ioc)
924 return 0;
925
926 /*
927 * Make sure the process is able to allocate at least 1 request
928 * even if the batch times out, otherwise we could theoretically
929 * lose wakeups.
930 */
931 return ioc->nr_batch_requests == q->nr_batching ||
932 (ioc->nr_batch_requests > 0
933 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
934}
935
936/*
937 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
938 * will cause the process to be a "batcher" on all queues in the system. This
939 * is the behaviour we want though - once it gets a wakeup it should be given
940 * a nice run.
941 */
165125e1 942static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
943{
944 if (!ioc || ioc_batching(q, ioc))
945 return;
946
947 ioc->nr_batch_requests = q->nr_batching;
948 ioc->last_waited = jiffies;
949}
950
5b788ce3 951static void __freed_request(struct request_list *rl, int sync)
1da177e4 952{
5b788ce3 953 struct request_queue *q = rl->q;
1da177e4 954
d40f75a0
TH
955 if (rl->count[sync] < queue_congestion_off_threshold(q))
956 blk_clear_congested(rl, sync);
1da177e4 957
1faa16d2
JA
958 if (rl->count[sync] + 1 <= q->nr_requests) {
959 if (waitqueue_active(&rl->wait[sync]))
960 wake_up(&rl->wait[sync]);
1da177e4 961
5b788ce3 962 blk_clear_rl_full(rl, sync);
1da177e4
LT
963 }
964}
965
966/*
967 * A request has just been released. Account for it, update the full and
968 * congestion status, wake up any waiters. Called under q->queue_lock.
969 */
e8064021
CH
970static void freed_request(struct request_list *rl, bool sync,
971 req_flags_t rq_flags)
1da177e4 972{
5b788ce3 973 struct request_queue *q = rl->q;
1da177e4 974
8a5ecdd4 975 q->nr_rqs[sync]--;
1faa16d2 976 rl->count[sync]--;
e8064021 977 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 978 q->nr_rqs_elvpriv--;
1da177e4 979
5b788ce3 980 __freed_request(rl, sync);
1da177e4 981
1faa16d2 982 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 983 __freed_request(rl, sync ^ 1);
1da177e4
LT
984}
985
e3a2b3f9
JA
986int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
987{
988 struct request_list *rl;
d40f75a0 989 int on_thresh, off_thresh;
e3a2b3f9
JA
990
991 spin_lock_irq(q->queue_lock);
992 q->nr_requests = nr;
993 blk_queue_congestion_threshold(q);
d40f75a0
TH
994 on_thresh = queue_congestion_on_threshold(q);
995 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 996
d40f75a0
TH
997 blk_queue_for_each_rl(rl, q) {
998 if (rl->count[BLK_RW_SYNC] >= on_thresh)
999 blk_set_congested(rl, BLK_RW_SYNC);
1000 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1001 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1002
d40f75a0
TH
1003 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1004 blk_set_congested(rl, BLK_RW_ASYNC);
1005 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1006 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1007
e3a2b3f9
JA
1008 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1009 blk_set_rl_full(rl, BLK_RW_SYNC);
1010 } else {
1011 blk_clear_rl_full(rl, BLK_RW_SYNC);
1012 wake_up(&rl->wait[BLK_RW_SYNC]);
1013 }
1014
1015 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1016 blk_set_rl_full(rl, BLK_RW_ASYNC);
1017 } else {
1018 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1019 wake_up(&rl->wait[BLK_RW_ASYNC]);
1020 }
1021 }
1022
1023 spin_unlock_irq(q->queue_lock);
1024 return 0;
1025}
1026
9d5a4e94
MS
1027/*
1028 * Determine if elevator data should be initialized when allocating the
1029 * request associated with @bio.
1030 */
1031static bool blk_rq_should_init_elevator(struct bio *bio)
1032{
1033 if (!bio)
1034 return true;
1035
1036 /*
1037 * Flush requests do not use the elevator so skip initialization.
1038 * This allows a request to share the flush and elevator data.
1039 */
f73f44eb 1040 if (op_is_flush(bio->bi_opf))
9d5a4e94
MS
1041 return false;
1042
1043 return true;
1044}
1045
da8303c6 1046/**
a06e05e6 1047 * __get_request - get a free request
5b788ce3 1048 * @rl: request list to allocate from
ef295ecf 1049 * @op: operation and flags
da8303c6
TH
1050 * @bio: bio to allocate request for (can be %NULL)
1051 * @gfp_mask: allocation mask
1052 *
1053 * Get a free request from @q. This function may fail under memory
1054 * pressure or if @q is dead.
1055 *
da3dae54 1056 * Must be called with @q->queue_lock held and,
a492f075
JL
1057 * Returns ERR_PTR on failure, with @q->queue_lock held.
1058 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1059 */
ef295ecf
CH
1060static struct request *__get_request(struct request_list *rl, unsigned int op,
1061 struct bio *bio, gfp_t gfp_mask)
1da177e4 1062{
5b788ce3 1063 struct request_queue *q = rl->q;
b679281a 1064 struct request *rq;
7f4b35d1
TH
1065 struct elevator_type *et = q->elevator->type;
1066 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1067 struct io_cq *icq = NULL;
ef295ecf 1068 const bool is_sync = op_is_sync(op);
75eb6c37 1069 int may_queue;
e8064021 1070 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1071
3f3299d5 1072 if (unlikely(blk_queue_dying(q)))
a492f075 1073 return ERR_PTR(-ENODEV);
da8303c6 1074
ef295ecf 1075 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1076 if (may_queue == ELV_MQUEUE_NO)
1077 goto rq_starved;
1078
1faa16d2
JA
1079 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1080 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1081 /*
1082 * The queue will fill after this allocation, so set
1083 * it as full, and mark this process as "batching".
1084 * This process will be allowed to complete a batch of
1085 * requests, others will be blocked.
1086 */
5b788ce3 1087 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1088 ioc_set_batching(q, ioc);
5b788ce3 1089 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1090 } else {
1091 if (may_queue != ELV_MQUEUE_MUST
1092 && !ioc_batching(q, ioc)) {
1093 /*
1094 * The queue is full and the allocating
1095 * process is not a "batcher", and not
1096 * exempted by the IO scheduler
1097 */
a492f075 1098 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1099 }
1100 }
1da177e4 1101 }
d40f75a0 1102 blk_set_congested(rl, is_sync);
1da177e4
LT
1103 }
1104
082cf69e
JA
1105 /*
1106 * Only allow batching queuers to allocate up to 50% over the defined
1107 * limit of requests, otherwise we could have thousands of requests
1108 * allocated with any setting of ->nr_requests
1109 */
1faa16d2 1110 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1111 return ERR_PTR(-ENOMEM);
fd782a4a 1112
8a5ecdd4 1113 q->nr_rqs[is_sync]++;
1faa16d2
JA
1114 rl->count[is_sync]++;
1115 rl->starved[is_sync] = 0;
cb98fc8b 1116
f1f8cc94
TH
1117 /*
1118 * Decide whether the new request will be managed by elevator. If
e8064021 1119 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1120 * prevent the current elevator from being destroyed until the new
1121 * request is freed. This guarantees icq's won't be destroyed and
1122 * makes creating new ones safe.
1123 *
1124 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1125 * it will be created after releasing queue_lock.
1126 */
d732580b 1127 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
e8064021 1128 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1129 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1130 if (et->icq_cache && ioc)
1131 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1132 }
cb98fc8b 1133
f253b86b 1134 if (blk_queue_io_stat(q))
e8064021 1135 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1136 spin_unlock_irq(q->queue_lock);
1137
29e2b09a 1138 /* allocate and init request */
5b788ce3 1139 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1140 if (!rq)
b679281a 1141 goto fail_alloc;
1da177e4 1142
29e2b09a 1143 blk_rq_init(q, rq);
a051661c 1144 blk_rq_set_rl(rq, rl);
5dc8b362 1145 blk_rq_set_prio(rq, ioc);
ef295ecf 1146 rq->cmd_flags = op;
e8064021 1147 rq->rq_flags = rq_flags;
29e2b09a 1148
aaf7c680 1149 /* init elvpriv */
e8064021 1150 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1151 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1152 if (ioc)
1153 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1154 if (!icq)
1155 goto fail_elvpriv;
29e2b09a 1156 }
aaf7c680
TH
1157
1158 rq->elv.icq = icq;
1159 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1160 goto fail_elvpriv;
1161
1162 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1163 if (icq)
1164 get_io_context(icq->ioc);
1165 }
aaf7c680 1166out:
88ee5ef1
JA
1167 /*
1168 * ioc may be NULL here, and ioc_batching will be false. That's
1169 * OK, if the queue is under the request limit then requests need
1170 * not count toward the nr_batch_requests limit. There will always
1171 * be some limit enforced by BLK_BATCH_TIME.
1172 */
1da177e4
LT
1173 if (ioc_batching(q, ioc))
1174 ioc->nr_batch_requests--;
6728cb0e 1175
e6a40b09 1176 trace_block_getrq(q, bio, op);
1da177e4 1177 return rq;
b679281a 1178
aaf7c680
TH
1179fail_elvpriv:
1180 /*
1181 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1182 * and may fail indefinitely under memory pressure and thus
1183 * shouldn't stall IO. Treat this request as !elvpriv. This will
1184 * disturb iosched and blkcg but weird is bettern than dead.
1185 */
7b2b10e0
RE
1186 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1187 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680 1188
e8064021 1189 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1190 rq->elv.icq = NULL;
1191
1192 spin_lock_irq(q->queue_lock);
8a5ecdd4 1193 q->nr_rqs_elvpriv--;
aaf7c680
TH
1194 spin_unlock_irq(q->queue_lock);
1195 goto out;
1196
b679281a
TH
1197fail_alloc:
1198 /*
1199 * Allocation failed presumably due to memory. Undo anything we
1200 * might have messed up.
1201 *
1202 * Allocating task should really be put onto the front of the wait
1203 * queue, but this is pretty rare.
1204 */
1205 spin_lock_irq(q->queue_lock);
e8064021 1206 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1207
1208 /*
1209 * in the very unlikely event that allocation failed and no
1210 * requests for this direction was pending, mark us starved so that
1211 * freeing of a request in the other direction will notice
1212 * us. another possible fix would be to split the rq mempool into
1213 * READ and WRITE
1214 */
1215rq_starved:
1216 if (unlikely(rl->count[is_sync] == 0))
1217 rl->starved[is_sync] = 1;
a492f075 1218 return ERR_PTR(-ENOMEM);
1da177e4
LT
1219}
1220
da8303c6 1221/**
a06e05e6 1222 * get_request - get a free request
da8303c6 1223 * @q: request_queue to allocate request from
ef295ecf 1224 * @op: operation and flags
da8303c6 1225 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1226 * @gfp_mask: allocation mask
da8303c6 1227 *
d0164adc
MG
1228 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1229 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1230 *
da3dae54 1231 * Must be called with @q->queue_lock held and,
a492f075
JL
1232 * Returns ERR_PTR on failure, with @q->queue_lock held.
