]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-core.c
blk-mq: fix race in IO start accounting
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
55782138
LZ
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/block.h>
1da177e4 38
8324aa91 39#include "blk.h"
5efd6113 40#include "blk-cgroup.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
cbae8d45 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 47
a73f730d
TH
48DEFINE_IDA(blk_queue_ida);
49
1da177e4
LT
50/*
51 * For the allocated request tables
52 */
320ae51f 53struct kmem_cache *request_cachep = NULL;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
6728cb0e 58struct kmem_cache *blk_requestq_cachep;
1da177e4 59
1da177e4
LT
60/*
61 * Controlling structure to kblockd
62 */
ff856bad 63static struct workqueue_struct *kblockd_workqueue;
1da177e4 64
8324aa91 65void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
66{
67 int nr;
68
69 nr = q->nr_requests - (q->nr_requests / 8) + 1;
70 if (nr > q->nr_requests)
71 nr = q->nr_requests;
72 q->nr_congestion_on = nr;
73
74 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
75 if (nr < 1)
76 nr = 1;
77 q->nr_congestion_off = nr;
78}
79
1da177e4
LT
80/**
81 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
82 * @bdev: device
83 *
84 * Locates the passed device's request queue and returns the address of its
85 * backing_dev_info
86 *
87 * Will return NULL if the request queue cannot be located.
88 */
89struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90{
91 struct backing_dev_info *ret = NULL;
165125e1 92 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
93
94 if (q)
95 ret = &q->backing_dev_info;
96 return ret;
97}
1da177e4
LT
98EXPORT_SYMBOL(blk_get_backing_dev_info);
99
2a4aa30c 100void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 101{
1afb20f3
FT
102 memset(rq, 0, sizeof(*rq));
103
1da177e4 104 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 105 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 106 rq->cpu = -1;
63a71386 107 rq->q = q;
a2dec7b3 108 rq->__sector = (sector_t) -1;
2e662b65
JA
109 INIT_HLIST_NODE(&rq->hash);
110 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 111 rq->cmd = rq->__cmd;
e2494e1b 112 rq->cmd_len = BLK_MAX_CDB;
63a71386 113 rq->tag = -1;
b243ddcb 114 rq->start_time = jiffies;
9195291e 115 set_start_time_ns(rq);
09e099d4 116 rq->part = NULL;
1da177e4 117}
2a4aa30c 118EXPORT_SYMBOL(blk_rq_init);
1da177e4 119
5bb23a68
N
120static void req_bio_endio(struct request *rq, struct bio *bio,
121 unsigned int nbytes, int error)
1da177e4 122{
143a87f4
TH
123 if (error)
124 clear_bit(BIO_UPTODATE, &bio->bi_flags);
125 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
126 error = -EIO;
797e7dbb 127
143a87f4
TH
128 if (unlikely(rq->cmd_flags & REQ_QUIET))
129 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 130
f79ea416 131 bio_advance(bio, nbytes);
7ba1ba12 132
143a87f4 133 /* don't actually finish bio if it's part of flush sequence */
4f024f37 134 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
143a87f4 135 bio_endio(bio, error);
1da177e4 136}
1da177e4 137
1da177e4
LT
138void blk_dump_rq_flags(struct request *rq, char *msg)
139{
140 int bit;
141
5953316d 142 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 143 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 144 (unsigned long long) rq->cmd_flags);
1da177e4 145
83096ebf
TH
146 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
147 (unsigned long long)blk_rq_pos(rq),
148 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
149 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
150 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 151
33659ebb 152 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 153 printk(KERN_INFO " cdb: ");
d34c87e4 154 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
155 printk("%02x ", rq->cmd[bit]);
156 printk("\n");
157 }
158}
1da177e4
LT
159EXPORT_SYMBOL(blk_dump_rq_flags);
160
3cca6dc1 161static void blk_delay_work(struct work_struct *work)
1da177e4 162{
3cca6dc1 163 struct request_queue *q;
1da177e4 164
3cca6dc1
JA
165 q = container_of(work, struct request_queue, delay_work.work);
166 spin_lock_irq(q->queue_lock);
24ecfbe2 167 __blk_run_queue(q);
3cca6dc1 168 spin_unlock_irq(q->queue_lock);
1da177e4 169}
1da177e4
LT
170
171/**
3cca6dc1
JA
172 * blk_delay_queue - restart queueing after defined interval
173 * @q: The &struct request_queue in question
174 * @msecs: Delay in msecs
1da177e4
LT
175 *
176 * Description:
3cca6dc1
JA
177 * Sometimes queueing needs to be postponed for a little while, to allow
178 * resources to come back. This function will make sure that queueing is
70460571 179 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
180 */
181void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 182{
70460571
BVA
183 if (likely(!blk_queue_dead(q)))
184 queue_delayed_work(kblockd_workqueue, &q->delay_work,
185 msecs_to_jiffies(msecs));
2ad8b1ef 186}
3cca6dc1 187EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 188
1da177e4
LT
189/**
190 * blk_start_queue - restart a previously stopped queue
165125e1 191 * @q: The &struct request_queue in question
1da177e4
LT
192 *
193 * Description:
194 * blk_start_queue() will clear the stop flag on the queue, and call
195 * the request_fn for the queue if it was in a stopped state when
196 * entered. Also see blk_stop_queue(). Queue lock must be held.
197 **/
165125e1 198void blk_start_queue(struct request_queue *q)
1da177e4 199{
a038e253
PBG
200 WARN_ON(!irqs_disabled());
201
75ad23bc 202 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 203 __blk_run_queue(q);
1da177e4 204}
1da177e4
LT
205EXPORT_SYMBOL(blk_start_queue);
206
207/**
208 * blk_stop_queue - stop a queue
165125e1 209 * @q: The &struct request_queue in question
1da177e4
LT
210 *
211 * Description:
212 * The Linux block layer assumes that a block driver will consume all
213 * entries on the request queue when the request_fn strategy is called.
214 * Often this will not happen, because of hardware limitations (queue
215 * depth settings). If a device driver gets a 'queue full' response,
216 * or if it simply chooses not to queue more I/O at one point, it can
217 * call this function to prevent the request_fn from being called until
218 * the driver has signalled it's ready to go again. This happens by calling
219 * blk_start_queue() to restart queue operations. Queue lock must be held.
220 **/
165125e1 221void blk_stop_queue(struct request_queue *q)
1da177e4 222{
136b5721 223 cancel_delayed_work(&q->delay_work);
75ad23bc 224 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
225}
226EXPORT_SYMBOL(blk_stop_queue);
227
228/**
229 * blk_sync_queue - cancel any pending callbacks on a queue
230 * @q: the queue
231 *
232 * Description:
233 * The block layer may perform asynchronous callback activity
234 * on a queue, such as calling the unplug function after a timeout.
235 * A block device may call blk_sync_queue to ensure that any
236 * such activity is cancelled, thus allowing it to release resources
59c51591 237 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
238 * that its ->make_request_fn will not re-add plugging prior to calling
239 * this function.
240 *
da527770
VG
241 * This function does not cancel any asynchronous activity arising
242 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 243 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 244 *
1da177e4
LT
245 */
246void blk_sync_queue(struct request_queue *q)
247{
70ed28b9 248 del_timer_sync(&q->timeout);
f04c1fe7
ML
249
250 if (q->mq_ops) {
251 struct blk_mq_hw_ctx *hctx;
252 int i;
253
70f4db63
CH
254 queue_for_each_hw_ctx(q, hctx, i) {
255 cancel_delayed_work_sync(&hctx->run_work);
256 cancel_delayed_work_sync(&hctx->delay_work);
257 }
f04c1fe7
ML
258 } else {
259 cancel_delayed_work_sync(&q->delay_work);
260 }
1da177e4
LT
261}
262EXPORT_SYMBOL(blk_sync_queue);
263
c246e80d
BVA
264/**
265 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
266 * @q: The queue to run
267 *
268 * Description:
269 * Invoke request handling on a queue if there are any pending requests.
270 * May be used to restart request handling after a request has completed.
271 * This variant runs the queue whether or not the queue has been
272 * stopped. Must be called with the queue lock held and interrupts
273 * disabled. See also @blk_run_queue.
274 */
275inline void __blk_run_queue_uncond(struct request_queue *q)
276{
277 if (unlikely(blk_queue_dead(q)))
278 return;
279
24faf6f6
BVA
280 /*
281 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
282 * the queue lock internally. As a result multiple threads may be
283 * running such a request function concurrently. Keep track of the
284 * number of active request_fn invocations such that blk_drain_queue()
285 * can wait until all these request_fn calls have finished.
286 */
287 q->request_fn_active++;
c246e80d 288 q->request_fn(q);
24faf6f6 289 q->request_fn_active--;
c246e80d
BVA
290}
291
1da177e4 292/**
80a4b58e 293 * __blk_run_queue - run a single device queue
1da177e4 294 * @q: The queue to run
80a4b58e
JA
295 *
296 * Description:
297 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 298 * held and interrupts disabled.
1da177e4 299 */
24ecfbe2 300void __blk_run_queue(struct request_queue *q)
1da177e4 301{
a538cd03
TH
302 if (unlikely(blk_queue_stopped(q)))
303 return;
304
c246e80d 305 __blk_run_queue_uncond(q);
75ad23bc
NP
306}
307EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 308
24ecfbe2
CH
309/**
310 * blk_run_queue_async - run a single device queue in workqueue context
311 * @q: The queue to run
312 *
313 * Description:
314 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 315 * of us. The caller must hold the queue lock.
24ecfbe2
CH
316 */
317void blk_run_queue_async(struct request_queue *q)
318{
70460571 319 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 320 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 321}
c21e6beb 322EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 323
75ad23bc
NP
324/**
325 * blk_run_queue - run a single device queue
326 * @q: The queue to run
80a4b58e
JA
327 *
328 * Description:
329 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 330 * May be used to restart queueing when a request has completed.
75ad23bc
NP
331 */
332void blk_run_queue(struct request_queue *q)
333{
334 unsigned long flags;
335
336 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 337 __blk_run_queue(q);
1da177e4
LT
338 spin_unlock_irqrestore(q->queue_lock, flags);
339}
340EXPORT_SYMBOL(blk_run_queue);
341
165125e1 342void blk_put_queue(struct request_queue *q)
483f4afc
AV
343{
344 kobject_put(&q->kobj);
345}
d86e0e83 346EXPORT_SYMBOL(blk_put_queue);
483f4afc 347
e3c78ca5 348/**
807592a4 349 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 350 * @q: queue to drain
c9a929dd 351 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 352 *
c9a929dd
TH
353 * Drain requests from @q. If @drain_all is set, all requests are drained.
354 * If not, only ELVPRIV requests are drained. The caller is responsible
355 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 356 */
807592a4
BVA
357static void __blk_drain_queue(struct request_queue *q, bool drain_all)
358 __releases(q->queue_lock)
359 __acquires(q->queue_lock)
e3c78ca5 360{
458f27a9
AH
361 int i;
362
807592a4
BVA
363 lockdep_assert_held(q->queue_lock);
364
e3c78ca5 365 while (true) {
481a7d64 366 bool drain = false;
e3c78ca5 367
b855b04a
TH
368 /*
369 * The caller might be trying to drain @q before its
370 * elevator is initialized.
371 */
372 if (q->elevator)
373 elv_drain_elevator(q);
374
5efd6113 375 blkcg_drain_queue(q);
e3c78ca5 376
4eabc941
TH
377 /*
378 * This function might be called on a queue which failed
b855b04a
TH
379 * driver init after queue creation or is not yet fully
380 * active yet. Some drivers (e.g. fd and loop) get unhappy
381 * in such cases. Kick queue iff dispatch queue has
382 * something on it and @q has request_fn set.
4eabc941 383 */
b855b04a 384 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 385 __blk_run_queue(q);
c9a929dd 386
8a5ecdd4 387 drain |= q->nr_rqs_elvpriv;
24faf6f6 388 drain |= q->request_fn_active;
481a7d64
TH
389
390 /*
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
394 */
395 if (drain_all) {
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
8a5ecdd4 398 drain |= q->nr_rqs[i];
481a7d64
TH
399 drain |= q->in_flight[i];
400 drain |= !list_empty(&q->flush_queue[i]);
401 }
402 }
e3c78ca5 403
481a7d64 404 if (!drain)
e3c78ca5 405 break;
807592a4
BVA
406
407 spin_unlock_irq(q->queue_lock);
408
e3c78ca5 409 msleep(10);
807592a4
BVA
410
411 spin_lock_irq(q->queue_lock);
e3c78ca5 412 }
458f27a9
AH
413
414 /*
415 * With queue marked dead, any woken up waiter will fail the
416 * allocation path, so the wakeup chaining is lost and we're
417 * left with hung waiters. We need to wake up those waiters.
418 */
419 if (q->request_fn) {
a051661c
TH
420 struct request_list *rl;
421
a051661c
TH
422 blk_queue_for_each_rl(rl, q)
423 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
424 wake_up_all(&rl->wait[i]);
458f27a9 425 }
e3c78ca5
TH
426}
427
d732580b
TH
428/**
429 * blk_queue_bypass_start - enter queue bypass mode
430 * @q: queue of interest
431 *
432 * In bypass mode, only the dispatch FIFO queue of @q is used. This
433 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 434 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
435 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
436 * inside queue or RCU read lock.
d732580b
TH
437 */
438void blk_queue_bypass_start(struct request_queue *q)
439{
b82d4b19
TH
440 bool drain;
441
d732580b 442 spin_lock_irq(q->queue_lock);
b82d4b19 443 drain = !q->bypass_depth++;
d732580b
TH
444 queue_flag_set(QUEUE_FLAG_BYPASS, q);
445 spin_unlock_irq(q->queue_lock);
446
b82d4b19 447 if (drain) {
807592a4
BVA
448 spin_lock_irq(q->queue_lock);
449 __blk_drain_queue(q, false);
450 spin_unlock_irq(q->queue_lock);
451
b82d4b19
TH
452 /* ensure blk_queue_bypass() is %true inside RCU read lock */
453 synchronize_rcu();
454 }
d732580b
TH
455}
456EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
457
458/**
459 * blk_queue_bypass_end - leave queue bypass mode
460 * @q: queue of interest
461 *
462 * Leave bypass mode and restore the normal queueing behavior.
463 */
464void blk_queue_bypass_end(struct request_queue *q)
465{
466 spin_lock_irq(q->queue_lock);
467 if (!--q->bypass_depth)
468 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
469 WARN_ON_ONCE(q->bypass_depth < 0);
470 spin_unlock_irq(q->queue_lock);
471}
472EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
473
c9a929dd
TH
474/**
475 * blk_cleanup_queue - shutdown a request queue
476 * @q: request queue to shutdown
477 *
c246e80d
BVA
478 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
479 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 480 */
6728cb0e 481void blk_cleanup_queue(struct request_queue *q)
483f4afc 482{
c9a929dd 483 spinlock_t *lock = q->queue_lock;
e3335de9 484
3f3299d5 485 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 486 mutex_lock(&q->sysfs_lock);
3f3299d5 487 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 488 spin_lock_irq(lock);
6ecf23af 489
80fd9979 490 /*
3f3299d5 491 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
492 * that, unlike blk_queue_bypass_start(), we aren't performing
493 * synchronize_rcu() after entering bypass mode to avoid the delay
494 * as some drivers create and destroy a lot of queues while
495 * probing. This is still safe because blk_release_queue() will be
496 * called only after the queue refcnt drops to zero and nothing,
497 * RCU or not, would be traversing the queue by then.
498 */
6ecf23af
TH
499 q->bypass_depth++;
500 queue_flag_set(QUEUE_FLAG_BYPASS, q);
501
c9a929dd
TH
502 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
503 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 504 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
505 spin_unlock_irq(lock);
506 mutex_unlock(&q->sysfs_lock);
507
c246e80d
BVA
508 /*
509 * Drain all requests queued before DYING marking. Set DEAD flag to
510 * prevent that q->request_fn() gets invoked after draining finished.
511 */
43a5e4e2
ML
512 if (q->mq_ops) {
513 blk_mq_drain_queue(q);
514 spin_lock_irq(lock);
515 } else {
516 spin_lock_irq(lock);
517 __blk_drain_queue(q, true);
518 }
c246e80d 519 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 520 spin_unlock_irq(lock);
c9a929dd
TH
521
522 /* @q won't process any more request, flush async actions */
523 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
524 blk_sync_queue(q);
525
5e5cfac0
AH
526 spin_lock_irq(lock);
527 if (q->queue_lock != &q->__queue_lock)
528 q->queue_lock = &q->__queue_lock;
529 spin_unlock_irq(lock);
530
c9a929dd 531 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
532 blk_put_queue(q);
533}
1da177e4
LT
534EXPORT_SYMBOL(blk_cleanup_queue);
535
5b788ce3
TH
536int blk_init_rl(struct request_list *rl, struct request_queue *q,
537 gfp_t gfp_mask)
1da177e4 538{
1abec4fd
MS
539 if (unlikely(rl->rq_pool))
540 return 0;
541
5b788ce3 542 rl->q = q;
1faa16d2
JA
543 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
544 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
545 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
546 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 547
1946089a 548 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 549 mempool_free_slab, request_cachep,
5b788ce3 550 gfp_mask, q->node);
1da177e4
LT
551 if (!rl->rq_pool)
552 return -ENOMEM;
553
554 return 0;
555}
556
5b788ce3
TH
557void blk_exit_rl(struct request_list *rl)
558{
559 if (rl->rq_pool)
560 mempool_destroy(rl->rq_pool);
561}
562
165125e1 563struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 564{
c304a51b 565 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
566}
567EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 568
165125e1 569struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 570{
165125e1 571 struct request_queue *q;
e0bf68dd 572 int err;
1946089a 573
8324aa91 574 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 575 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
576 if (!q)
577 return NULL;
578
320ae51f
JA
579 if (percpu_counter_init(&q->mq_usage_counter, 0))
580 goto fail_q;
581
00380a40 582 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 583 if (q->id < 0)
320ae51f 584 goto fail_c;
a73f730d 585
0989a025
JA
586 q->backing_dev_info.ra_pages =
587 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
588 q->backing_dev_info.state = 0;
589 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 590 q->backing_dev_info.name = "block";
5151412d 591 q->node = node_id;
0989a025 592
e0bf68dd 593 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
594 if (err)
595 goto fail_id;
e0bf68dd 596
31373d09
MG
597 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
598 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 599 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 600 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 601 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 602 INIT_LIST_HEAD(&q->icq_list);
4eef3049 603#ifdef CONFIG_BLK_CGROUP
e8989fae 604 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 605#endif
ae1b1539
TH
606 INIT_LIST_HEAD(&q->flush_queue[0]);
607 INIT_LIST_HEAD(&q->flush_queue[1]);
608 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 609 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 610
8324aa91 611 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 612
483f4afc 613 mutex_init(&q->sysfs_lock);
e7e72bf6 614 spin_lock_init(&q->__queue_lock);
483f4afc 615
c94a96ac
VG
616 /*
617 * By default initialize queue_lock to internal lock and driver can
618 * override it later if need be.
619 */
620 q->queue_lock = &q->__queue_lock;
621
b82d4b19
TH
622 /*
623 * A queue starts its life with bypass turned on to avoid
624 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
625 * init. The initial bypass will be finished when the queue is
626 * registered by blk_register_queue().
b82d4b19
TH
627 */
628 q->bypass_depth = 1;
629 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
630
320ae51f
JA
631 init_waitqueue_head(&q->mq_freeze_wq);
632
5efd6113 633 if (blkcg_init_queue(q))
fff4996b 634 goto fail_bdi;
f51b802c 635
1da177e4 636 return q;
a73f730d 637
fff4996b
MP
638fail_bdi:
639 bdi_destroy(&q->backing_dev_info);
a73f730d
TH
640fail_id:
641 ida_simple_remove(&blk_queue_ida, q->id);
320ae51f
JA
642fail_c:
643 percpu_counter_destroy(&q->mq_usage_counter);
a73f730d
TH
644fail_q:
645 kmem_cache_free(blk_requestq_cachep, q);
646 return NULL;
1da177e4 647}
1946089a 648EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
649
650/**
651 * blk_init_queue - prepare a request queue for use with a block device
652 * @rfn: The function to be called to process requests that have been
653 * placed on the queue.
654 * @lock: Request queue spin lock
655 *
656 * Description:
657 * If a block device wishes to use the standard request handling procedures,
658 * which sorts requests and coalesces adjacent requests, then it must
659 * call blk_init_queue(). The function @rfn will be called when there
660 * are requests on the queue that need to be processed. If the device
661 * supports plugging, then @rfn may not be called immediately when requests
662 * are available on the queue, but may be called at some time later instead.
663 * Plugged queues are generally unplugged when a buffer belonging to one
664 * of the requests on the queue is needed, or due to memory pressure.
665 *
666 * @rfn is not required, or even expected, to remove all requests off the
667 * queue, but only as many as it can handle at a time. If it does leave
668 * requests on the queue, it is responsible for arranging that the requests
669 * get dealt with eventually.
670 *
671 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
672 * request queue; this lock will be taken also from interrupt context, so irq
673 * disabling is needed for it.
1da177e4 674 *
710027a4 675 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
676 * it didn't succeed.
677 *
678 * Note:
679 * blk_init_queue() must be paired with a blk_cleanup_queue() call
680 * when the block device is deactivated (such as at module unload).
681 **/
1946089a 682
165125e1 683struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 684{
c304a51b 685 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
686}
687EXPORT_SYMBOL(blk_init_queue);
688
165125e1 689struct request_queue *
1946089a
CL
690blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
691{
c86d1b8a 692 struct request_queue *uninit_q, *q;
1da177e4 693
c86d1b8a
MS
694 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
695 if (!uninit_q)
696 return NULL;
697
5151412d 698 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 699 if (!q)
7982e90c 700 blk_cleanup_queue(uninit_q);
18741986 701
7982e90c 702 return q;
01effb0d
MS
703}
704EXPORT_SYMBOL(blk_init_queue_node);
705
706struct request_queue *
707blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
708 spinlock_t *lock)
01effb0d 709{
1da177e4
LT
710 if (!q)
711 return NULL;
712
7982e90c
MS
713 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
714 if (!q->flush_rq)
715 return NULL;
716
a051661c 717 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 718 goto fail;
1da177e4
LT
719
720 q->request_fn = rfn;
1da177e4 721 q->prep_rq_fn = NULL;
28018c24 722 q->unprep_rq_fn = NULL;
60ea8226 723 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
724
725 /* Override internal queue lock with supplied lock pointer */
726 if (lock)
727 q->queue_lock = lock;
1da177e4 728
f3b144aa
JA
729 /*
730 * This also sets hw/phys segments, boundary and size
731 */
c20e8de2 732 blk_queue_make_request(q, blk_queue_bio);
1da177e4 733
44ec9542
AS
734 q->sg_reserved_size = INT_MAX;
735
eb1c160b
TS
736 /* Protect q->elevator from elevator_change */
737 mutex_lock(&q->sysfs_lock);
738
b82d4b19 739 /* init elevator */
eb1c160b
TS
740 if (elevator_init(q, NULL)) {
741 mutex_unlock(&q->sysfs_lock);
708f04d2 742 goto fail;
eb1c160b
TS
743 }
744
745 mutex_unlock(&q->sysfs_lock);
746
b82d4b19 747 return q;
708f04d2
DJ
748
749fail:
750 kfree(q->flush_rq);
751 return NULL;
1da177e4 752}
5151412d 753EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 754
09ac46c4 755bool blk_get_queue(struct request_queue *q)
1da177e4 756{
3f3299d5 757 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
758 __blk_get_queue(q);
759 return true;
1da177e4
LT
760 }
761
09ac46c4 762 return false;
1da177e4 763}
d86e0e83 764EXPORT_SYMBOL(blk_get_queue);
1da177e4 765
5b788ce3 766static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 767{
f1f8cc94 768 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 769 elv_put_request(rl->q, rq);
f1f8cc94 770 if (rq->elv.icq)
11a3122f 771 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
772 }
773
5b788ce3 774 mempool_free(rq, rl->rq_pool);
1da177e4
LT
775}
776
1da177e4
LT
777/*
778 * ioc_batching returns true if the ioc is a valid batching request and
779 * should be given priority access to a request.