1233 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1234 */
ef295ecf
CH
1235static struct request *get_request(struct request_queue *q, unsigned int op,
1236 struct bio *bio, gfp_t gfp_mask)
1da177e4 1237{
ef295ecf 1238 const bool is_sync = op_is_sync(op);
a06e05e6 1239 DEFINE_WAIT(wait);
a051661c 1240 struct request_list *rl;
1da177e4 1241 struct request *rq;
a051661c
TH
1242
1243 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1244retry:
ef295ecf 1245 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1246 if (!IS_ERR(rq))
a06e05e6 1247 return rq;
1da177e4 1248
d0164adc 1249 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1250 blk_put_rl(rl);
a492f075 1251 return rq;
a051661c 1252 }
1da177e4 1253
a06e05e6
TH
1254 /* wait on @rl and retry */
1255 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1256 TASK_UNINTERRUPTIBLE);
1da177e4 1257
e6a40b09 1258 trace_block_sleeprq(q, bio, op);
1da177e4 1259
a06e05e6
TH
1260 spin_unlock_irq(q->queue_lock);
1261 io_schedule();
d6344532 1262
a06e05e6
TH
1263 /*
1264 * After sleeping, we become a "batching" process and will be able
1265 * to allocate at least one request, and up to a big batch of them
1266 * for a small period time. See ioc_batching, ioc_set_batching
1267 */
a06e05e6 1268 ioc_set_batching(q, current->io_context);
05caf8db 1269
a06e05e6
TH
1270 spin_lock_irq(q->queue_lock);
1271 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1272
a06e05e6 1273 goto retry;
1da177e4
LT
1274}
1275
320ae51f
JA
1276static struct request *blk_old_get_request(struct request_queue *q, int rw,
1277 gfp_t gfp_mask)
1da177e4
LT
1278{
1279 struct request *rq;
1280
1281 BUG_ON(rw != READ && rw != WRITE);
1282
7f4b35d1
TH
1283 /* create ioc upfront */
1284 create_io_context(gfp_mask, q->node);
1285
d6344532 1286 spin_lock_irq(q->queue_lock);
ef295ecf 1287 rq = get_request(q, rw, NULL, gfp_mask);
0c4de0f3 1288 if (IS_ERR(rq)) {
da8303c6 1289 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1290 return rq;
1291 }
1da177e4 1292
0c4de0f3
CH
1293 /* q->queue_lock is unlocked at this point */
1294 rq->__data_len = 0;
1295 rq->__sector = (sector_t) -1;
1296 rq->bio = rq->biotail = NULL;
1da177e4
LT
1297 return rq;
1298}
320ae51f
JA
1299
1300struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1301{
1302 if (q->mq_ops)
6f3b0e8b
CH
1303 return blk_mq_alloc_request(q, rw,
1304 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1305 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1306 else
1307 return blk_old_get_request(q, rw, gfp_mask);
1308}
1da177e4
LT
1309EXPORT_SYMBOL(blk_get_request);
1310
f27b087b 1311/**
da3dae54 1312 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1313 * @rq: request to be initialized
1314 *
1315 */
1316void blk_rq_set_block_pc(struct request *rq)
1317{
1318 rq->cmd_type = REQ_TYPE_BLOCK_PC;
f27b087b 1319 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1320}
1321EXPORT_SYMBOL(blk_rq_set_block_pc);
1322
1da177e4
LT
1323/**
1324 * blk_requeue_request - put a request back on queue
1325 * @q: request queue where request should be inserted
1326 * @rq: request to be inserted
1327 *
1328 * Description:
1329 * Drivers often keep queueing requests until the hardware cannot accept
1330 * more, when that condition happens we need to put the request back
1331 * on the queue. Must be called with queue lock held.
1332 */
165125e1 1333void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1334{
242f9dcb
JA
1335 blk_delete_timer(rq);
1336 blk_clear_rq_complete(rq);
5f3ea37c 1337 trace_block_rq_requeue(q, rq);
87760e5e 1338 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1339
e8064021 1340 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1341 blk_queue_end_tag(q, rq);
1342
ba396a6c
JB
1343 BUG_ON(blk_queued_rq(rq));
1344
1da177e4
LT
1345 elv_requeue_request(q, rq);
1346}
1da177e4
LT
1347EXPORT_SYMBOL(blk_requeue_request);
1348
73c10101
JA
1349static void add_acct_request(struct request_queue *q, struct request *rq,
1350 int where)
1351{
320ae51f 1352 blk_account_io_start(rq, true);
7eaceacc 1353 __elv_add_request(q, rq, where);
73c10101
JA
1354}
1355
074a7aca
TH
1356static void part_round_stats_single(int cpu, struct hd_struct *part,
1357 unsigned long now)
1358{
7276d02e
JA
1359 int inflight;
1360
074a7aca
TH
1361 if (now == part->stamp)
1362 return;
1363
7276d02e
JA
1364 inflight = part_in_flight(part);
1365 if (inflight) {
074a7aca 1366 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1367 inflight * (now - part->stamp));
074a7aca
TH
1368 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1369 }
1370 part->stamp = now;
1371}
1372
1373/**
496aa8a9
RD
1374 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1375 * @cpu: cpu number for stats access
1376 * @part: target partition
1da177e4
LT
1377 *
1378 * The average IO queue length and utilisation statistics are maintained
1379 * by observing the current state of the queue length and the amount of
1380 * time it has been in this state for.
1381 *
1382 * Normally, that accounting is done on IO completion, but that can result
1383 * in more than a second's worth of IO being accounted for within any one
1384 * second, leading to >100% utilisation. To deal with that, we call this
1385 * function to do a round-off before returning the results when reading
1386 * /proc/diskstats. This accounts immediately for all queue usage up to
1387 * the current jiffies and restarts the counters again.
1388 */
c9959059 1389void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1390{
1391 unsigned long now = jiffies;
1392
074a7aca
TH
1393 if (part->partno)
1394 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1395 part_round_stats_single(cpu, part, now);
6f2576af 1396}
074a7aca 1397EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1398
47fafbc7 1399#ifdef CONFIG_PM
c8158819
LM
1400static void blk_pm_put_request(struct request *rq)
1401{
e8064021 1402 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1403 pm_runtime_mark_last_busy(rq->q->dev);
1404}
1405#else
1406static inline void blk_pm_put_request(struct request *rq) {}
1407#endif
1408
1da177e4
LT
1409/*
1410 * queue lock must be held
1411 */
165125e1 1412void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1413{
e8064021
CH
1414 req_flags_t rq_flags = req->rq_flags;
1415
1da177e4
LT
1416 if (unlikely(!q))
1417 return;
1da177e4 1418
6f5ba581
CH
1419 if (q->mq_ops) {
1420 blk_mq_free_request(req);
1421 return;
1422 }
1423
c8158819
LM
1424 blk_pm_put_request(req);
1425
8922e16c
TH
1426 elv_completed_request(q, req);
1427
1cd96c24
BH
1428 /* this is a bio leak */
1429 WARN_ON(req->bio != NULL);
1430
87760e5e
JA
1431 wbt_done(q->rq_wb, &req->issue_stat);
1432
1da177e4
LT
1433 /*
1434 * Request may not have originated from ll_rw_blk. if not,
1435 * it didn't come out of our reserved rq pools
1436 */
e8064021 1437 if (rq_flags & RQF_ALLOCED) {
a051661c 1438 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1439 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1440
1da177e4 1441 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1442 BUG_ON(ELV_ON_HASH(req));
1da177e4 1443
a051661c 1444 blk_free_request(rl, req);
e8064021 1445 freed_request(rl, sync, rq_flags);
a051661c 1446 blk_put_rl(rl);
1da177e4
LT
1447 }
1448}
6e39b69e
MC
1449EXPORT_SYMBOL_GPL(__blk_put_request);
1450
1da177e4
LT
1451void blk_put_request(struct request *req)
1452{
165125e1 1453 struct request_queue *q = req->q;
8922e16c 1454
320ae51f
JA
1455 if (q->mq_ops)
1456 blk_mq_free_request(req);
1457 else {
1458 unsigned long flags;
1459
1460 spin_lock_irqsave(q->queue_lock, flags);
1461 __blk_put_request(q, req);
1462 spin_unlock_irqrestore(q->queue_lock, flags);
1463 }
1da177e4 1464}
1da177e4
LT
1465EXPORT_SYMBOL(blk_put_request);
1466
320ae51f
JA
1467bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1468 struct bio *bio)
73c10101 1469{
1eff9d32 1470 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1471
73c10101
JA
1472 if (!ll_back_merge_fn(q, req, bio))
1473 return false;
1474
8c1cf6bb 1475 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1476
1477 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1478 blk_rq_set_mixed_merge(req);
1479
1480 req->biotail->bi_next = bio;
1481 req->biotail = bio;
4f024f37 1482 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1483 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1484
320ae51f 1485 blk_account_io_start(req, false);
73c10101
JA
1486 return true;
1487}
1488
320ae51f
JA
1489bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1490 struct bio *bio)
73c10101 1491{
1eff9d32 1492 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1493
73c10101
JA
1494 if (!ll_front_merge_fn(q, req, bio))
1495 return false;
1496
8c1cf6bb 1497 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1498
1499 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1500 blk_rq_set_mixed_merge(req);
1501
73c10101
JA
1502 bio->bi_next = req->bio;
1503 req->bio = bio;
1504
4f024f37
KO
1505 req->__sector = bio->bi_iter.bi_sector;
1506 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1507 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1508
320ae51f 1509 blk_account_io_start(req, false);
73c10101
JA
1510 return true;
1511}
1512
bd87b589 1513/**
320ae51f 1514 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1515 * @q: request_queue new bio is being queued at
1516 * @bio: new bio being queued
1517 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1518 * @same_queue_rq: pointer to &struct request that gets filled in when
1519 * another request associated with @q is found on the plug list
1520 * (optional, may be %NULL)
bd87b589
TH
1521 *
1522 * Determine whether @bio being queued on @q can be merged with a request
1523 * on %current's plugged list. Returns %true if merge was successful,
1524 * otherwise %false.