780 */
165125e1 781static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
782{
783 if (!ioc)
784 return 0;
785
786 /*
787 * Make sure the process is able to allocate at least 1 request
788 * even if the batch times out, otherwise we could theoretically
789 * lose wakeups.
790 */
791 return ioc->nr_batch_requests == q->nr_batching ||
792 (ioc->nr_batch_requests > 0
793 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
794}
795
796/*
797 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
798 * will cause the process to be a "batcher" on all queues in the system. This
799 * is the behaviour we want though - once it gets a wakeup it should be given
800 * a nice run.
801 */
165125e1 802static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
803{
804 if (!ioc || ioc_batching(q, ioc))
805 return;
806
807 ioc->nr_batch_requests = q->nr_batching;
808 ioc->last_waited = jiffies;
809}
810
5b788ce3 811static void __freed_request(struct request_list *rl, int sync)
1da177e4 812{
5b788ce3 813 struct request_queue *q = rl->q;
1da177e4 814
a051661c
TH
815 /*
816 * bdi isn't aware of blkcg yet. As all async IOs end up root
817 * blkcg anyway, just use root blkcg state.
818 */
819 if (rl == &q->root_rl &&
820 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 821 blk_clear_queue_congested(q, sync);
1da177e4 822
1faa16d2
JA
823 if (rl->count[sync] + 1 <= q->nr_requests) {
824 if (waitqueue_active(&rl->wait[sync]))
825 wake_up(&rl->wait[sync]);
1da177e4 826
5b788ce3 827 blk_clear_rl_full(rl, sync);
1da177e4
LT
828 }
829}
830
831/*
832 * A request has just been released. Account for it, update the full and
833 * congestion status, wake up any waiters. Called under q->queue_lock.
834 */
5b788ce3 835static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 836{
5b788ce3 837 struct request_queue *q = rl->q;
75eb6c37 838 int sync = rw_is_sync(flags);
1da177e4 839
8a5ecdd4 840 q->nr_rqs[sync]--;
1faa16d2 841 rl->count[sync]--;
75eb6c37 842 if (flags & REQ_ELVPRIV)
8a5ecdd4 843 q->nr_rqs_elvpriv--;
1da177e4 844
5b788ce3 845 __freed_request(rl, sync);
1da177e4 846
1faa16d2 847 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 848 __freed_request(rl, sync ^ 1);
1da177e4
LT
849}
850
9d5a4e94
MS
851/*
852 * Determine if elevator data should be initialized when allocating the
853 * request associated with @bio.
854 */
855static bool blk_rq_should_init_elevator(struct bio *bio)
856{
857 if (!bio)
858 return true;
859
860 /*
861 * Flush requests do not use the elevator so skip initialization.
862 * This allows a request to share the flush and elevator data.
863 */
864 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
865 return false;
866
867 return true;
868}
869
852c788f
TH
870/**
871 * rq_ioc - determine io_context for request allocation
872 * @bio: request being allocated is for this bio (can be %NULL)
873 *
874 * Determine io_context to use for request allocation for @bio. May return
875 * %NULL if %current->io_context doesn't exist.
876 */
877static struct io_context *rq_ioc(struct bio *bio)
878{
879#ifdef CONFIG_BLK_CGROUP
880 if (bio && bio->bi_ioc)
881 return bio->bi_ioc;
882#endif
883 return current->io_context;
884}
885
da8303c6 886/**
a06e05e6 887 * __get_request - get a free request
5b788ce3 888 * @rl: request list to allocate from
da8303c6
TH
889 * @rw_flags: RW and SYNC flags
890 * @bio: bio to allocate request for (can be %NULL)
891 * @gfp_mask: allocation mask
892 *
893 * Get a free request from @q. This function may fail under memory
894 * pressure or if @q is dead.
895 *
896 * Must be callled with @q->queue_lock held and,
897 * Returns %NULL on failure, with @q->queue_lock held.
898 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 899 */
5b788ce3 900static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 901 struct bio *bio, gfp_t gfp_mask)
1da177e4 902{
5b788ce3 903 struct request_queue *q = rl->q;
b679281a 904 struct request *rq;
7f4b35d1
TH
905 struct elevator_type *et = q->elevator->type;
906 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 907 struct io_cq *icq = NULL;
1faa16d2 908 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 909 int may_queue;
88ee5ef1 910
3f3299d5 911 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
912 return NULL;
913
7749a8d4 914 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
915 if (may_queue == ELV_MQUEUE_NO)
916 goto rq_starved;
917
1faa16d2
JA
918 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
919 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
920 /*
921 * The queue will fill after this allocation, so set
922 * it as full, and mark this process as "batching".
923 * This process will be allowed to complete a batch of
924 * requests, others will be blocked.
925 */
5b788ce3 926 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 927 ioc_set_batching(q, ioc);
5b788ce3 928 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
929 } else {
930 if (may_queue != ELV_MQUEUE_MUST
931 && !ioc_batching(q, ioc)) {
932 /*
933 * The queue is full and the allocating
934 * process is not a "batcher", and not
935 * exempted by the IO scheduler
936 */
b679281a 937 return NULL;
88ee5ef1
JA
938 }
939 }
1da177e4 940 }
a051661c
TH
941 /*
942 * bdi isn't aware of blkcg yet. As all async IOs end up
943 * root blkcg anyway, just use root blkcg state.
944 */
945 if (rl == &q->root_rl)
946 blk_set_queue_congested(q, is_sync);
1da177e4
LT
947 }
948
082cf69e
JA
949 /*
950 * Only allow batching queuers to allocate up to 50% over the defined
951 * limit of requests, otherwise we could have thousands of requests
952 * allocated with any setting of ->nr_requests
953 */
1faa16d2 954 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 955 return NULL;
fd782a4a 956
8a5ecdd4 957 q->nr_rqs[is_sync]++;
1faa16d2
JA
958 rl->count[is_sync]++;
959 rl->starved[is_sync] = 0;
cb98fc8b 960
f1f8cc94
TH
961 /*
962 * Decide whether the new request will be managed by elevator. If
963 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
964 * prevent the current elevator from being destroyed until the new
965 * request is freed. This guarantees icq's won't be destroyed and
966 * makes creating new ones safe.
967 *
968 * Also, lookup icq while holding queue_lock. If it doesn't exist,
969 * it will be created after releasing queue_lock.
970 */
d732580b 971 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 972 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 973 q->nr_rqs_elvpriv++;
f1f8cc94
TH
974 if (et->icq_cache && ioc)
975 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 976 }
cb98fc8b 977
f253b86b
JA
978 if (blk_queue_io_stat(q))
979 rw_flags |= REQ_IO_STAT;
1da177e4
LT
980 spin_unlock_irq(q->queue_lock);
981
29e2b09a 982 /* allocate and init request */
5b788ce3 983 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 984 if (!rq)
b679281a 985 goto fail_alloc;
1da177e4 986
29e2b09a 987 blk_rq_init(q, rq);
a051661c 988 blk_rq_set_rl(rq, rl);
29e2b09a
TH
989 rq->cmd_flags = rw_flags | REQ_ALLOCED;
990
aaf7c680 991 /* init elvpriv */
29e2b09a 992 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 993 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
994 if (ioc)
995 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
996 if (!icq)
997 goto fail_elvpriv;
29e2b09a 998 }
aaf7c680
TH
999
1000 rq->elv.icq = icq;
1001 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1002 goto fail_elvpriv;
1003
1004 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1005 if (icq)
1006 get_io_context(icq->ioc);
1007 }
aaf7c680 1008out:
88ee5ef1
JA
1009 /*
1010 * ioc may be NULL here, and ioc_batching will be false. That's
1011 * OK, if the queue is under the request limit then requests need
1012 * not count toward the nr_batch_requests limit. There will always
1013 * be some limit enforced by BLK_BATCH_TIME.
1014 */
1da177e4
LT
1015 if (ioc_batching(q, ioc))
1016 ioc->nr_batch_requests--;
6728cb0e 1017
1faa16d2 1018 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1019 return rq;
b679281a 1020
aaf7c680
TH
1021fail_elvpriv:
1022 /*
1023 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1024 * and may fail indefinitely under memory pressure and thus
1025 * shouldn't stall IO. Treat this request as !elvpriv. This will
1026 * disturb iosched and blkcg but weird is bettern than dead.
1027 */
1028 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1029 dev_name(q->backing_dev_info.dev));
1030
1031 rq->cmd_flags &= ~REQ_ELVPRIV;
1032 rq->elv.icq = NULL;
1033
1034 spin_lock_irq(q->queue_lock);
8a5ecdd4 1035 q->nr_rqs_elvpriv--;
aaf7c680
TH
1036 spin_unlock_irq(q->queue_lock);
1037 goto out;
1038
b679281a
TH
1039fail_alloc:
1040 /*
1041 * Allocation failed presumably due to memory. Undo anything we
1042 * might have messed up.
1043 *
1044 * Allocating task should really be put onto the front of the wait
1045 * queue, but this is pretty rare.
1046 */
1047 spin_lock_irq(q->queue_lock);
5b788ce3 1048 freed_request(rl, rw_flags);
b679281a
TH
1049
1050 /*
1051 * in the very unlikely event that allocation failed and no
1052 * requests for this direction was pending, mark us starved so that
1053 * freeing of a request in the other direction will notice
1054 * us. another possible fix would be to split the rq mempool into
1055 * READ and WRITE
1056 */
1057rq_starved:
1058 if (unlikely(rl->count[is_sync] == 0))
1059 rl->starved[is_sync] = 1;
1060 return NULL;
1da177e4
LT
1061}
1062
da8303c6 1063/**
a06e05e6 1064 * get_request - get a free request
da8303c6
TH
1065 * @q: request_queue to allocate request from
1066 * @rw_flags: RW and SYNC flags
1067 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1068 * @gfp_mask: allocation mask
da8303c6 1069 *
a06e05e6
TH
1070 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1071 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1072 *
da8303c6
TH
1073 * Must be callled with @q->queue_lock held and,
1074 * Returns %NULL on failure, with @q->queue_lock held.
1075 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1076 */
a06e05e6
TH
1077static struct request *get_request(struct request_queue *q, int rw_flags,
1078 struct bio *bio, gfp_t gfp_mask)
1da177e4 1079{
1faa16d2 1080 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1081 DEFINE_WAIT(wait);
a051661c 1082 struct request_list *rl;
1da177e4 1083 struct request *rq;
a051661c
TH
1084
1085 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1086retry:
a051661c 1087 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1088 if (rq)
1089 return rq;
1da177e4 1090
3f3299d5 1091 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1092 blk_put_rl(rl);
a06e05e6 1093 return NULL;
a051661c 1094 }
1da177e4 1095
a06e05e6
TH
1096 /* wait on @rl and retry */
1097 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1098 TASK_UNINTERRUPTIBLE);
1da177e4 1099
a06e05e6 1100 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1101
a06e05e6
TH
1102 spin_unlock_irq(q->queue_lock);
1103 io_schedule();
d6344532 1104
a06e05e6
TH
1105 /*
1106 * After sleeping, we become a "batching" process and will be able
1107 * to allocate at least one request, and up to a big batch of them
1108 * for a small period time. See ioc_batching, ioc_set_batching
1109 */
a06e05e6 1110 ioc_set_batching(q, current->io_context);
05caf8db 1111
a06e05e6
TH
1112 spin_lock_irq(q->queue_lock);
1113 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1114
a06e05e6 1115 goto retry;
1da177e4
LT
1116}
1117
320ae51f
JA
1118static struct request *blk_old_get_request(struct request_queue *q, int rw,
1119 gfp_t gfp_mask)
1da177e4
LT
1120{
1121 struct request *rq;
1122
1123 BUG_ON(rw != READ && rw != WRITE);
1124
7f4b35d1
TH
1125 /* create ioc upfront */
1126 create_io_context(gfp_mask, q->node);
1127
d6344532 1128 spin_lock_irq(q->queue_lock);
a06e05e6 1129 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1130 if (!rq)
1131 spin_unlock_irq(q->queue_lock);
d6344532 1132 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1133
1134 return rq;
1135}
320ae51f
JA
1136
1137struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1138{
1139 if (q->mq_ops)
18741986 1140 return blk_mq_alloc_request(q, rw, gfp_mask);
320ae51f
JA
1141 else
1142 return blk_old_get_request(q, rw, gfp_mask);
1143}
1da177e4
LT
1144EXPORT_SYMBOL(blk_get_request);
1145
dc72ef4a 1146/**
79eb63e9 1147 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1148 * @q: target request queue
79eb63e9
BH
1149 * @bio: The bio describing the memory mappings that will be submitted for IO.
1150 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1151 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1152 *
79eb63e9
BH
1153 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1154 * type commands. Where the struct request needs to be farther initialized by
1155 * the caller. It is passed a &struct bio, which describes the memory info of
1156 * the I/O transfer.
dc72ef4a 1157 *
79eb63e9
BH
1158 * The caller of blk_make_request must make sure that bi_io_vec
1159 * are set to describe the memory buffers. That bio_data_dir() will return
1160 * the needed direction of the request. (And all bio's in the passed bio-chain
1161 * are properly set accordingly)
1162 *
1163 * If called under none-sleepable conditions, mapped bio buffers must not
1164 * need bouncing, by calling the appropriate masked or flagged allocator,
1165 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1166 * BUG.
53674ac5
JA
1167 *
1168 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1169 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1170 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1171 * completion of a bio that hasn't been submitted yet, thus resulting in a
1172 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1173 * of bio_alloc(), as that avoids the mempool deadlock.
1174 * If possible a big IO should be split into smaller parts when allocation
1175 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1176 */
79eb63e9
BH
1177struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1178 gfp_t gfp_mask)
dc72ef4a 1179{
79eb63e9
BH
1180 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1181
1182 if (unlikely(!rq))
1183 return ERR_PTR(-ENOMEM);
1184
1185 for_each_bio(bio) {
1186 struct bio *bounce_bio = bio;
1187 int ret;
1188
1189 blk_queue_bounce(q, &bounce_bio);
1190 ret = blk_rq_append_bio(q, rq, bounce_bio);
1191 if (unlikely(ret)) {
1192 blk_put_request(rq);
1193 return ERR_PTR(ret);
1194 }
1195 }
1196
1197 return rq;
dc72ef4a 1198}
79eb63e9 1199EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1200
1da177e4
LT
1201/**
1202 * blk_requeue_request - put a request back on queue
1203 * @q: request queue where request should be inserted
1204 * @rq: request to be inserted
1205 *
1206 * Description:
1207 * Drivers often keep queueing requests until the hardware cannot accept
1208 * more, when that condition happens we need to put the request back
1209 * on the queue. Must be called with queue lock held.
1210 */
165125e1 1211void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1212{
242f9dcb
JA
1213 blk_delete_timer(rq);
1214 blk_clear_rq_complete(rq);
5f3ea37c 1215 trace_block_rq_requeue(q, rq);
2056a782 1216
1da177e4
LT
1217 if (blk_rq_tagged(rq))
1218 blk_queue_end_tag(q, rq);
1219
ba396a6c
JB
1220 BUG_ON(blk_queued_rq(rq));
1221
1da177e4
LT
1222 elv_requeue_request(q, rq);
1223}
1da177e4
LT
1224EXPORT_SYMBOL(blk_requeue_request);
1225
73c10101
JA
1226static void add_acct_request(struct request_queue *q, struct request *rq,
1227 int where)
1228{
320ae51f 1229 blk_account_io_start(rq, true);
7eaceacc 1230 __elv_add_request(q, rq, where);
73c10101
JA
1231}
1232
074a7aca
TH
1233static void part_round_stats_single(int cpu, struct hd_struct *part,
1234 unsigned long now)
1235{
1236 if (now == part->stamp)
1237 return;
1238
316d315b 1239 if (part_in_flight(part)) {
074a7aca 1240 __part_stat_add(cpu, part, time_in_queue,
316d315b 1241 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1242 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1243 }
1244 part->stamp = now;
1245}
1246
1247/**
496aa8a9
RD
1248 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1249 * @cpu: cpu number for stats access
1250 * @part: target partition
1da177e4
LT
1251 *
1252 * The average IO queue length and utilisation statistics are maintained
1253 * by observing the current state of the queue length and the amount of
1254 * time it has been in this state for.
1255 *
1256 * Normally, that accounting is done on IO completion, but that can result
1257 * in more than a second's worth of IO being accounted for within any one
1258 * second, leading to >100% utilisation. To deal with that, we call this
1259 * function to do a round-off before returning the results when reading
1260 * /proc/diskstats. This accounts immediately for all queue usage up to
1261 * the current jiffies and restarts the counters again.
1262 */
c9959059 1263void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1264{
1265 unsigned long now = jiffies;
1266
074a7aca
TH
1267 if (part->partno)
1268 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1269 part_round_stats_single(cpu, part, now);
6f2576af 1270}
074a7aca 1271EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1272
c8158819
LM
1273#ifdef CONFIG_PM_RUNTIME
1274static void blk_pm_put_request(struct request *rq)
1275{
1276 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1277 pm_runtime_mark_last_busy(rq->q->dev);
1278}
1279#else
1280static inline void blk_pm_put_request(struct request *rq) {}
1281#endif
1282
1da177e4
LT
1283/*
1284 * queue lock must be held
1285 */
165125e1 1286void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1287{
1da177e4
LT
1288 if (unlikely(!q))
1289 return;
1da177e4 1290
6f5ba581
CH
1291 if (q->mq_ops) {
1292 blk_mq_free_request(req);
1293 return;
1294 }
1295
c8158819
LM
1296 blk_pm_put_request(req);
1297
8922e16c
TH
1298 elv_completed_request(q, req);
1299
1cd96c24
BH
1300 /* this is a bio leak */
1301 WARN_ON(req->bio != NULL);
1302
1da177e4
LT
1303 /*
1304 * Request may not have originated from ll_rw_blk. if not,
1305 * it didn't come out of our reserved rq pools
1306 */
49171e5c 1307 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1308 unsigned int flags = req->cmd_flags;
a051661c 1309 struct request_list *rl = blk_rq_rl(req);
1da177e4 1310
1da177e4 1311 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1312 BUG_ON(ELV_ON_HASH(req));
1da177e4 1313
a051661c
TH
1314 blk_free_request(rl, req);
1315 freed_request(rl, flags);
1316 blk_put_rl(rl);
1da177e4
LT
1317 }
1318}
6e39b69e
MC
1319EXPORT_SYMBOL_GPL(__blk_put_request);
1320
1da177e4
LT
1321void blk_put_request(struct request *req)
1322{
165125e1 1323 struct request_queue *q = req->q;
8922e16c 1324
320ae51f
JA
1325 if (q->mq_ops)
1326 blk_mq_free_request(req);
1327 else {
1328 unsigned long flags;
1329
1330 spin_lock_irqsave(q->queue_lock, flags);
1331 __blk_put_request(q, req);
1332 spin_unlock_irqrestore(q->queue_lock, flags);
1333 }
1da177e4 1334}
1da177e4
LT
1335EXPORT_SYMBOL(blk_put_request);
1336
66ac0280
CH
1337/**
1338 * blk_add_request_payload - add a payload to a request
1339 * @rq: request to update
1340 * @page: page backing the payload
1341 * @len: length of the payload.
1342 *
1343 * This allows to later add a payload to an already submitted request by
1344 * a block driver. The driver needs to take care of freeing the payload
1345 * itself.
1346 *
1347 * Note that this is a quite horrible hack and nothing but handling of
1348 * discard requests should ever use it.
1349 */
1350void blk_add_request_payload(struct request *rq, struct page *page,
1351 unsigned int len)
1352{
1353 struct bio *bio = rq->bio;
1354
1355 bio->bi_io_vec->bv_page = page;
1356 bio->bi_io_vec->bv_offset = 0;
1357 bio->bi_io_vec->bv_len = len;
1358
4f024f37 1359 bio->bi_iter.bi_size = len;
66ac0280
CH
1360 bio->bi_vcnt = 1;
1361 bio->bi_phys_segments = 1;
1362
1363 rq->__data_len = rq->resid_len = len;
1364 rq->nr_phys_segments = 1;
66ac0280
CH
1365}
1366EXPORT_SYMBOL_GPL(blk_add_request_payload);
1367
320ae51f
JA
1368bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1369 struct bio *bio)
73c10101
JA
1370{
1371 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1372
73c10101
JA
1373 if (!ll_back_merge_fn(q, req, bio))
1374 return false;
1375
8c1cf6bb 1376 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1377
1378 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1379 blk_rq_set_mixed_merge(req);
1380
1381 req->biotail->bi_next = bio;
1382 req->biotail = bio;
4f024f37 1383 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1384 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1385
320ae51f 1386 blk_account_io_start(req, false);
73c10101
JA
1387 return true;
1388}
1389
320ae51f
JA
1390bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1391 struct bio *bio)
73c10101
JA
1392{
1393 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1394
73c10101
JA
1395 if (!ll_front_merge_fn(q, req, bio))
1396 return false;
1397
8c1cf6bb 1398 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1399
1400 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1401 blk_rq_set_mixed_merge(req);
1402
73c10101
JA
1403 bio->bi_next = req->bio;
1404 req->bio = bio;
1405
4f024f37
KO
1406 req->__sector = bio->bi_iter.bi_sector;
1407 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1408 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1409
320ae51f 1410 blk_account_io_start(req, false);
73c10101
JA
1411 return true;
1412}
1413
bd87b589 1414/**
320ae51f 1415 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1416 * @q: request_queue new bio is being queued at
1417 * @bio: new bio being queued
1418 * @request_count: out parameter for number of traversed plugged requests
1419 *
1420 * Determine whether @bio being queued on @q can be merged with a request
1421 * on %current's plugged list. Returns %true if merge was successful,
1422 * otherwise %false.
1423 *
07c2bd37
TH
1424 * Plugging coalesces IOs from the same issuer for the same purpose without
1425 * going through @q->queue_lock. As such it's more of an issuing mechanism
1426 * than scheduling, and the request, while may have elvpriv data, is not
1427 * added on the elevator at this point. In addition, we don't have
1428 * reliable access to the elevator outside queue lock. Only check basic
1429 * merging parameters without querying the elevator.
73c10101 1430 */
320ae51f
JA
1431bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1432 unsigned int *request_count)
73c10101
JA
1433{
1434 struct blk_plug *plug;
1435 struct request *rq;
1436 bool ret = false;
92f399c7 1437 struct list_head *plug_list;
73c10101 1438
23779fbc
AH
1439 if (blk_queue_nomerges(q))
1440 goto out;
1441
bd87b589 1442 plug = current->plug;
73c10101
JA
1443 if (!plug)
1444 goto out;
56ebdaf2 1445 *request_count = 0;
73c10101 1446
92f399c7
SL
1447 if (q->mq_ops)
1448 plug_list = &plug->mq_list;
1449 else
1450 plug_list = &plug->list;
1451
1452 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1453 int el_ret;
1454
1b2e19f1
SL
1455 if (rq->q == q)
1456 (*request_count)++;
56ebdaf2 1457
07c2bd37 1458 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1459 continue;
1460
050c8ea8 1461 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1462 if (el_ret == ELEVATOR_BACK_MERGE) {
1463 ret = bio_attempt_back_merge(q, rq, bio);
1464 if (ret)
1465 break;
1466 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1467 ret = bio_attempt_front_merge(q, rq, bio);
1468 if (ret)
1469 break;
1470 }
1471 }
1472out:
1473 return ret;
1474}
1475
86db1e29 1476void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1477{
4aff5e23 1478 req->cmd_type = REQ_TYPE_FS;
52d9e675 1479
7b6d91da
CH
1480 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1481 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1482 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1483
52d9e675 1484 req->errors = 0;
4f024f37 1485 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1486 req->ioprio = bio_prio(bio);
bc1c56fd 1487 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1488}
1489
5a7bbad2 1490void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1491{
5e00d1b5 1492 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1493 struct blk_plug *plug;
1494 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1495 struct request *req;
56ebdaf2 1496 unsigned int request_count = 0;
1da177e4 1497
1da177e4
LT
1498 /*
1499 * low level driver can indicate that it wants pages above a
1500 * certain limit bounced to low memory (ie for highmem, or even
1501 * ISA dma in theory)
1502 */
1503 blk_queue_bounce(q, &bio);
1504
ffecfd1a
DW
1505 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1506 bio_endio(bio, -EIO);
1507 return;
1508 }
1509
4fed947c 1510 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1511 spin_lock_irq(q->queue_lock);
ae1b1539 1512 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1513 goto get_rq;
1514 }
1515
73c10101
JA
1516 /*
1517 * Check if we can merge with the plugged list before grabbing
1518 * any locks.