1525 *
07c2bd37
TH
1526 * Plugging coalesces IOs from the same issuer for the same purpose without
1527 * going through @q->queue_lock. As such it's more of an issuing mechanism
1528 * than scheduling, and the request, while may have elvpriv data, is not
1529 * added on the elevator at this point. In addition, we don't have
1530 * reliable access to the elevator outside queue lock. Only check basic
1531 * merging parameters without querying the elevator.
da41a589
RE
1532 *
1533 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1534 */
320ae51f 1535bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1536 unsigned int *request_count,
1537 struct request **same_queue_rq)
73c10101
JA
1538{
1539 struct blk_plug *plug;
1540 struct request *rq;
1541 bool ret = false;
92f399c7 1542 struct list_head *plug_list;
73c10101 1543
bd87b589 1544 plug = current->plug;
73c10101
JA
1545 if (!plug)
1546 goto out;
56ebdaf2 1547 *request_count = 0;
73c10101 1548
92f399c7
SL
1549 if (q->mq_ops)
1550 plug_list = &plug->mq_list;
1551 else
1552 plug_list = &plug->list;
1553
1554 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1555 int el_ret;
1556
5b3f341f 1557 if (rq->q == q) {
1b2e19f1 1558 (*request_count)++;
5b3f341f
SL
1559 /*
1560 * Only blk-mq multiple hardware queues case checks the
1561 * rq in the same queue, there should be only one such
1562 * rq in a queue
1563 **/
1564 if (same_queue_rq)
1565 *same_queue_rq = rq;
1566 }
56ebdaf2 1567
07c2bd37 1568 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1569 continue;
1570
050c8ea8 1571 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1572 if (el_ret == ELEVATOR_BACK_MERGE) {
1573 ret = bio_attempt_back_merge(q, rq, bio);
1574 if (ret)
1575 break;
1576 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1577 ret = bio_attempt_front_merge(q, rq, bio);
1578 if (ret)
1579 break;
1580 }
1581 }
1582out:
1583 return ret;
1584}
1585
0809e3ac
JM
1586unsigned int blk_plug_queued_count(struct request_queue *q)
1587{
1588 struct blk_plug *plug;
1589 struct request *rq;
1590 struct list_head *plug_list;
1591 unsigned int ret = 0;
1592
1593 plug = current->plug;
1594 if (!plug)
1595 goto out;
1596
1597 if (q->mq_ops)
1598 plug_list = &plug->mq_list;
1599 else
1600 plug_list = &plug->list;
1601
1602 list_for_each_entry(rq, plug_list, queuelist) {
1603 if (rq->q == q)
1604 ret++;
1605 }
1606out:
1607 return ret;
1608}
1609
86db1e29 1610void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1611{
4aff5e23 1612 req->cmd_type = REQ_TYPE_FS;
1eff9d32 1613 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1614 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1615
52d9e675 1616 req->errors = 0;
4f024f37 1617 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1618 if (ioprio_valid(bio_prio(bio)))
1619 req->ioprio = bio_prio(bio);
bc1c56fd 1620 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1621}
1622
dece1635 1623static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1624{
73c10101 1625 struct blk_plug *plug;
ef295ecf 1626 int el_ret, where = ELEVATOR_INSERT_SORT;
73c10101 1627 struct request *req;
56ebdaf2 1628 unsigned int request_count = 0;
87760e5e 1629 unsigned int wb_acct;
1da177e4 1630
1da177e4
LT
1631 /*
1632 * low level driver can indicate that it wants pages above a
1633 * certain limit bounced to low memory (ie for highmem, or even
1634 * ISA dma in theory)
1635 */
1636 blk_queue_bounce(q, &bio);
1637
23688bf4
JN
1638 blk_queue_split(q, &bio, q->bio_split);
1639
ffecfd1a 1640 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1641 bio->bi_error = -EIO;
1642 bio_endio(bio);
dece1635 1643 return BLK_QC_T_NONE;
ffecfd1a
DW
1644 }
1645
f73f44eb 1646 if (op_is_flush(bio->bi_opf)) {
73c10101 1647 spin_lock_irq(q->queue_lock);
ae1b1539 1648 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1649 goto get_rq;
1650 }
1651
73c10101
JA
1652 /*
1653 * Check if we can merge with the plugged list before grabbing
1654 * any locks.
1655 */
0809e3ac
JM
1656 if (!blk_queue_nomerges(q)) {
1657 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1658 return BLK_QC_T_NONE;
0809e3ac
JM
1659 } else
1660 request_count = blk_plug_queued_count(q);
1da177e4 1661
73c10101 1662 spin_lock_irq(q->queue_lock);
2056a782 1663
73c10101
JA
1664 el_ret = elv_merge(q, &req, bio);
1665 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1666 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1667 elv_bio_merged(q, req, bio);
73c10101
JA
1668 if (!attempt_back_merge(q, req))
1669 elv_merged_request(q, req, el_ret);
1670 goto out_unlock;
1671 }
1672 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1673 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1674 elv_bio_merged(q, req, bio);
73c10101
JA
1675 if (!attempt_front_merge(q, req))
1676 elv_merged_request(q, req, el_ret);
1677 goto out_unlock;
80a761fd 1678 }
1da177e4
LT
1679 }
1680
450991bc 1681get_rq:
87760e5e
JA
1682 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1683
1da177e4 1684 /*
450991bc 1685 * Grab a free request. This is might sleep but can not fail.
d6344532 1686 * Returns with the queue unlocked.
450991bc 1687 */
ef295ecf 1688 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1689 if (IS_ERR(req)) {
87760e5e 1690 __wbt_done(q->rq_wb, wb_acct);
4246a0b6
CH
1691 bio->bi_error = PTR_ERR(req);
1692 bio_endio(bio);
da8303c6
TH
1693 goto out_unlock;
1694 }
d6344532 1695
87760e5e
JA
1696 wbt_track(&req->issue_stat, wb_acct);
1697
450991bc
NP
1698 /*
1699 * After dropping the lock and possibly sleeping here, our request
1700 * may now be mergeable after it had proven unmergeable (above).
1701 * We don't worry about that case for efficiency. It won't happen
1702 * often, and the elevators are able to handle it.
1da177e4 1703 */
52d9e675 1704 init_request_from_bio(req, bio);
1da177e4 1705
9562ad9a 1706 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1707 req->cpu = raw_smp_processor_id();
73c10101
JA
1708
1709 plug = current->plug;
721a9602 1710 if (plug) {
dc6d36c9
JA
1711 /*
1712 * If this is the first request added after a plug, fire
7aef2e78 1713 * of a plug trace.
0a6219a9
ML
1714 *
1715 * @request_count may become stale because of schedule
1716 * out, so check plug list again.
dc6d36c9 1717 */
0a6219a9 1718 if (!request_count || list_empty(&plug->list))
dc6d36c9 1719 trace_block_plug(q);
3540d5e8 1720 else {
50d24c34
SL
1721 struct request *last = list_entry_rq(plug->list.prev);
1722 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1723 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1724 blk_flush_plug_list(plug, false);
019ceb7d
SL
1725 trace_block_plug(q);
1726 }
73c10101 1727 }
73c10101 1728 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1729 blk_account_io_start(req, true);
73c10101
JA
1730 } else {
1731 spin_lock_irq(q->queue_lock);
1732 add_acct_request(q, req, where);
24ecfbe2 1733 __blk_run_queue(q);
73c10101
JA
1734out_unlock:
1735 spin_unlock_irq(q->queue_lock);
1736 }
dece1635
JA
1737
1738 return BLK_QC_T_NONE;
1da177e4
LT
1739}
1740
1741/*
1742 * If bio->bi_dev is a partition, remap the location
1743 */
1744static inline void blk_partition_remap(struct bio *bio)
1745{
1746 struct block_device *bdev = bio->bi_bdev;
1747
778889d8
ST
1748 /*
1749 * Zone reset does not include bi_size so bio_sectors() is always 0.
1750 * Include a test for the reset op code and perform the remap if needed.
1751 */
1752 if (bdev != bdev->bd_contains &&
1753 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1da177e4
LT
1754 struct hd_struct *p = bdev->bd_part;
1755
4f024f37 1756 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1757 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1758
d07335e5
MS
1759 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1760 bdev->bd_dev,
4f024f37 1761 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1762 }
1763}
1764
1da177e4
LT
1765static void handle_bad_sector(struct bio *bio)
1766{
1767 char b[BDEVNAME_SIZE];
1768
1769 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1770 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1771 bdevname(bio->bi_bdev, b),
1eff9d32 1772 bio->bi_opf,
f73a1c7d 1773 (unsigned long long)bio_end_sector(bio),
77304d2a 1774 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1775}
1776
c17bb495
AM
1777#ifdef CONFIG_FAIL_MAKE_REQUEST
1778
1779static DECLARE_FAULT_ATTR(fail_make_request);
1780
1781static int __init setup_fail_make_request(char *str)
1782{
1783 return setup_fault_attr(&fail_make_request, str);
1784}
1785__setup("fail_make_request=", setup_fail_make_request);
1786
b2c9cd37 1787static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1788{
b2c9cd37 1789 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1790}
1791
1792static int __init fail_make_request_debugfs(void)
1793{
dd48c085
AM
1794 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1795 NULL, &fail_make_request);
1796
21f9fcd8 1797 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1798}
1799
1800late_initcall(fail_make_request_debugfs);
1801
1802#else /* CONFIG_FAIL_MAKE_REQUEST */
1803
b2c9cd37
AM
1804static inline bool should_fail_request(struct hd_struct *part,
1805 unsigned int bytes)
c17bb495 1806{
b2c9cd37 1807 return false;
c17bb495
AM
1808}
1809
1810#endif /* CONFIG_FAIL_MAKE_REQUEST */
1811
c07e2b41
JA
1812/*
1813 * Check whether this bio extends beyond the end of the device.
1814 */
1815static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1816{
1817 sector_t maxsector;
1818
1819 if (!nr_sectors)
1820 return 0;
1821
1822 /* Test device or partition size, when known. */
77304d2a 1823 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1824 if (maxsector) {
4f024f37 1825 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1826
1827 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1828 /*
1829 * This may well happen - the kernel calls bread()
1830 * without checking the size of the device, e.g., when
1831 * mounting a device.
1832 */
1833 handle_bad_sector(bio);
1834 return 1;
1835 }
1836 }
1837
1838 return 0;
1839}
1840
27a84d54
CH
1841static noinline_for_stack bool
1842generic_make_request_checks(struct bio *bio)
1da177e4 1843{
165125e1 1844 struct request_queue *q;
5a7bbad2 1845 int nr_sectors = bio_sectors(bio);
51fd77bd 1846 int err = -EIO;
5a7bbad2
CH
1847 char b[BDEVNAME_SIZE];
1848 struct hd_struct *part;
1da177e4
LT
1849
1850 might_sleep();
1da177e4 1851
c07e2b41
JA
1852 if (bio_check_eod(bio, nr_sectors))
1853 goto end_io;
1da177e4 1854
5a7bbad2
CH
1855 q = bdev_get_queue(bio->bi_bdev);
1856 if (unlikely(!q)) {
1857 printk(KERN_ERR
1858 "generic_make_request: Trying to access "
1859 "nonexistent block-device %s (%Lu)\n",
1860 bdevname(bio->bi_bdev, b),
4f024f37 1861 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1862 goto end_io;
1863 }
c17bb495 1864
5a7bbad2 1865 part = bio->bi_bdev->bd_part;
4f024f37 1866 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1867 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1868 bio->bi_iter.bi_size))
5a7bbad2 1869 goto end_io;
2056a782 1870
5a7bbad2
CH
1871 /*
1872 * If this device has partitions, remap block n
1873 * of partition p to block n+start(p) of the disk.