1519 */
320ae51f 1520 if (blk_attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1521 return;
1da177e4 1522
73c10101 1523 spin_lock_irq(q->queue_lock);
2056a782 1524
73c10101
JA
1525 el_ret = elv_merge(q, &req, bio);
1526 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1527 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1528 elv_bio_merged(q, req, bio);
73c10101
JA
1529 if (!attempt_back_merge(q, req))
1530 elv_merged_request(q, req, el_ret);
1531 goto out_unlock;
1532 }
1533 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1534 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1535 elv_bio_merged(q, req, bio);
73c10101
JA
1536 if (!attempt_front_merge(q, req))
1537 elv_merged_request(q, req, el_ret);
1538 goto out_unlock;
80a761fd 1539 }
1da177e4
LT
1540 }
1541
450991bc 1542get_rq:
7749a8d4
JA
1543 /*
1544 * This sync check and mask will be re-done in init_request_from_bio(),
1545 * but we need to set it earlier to expose the sync flag to the
1546 * rq allocator and io schedulers.
1547 */
1548 rw_flags = bio_data_dir(bio);
1549 if (sync)
7b6d91da 1550 rw_flags |= REQ_SYNC;
7749a8d4 1551
1da177e4 1552 /*
450991bc 1553 * Grab a free request. This is might sleep but can not fail.
d6344532 1554 * Returns with the queue unlocked.
450991bc 1555 */
a06e05e6 1556 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1557 if (unlikely(!req)) {
1558 bio_endio(bio, -ENODEV); /* @q is dead */
1559 goto out_unlock;
1560 }
d6344532 1561
450991bc
NP
1562 /*
1563 * After dropping the lock and possibly sleeping here, our request
1564 * may now be mergeable after it had proven unmergeable (above).
1565 * We don't worry about that case for efficiency. It won't happen
1566 * often, and the elevators are able to handle it.
1da177e4 1567 */
52d9e675 1568 init_request_from_bio(req, bio);
1da177e4 1569
9562ad9a 1570 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1571 req->cpu = raw_smp_processor_id();
73c10101
JA
1572
1573 plug = current->plug;
721a9602 1574 if (plug) {
dc6d36c9
JA
1575 /*
1576 * If this is the first request added after a plug, fire
7aef2e78 1577 * of a plug trace.
dc6d36c9 1578 */
7aef2e78 1579 if (!request_count)
dc6d36c9 1580 trace_block_plug(q);
3540d5e8 1581 else {
019ceb7d 1582 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1583 blk_flush_plug_list(plug, false);
019ceb7d
SL
1584 trace_block_plug(q);
1585 }
73c10101 1586 }
73c10101 1587 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1588 blk_account_io_start(req, true);
73c10101
JA
1589 } else {
1590 spin_lock_irq(q->queue_lock);
1591 add_acct_request(q, req, where);
24ecfbe2 1592 __blk_run_queue(q);
73c10101
JA
1593out_unlock:
1594 spin_unlock_irq(q->queue_lock);
1595 }
1da177e4 1596}
c20e8de2 1597EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1598
1599/*
1600 * If bio->bi_dev is a partition, remap the location
1601 */
1602static inline void blk_partition_remap(struct bio *bio)
1603{
1604 struct block_device *bdev = bio->bi_bdev;
1605
bf2de6f5 1606 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1607 struct hd_struct *p = bdev->bd_part;
1608
4f024f37 1609 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1610 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1611
d07335e5
MS
1612 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1613 bdev->bd_dev,
4f024f37 1614 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1615 }
1616}
1617
1da177e4
LT
1618static void handle_bad_sector(struct bio *bio)
1619{
1620 char b[BDEVNAME_SIZE];
1621
1622 printk(KERN_INFO "attempt to access beyond end of device\n");
1623 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1624 bdevname(bio->bi_bdev, b),
1625 bio->bi_rw,
f73a1c7d 1626 (unsigned long long)bio_end_sector(bio),
77304d2a 1627 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1628
1629 set_bit(BIO_EOF, &bio->bi_flags);
1630}
1631
c17bb495
AM
1632#ifdef CONFIG_FAIL_MAKE_REQUEST
1633
1634static DECLARE_FAULT_ATTR(fail_make_request);
1635
1636static int __init setup_fail_make_request(char *str)
1637{
1638 return setup_fault_attr(&fail_make_request, str);
1639}
1640__setup("fail_make_request=", setup_fail_make_request);
1641
b2c9cd37 1642static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1643{
b2c9cd37 1644 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1645}
1646
1647static int __init fail_make_request_debugfs(void)
1648{
dd48c085
AM
1649 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1650 NULL, &fail_make_request);
1651
21f9fcd8 1652 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1653}
1654
1655late_initcall(fail_make_request_debugfs);
1656
1657#else /* CONFIG_FAIL_MAKE_REQUEST */
1658
b2c9cd37
AM
1659static inline bool should_fail_request(struct hd_struct *part,
1660 unsigned int bytes)
c17bb495 1661{
b2c9cd37 1662 return false;
c17bb495
AM
1663}
1664
1665#endif /* CONFIG_FAIL_MAKE_REQUEST */
1666
c07e2b41
JA
1667/*
1668 * Check whether this bio extends beyond the end of the device.
1669 */
1670static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1671{
1672 sector_t maxsector;
1673
1674 if (!nr_sectors)
1675 return 0;
1676
1677 /* Test device or partition size, when known. */
77304d2a 1678 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1679 if (maxsector) {
4f024f37 1680 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1681
1682 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1683 /*
1684 * This may well happen - the kernel calls bread()
1685 * without checking the size of the device, e.g., when
1686 * mounting a device.
1687 */
1688 handle_bad_sector(bio);
1689 return 1;
1690 }
1691 }
1692
1693 return 0;
1694}
1695
27a84d54
CH
1696static noinline_for_stack bool
1697generic_make_request_checks(struct bio *bio)
1da177e4 1698{
165125e1 1699 struct request_queue *q;
5a7bbad2 1700 int nr_sectors = bio_sectors(bio);
51fd77bd 1701 int err = -EIO;
5a7bbad2
CH
1702 char b[BDEVNAME_SIZE];
1703 struct hd_struct *part;
1da177e4
LT
1704
1705 might_sleep();
1da177e4 1706
c07e2b41
JA
1707 if (bio_check_eod(bio, nr_sectors))
1708 goto end_io;
1da177e4 1709
5a7bbad2
CH
1710 q = bdev_get_queue(bio->bi_bdev);
1711 if (unlikely(!q)) {
1712 printk(KERN_ERR
1713 "generic_make_request: Trying to access "
1714 "nonexistent block-device %s (%Lu)\n",
1715 bdevname(bio->bi_bdev, b),
4f024f37 1716 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1717 goto end_io;
1718 }
c17bb495 1719
e2a60da7
MP
1720 if (likely(bio_is_rw(bio) &&
1721 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1722 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1723 bdevname(bio->bi_bdev, b),
1724 bio_sectors(bio),
1725 queue_max_hw_sectors(q));
1726 goto end_io;
1727 }
1da177e4 1728
5a7bbad2 1729 part = bio->bi_bdev->bd_part;
4f024f37 1730 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1731 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1732 bio->bi_iter.bi_size))
5a7bbad2 1733 goto end_io;
2056a782 1734
5a7bbad2
CH
1735 /*
1736 * If this device has partitions, remap block n
1737 * of partition p to block n+start(p) of the disk.
1738 */
1739 blk_partition_remap(bio);
2056a782 1740
5a7bbad2
CH
1741 if (bio_check_eod(bio, nr_sectors))
1742 goto end_io;
1e87901e 1743
5a7bbad2
CH
1744 /*
1745 * Filter flush bio's early so that make_request based
1746 * drivers without flush support don't have to worry
1747 * about them.
1748 */
1749 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1750 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1751 if (!nr_sectors) {
1752 err = 0;
51fd77bd
JA
1753 goto end_io;
1754 }
5a7bbad2 1755 }
5ddfe969 1756
5a7bbad2
CH
1757 if ((bio->bi_rw & REQ_DISCARD) &&
1758 (!blk_queue_discard(q) ||
e2a60da7 1759 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1760 err = -EOPNOTSUPP;
1761 goto end_io;
1762 }
01edede4 1763
4363ac7c 1764 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1765 err = -EOPNOTSUPP;
1766 goto end_io;
1767 }
01edede4 1768
7f4b35d1
TH
1769 /*
1770 * Various block parts want %current->io_context and lazy ioc
1771 * allocation ends up trading a lot of pain for a small amount of
1772 * memory. Just allocate it upfront. This may fail and block
1773 * layer knows how to live with it.
1774 */
1775 create_io_context(GFP_ATOMIC, q->node);
1776
bc16a4f9
TH
1777 if (blk_throtl_bio(q, bio))
1778 return false; /* throttled, will be resubmitted later */
27a84d54 1779
5a7bbad2 1780 trace_block_bio_queue(q, bio);
27a84d54 1781 return true;
a7384677
TH
1782
1783end_io:
1784 bio_endio(bio, err);
27a84d54 1785 return false;
1da177e4
LT
1786}
1787
27a84d54
CH
1788/**
1789 * generic_make_request - hand a buffer to its device driver for I/O
1790 * @bio: The bio describing the location in memory and on the device.
1791 *
1792 * generic_make_request() is used to make I/O requests of block
1793 * devices. It is passed a &struct bio, which describes the I/O that needs
1794 * to be done.
1795 *
1796 * generic_make_request() does not return any status. The
1797 * success/failure status of the request, along with notification of
1798 * completion, is delivered asynchronously through the bio->bi_end_io
1799 * function described (one day) else where.
1800 *
1801 * The caller of generic_make_request must make sure that bi_io_vec
1802 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1803 * set to describe the device address, and the
1804 * bi_end_io and optionally bi_private are set to describe how
1805 * completion notification should be signaled.
1806 *
1807 * generic_make_request and the drivers it calls may use bi_next if this
1808 * bio happens to be merged with someone else, and may resubmit the bio to
1809 * a lower device by calling into generic_make_request recursively, which
1810 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1811 */
1812void generic_make_request(struct bio *bio)
1813{
bddd87c7
AM
1814 struct bio_list bio_list_on_stack;
1815
27a84d54
CH
1816 if (!generic_make_request_checks(bio))
1817 return;
1818
1819 /*
1820 * We only want one ->make_request_fn to be active at a time, else
1821 * stack usage with stacked devices could be a problem. So use
1822 * current->bio_list to keep a list of requests submited by a
1823 * make_request_fn function. current->bio_list is also used as a
1824 * flag to say if generic_make_request is currently active in this
1825 * task or not. If it is NULL, then no make_request is active. If
1826 * it is non-NULL, then a make_request is active, and new requests
1827 * should be added at the tail
1828 */
bddd87c7 1829 if (current->bio_list) {
bddd87c7 1830 bio_list_add(current->bio_list, bio);
d89d8796
NB
1831 return;
1832 }
27a84d54 1833
d89d8796
NB
1834 /* following loop may be a bit non-obvious, and so deserves some
1835 * explanation.
1836 * Before entering the loop, bio->bi_next is NULL (as all callers
1837 * ensure that) so we have a list with a single bio.
1838 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1839 * we assign bio_list to a pointer to the bio_list_on_stack,
1840 * thus initialising the bio_list of new bios to be
27a84d54 1841 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1842 * through a recursive call to generic_make_request. If it
1843 * did, we find a non-NULL value in bio_list and re-enter the loop
1844 * from the top. In this case we really did just take the bio
bddd87c7 1845 * of the top of the list (no pretending) and so remove it from
27a84d54 1846 * bio_list, and call into ->make_request() again.
d89d8796
NB
1847 */
1848 BUG_ON(bio->bi_next);
bddd87c7
AM
1849 bio_list_init(&bio_list_on_stack);
1850 current->bio_list = &bio_list_on_stack;
d89d8796 1851 do {
27a84d54
CH
1852 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1853
1854 q->make_request_fn(q, bio);
1855
bddd87c7 1856 bio = bio_list_pop(current->bio_list);
d89d8796 1857 } while (bio);
bddd87c7 1858 current->bio_list = NULL; /* deactivate */
d89d8796 1859}
1da177e4
LT
1860EXPORT_SYMBOL(generic_make_request);
1861
1862/**
710027a4 1863 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1864 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1865 * @bio: The &struct bio which describes the I/O
1866 *
1867 * submit_bio() is very similar in purpose to generic_make_request(), and
1868 * uses that function to do most of the work. Both are fairly rough
710027a4 1869 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1870 *
1871 */
1872void submit_bio(int rw, struct bio *bio)
1873{
22e2c507 1874 bio->bi_rw |= rw;
1da177e4 1875
bf2de6f5
JA
1876 /*
1877 * If it's a regular read/write or a barrier with data attached,
1878 * go through the normal accounting stuff before submission.
1879 */
e2a60da7 1880 if (bio_has_data(bio)) {
4363ac7c
MP
1881 unsigned int count;
1882
1883 if (unlikely(rw & REQ_WRITE_SAME))
1884 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1885 else
1886 count = bio_sectors(bio);
1887
bf2de6f5
JA
1888 if (rw & WRITE) {
1889 count_vm_events(PGPGOUT, count);
1890 } else {
4f024f37 1891 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1892 count_vm_events(PGPGIN, count);
1893 }
1894
1895 if (unlikely(block_dump)) {
1896 char b[BDEVNAME_SIZE];
8dcbdc74 1897 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1898 current->comm, task_pid_nr(current),
bf2de6f5 1899 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 1900 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
1901 bdevname(bio->bi_bdev, b),
1902 count);
bf2de6f5 1903 }
1da177e4
LT
1904 }
1905
1906 generic_make_request(bio);
1907}
1da177e4
LT
1908EXPORT_SYMBOL(submit_bio);
1909
82124d60
KU
1910/**
1911 * blk_rq_check_limits - Helper function to check a request for the queue limit
1912 * @q: the queue
1913 * @rq: the request being checked
1914 *
1915 * Description:
1916 * @rq may have been made based on weaker limitations of upper-level queues
1917 * in request stacking drivers, and it may violate the limitation of @q.
1918 * Since the block layer and the underlying device driver trust @rq
1919 * after it is inserted to @q, it should be checked against @q before
1920 * the insertion using this generic function.
1921 *
1922 * This function should also be useful for request stacking drivers
eef35c2d 1923 * in some cases below, so export this function.
82124d60
KU
1924 * Request stacking drivers like request-based dm may change the queue
1925 * limits while requests are in the queue (e.g. dm's table swapping).
e227867f 1926 * Such request stacking drivers should check those requests against
82124d60
KU
1927 * the new queue limits again when they dispatch those requests,
1928 * although such checkings are also done against the old queue limits
1929 * when submitting requests.
1930 */
1931int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1932{
e2a60da7 1933 if (!rq_mergeable(rq))
3383977f
S
1934 return 0;
1935
f31dc1cd 1936 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1937 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1938 return -EIO;
1939 }
1940
1941 /*
1942 * queue's settings related to segment counting like q->bounce_pfn
1943 * may differ from that of other stacking queues.
1944 * Recalculate it to check the request correctly on this queue's
1945 * limitation.
1946 */
1947 blk_recalc_rq_segments(rq);
8a78362c 1948 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1949 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1950 return -EIO;
1951 }
1952
1953 return 0;
1954}
1955EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1956
1957/**
1958 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1959 * @q: the queue to submit the request
1960 * @rq: the request being queued
1961 */
1962int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1963{
1964 unsigned long flags;
4853abaa 1965 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1966
1967 if (blk_rq_check_limits(q, rq))
1968 return -EIO;
1969
b2c9cd37
AM
1970 if (rq->rq_disk &&
1971 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1972 return -EIO;
82124d60
KU
1973
1974 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 1975 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
1976 spin_unlock_irqrestore(q->queue_lock, flags);
1977 return -ENODEV;
1978 }
82124d60
KU
1979
1980 /*
1981 * Submitting request must be dequeued before calling this function
1982 * because it will be linked to another request_queue
1983 */
1984 BUG_ON(blk_queued_rq(rq));
1985
4853abaa
JM
1986 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1987 where = ELEVATOR_INSERT_FLUSH;
1988
1989 add_acct_request(q, rq, where);
e67b77c7
JM
1990 if (where == ELEVATOR_INSERT_FLUSH)
1991 __blk_run_queue(q);
82124d60
KU
1992 spin_unlock_irqrestore(q->queue_lock, flags);
1993
1994 return 0;
1995}
1996EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1997
80a761fd
TH
1998/**
1999 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2000 * @rq: request to examine
2001 *
2002 * Description:
2003 * A request could be merge of IOs which require different failure
2004 * handling. This function determines the number of bytes which
2005 * can be failed from the beginning of the request without
2006 * crossing into area which need to be retried further.
2007 *
2008 * Return:
2009 * The number of bytes to fail.
2010 *
2011 * Context:
2012 * queue_lock must be held.
2013 */
2014unsigned int blk_rq_err_bytes(const struct request *rq)
2015{
2016 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2017 unsigned int bytes = 0;
2018 struct bio *bio;
2019
2020 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2021 return blk_rq_bytes(rq);
2022
2023 /*
2024 * Currently the only 'mixing' which can happen is between
2025 * different fastfail types. We can safely fail portions
2026 * which have all the failfast bits that the first one has -
2027 * the ones which are at least as eager to fail as the first
2028 * one.
2029 */
2030 for (bio = rq->bio; bio; bio = bio->bi_next) {
2031 if ((bio->bi_rw & ff) != ff)
2032 break;
4f024f37 2033 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2034 }
2035
2036 /* this could lead to infinite loop */
2037 BUG_ON(blk_rq_bytes(rq) && !bytes);
2038 return bytes;
2039}
2040EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2041
320ae51f 2042void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2043{
c2553b58 2044 if (blk_do_io_stat(req)) {
bc58ba94
JA
2045 const int rw = rq_data_dir(req);
2046 struct hd_struct *part;
2047 int cpu;
2048
2049 cpu = part_stat_lock();
09e099d4 2050 part = req->part;
bc58ba94
JA
2051 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2052 part_stat_unlock();
2053 }
2054}
2055
320ae51f 2056void blk_account_io_done(struct request *req)
bc58ba94 2057{
bc58ba94 2058 /*
dd4c133f
TH
2059 * Account IO completion. flush_rq isn't accounted as a
2060 * normal IO on queueing nor completion. Accounting the
2061 * containing request is enough.
bc58ba94 2062 */
414b4ff5 2063 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2064 unsigned long duration = jiffies - req->start_time;
2065 const int rw = rq_data_dir(req);
2066 struct hd_struct *part;
2067 int cpu;
2068
2069 cpu = part_stat_lock();
09e099d4 2070 part = req->part;
bc58ba94
JA
2071
2072 part_stat_inc(cpu, part, ios[rw]);
2073 part_stat_add(cpu, part, ticks[rw], duration);
2074 part_round_stats(cpu, part);
316d315b 2075 part_dec_in_flight(part, rw);
bc58ba94 2076
6c23a968 2077 hd_struct_put(part);
bc58ba94
JA
2078 part_stat_unlock();
2079 }
2080}
2081
c8158819
LM
2082#ifdef CONFIG_PM_RUNTIME
2083/*
2084 * Don't process normal requests when queue is suspended
2085 * or in the process of suspending/resuming
2086 */
2087static struct request *blk_pm_peek_request(struct request_queue *q,
2088 struct request *rq)
2089{
2090 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2091 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2092 return NULL;
2093 else
2094 return rq;
2095}
2096#else
2097static inline struct request *blk_pm_peek_request(struct request_queue *q,
2098 struct request *rq)
2099{
2100 return rq;
2101}
2102#endif
2103
320ae51f
JA
2104void blk_account_io_start(struct request *rq, bool new_io)
2105{
2106 struct hd_struct *part;
2107 int rw = rq_data_dir(rq);
2108 int cpu;
2109
2110 if (!blk_do_io_stat(rq))
2111 return;
2112
2113 cpu = part_stat_lock();
2114
2115 if (!new_io) {
2116 part = rq->part;
2117 part_stat_inc(cpu, part, merges[rw]);
2118 } else {
2119 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2120 if (!hd_struct_try_get(part)) {
2121 /*
2122 * The partition is already being removed,
2123 * the request will be accounted on the disk only
2124 *
2125 * We take a reference on disk->part0 although that
2126 * partition will never be deleted, so we can treat
2127 * it as any other partition.
2128 */
2129 part = &rq->rq_disk->part0;
2130 hd_struct_get(part);
2131 }
2132 part_round_stats(cpu, part);
2133 part_inc_in_flight(part, rw);
2134 rq->part = part;
2135 }
2136
2137 part_stat_unlock();
2138}
2139
3bcddeac 2140/**
9934c8c0
TH
2141 * blk_peek_request - peek at the top of a request queue
2142 * @q: request queue to peek at
2143 *
2144 * Description:
2145 * Return the request at the top of @q. The returned request
2146 * should be started using blk_start_request() before LLD starts
2147 * processing it.
2148 *
2149 * Return:
2150 * Pointer to the request at the top of @q if available. Null
2151 * otherwise.
2152 *
2153 * Context:
2154 * queue_lock must be held.
2155 */
2156struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2157{
2158 struct request *rq;
2159 int ret;
2160
2161 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2162
2163 rq = blk_pm_peek_request(q, rq);
2164 if (!rq)
2165 break;
2166
158dbda0
TH
2167 if (!(rq->cmd_flags & REQ_STARTED)) {
2168 /*
2169 * This is the first time the device driver
2170 * sees this request (possibly after
2171 * requeueing). Notify IO scheduler.
2172 */
33659ebb 2173 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2174 elv_activate_rq(q, rq);
2175
2176 /*
2177 * just mark as started even if we don't start
2178 * it, a request that has been delayed should
2179 * not be passed by new incoming requests
2180 */
2181 rq->cmd_flags |= REQ_STARTED;
2182 trace_block_rq_issue(q, rq);
2183 }
2184
2185 if (!q->boundary_rq || q->boundary_rq == rq) {
2186 q->end_sector = rq_end_sector(rq);
2187 q->boundary_rq = NULL;
2188 }
2189
2190 if (rq->cmd_flags & REQ_DONTPREP)
2191 break;
2192
2e46e8b2 2193 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2194 /*
2195 * make sure space for the drain appears we
2196 * know we can do this because max_hw_segments
2197 * has been adjusted to be one fewer than the
2198 * device can handle
2199 */
2200 rq->nr_phys_segments++;
2201 }
2202
2203 if (!q->prep_rq_fn)
2204 break;
2205
2206 ret = q->prep_rq_fn(q, rq);
2207 if (ret == BLKPREP_OK) {
2208 break;
2209 } else if (ret == BLKPREP_DEFER) {
2210 /*
2211 * the request may have been (partially) prepped.
2212 * we need to keep this request in the front to
2213 * avoid resource deadlock. REQ_STARTED will
2214 * prevent other fs requests from passing this one.
2215 */
2e46e8b2 2216 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2217 !(rq->cmd_flags & REQ_DONTPREP)) {
2218 /*
2219 * remove the space for the drain we added
2220 * so that we don't add it again
2221 */
2222 --rq->nr_phys_segments;
2223 }
2224
2225 rq = NULL;
2226 break;
2227 } else if (ret == BLKPREP_KILL) {
2228 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2229 /*
2230 * Mark this request as started so we don't trigger
2231 * any debug logic in the end I/O path.