1874 */
1875 blk_partition_remap(bio);
2056a782 1876
5a7bbad2
CH
1877 if (bio_check_eod(bio, nr_sectors))
1878 goto end_io;
1e87901e 1879
5a7bbad2
CH
1880 /*
1881 * Filter flush bio's early so that make_request based
1882 * drivers without flush support don't have to worry
1883 * about them.
1884 */
f3a8ab7d 1885 if (op_is_flush(bio->bi_opf) &&
c888a8f9 1886 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 1887 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2
CH
1888 if (!nr_sectors) {
1889 err = 0;
51fd77bd
JA
1890 goto end_io;
1891 }
5a7bbad2 1892 }
5ddfe969 1893
288dab8a
CH
1894 switch (bio_op(bio)) {
1895 case REQ_OP_DISCARD:
1896 if (!blk_queue_discard(q))
1897 goto not_supported;
1898 break;
1899 case REQ_OP_SECURE_ERASE:
1900 if (!blk_queue_secure_erase(q))
1901 goto not_supported;
1902 break;
1903 case REQ_OP_WRITE_SAME:
1904 if (!bdev_write_same(bio->bi_bdev))
1905 goto not_supported;
58886785 1906 break;
2d253440
ST
1907 case REQ_OP_ZONE_REPORT:
1908 case REQ_OP_ZONE_RESET:
1909 if (!bdev_is_zoned(bio->bi_bdev))
1910 goto not_supported;
288dab8a 1911 break;
a6f0788e
CK
1912 case REQ_OP_WRITE_ZEROES:
1913 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1914 goto not_supported;
1915 break;
288dab8a
CH
1916 default:
1917 break;
5a7bbad2 1918 }
01edede4 1919
7f4b35d1
TH
1920 /*
1921 * Various block parts want %current->io_context and lazy ioc
1922 * allocation ends up trading a lot of pain for a small amount of
1923 * memory. Just allocate it upfront. This may fail and block
1924 * layer knows how to live with it.
1925 */
1926 create_io_context(GFP_ATOMIC, q->node);
1927
ae118896
TH
1928 if (!blkcg_bio_issue_check(q, bio))
1929 return false;
27a84d54 1930
5a7bbad2 1931 trace_block_bio_queue(q, bio);
27a84d54 1932 return true;
a7384677 1933
288dab8a
CH
1934not_supported:
1935 err = -EOPNOTSUPP;
a7384677 1936end_io:
4246a0b6
CH
1937 bio->bi_error = err;
1938 bio_endio(bio);
27a84d54 1939 return false;
1da177e4
LT
1940}
1941
27a84d54
CH
1942/**
1943 * generic_make_request - hand a buffer to its device driver for I/O
1944 * @bio: The bio describing the location in memory and on the device.
1945 *
1946 * generic_make_request() is used to make I/O requests of block
1947 * devices. It is passed a &struct bio, which describes the I/O that needs
1948 * to be done.
1949 *
1950 * generic_make_request() does not return any status. The
1951 * success/failure status of the request, along with notification of
1952 * completion, is delivered asynchronously through the bio->bi_end_io
1953 * function described (one day) else where.
1954 *
1955 * The caller of generic_make_request must make sure that bi_io_vec
1956 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1957 * set to describe the device address, and the
1958 * bi_end_io and optionally bi_private are set to describe how
1959 * completion notification should be signaled.
1960 *
1961 * generic_make_request and the drivers it calls may use bi_next if this
1962 * bio happens to be merged with someone else, and may resubmit the bio to
1963 * a lower device by calling into generic_make_request recursively, which
1964 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1965 */
dece1635 1966blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1967{
bddd87c7 1968 struct bio_list bio_list_on_stack;
dece1635 1969 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 1970
27a84d54 1971 if (!generic_make_request_checks(bio))
dece1635 1972 goto out;
27a84d54
CH
1973
1974 /*
1975 * We only want one ->make_request_fn to be active at a time, else
1976 * stack usage with stacked devices could be a problem. So use
1977 * current->bio_list to keep a list of requests submited by a
1978 * make_request_fn function. current->bio_list is also used as a
1979 * flag to say if generic_make_request is currently active in this
1980 * task or not. If it is NULL, then no make_request is active. If
1981 * it is non-NULL, then a make_request is active, and new requests
1982 * should be added at the tail
1983 */
bddd87c7 1984 if (current->bio_list) {
bddd87c7 1985 bio_list_add(current->bio_list, bio);
dece1635 1986 goto out;
d89d8796 1987 }
27a84d54 1988
d89d8796
NB
1989 /* following loop may be a bit non-obvious, and so deserves some
1990 * explanation.
1991 * Before entering the loop, bio->bi_next is NULL (as all callers
1992 * ensure that) so we have a list with a single bio.
1993 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1994 * we assign bio_list to a pointer to the bio_list_on_stack,
1995 * thus initialising the bio_list of new bios to be
27a84d54 1996 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1997 * through a recursive call to generic_make_request. If it
1998 * did, we find a non-NULL value in bio_list and re-enter the loop
1999 * from the top. In this case we really did just take the bio
bddd87c7 2000 * of the top of the list (no pretending) and so remove it from
27a84d54 2001 * bio_list, and call into ->make_request() again.
d89d8796
NB
2002 */
2003 BUG_ON(bio->bi_next);
bddd87c7
AM
2004 bio_list_init(&bio_list_on_stack);
2005 current->bio_list = &bio_list_on_stack;
d89d8796 2006 do {
27a84d54
CH
2007 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2008
6f3b0e8b 2009 if (likely(blk_queue_enter(q, false) == 0)) {
dece1635 2010 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2011
2012 blk_queue_exit(q);
27a84d54 2013
3ef28e83
DW
2014 bio = bio_list_pop(current->bio_list);
2015 } else {
2016 struct bio *bio_next = bio_list_pop(current->bio_list);
2017
2018 bio_io_error(bio);
2019 bio = bio_next;
2020 }
d89d8796 2021 } while (bio);
bddd87c7 2022 current->bio_list = NULL; /* deactivate */
dece1635
JA
2023
2024out:
2025 return ret;
d89d8796 2026}
1da177e4
LT
2027EXPORT_SYMBOL(generic_make_request);
2028
2029/**
710027a4 2030 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2031 * @bio: The &struct bio which describes the I/O
2032 *
2033 * submit_bio() is very similar in purpose to generic_make_request(), and
2034 * uses that function to do most of the work. Both are fairly rough
710027a4 2035 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2036 *
2037 */
4e49ea4a 2038blk_qc_t submit_bio(struct bio *bio)
1da177e4 2039{
bf2de6f5
JA
2040 /*
2041 * If it's a regular read/write or a barrier with data attached,
2042 * go through the normal accounting stuff before submission.
2043 */
e2a60da7 2044 if (bio_has_data(bio)) {
4363ac7c
MP
2045 unsigned int count;
2046
95fe6c1a 2047 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2048 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2049 else
2050 count = bio_sectors(bio);
2051
a8ebb056 2052 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2053 count_vm_events(PGPGOUT, count);
2054 } else {
4f024f37 2055 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2056 count_vm_events(PGPGIN, count);
2057 }
2058
2059 if (unlikely(block_dump)) {
2060 char b[BDEVNAME_SIZE];
8dcbdc74 2061 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2062 current->comm, task_pid_nr(current),
a8ebb056 2063 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2064 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2065 bdevname(bio->bi_bdev, b),
2066 count);
bf2de6f5 2067 }
1da177e4
LT
2068 }
2069
dece1635 2070 return generic_make_request(bio);
1da177e4 2071}
1da177e4
LT
2072EXPORT_SYMBOL(submit_bio);
2073
82124d60 2074/**
bf4e6b4e
HR
2075 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2076 * for new the queue limits
82124d60
KU
2077 * @q: the queue
2078 * @rq: the request being checked
2079 *
2080 * Description:
2081 * @rq may have been made based on weaker limitations of upper-level queues
2082 * in request stacking drivers, and it may violate the limitation of @q.
2083 * Since the block layer and the underlying device driver trust @rq
2084 * after it is inserted to @q, it should be checked against @q before
2085 * the insertion using this generic function.
2086 *
82124d60 2087 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2088 * limits when retrying requests on other queues. Those requests need
2089 * to be checked against the new queue limits again during dispatch.
82124d60 2090 */
bf4e6b4e
HR
2091static int blk_cloned_rq_check_limits(struct request_queue *q,
2092 struct request *rq)
82124d60 2093{
8fe0d473 2094 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2095 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2096 return -EIO;
2097 }
2098
2099 /*
2100 * queue's settings related to segment counting like q->bounce_pfn
2101 * may differ from that of other stacking queues.
2102 * Recalculate it to check the request correctly on this queue's
2103 * limitation.
2104 */
2105 blk_recalc_rq_segments(rq);
8a78362c 2106 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2107 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2108 return -EIO;
2109 }
2110
2111 return 0;
2112}
82124d60
KU
2113
2114/**
2115 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2116 * @q: the queue to submit the request
2117 * @rq: the request being queued
2118 */
2119int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2120{
2121 unsigned long flags;
4853abaa 2122 int where = ELEVATOR_INSERT_BACK;
82124d60 2123
bf4e6b4e 2124 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2125 return -EIO;
2126
b2c9cd37
AM
2127 if (rq->rq_disk &&
2128 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2129 return -EIO;
82124d60 2130
7fb4898e
KB
2131 if (q->mq_ops) {
2132 if (blk_queue_io_stat(q))
2133 blk_account_io_start(rq, true);
bd6737f1 2134 blk_mq_sched_insert_request(rq, false, true, false, false);
7fb4898e
KB
2135 return 0;
2136 }
2137
82124d60 2138 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2139 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2140 spin_unlock_irqrestore(q->queue_lock, flags);
2141 return -ENODEV;
2142 }
82124d60
KU
2143
2144 /*
2145 * Submitting request must be dequeued before calling this function
2146 * because it will be linked to another request_queue
2147 */
2148 BUG_ON(blk_queued_rq(rq));
2149
f73f44eb 2150 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2151 where = ELEVATOR_INSERT_FLUSH;
2152
2153 add_acct_request(q, rq, where);
e67b77c7
JM
2154 if (where == ELEVATOR_INSERT_FLUSH)
2155 __blk_run_queue(q);
82124d60
KU
2156 spin_unlock_irqrestore(q->queue_lock, flags);
2157
2158 return 0;
2159}
2160EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2161
80a761fd
TH
2162/**
2163 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2164 * @rq: request to examine
2165 *
2166 * Description:
2167 * A request could be merge of IOs which require different failure
2168 * handling. This function determines the number of bytes which
2169 * can be failed from the beginning of the request without
2170 * crossing into area which need to be retried further.
2171 *
2172 * Return:
2173 * The number of bytes to fail.
2174 *
2175 * Context:
2176 * queue_lock must be held.
2177 */
2178unsigned int blk_rq_err_bytes(const struct request *rq)
2179{
2180 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2181 unsigned int bytes = 0;
2182 struct bio *bio;
2183
e8064021 2184 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2185 return blk_rq_bytes(rq);
2186
2187 /*
2188 * Currently the only 'mixing' which can happen is between
2189 * different fastfail types. We can safely fail portions
2190 * which have all the failfast bits that the first one has -
2191 * the ones which are at least as eager to fail as the first
2192 * one.
2193 */
2194 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2195 if ((bio->bi_opf & ff) != ff)
80a761fd 2196 break;
4f024f37 2197 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2198 }
2199
2200 /* this could lead to infinite loop */
2201 BUG_ON(blk_rq_bytes(rq) && !bytes);
2202 return bytes;
2203}
2204EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2205
320ae51f 2206void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2207{
c2553b58 2208 if (blk_do_io_stat(req)) {
bc58ba94
JA
2209 const int rw = rq_data_dir(req);
2210 struct hd_struct *part;
2211 int cpu;
2212
2213 cpu = part_stat_lock();
09e099d4 2214 part = req->part;
bc58ba94
JA
2215 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2216 part_stat_unlock();
2217 }
2218}
2219
320ae51f 2220void blk_account_io_done(struct request *req)
bc58ba94 2221{
bc58ba94 2222 /*
dd4c133f
TH
2223 * Account IO completion. flush_rq isn't accounted as a
2224 * normal IO on queueing nor completion. Accounting the
2225 * containing request is enough.
bc58ba94 2226 */
e8064021 2227 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2228 unsigned long duration = jiffies - req->start_time;
2229 const int rw = rq_data_dir(req);
2230 struct hd_struct *part;
2231 int cpu;
2232
2233 cpu = part_stat_lock();
09e099d4 2234 part = req->part;
bc58ba94
JA
2235
2236 part_stat_inc(cpu, part, ios[rw]);
2237 part_stat_add(cpu, part, ticks[rw], duration);
2238 part_round_stats(cpu, part);
316d315b 2239 part_dec_in_flight(part, rw);
bc58ba94 2240
6c23a968 2241 hd_struct_put(part);
bc58ba94
JA
2242 part_stat_unlock();
2243 }
2244}
2245
47fafbc7 2246#ifdef CONFIG_PM
c8158819
LM
2247/*
2248 * Don't process normal requests when queue is suspended
2249 * or in the process of suspending/resuming
2250 */
2251static struct request *blk_pm_peek_request(struct request_queue *q,
2252 struct request *rq)
2253{
2254 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2255 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2256 return NULL;
2257 else
2258 return rq;
2259}
2260#else
2261static inline struct request *blk_pm_peek_request(struct request_queue *q,
2262 struct request *rq)
2263{
2264 return rq;
2265}
2266#endif
2267
320ae51f
JA
2268void blk_account_io_start(struct request *rq, bool new_io)
2269{
2270 struct hd_struct *part;
2271 int rw = rq_data_dir(rq);
2272 int cpu;
2273
2274 if (!blk_do_io_stat(rq))
2275 return;
2276
2277 cpu = part_stat_lock();
2278
2279 if (!new_io) {
2280 part = rq->part;
2281 part_stat_inc(cpu, part, merges[rw]);
2282 } else {
2283 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2284 if (!hd_struct_try_get(part)) {
2285 /*
2286 * The partition is already being removed,
2287 * the request will be accounted on the disk only
2288 *
2289 * We take a reference on disk->part0 although that
2290 * partition will never be deleted, so we can treat
2291 * it as any other partition.
2292 */
2293 part = &rq->rq_disk->part0;
2294 hd_struct_get(part);
2295 }
2296 part_round_stats(cpu, part);
2297 part_inc_in_flight(part, rw);
2298 rq->part = part;
2299 }
2300
2301 part_stat_unlock();
2302}
2303
3bcddeac 2304/**
9934c8c0
TH
2305 * blk_peek_request - peek at the top of a request queue
2306 * @q: request queue to peek at
2307 *
2308 * Description:
2309 * Return the request at the top of @q. The returned request
2310 * should be started using blk_start_request() before LLD starts
2311 * processing it.
2312 *
2313 * Return:
2314 * Pointer to the request at the top of @q if available. Null
2315 * otherwise.
2316 *
2317 * Context:
2318 * queue_lock must be held.
2319 */
2320struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2321{
2322 struct request *rq;
2323 int ret;
2324
2325 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2326
2327 rq = blk_pm_peek_request(q, rq);
2328 if (!rq)
2329 break;
2330
e8064021 2331 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2332 /*
2333 * This is the first time the device driver
2334 * sees this request (possibly after
2335 * requeueing). Notify IO scheduler.
2336 */
e8064021 2337 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2338 elv_activate_rq(q, rq);
2339
2340 /*
2341 * just mark as started even if we don't start
2342 * it, a request that has been delayed should
2343 * not be passed by new incoming requests
2344 */
e8064021 2345 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2346 trace_block_rq_issue(q, rq);
2347 }
2348
2349 if (!q->boundary_rq || q->boundary_rq == rq) {
2350 q->end_sector = rq_end_sector(rq);
2351 q->boundary_rq = NULL;
2352 }
2353
e8064021 2354 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2355 break;
2356
2e46e8b2 2357 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2358 /*
2359 * make sure space for the drain appears we
2360 * know we can do this because max_hw_segments
2361 * has been adjusted to be one fewer than the
2362 * device can handle
2363 */
2364 rq->nr_phys_segments++;
2365 }
2366
2367 if (!q->prep_rq_fn)
2368 break;
2369
2370 ret = q->prep_rq_fn(q, rq);
2371 if (ret == BLKPREP_OK) {
2372 break;
2373 } else if (ret == BLKPREP_DEFER) {
2374 /*
2375 * the request may have been (partially) prepped.
2376 * we need to keep this request in the front to
e8064021 2377 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2378 * prevent other fs requests from passing this one.
2379 */
2e46e8b2 2380 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2381 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2382 /*
2383 * remove the space for the drain we added
2384 * so that we don't add it again
2385 */
2386 --rq->nr_phys_segments;
2387 }
2388
2389 rq = NULL;
2390 break;
0fb5b1fb
MP
2391 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2392 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2393
e8064021 2394 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2395 /*
2396 * Mark this request as started so we don't trigger
2397 * any debug logic in the end I/O path.
2398 */
2399 blk_start_request(rq);
0fb5b1fb 2400 __blk_end_request_all(rq, err);
158dbda0
TH
2401 } else {
2402 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2403 break;
2404 }
2405 }
2406
2407 return rq;
2408}
9934c8c0 2409EXPORT_SYMBOL(blk_peek_request);
158dbda0 2410
9934c8c0 2411void blk_dequeue_request(struct request *rq)
158dbda0 2412{
9934c8c0
TH
2413 struct request_queue *q = rq->q;
2414
158dbda0
TH
2415 BUG_ON(list_empty(&rq->queuelist));
2416 BUG_ON(ELV_ON_HASH(rq));
2417
2418 list_del_init(&rq->queuelist);
2419
2420 /*
2421 * the time frame between a request being removed from the lists
2422 * and to it is freed is accounted as io that is in progress at
2423 * the driver side.
2424 */
9195291e 2425 if (blk_account_rq(rq)) {
0a7ae2ff 2426 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2427 set_io_start_time_ns(rq);
2428 }
158dbda0
TH
2429}
2430
9934c8c0
TH
2431/**
2432 * blk_start_request - start request processing on the driver
2433 * @req: request to dequeue
2434 *
2435 * Description:
2436 * Dequeue @req and start timeout timer on it. This hands off the
2437 * request to the driver.
2438 *
2439 * Block internal functions which don't want to start timer should
2440 * call blk_dequeue_request().
2441 *
2442 * Context:
2443 * queue_lock must be held.
2444 */
2445void blk_start_request(struct request *req)
2446{
2447 blk_dequeue_request(req);
2448
cf43e6be
JA
2449 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2450 blk_stat_set_issue_time(&req->issue_stat);
2451 req->rq_flags |= RQF_STATS;
87760e5e 2452 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2453 }
2454
9934c8c0 2455 /*
5f49f631
TH
2456 * We are now handing the request to the hardware, initialize
2457 * resid_len to full count and add the timeout handler.
9934c8c0 2458 */
5f49f631 2459 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2460 if (unlikely(blk_bidi_rq(req)))
2461 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2462
4912aa6c 2463 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2464 blk_add_timer(req);
2465}
2466EXPORT_SYMBOL(blk_start_request);
2467
2468/**
2469 * blk_fetch_request - fetch a request from a request queue
2470 * @q: request queue to fetch a request from
2471 *
2472 * Description:
2473 * Return the request at the top of @q. The request is started on
2474 * return and LLD can start processing it immediately.
2475 *
2476 * Return:
2477 * Pointer to the request at the top of @q if available. Null
2478 * otherwise.
2479 *
2480 * Context:
2481 * queue_lock must be held.
2482 */
2483struct request *blk_fetch_request(struct request_queue *q)
2484{
2485 struct request *rq;
2486
2487 rq = blk_peek_request(q);
2488 if (rq)
2489 blk_start_request(rq);
2490 return rq;
2491}
2492EXPORT_SYMBOL(blk_fetch_request);
2493
3bcddeac 2494/**
2e60e022 2495 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2496 * @req: the request being processed
710027a4 2497 * @error: %0 for success, < %0 for error
8ebf9756 2498 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2499 *
2500 * Description:
8ebf9756
RD
2501 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2502 * the request structure even if @req doesn't have leftover.
2503 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2504 *
2505 * This special helper function is only for request stacking drivers
2506 * (e.g. request-based dm) so that they can handle partial completion.
2507 * Actual device drivers should use blk_end_request instead.
2508 *
2509 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2510 * %false return from this function.