2232 */
2233 blk_start_request(rq);
40cbbb78 2234 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2235 } else {
2236 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2237 break;
2238 }
2239 }
2240
2241 return rq;
2242}
9934c8c0 2243EXPORT_SYMBOL(blk_peek_request);
158dbda0 2244
9934c8c0 2245void blk_dequeue_request(struct request *rq)
158dbda0 2246{
9934c8c0
TH
2247 struct request_queue *q = rq->q;
2248
158dbda0
TH
2249 BUG_ON(list_empty(&rq->queuelist));
2250 BUG_ON(ELV_ON_HASH(rq));
2251
2252 list_del_init(&rq->queuelist);
2253
2254 /*
2255 * the time frame between a request being removed from the lists
2256 * and to it is freed is accounted as io that is in progress at
2257 * the driver side.
2258 */
9195291e 2259 if (blk_account_rq(rq)) {
0a7ae2ff 2260 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2261 set_io_start_time_ns(rq);
2262 }
158dbda0
TH
2263}
2264
9934c8c0
TH
2265/**
2266 * blk_start_request - start request processing on the driver
2267 * @req: request to dequeue
2268 *
2269 * Description:
2270 * Dequeue @req and start timeout timer on it. This hands off the
2271 * request to the driver.
2272 *
2273 * Block internal functions which don't want to start timer should
2274 * call blk_dequeue_request().
2275 *
2276 * Context:
2277 * queue_lock must be held.
2278 */
2279void blk_start_request(struct request *req)
2280{
2281 blk_dequeue_request(req);
2282
2283 /*
5f49f631
TH
2284 * We are now handing the request to the hardware, initialize
2285 * resid_len to full count and add the timeout handler.
9934c8c0 2286 */
5f49f631 2287 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2288 if (unlikely(blk_bidi_rq(req)))
2289 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2290
4912aa6c 2291 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2292 blk_add_timer(req);
2293}
2294EXPORT_SYMBOL(blk_start_request);
2295
2296/**
2297 * blk_fetch_request - fetch a request from a request queue
2298 * @q: request queue to fetch a request from
2299 *
2300 * Description:
2301 * Return the request at the top of @q. The request is started on
2302 * return and LLD can start processing it immediately.
2303 *
2304 * Return:
2305 * Pointer to the request at the top of @q if available. Null
2306 * otherwise.
2307 *
2308 * Context:
2309 * queue_lock must be held.
2310 */
2311struct request *blk_fetch_request(struct request_queue *q)
2312{
2313 struct request *rq;
2314
2315 rq = blk_peek_request(q);
2316 if (rq)
2317 blk_start_request(rq);
2318 return rq;
2319}
2320EXPORT_SYMBOL(blk_fetch_request);
2321
3bcddeac 2322/**
2e60e022 2323 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2324 * @req: the request being processed
710027a4 2325 * @error: %0 for success, < %0 for error
8ebf9756 2326 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2327 *
2328 * Description:
8ebf9756
RD
2329 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2330 * the request structure even if @req doesn't have leftover.
2331 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2332 *
2333 * This special helper function is only for request stacking drivers
2334 * (e.g. request-based dm) so that they can handle partial completion.
2335 * Actual device drivers should use blk_end_request instead.
2336 *
2337 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2338 * %false return from this function.
3bcddeac
KU
2339 *
2340 * Return:
2e60e022
TH
2341 * %false - this request doesn't have any more data
2342 * %true - this request has more data
3bcddeac 2343 **/
2e60e022 2344bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2345{
f79ea416 2346 int total_bytes;
1da177e4 2347
2e60e022
TH
2348 if (!req->bio)
2349 return false;
2350
af5040da 2351 trace_block_rq_complete(req->q, req, nr_bytes);
2056a782 2352
1da177e4 2353 /*
6f41469c
TH
2354 * For fs requests, rq is just carrier of independent bio's
2355 * and each partial completion should be handled separately.
2356 * Reset per-request error on each partial completion.
2357 *
2358 * TODO: tj: This is too subtle. It would be better to let
2359 * low level drivers do what they see fit.
1da177e4 2360 */
33659ebb 2361 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2362 req->errors = 0;
2363
33659ebb
CH
2364 if (error && req->cmd_type == REQ_TYPE_FS &&
2365 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2366 char *error_type;
2367
2368 switch (error) {
2369 case -ENOLINK:
2370 error_type = "recoverable transport";
2371 break;
2372 case -EREMOTEIO:
2373 error_type = "critical target";
2374 break;
2375 case -EBADE:
2376 error_type = "critical nexus";
2377 break;
d1ffc1f8
HR
2378 case -ETIMEDOUT:
2379 error_type = "timeout";
2380 break;
a9d6ceb8
HR
2381 case -ENOSPC:
2382 error_type = "critical space allocation";
2383 break;
7e782af5
HR
2384 case -ENODATA:
2385 error_type = "critical medium";
2386 break;
79775567
HR
2387 case -EIO:
2388 default:
2389 error_type = "I/O";
2390 break;
2391 }
37d7b34f
YZ
2392 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2393 error_type, req->rq_disk ?
2394 req->rq_disk->disk_name : "?",
2395 (unsigned long long)blk_rq_pos(req));
2396
1da177e4
LT
2397 }
2398
bc58ba94 2399 blk_account_io_completion(req, nr_bytes);
d72d904a 2400
f79ea416
KO
2401 total_bytes = 0;
2402 while (req->bio) {
2403 struct bio *bio = req->bio;
4f024f37 2404 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2405
4f024f37 2406 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2407 req->bio = bio->bi_next;
1da177e4 2408
f79ea416 2409 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2410
f79ea416
KO
2411 total_bytes += bio_bytes;
2412 nr_bytes -= bio_bytes;
1da177e4 2413
f79ea416
KO
2414 if (!nr_bytes)
2415 break;
1da177e4
LT
2416 }
2417
2418 /*
2419 * completely done
2420 */
2e60e022
TH
2421 if (!req->bio) {
2422 /*
2423 * Reset counters so that the request stacking driver
2424 * can find how many bytes remain in the request
2425 * later.
2426 */
a2dec7b3 2427 req->__data_len = 0;
2e60e022
TH
2428 return false;
2429 }
1da177e4 2430
a2dec7b3 2431 req->__data_len -= total_bytes;
2e46e8b2
TH
2432
2433 /* update sector only for requests with clear definition of sector */
e2a60da7 2434 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2435 req->__sector += total_bytes >> 9;
2e46e8b2 2436
80a761fd
TH
2437 /* mixed attributes always follow the first bio */
2438 if (req->cmd_flags & REQ_MIXED_MERGE) {
2439 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2440 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2441 }
2442
2e46e8b2
TH
2443 /*
2444 * If total number of sectors is less than the first segment
2445 * size, something has gone terribly wrong.
2446 */
2447 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2448 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2449 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2450 }
2451
2452 /* recalculate the number of segments */
1da177e4 2453 blk_recalc_rq_segments(req);
2e46e8b2 2454
2e60e022 2455 return true;
1da177e4 2456}
2e60e022 2457EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2458
2e60e022
TH
2459static bool blk_update_bidi_request(struct request *rq, int error,
2460 unsigned int nr_bytes,
2461 unsigned int bidi_bytes)
5efccd17 2462{
2e60e022
TH
2463 if (blk_update_request(rq, error, nr_bytes))
2464 return true;
5efccd17 2465
2e60e022
TH
2466 /* Bidi request must be completed as a whole */
2467 if (unlikely(blk_bidi_rq(rq)) &&
2468 blk_update_request(rq->next_rq, error, bidi_bytes))
2469 return true;
5efccd17 2470
e2e1a148
JA
2471 if (blk_queue_add_random(rq->q))
2472 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2473
2474 return false;
1da177e4
LT
2475}
2476
28018c24
JB
2477/**
2478 * blk_unprep_request - unprepare a request
2479 * @req: the request
2480 *
2481 * This function makes a request ready for complete resubmission (or
2482 * completion). It happens only after all error handling is complete,
2483 * so represents the appropriate moment to deallocate any resources
2484 * that were allocated to the request in the prep_rq_fn. The queue
2485 * lock is held when calling this.
2486 */
2487void blk_unprep_request(struct request *req)
2488{
2489 struct request_queue *q = req->q;
2490
2491 req->cmd_flags &= ~REQ_DONTPREP;
2492 if (q->unprep_rq_fn)
2493 q->unprep_rq_fn(q, req);
2494}
2495EXPORT_SYMBOL_GPL(blk_unprep_request);
2496
1da177e4
LT
2497/*
2498 * queue lock must be held
2499 */
12120077 2500void blk_finish_request(struct request *req, int error)
1da177e4 2501{
b8286239
KU
2502 if (blk_rq_tagged(req))
2503 blk_queue_end_tag(req->q, req);
2504
ba396a6c 2505 BUG_ON(blk_queued_rq(req));
1da177e4 2506
33659ebb 2507 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2508 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2509
e78042e5
MA
2510 blk_delete_timer(req);
2511
28018c24
JB
2512 if (req->cmd_flags & REQ_DONTPREP)
2513 blk_unprep_request(req);
2514
bc58ba94 2515 blk_account_io_done(req);
b8286239 2516
1da177e4 2517 if (req->end_io)
8ffdc655 2518 req->end_io(req, error);
b8286239
KU
2519 else {
2520 if (blk_bidi_rq(req))
2521 __blk_put_request(req->next_rq->q, req->next_rq);
2522
1da177e4 2523 __blk_put_request(req->q, req);
b8286239 2524 }
1da177e4 2525}
12120077 2526EXPORT_SYMBOL(blk_finish_request);
1da177e4 2527
3b11313a 2528/**
2e60e022
TH
2529 * blk_end_bidi_request - Complete a bidi request
2530 * @rq: the request to complete
2531 * @error: %0 for success, < %0 for error
2532 * @nr_bytes: number of bytes to complete @rq
2533 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2534 *
2535 * Description:
e3a04fe3 2536 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2537 * Drivers that supports bidi can safely call this member for any
2538 * type of request, bidi or uni. In the later case @bidi_bytes is
2539 * just ignored.
336cdb40
KU
2540 *
2541 * Return:
2e60e022
TH
2542 * %false - we are done with this request
2543 * %true - still buffers pending for this request
a0cd1285 2544 **/
b1f74493 2545static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2546 unsigned int nr_bytes, unsigned int bidi_bytes)
2547{
336cdb40 2548 struct request_queue *q = rq->q;
2e60e022 2549 unsigned long flags;
32fab448 2550
2e60e022
TH
2551 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2552 return true;
32fab448 2553
336cdb40 2554 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2555 blk_finish_request(rq, error);
336cdb40
KU
2556 spin_unlock_irqrestore(q->queue_lock, flags);
2557
2e60e022 2558 return false;
32fab448
KU
2559}
2560
336cdb40 2561/**
2e60e022
TH
2562 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2563 * @rq: the request to complete
710027a4 2564 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2565 * @nr_bytes: number of bytes to complete @rq
2566 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2567 *
2568 * Description:
2e60e022
TH
2569 * Identical to blk_end_bidi_request() except that queue lock is
2570 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2571 *
2572 * Return:
2e60e022
TH
2573 * %false - we are done with this request
2574 * %true - still buffers pending for this request
336cdb40 2575 **/
4853abaa 2576bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2577 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2578{
2e60e022
TH
2579 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2580 return true;
336cdb40 2581
2e60e022 2582 blk_finish_request(rq, error);
336cdb40 2583
2e60e022 2584 return false;
336cdb40 2585}
e19a3ab0
KU
2586
2587/**
2588 * blk_end_request - Helper function for drivers to complete the request.
2589 * @rq: the request being processed
710027a4 2590 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2591 * @nr_bytes: number of bytes to complete
2592 *
2593 * Description:
2594 * Ends I/O on a number of bytes attached to @rq.
2595 * If @rq has leftover, sets it up for the next range of segments.