3bcddeac
KU
2511 *
2512 * Return:
2e60e022
TH
2513 * %false - this request doesn't have any more data
2514 * %true - this request has more data
3bcddeac 2515 **/
2e60e022 2516bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2517{
f79ea416 2518 int total_bytes;
1da177e4 2519
4a0efdc9
HR
2520 trace_block_rq_complete(req->q, req, nr_bytes);
2521
2e60e022
TH
2522 if (!req->bio)
2523 return false;
2524
1da177e4 2525 /*
6f41469c
TH
2526 * For fs requests, rq is just carrier of independent bio's
2527 * and each partial completion should be handled separately.
2528 * Reset per-request error on each partial completion.
2529 *
2530 * TODO: tj: This is too subtle. It would be better to let
2531 * low level drivers do what they see fit.
1da177e4 2532 */
33659ebb 2533 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2534 req->errors = 0;
2535
33659ebb 2536 if (error && req->cmd_type == REQ_TYPE_FS &&
e8064021 2537 !(req->rq_flags & RQF_QUIET)) {
79775567
HR
2538 char *error_type;
2539
2540 switch (error) {
2541 case -ENOLINK:
2542 error_type = "recoverable transport";
2543 break;
2544 case -EREMOTEIO:
2545 error_type = "critical target";
2546 break;
2547 case -EBADE:
2548 error_type = "critical nexus";
2549 break;
d1ffc1f8
HR
2550 case -ETIMEDOUT:
2551 error_type = "timeout";
2552 break;
a9d6ceb8
HR
2553 case -ENOSPC:
2554 error_type = "critical space allocation";
2555 break;
7e782af5
HR
2556 case -ENODATA:
2557 error_type = "critical medium";
2558 break;
79775567
HR
2559 case -EIO:
2560 default:
2561 error_type = "I/O";
2562 break;
2563 }
ef3ecb66
RE
2564 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2565 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2566 req->rq_disk->disk_name : "?",
2567 (unsigned long long)blk_rq_pos(req));
2568
1da177e4
LT
2569 }
2570
bc58ba94 2571 blk_account_io_completion(req, nr_bytes);
d72d904a 2572
f79ea416
KO
2573 total_bytes = 0;
2574 while (req->bio) {
2575 struct bio *bio = req->bio;
4f024f37 2576 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2577
4f024f37 2578 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2579 req->bio = bio->bi_next;
1da177e4 2580
f79ea416 2581 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2582
f79ea416
KO
2583 total_bytes += bio_bytes;
2584 nr_bytes -= bio_bytes;
1da177e4 2585
f79ea416
KO
2586 if (!nr_bytes)
2587 break;
1da177e4
LT
2588 }
2589
2590 /*
2591 * completely done
2592 */
2e60e022
TH
2593 if (!req->bio) {
2594 /*
2595 * Reset counters so that the request stacking driver
2596 * can find how many bytes remain in the request
2597 * later.
2598 */
a2dec7b3 2599 req->__data_len = 0;
2e60e022
TH
2600 return false;
2601 }
1da177e4 2602
f9d03f96
CH
2603 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2604
a2dec7b3 2605 req->__data_len -= total_bytes;
2e46e8b2
TH
2606
2607 /* update sector only for requests with clear definition of sector */
e2a60da7 2608 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2609 req->__sector += total_bytes >> 9;
2e46e8b2 2610
80a761fd 2611 /* mixed attributes always follow the first bio */
e8064021 2612 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2613 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2614 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2615 }
2616
2e46e8b2
TH
2617 /*
2618 * If total number of sectors is less than the first segment
2619 * size, something has gone terribly wrong.
2620 */
2621 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2622 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2623 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2624 }
2625
2626 /* recalculate the number of segments */
1da177e4 2627 blk_recalc_rq_segments(req);
2e46e8b2 2628
2e60e022 2629 return true;
1da177e4 2630}
2e60e022 2631EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2632
2e60e022
TH
2633static bool blk_update_bidi_request(struct request *rq, int error,
2634 unsigned int nr_bytes,
2635 unsigned int bidi_bytes)
5efccd17 2636{
2e60e022
TH
2637 if (blk_update_request(rq, error, nr_bytes))
2638 return true;
5efccd17 2639
2e60e022
TH
2640 /* Bidi request must be completed as a whole */
2641 if (unlikely(blk_bidi_rq(rq)) &&
2642 blk_update_request(rq->next_rq, error, bidi_bytes))
2643 return true;
5efccd17 2644
e2e1a148
JA
2645 if (blk_queue_add_random(rq->q))
2646 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2647
2648 return false;
1da177e4
LT
2649}
2650
28018c24
JB
2651/**
2652 * blk_unprep_request - unprepare a request
2653 * @req: the request
2654 *
2655 * This function makes a request ready for complete resubmission (or
2656 * completion). It happens only after all error handling is complete,
2657 * so represents the appropriate moment to deallocate any resources
2658 * that were allocated to the request in the prep_rq_fn. The queue
2659 * lock is held when calling this.
2660 */
2661void blk_unprep_request(struct request *req)
2662{
2663 struct request_queue *q = req->q;
2664
e8064021 2665 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2666 if (q->unprep_rq_fn)
2667 q->unprep_rq_fn(q, req);
2668}
2669EXPORT_SYMBOL_GPL(blk_unprep_request);
2670
1da177e4
LT
2671/*
2672 * queue lock must be held
2673 */
12120077 2674void blk_finish_request(struct request *req, int error)
1da177e4 2675{
cf43e6be
JA
2676 struct request_queue *q = req->q;
2677
2678 if (req->rq_flags & RQF_STATS)
2679 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2680
e8064021 2681 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2682 blk_queue_end_tag(q, req);
b8286239 2683
ba396a6c 2684 BUG_ON(blk_queued_rq(req));
1da177e4 2685
33659ebb 2686 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2687 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2688
e78042e5
MA
2689 blk_delete_timer(req);
2690
e8064021 2691 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2692 blk_unprep_request(req);
2693
bc58ba94 2694 blk_account_io_done(req);
b8286239 2695
87760e5e
JA
2696 if (req->end_io) {
2697 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2698 req->end_io(req, error);
87760e5e 2699 } else {
b8286239
KU
2700 if (blk_bidi_rq(req))
2701 __blk_put_request(req->next_rq->q, req->next_rq);
2702
cf43e6be 2703 __blk_put_request(q, req);
b8286239 2704 }
1da177e4 2705}
12120077 2706EXPORT_SYMBOL(blk_finish_request);
1da177e4 2707
3b11313a 2708/**
2e60e022
TH
2709 * blk_end_bidi_request - Complete a bidi request
2710 * @rq: the request to complete
2711 * @error: %0 for success, < %0 for error
2712 * @nr_bytes: number of bytes to complete @rq
2713 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2714 *
2715 * Description:
e3a04fe3 2716 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2717 * Drivers that supports bidi can safely call this member for any
2718 * type of request, bidi or uni. In the later case @bidi_bytes is
2719 * just ignored.
336cdb40
KU
2720 *
2721 * Return:
2e60e022
TH
2722 * %false - we are done with this request
2723 * %true - still buffers pending for this request
a0cd1285 2724 **/
b1f74493 2725static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2726 unsigned int nr_bytes, unsigned int bidi_bytes)
2727{
336cdb40 2728 struct request_queue *q = rq->q;
2e60e022 2729 unsigned long flags;
32fab448 2730
2e60e022
TH
2731 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2732 return true;
32fab448 2733
336cdb40 2734 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2735 blk_finish_request(rq, error);
336cdb40
KU
2736 spin_unlock_irqrestore(q->queue_lock, flags);
2737
2e60e022 2738 return false;
32fab448
KU
2739}
2740
336cdb40 2741/**
2e60e022
TH
2742 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2743 * @rq: the request to complete
710027a4 2744 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2745 * @nr_bytes: number of bytes to complete @rq
2746 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2747 *
2748 * Description:
2e60e022
TH
2749 * Identical to blk_end_bidi_request() except that queue lock is
2750 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2751 *
2752 * Return:
2e60e022
TH
2753 * %false - we are done with this request
2754 * %true - still buffers pending for this request
336cdb40 2755 **/
4853abaa 2756bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2757 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2758{
2e60e022
TH
2759 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2760 return true;
336cdb40 2761
2e60e022 2762 blk_finish_request(rq, error);
336cdb40 2763
2e60e022 2764 return false;
336cdb40 2765}
e19a3ab0
KU
2766
2767/**
2768 * blk_end_request - Helper function for drivers to complete the request.
2769 * @rq: the request being processed
710027a4 2770 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2771 * @nr_bytes: number of bytes to complete
2772 *
2773 * Description:
2774 * Ends I/O on a number of bytes attached to @rq.
2775 * If @rq has leftover, sets it up for the next range of segments.
2776 *
2777 * Return:
b1f74493
FT
2778 * %false - we are done with this request
2779 * %true - still buffers pending for this request
e19a3ab0 2780 **/
b1f74493 2781bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2782{
b1f74493 2783 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2784}
56ad1740 2785EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2786
2787/**
b1f74493
FT
2788 * blk_end_request_all - Helper function for drives to finish the request.
2789 * @rq: the request to finish
8ebf9756 2790 * @error: %0 for success, < %0 for error
336cdb40
KU
2791 *
2792 * Description:
b1f74493
FT
2793 * Completely finish @rq.
2794 */
2795void blk_end_request_all(struct request *rq, int error)
336cdb40 2796{
b1f74493
FT
2797 bool pending;
2798 unsigned int bidi_bytes = 0;
336cdb40 2799
b1f74493
FT
2800 if (unlikely(blk_bidi_rq(rq)))
2801 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2802
b1f74493
FT
2803 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2804 BUG_ON(pending);
2805}
56ad1740 2806EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2807
b1f74493
FT
2808/**
2809 * blk_end_request_cur - Helper function to finish the current request chunk.
2810 * @rq: the request to finish the current chunk for
8ebf9756 2811 * @error: %0 for success, < %0 for error
b1f74493
FT
2812 *
2813 * Description:
2814 * Complete the current consecutively mapped chunk from @rq.
2815 *
2816 * Return:
2817 * %false - we are done with this request
2818 * %true - still buffers pending for this request
2819 */
2820bool blk_end_request_cur(struct request *rq, int error)
2821{
2822 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2823}
56ad1740 2824EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2825
80a761fd
TH
2826/**
2827 * blk_end_request_err - Finish a request till the next failure boundary.
2828 * @rq: the request to finish till the next failure boundary for
2829 * @error: must be negative errno
2830 *
2831 * Description:
2832 * Complete @rq till the next failure boundary.
2833 *
2834 * Return:
2835 * %false - we are done with this request
2836 * %true - still buffers pending for this request
2837 */
2838bool blk_end_request_err(struct request *rq, int error)
2839{
2840 WARN_ON(error >= 0);
2841 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2842}
2843EXPORT_SYMBOL_GPL(blk_end_request_err);
2844
e3a04fe3 2845/**
b1f74493
FT
2846 * __blk_end_request - Helper function for drivers to complete the request.
2847 * @rq: the request being processed
2848 * @error: %0 for success, < %0 for error
2849 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2850 *
2851 * Description:
b1f74493 2852 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2853 *
2854 * Return:
b1f74493
FT
2855 * %false - we are done with this request
2856 * %true - still buffers pending for this request
e3a04fe3 2857 **/
b1f74493 2858bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2859{
b1f74493 2860 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2861}
56ad1740 2862EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2863
32fab448 2864/**
b1f74493
FT
2865 * __blk_end_request_all - Helper function for drives to finish the request.
2866 * @rq: the request to finish
8ebf9756 2867 * @error: %0 for success, < %0 for error
32fab448
KU
2868 *
2869 * Description:
b1f74493 2870 * Completely finish @rq. Must be called with queue lock held.
32fab448 2871 */
b1f74493 2872void __blk_end_request_all(struct request *rq, int error)
32fab448 2873{
b1f74493
FT
2874 bool pending;
2875 unsigned int bidi_bytes = 0;
2876
2877 if (unlikely(blk_bidi_rq(rq)))
2878 bidi_bytes = blk_rq_bytes(rq->next_rq);
2879
2880 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2881 BUG_ON(pending);
32fab448 2882}
56ad1740 2883EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2884
e19a3ab0 2885/**
b1f74493
FT
2886 * __blk_end_request_cur - Helper function to finish the current request chunk.
2887 * @rq: the request to finish the current chunk for
8ebf9756 2888 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2889 *
2890 * Description:
b1f74493
FT
2891 * Complete the current consecutively mapped chunk from @rq. Must
2892 * be called with queue lock held.
e19a3ab0
KU
2893 *
2894 * Return:
b1f74493
FT
2895 * %false - we are done with this request
2896 * %true - still buffers pending for this request
2897 */
2898bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2899{
b1f74493 2900 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2901}
56ad1740 2902EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2903
80a761fd
TH
2904/**
2905 * __blk_end_request_err - Finish a request till the next failure boundary.
2906 * @rq: the request to finish till the next failure boundary for
2907 * @error: must be negative errno
2908 *
2909 * Description:
2910 * Complete @rq till the next failure boundary. Must be called
2911 * with queue lock held.
2912 *
2913 * Return:
2914 * %false - we are done with this request
2915 * %true - still buffers pending for this request
2916 */
2917bool __blk_end_request_err(struct request *rq, int error)
2918{
2919 WARN_ON(error >= 0);
2920 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2921}
2922EXPORT_SYMBOL_GPL(__blk_end_request_err);
2923
86db1e29
JA
2924void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2925 struct bio *bio)
1da177e4 2926{
b4f42e28 2927 if (bio_has_data(bio))
fb2dce86 2928 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2929
4f024f37 2930 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2931 rq->bio = rq->biotail = bio;
1da177e4 2932
66846572
N
2933 if (bio->bi_bdev)
2934 rq->rq_disk = bio->bi_bdev->bd_disk;
2935}
1da177e4 2936
2d4dc890
IL
2937#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2938/**
2939 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2940 * @rq: the request to be flushed
2941 *
2942 * Description:
2943 * Flush all pages in @rq.
2944 */
2945void rq_flush_dcache_pages(struct request *rq)
2946{
2947 struct req_iterator iter;
7988613b 2948 struct bio_vec bvec;
2d4dc890
IL
2949
2950 rq_for_each_segment(bvec, rq, iter)
7988613b 2951 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2952}
2953EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2954#endif
2955
ef9e3fac
KU
2956/**
2957 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2958 * @q : the queue of the device being checked
2959 *
2960 * Description:
2961 * Check if underlying low-level drivers of a device are busy.
2962 * If the drivers want to export their busy state, they must set own
2963 * exporting function using blk_queue_lld_busy() first.
2964 *
2965 * Basically, this function is used only by request stacking drivers
2966 * to stop dispatching requests to underlying devices when underlying
2967 * devices are busy. This behavior helps more I/O merging on the queue
2968 * of the request stacking driver and prevents I/O throughput regression
2969 * on burst I/O load.
2970 *
2971 * Return:
2972 * 0 - Not busy (The request stacking driver should dispatch request)
2973 * 1 - Busy (The request stacking driver should stop dispatching request)
2974 */
2975int blk_lld_busy(struct request_queue *q)
2976{
2977 if (q->lld_busy_fn)
2978 return q->lld_busy_fn(q);
2979
2980 return 0;
2981}
2982EXPORT_SYMBOL_GPL(blk_lld_busy);
2983
78d8e58a
MS
2984/**
2985 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2986 * @rq: the clone request to be cleaned up
2987 *
2988 * Description:
2989 * Free all bios in @rq for a cloned request.
2990 */
2991void blk_rq_unprep_clone(struct request *rq)
2992{
2993 struct bio *bio;
2994
2995 while ((bio = rq->bio) != NULL) {
2996 rq->bio = bio->bi_next;
2997
2998 bio_put(bio);
2999 }
3000}
3001EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3002
3003/*
3004 * Copy attributes of the original request to the clone request.
3005 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3006 */
3007static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3008{
3009 dst->cpu = src->cpu;
ef295ecf 3010 dst->cmd_flags = src->cmd_flags | REQ_NOMERGE;
b0fd271d
KU
3011 dst->cmd_type = src->cmd_type;
3012 dst->__sector = blk_rq_pos(src);
3013 dst->__data_len = blk_rq_bytes(src);
3014 dst->nr_phys_segments = src->nr_phys_segments;
3015 dst->ioprio = src->ioprio;
3016 dst->extra_len = src->extra_len;
78d8e58a
MS
3017}
3018
3019/**
3020 * blk_rq_prep_clone - Helper function to setup clone request
3021 * @rq: the request to be setup
3022 * @rq_src: original request to be cloned
3023 * @bs: bio_set that bios for clone are allocated from
3024 * @gfp_mask: memory allocation mask for bio
3025 * @bio_ctr: setup function to be called for each clone bio.
3026 * Returns %0 for success, non %0 for failure.
3027 * @data: private data to be passed to @bio_ctr
3028 *
3029 * Description:
3030 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3031 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3032 * are not copied, and copying such parts is the caller's responsibility.
3033 * Also, pages which the original bios are pointing to are not copied
3034 * and the cloned bios just point same pages.
3035 * So cloned bios must be completed before original bios, which means
3036 * the caller must complete @rq before @rq_src.
3037 */
3038int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3039 struct bio_set *bs, gfp_t gfp_mask,
3040 int (*bio_ctr)(struct bio *, struct bio *, void *),
3041 void *data)
3042{
3043 struct bio *bio, *bio_src;
3044
3045 if (!bs)
3046 bs = fs_bio_set;
3047
3048 __rq_for_each_bio(bio_src, rq_src) {
3049 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3050 if (!bio)
3051 goto free_and_out;
3052
3053 if (bio_ctr && bio_ctr(bio, bio_src, data))
3054 goto free_and_out;
3055
3056 if (rq->bio) {
3057 rq->biotail->bi_next = bio;
3058 rq->biotail = bio;
3059 } else
3060 rq->bio = rq->biotail = bio;
3061 }
3062
3063 __blk_rq_prep_clone(rq, rq_src);
3064
3065 return 0;
3066
3067free_and_out:
3068 if (bio)
3069 bio_put(bio);
3070 blk_rq_unprep_clone(rq);
3071
3072 return -ENOMEM;
b0fd271d
KU
3073}
3074EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3075
59c3d45e 3076int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3077{
3078 return queue_work(kblockd_workqueue, work);
3079}
1da177e4
LT
3080EXPORT_SYMBOL(kblockd_schedule_work);
3081
ee63cfa7
JA
3082int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3083{
3084 return queue_work_on(cpu, kblockd_workqueue, work);
3085}
3086EXPORT_SYMBOL(kblockd_schedule_work_on);
3087
59c3d45e
JA
3088int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3089 unsigned long delay)
e43473b7
VG
3090{
3091 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3092}
3093EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3094
8ab14595
JA
3095int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3096 unsigned long delay)
3097{
3098 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3099}
3100EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3101
75df7136
SJ
3102/**
3103 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3104 * @plug: The &struct blk_plug that needs to be initialized
3105 *
3106 * Description:
3107 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3108 * pending I/O should the task end up blocking between blk_start_plug() and
3109 * blk_finish_plug(). This is important from a performance perspective, but
3110 * also ensures that we don't deadlock. For instance, if the task is blocking
3111 * for a memory allocation, memory reclaim could end up wanting to free a
3112 * page belonging to that request that is currently residing in our private
3113 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3114 * this kind of deadlock.
3115 */
73c10101
JA
3116void blk_start_plug(struct blk_plug *plug)
3117{
3118 struct task_struct *tsk = current;
3119
dd6cf3e1
SL
3120 /*
3121 * If this is a nested plug, don't actually assign it.
3122 */
3123 if (tsk->plug)
3124 return;
3125
73c10101 3126 INIT_LIST_HEAD(&plug->list);
320ae51f 3127 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3128 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3129 /*
dd6cf3e1
SL
3130 * Store ordering should not be needed here, since a potential
3131 * preempt will imply a full memory barrier
73c10101 3132 */
dd6cf3e1 3133 tsk->plug = plug;
73c10101
JA
3134}
3135EXPORT_SYMBOL(blk_start_plug);
3136
3137static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3138{
3139 struct request *rqa = container_of(a, struct request, queuelist);
3140 struct request *rqb = container_of(b, struct request, queuelist);
3141
975927b9
JM
3142 return !(rqa->q < rqb->q ||
3143 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3144}
3145
49cac01e
JA
3146/*
3147 * If 'from_schedule' is true, then postpone the dispatch of requests
3148 * until a safe kblockd context. We due this to avoid accidental big
3149 * additional stack usage in driver dispatch, in places where the originally
3150 * plugger did not intend it.
3151 */
f6603783 3152static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3153 bool from_schedule)
99e22598 3154 __releases(q->queue_lock)
94b5eb28 3155{
49cac01e 3156 trace_block_unplug(q, depth, !from_schedule);
99e22598 3157
70460571 3158 if (from_schedule)
24ecfbe2 3159 blk_run_queue_async(q);
70460571 3160 else
24ecfbe2 3161 __blk_run_queue(q);
70460571 3162 spin_unlock(q->queue_lock);
94b5eb28
JA
3163}
3164
74018dc3 3165static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3166{
3167 LIST_HEAD(callbacks);
3168
2a7d5559
SL
3169 while (!list_empty(&plug->cb_list)) {
3170 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3171
2a7d5559
SL
3172 while (!list_empty(&callbacks)) {
3173 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3174 struct blk_plug_cb,
3175 list);
2a7d5559 3176 list_del(&cb->list);
74018dc3 3177 cb->callback(cb, from_schedule);
2a7d5559 3178 }
048c9374
N
3179 }
3180}
3181
9cbb1750
N
3182struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3183 int size)
3184{
3185 struct blk_plug *plug = current->plug;
3186 struct blk_plug_cb *cb;
3187
3188 if (!plug)
3189 return NULL;
3190
3191 list_for_each_entry(cb, &plug->cb_list, list)
3192 if (cb->callback == unplug && cb->data == data)
3193 return cb;
3194
3195 /* Not currently on the callback list */
3196 BUG_ON(size < sizeof(*cb));
3197 cb = kzalloc(size, GFP_ATOMIC);
3198 if (cb) {
3199 cb->data = data;
3200 cb->callback = unplug;
3201 list_add(&cb->list, &plug->cb_list);
3202 }
3203 return cb;
3204}
3205EXPORT_SYMBOL(blk_check_plugged);
3206
49cac01e 3207void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3208{
3209 struct request_queue *q;
3210 unsigned long flags;
3211 struct request *rq;
109b8129 3212 LIST_HEAD(list);
94b5eb28 3213 unsigned int depth;
73c10101 3214
74018dc3 3215 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3216
3217 if (!list_empty(&plug->mq_list))
3218 blk_mq_flush_plug_list(plug, from_schedule);
3219
73c10101
JA
3220 if (list_empty(&plug->list))
3221 return;
3222
109b8129
N
3223 list_splice_init(&plug->list, &list);
3224
422765c2 3225 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3226
3227 q = NULL;
94b5eb28 3228 depth = 0;
18811272
JA
3229
3230 /*
3231 * Save and disable interrupts here, to avoid doing it for every
3232 * queue lock we have to take.
3233 */
73c10101 3234 local_irq_save(flags);
109b8129
N
3235 while (!list_empty(&list)) {
3236 rq = list_entry_rq(list.next);
73c10101 3237 list_del_init(&rq->queuelist);
73c10101
JA
3238 BUG_ON(!rq->q);
3239 if (rq->q != q) {
99e22598
JA
3240 /*
3241 * This drops the queue lock
3242 */
3243 if (q)
49cac01e 3244 queue_unplugged(q, depth, from_schedule);
73c10101 3245 q = rq->q;
94b5eb28 3246 depth = 0;
73c10101
JA
3247 spin_lock(q->queue_lock);
3248 }
8ba61435
TH
3249
3250 /*
3251 * Short-circuit if @q is dead
3252 */
3f3299d5 3253 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3254 __blk_end_request_all(rq, -ENODEV);
3255 continue;
3256 }
3257
73c10101
JA
3258 /*
3259 * rq is already accounted, so use raw insert
3260 */
f73f44eb 3261 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3262 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3263 else
3264 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3265
3266 depth++;
73c10101
JA
3267 }
3268
99e22598
JA
3269 /*
3270 * This drops the queue lock
3271 */
3272 if (q)
49cac01e 3273 queue_unplugged(q, depth, from_schedule);
73c10101 3274
73c10101
JA
3275 local_irq_restore(flags);
3276}
73c10101
JA
3277
3278void blk_finish_plug(struct blk_plug *plug)
3279{
dd6cf3e1
SL
3280 if (plug != current->plug)
3281 return;
f6603783 3282 blk_flush_plug_list(plug, false);
73c10101 3283
dd6cf3e1 3284 current->plug = NULL;
73c10101 3285}
88b996cd 3286EXPORT_SYMBOL(blk_finish_plug);
73c10101 3287
47fafbc7 3288#ifdef CONFIG_PM
6c954667
LM
3289/**
3290 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3291 * @q: the queue of the device
3292 * @dev: the device the queue belongs to
3293 *
3294 * Description:
3295 * Initialize runtime-PM-related fields for @q and start auto suspend for
3296 * @dev. Drivers that want to take advantage of request-based runtime PM
3297 * should call this function after @dev has been initialized, and its
3298 * request queue @q has been allocated, and runtime PM for it can not happen
3299 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3300 * cases, driver should call this function before any I/O has taken place.
3301 *
3302 * This function takes care of setting up using auto suspend for the device,
3303 * the autosuspend delay is set to -1 to make runtime suspend impossible
3304 * until an updated value is either set by user or by driver. Drivers do
3305 * not need to touch other autosuspend settings.
3306 *
3307 * The block layer runtime PM is request based, so only works for drivers
3308 * that use request as their IO unit instead of those directly use bio's.
3309 */
3310void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3311{
3312 q->dev = dev;
3313 q->rpm_status = RPM_ACTIVE;
3314 pm_runtime_set_autosuspend_delay(q->dev, -1);
3315 pm_runtime_use_autosuspend(q->dev);
3316}
3317EXPORT_SYMBOL(blk_pm_runtime_init);
3318
3319/**
3320 * blk_pre_runtime_suspend - Pre runtime suspend check
3321 * @q: the queue of the device
3322 *
3323 * Description:
3324 * This function will check if runtime suspend is allowed for the device
3325 * by examining if there are any requests pending in the queue. If there
3326 * are requests pending, the device can not be runtime suspended; otherwise,
3327 * the queue's status will be updated to SUSPENDING and the driver can
3328 * proceed to suspend the device.
3329 *
3330 * For the not allowed case, we mark last busy for the device so that
3331 * runtime PM core will try to autosuspend it some time later.
3332 *
3333 * This function should be called near the start of the device's
3334 * runtime_suspend callback.
3335 *
3336 * Return:
3337 * 0 - OK to runtime suspend the device
3338 * -EBUSY - Device should not be runtime suspended
3339 */
3340int blk_pre_runtime_suspend(struct request_queue *q)
3341{
3342 int ret = 0;
3343
4fd41a85
KX
3344 if (!q->dev)
3345 return ret;
3346
6c954667
LM
3347 spin_lock_irq(q->queue_lock);
3348 if (q->nr_pending) {
3349 ret = -EBUSY;
3350 pm_runtime_mark_last_busy(q->dev);
3351 } else {
3352 q->rpm_status = RPM_SUSPENDING;
3353 }
3354 spin_unlock_irq(q->queue_lock);
3355 return ret;
3356}
3357EXPORT_SYMBOL(blk_pre_runtime_suspend);
3358
3359/**
3360 * blk_post_runtime_suspend - Post runtime suspend processing
3361 * @q: the queue of the device
3362 * @err: return value of the device's runtime_suspend function
3363 *
3364 * Description:
3365 * Update the queue's runtime status according to the return value of the
3366 * device's runtime suspend function and mark last busy for the device so
3367 * that PM core will try to auto suspend the device at a later time.
3368 *
3369 * This function should be called near the end of the device's
3370 * runtime_suspend callback.
3371 */
3372void blk_post_runtime_suspend(struct request_queue *q, int err)
3373{
4fd41a85
KX
3374 if (!q->dev)
3375 return;
3376
6c954667
LM
3377 spin_lock_irq(q->queue_lock);
3378 if (!err) {
3379 q->rpm_status = RPM_SUSPENDED;
3380 } else {
3381 q->rpm_status = RPM_ACTIVE;
3382 pm_runtime_mark_last_busy(q->dev);
3383 }
3384 spin_unlock_irq(q->queue_lock);
3385}
3386EXPORT_SYMBOL(blk_post_runtime_suspend);
3387
3388/**
3389 * blk_pre_runtime_resume - Pre runtime resume processing
3390 * @q: the queue of the device
3391 *
3392 * Description:
3393 * Update the queue's runtime status to RESUMING in preparation for the
3394 * runtime resume of the device.
3395 *
3396 * This function should be called near the start of the device's
3397 * runtime_resume callback.
3398 */
3399void blk_pre_runtime_resume(struct request_queue *q)
3400{
4fd41a85
KX
3401 if (!q->dev)
3402 return;
3403
6c954667
LM
3404 spin_lock_irq(q->queue_lock);
3405 q->rpm_status = RPM_RESUMING;
3406 spin_unlock_irq(q->queue_lock);
3407}
3408EXPORT_SYMBOL(blk_pre_runtime_resume);
3409
3410/**
3411 * blk_post_runtime_resume - Post runtime resume processing
3412 * @q: the queue of the device
3413 * @err: return value of the device's runtime_resume function
3414 *
3415 * Description:
3416 * Update the queue's runtime status according to the return value of the
3417 * device's runtime_resume function. If it is successfully resumed, process
3418 * the requests that are queued into the device's queue when it is resuming
3419 * and then mark last busy and initiate autosuspend for it.
3420 *
3421 * This function should be called near the end of the device's
3422 * runtime_resume callback.
3423 */
3424void blk_post_runtime_resume(struct request_queue *q, int err)
3425{
4fd41a85
KX
3426 if (!q->dev)
3427 return;
3428
6c954667
LM
3429 spin_lock_irq(q->queue_lock);
3430 if (!err) {
3431 q->rpm_status = RPM_ACTIVE;
3432 __blk_run_queue(q);
3433 pm_runtime_mark_last_busy(q->dev);
c60855cd 3434 pm_request_autosuspend(q->dev);
6c954667
LM
3435 } else {
3436 q->rpm_status = RPM_SUSPENDED;
3437 }
3438 spin_unlock_irq(q->queue_lock);
3439}
3440EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3441
3442/**
3443 * blk_set_runtime_active - Force runtime status of the queue to be active
3444 * @q: the queue of the device
3445 *
3446 * If the device is left runtime suspended during system suspend the resume
3447 * hook typically resumes the device and corrects runtime status
3448 * accordingly. However, that does not affect the queue runtime PM status
3449 * which is still "suspended". This prevents processing requests from the
3450 * queue.
3451 *
3452 * This function can be used in driver's resume hook to correct queue
3453 * runtime PM status and re-enable peeking requests from the queue. It
3454 * should be called before first request is added to the queue.
3455 */
3456void blk_set_runtime_active(struct request_queue *q)
3457{
3458 spin_lock_irq(q->queue_lock);
3459 q->rpm_status = RPM_ACTIVE;
3460 pm_runtime_mark_last_busy(q->dev);
3461 pm_request_autosuspend(q->dev);
3462 spin_unlock_irq(q->queue_lock);
3463}
3464EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3465#endif
3466
1da177e4
LT
3467int __init blk_dev_init(void)
3468{
ef295ecf
CH
3469 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3470 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3471 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3472 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3473 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3474
89b90be2
TH
3475 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3476 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3477 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3478 if (!kblockd_workqueue)
3479 panic("Failed to create kblockd\n");
3480
3481 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3482 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3483
c2789bd4 3484 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3485 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3486
d38ecf93 3487 return 0;
1da177e4 3488}