2596 *
2597 * Return:
b1f74493
FT
2598 * %false - we are done with this request
2599 * %true - still buffers pending for this request
e19a3ab0 2600 **/
b1f74493 2601bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2602{
b1f74493 2603 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2604}
56ad1740 2605EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2606
2607/**
b1f74493
FT
2608 * blk_end_request_all - Helper function for drives to finish the request.
2609 * @rq: the request to finish
8ebf9756 2610 * @error: %0 for success, < %0 for error
336cdb40
KU
2611 *
2612 * Description:
b1f74493
FT
2613 * Completely finish @rq.
2614 */
2615void blk_end_request_all(struct request *rq, int error)
336cdb40 2616{
b1f74493
FT
2617 bool pending;
2618 unsigned int bidi_bytes = 0;
336cdb40 2619
b1f74493
FT
2620 if (unlikely(blk_bidi_rq(rq)))
2621 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2622
b1f74493
FT
2623 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2624 BUG_ON(pending);
2625}
56ad1740 2626EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2627
b1f74493
FT
2628/**
2629 * blk_end_request_cur - Helper function to finish the current request chunk.
2630 * @rq: the request to finish the current chunk for
8ebf9756 2631 * @error: %0 for success, < %0 for error
b1f74493
FT
2632 *
2633 * Description:
2634 * Complete the current consecutively mapped chunk from @rq.
2635 *
2636 * Return:
2637 * %false - we are done with this request
2638 * %true - still buffers pending for this request
2639 */
2640bool blk_end_request_cur(struct request *rq, int error)
2641{
2642 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2643}
56ad1740 2644EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2645
80a761fd
TH
2646/**
2647 * blk_end_request_err - Finish a request till the next failure boundary.
2648 * @rq: the request to finish till the next failure boundary for
2649 * @error: must be negative errno
2650 *
2651 * Description:
2652 * Complete @rq till the next failure boundary.
2653 *
2654 * Return:
2655 * %false - we are done with this request
2656 * %true - still buffers pending for this request
2657 */
2658bool blk_end_request_err(struct request *rq, int error)
2659{
2660 WARN_ON(error >= 0);
2661 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2662}
2663EXPORT_SYMBOL_GPL(blk_end_request_err);
2664
e3a04fe3 2665/**
b1f74493
FT
2666 * __blk_end_request - Helper function for drivers to complete the request.
2667 * @rq: the request being processed
2668 * @error: %0 for success, < %0 for error
2669 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2670 *
2671 * Description:
b1f74493 2672 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2673 *
2674 * Return:
b1f74493
FT
2675 * %false - we are done with this request
2676 * %true - still buffers pending for this request
e3a04fe3 2677 **/
b1f74493 2678bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2679{
b1f74493 2680 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2681}
56ad1740 2682EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2683
32fab448 2684/**
b1f74493
FT
2685 * __blk_end_request_all - Helper function for drives to finish the request.
2686 * @rq: the request to finish
8ebf9756 2687 * @error: %0 for success, < %0 for error
32fab448
KU
2688 *
2689 * Description:
b1f74493 2690 * Completely finish @rq. Must be called with queue lock held.
32fab448 2691 */
b1f74493 2692void __blk_end_request_all(struct request *rq, int error)
32fab448 2693{
b1f74493
FT
2694 bool pending;
2695 unsigned int bidi_bytes = 0;
2696
2697 if (unlikely(blk_bidi_rq(rq)))
2698 bidi_bytes = blk_rq_bytes(rq->next_rq);
2699
2700 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2701 BUG_ON(pending);
32fab448 2702}
56ad1740 2703EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2704
e19a3ab0 2705/**
b1f74493
FT
2706 * __blk_end_request_cur - Helper function to finish the current request chunk.
2707 * @rq: the request to finish the current chunk for
8ebf9756 2708 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2709 *
2710 * Description:
b1f74493
FT
2711 * Complete the current consecutively mapped chunk from @rq. Must
2712 * be called with queue lock held.
e19a3ab0
KU
2713 *
2714 * Return:
b1f74493
FT
2715 * %false - we are done with this request
2716 * %true - still buffers pending for this request
2717 */
2718bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2719{
b1f74493 2720 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2721}
56ad1740 2722EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2723
80a761fd
TH
2724/**
2725 * __blk_end_request_err - Finish a request till the next failure boundary.
2726 * @rq: the request to finish till the next failure boundary for
2727 * @error: must be negative errno
2728 *
2729 * Description:
2730 * Complete @rq till the next failure boundary. Must be called
2731 * with queue lock held.
2732 *
2733 * Return:
2734 * %false - we are done with this request
2735 * %true - still buffers pending for this request
2736 */
2737bool __blk_end_request_err(struct request *rq, int error)
2738{
2739 WARN_ON(error >= 0);
2740 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2741}
2742EXPORT_SYMBOL_GPL(__blk_end_request_err);
2743
86db1e29
JA
2744void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2745 struct bio *bio)
1da177e4 2746{
a82afdfc 2747 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2748 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2749
b4f42e28 2750 if (bio_has_data(bio))
fb2dce86 2751 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2752
4f024f37 2753 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2754 rq->bio = rq->biotail = bio;
1da177e4 2755
66846572
N
2756 if (bio->bi_bdev)
2757 rq->rq_disk = bio->bi_bdev->bd_disk;
2758}
1da177e4 2759
2d4dc890
IL
2760#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2761/**
2762 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2763 * @rq: the request to be flushed
2764 *
2765 * Description:
2766 * Flush all pages in @rq.
2767 */
2768void rq_flush_dcache_pages(struct request *rq)
2769{
2770 struct req_iterator iter;
7988613b 2771 struct bio_vec bvec;
2d4dc890
IL
2772
2773 rq_for_each_segment(bvec, rq, iter)
7988613b 2774 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2775}
2776EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2777#endif
2778
ef9e3fac
KU
2779/**
2780 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2781 * @q : the queue of the device being checked
2782 *
2783 * Description:
2784 * Check if underlying low-level drivers of a device are busy.
2785 * If the drivers want to export their busy state, they must set own
2786 * exporting function using blk_queue_lld_busy() first.
2787 *
2788 * Basically, this function is used only by request stacking drivers
2789 * to stop dispatching requests to underlying devices when underlying
2790 * devices are busy. This behavior helps more I/O merging on the queue
2791 * of the request stacking driver and prevents I/O throughput regression
2792 * on burst I/O load.
2793 *
2794 * Return:
2795 * 0 - Not busy (The request stacking driver should dispatch request)
2796 * 1 - Busy (The request stacking driver should stop dispatching request)
2797 */
2798int blk_lld_busy(struct request_queue *q)
2799{
2800 if (q->lld_busy_fn)
2801 return q->lld_busy_fn(q);
2802
2803 return 0;
2804}
2805EXPORT_SYMBOL_GPL(blk_lld_busy);
2806
b0fd271d
KU
2807/**
2808 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2809 * @rq: the clone request to be cleaned up
2810 *
2811 * Description:
2812 * Free all bios in @rq for a cloned request.
2813 */
2814void blk_rq_unprep_clone(struct request *rq)
2815{
2816 struct bio *bio;
2817
2818 while ((bio = rq->bio) != NULL) {
2819 rq->bio = bio->bi_next;
2820
2821 bio_put(bio);
2822 }
2823}
2824EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2825
2826/*
2827 * Copy attributes of the original request to the clone request.
b4f42e28 2828 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
b0fd271d
KU
2829 */
2830static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2831{
2832 dst->cpu = src->cpu;
3a2edd0d 2833 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2834 dst->cmd_type = src->cmd_type;
2835 dst->__sector = blk_rq_pos(src);
2836 dst->__data_len = blk_rq_bytes(src);
2837 dst->nr_phys_segments = src->nr_phys_segments;
2838 dst->ioprio = src->ioprio;
2839 dst->extra_len = src->extra_len;
2840}
2841
2842/**
2843 * blk_rq_prep_clone - Helper function to setup clone request
2844 * @rq: the request to be setup
2845 * @rq_src: original request to be cloned
2846 * @bs: bio_set that bios for clone are allocated from
2847 * @gfp_mask: memory allocation mask for bio
2848 * @bio_ctr: setup function to be called for each clone bio.
2849 * Returns %0 for success, non %0 for failure.
2850 * @data: private data to be passed to @bio_ctr
2851 *
2852 * Description:
2853 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
b4f42e28 2854 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
b0fd271d
KU
2855 * are not copied, and copying such parts is the caller's responsibility.
2856 * Also, pages which the original bios are pointing to are not copied
2857 * and the cloned bios just point same pages.
2858 * So cloned bios must be completed before original bios, which means
2859 * the caller must complete @rq before @rq_src.
2860 */
2861int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2862 struct bio_set *bs, gfp_t gfp_mask,
2863 int (*bio_ctr)(struct bio *, struct bio *, void *),
2864 void *data)
2865{
2866 struct bio *bio, *bio_src;
2867
2868 if (!bs)
2869 bs = fs_bio_set;
2870
2871 blk_rq_init(NULL, rq);
2872
2873 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2874 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2875 if (!bio)
2876 goto free_and_out;
2877
b0fd271d
KU
2878 if (bio_ctr && bio_ctr(bio, bio_src, data))
2879 goto free_and_out;
2880
2881 if (rq->bio) {
2882 rq->biotail->bi_next = bio;
2883 rq->biotail = bio;
2884 } else
2885 rq->bio = rq->biotail = bio;
2886 }
2887
2888 __blk_rq_prep_clone(rq, rq_src);
2889
2890 return 0;
2891
2892free_and_out:
2893 if (bio)
4254bba1 2894 bio_put(bio);
b0fd271d
KU
2895 blk_rq_unprep_clone(rq);
2896
2897 return -ENOMEM;
2898}
2899EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2900
59c3d45e 2901int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
2902{
2903 return queue_work(kblockd_workqueue, work);
2904}
1da177e4
LT
2905EXPORT_SYMBOL(kblockd_schedule_work);
2906
59c3d45e
JA
2907int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2908 unsigned long delay)
e43473b7
VG
2909{
2910 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2911}
2912EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2913
8ab14595
JA
2914int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2915 unsigned long delay)
2916{
2917 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2918}
2919EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2920
73c10101
JA
2921#define PLUG_MAGIC 0x91827364
2922
75df7136
SJ
2923/**
2924 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2925 * @plug: The &struct blk_plug that needs to be initialized
2926 *
2927 * Description:
2928 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2929 * pending I/O should the task end up blocking between blk_start_plug() and
2930 * blk_finish_plug(). This is important from a performance perspective, but
2931 * also ensures that we don't deadlock. For instance, if the task is blocking
2932 * for a memory allocation, memory reclaim could end up wanting to free a
2933 * page belonging to that request that is currently residing in our private
2934 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2935 * this kind of deadlock.
2936 */
73c10101
JA
2937void blk_start_plug(struct blk_plug *plug)
2938{
2939 struct task_struct *tsk = current;
2940
2941 plug->magic = PLUG_MAGIC;
2942 INIT_LIST_HEAD(&plug->list);
320ae51f 2943 INIT_LIST_HEAD(&plug->mq_list);
048c9374 2944 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2945
2946 /*
2947 * If this is a nested plug, don't actually assign it. It will be
2948 * flushed on its own.
2949 */
2950 if (!tsk->plug) {
2951 /*
2952 * Store ordering should not be needed here, since a potential
2953 * preempt will imply a full memory barrier
2954 */
2955 tsk->plug = plug;
2956 }
2957}
2958EXPORT_SYMBOL(blk_start_plug);
2959
2960static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2961{
2962 struct request *rqa = container_of(a, struct request, queuelist);
2963 struct request *rqb = container_of(b, struct request, queuelist);
2964
975927b9
JM
2965 return !(rqa->q < rqb->q ||
2966 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
2967}
2968
49cac01e
JA
2969/*
2970 * If 'from_schedule' is true, then postpone the dispatch of requests
2971 * until a safe kblockd context. We due this to avoid accidental big
2972 * additional stack usage in driver dispatch, in places where the originally
2973 * plugger did not intend it.
2974 */
f6603783 2975static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2976 bool from_schedule)
99e22598 2977 __releases(q->queue_lock)
94b5eb28 2978{
49cac01e 2979 trace_block_unplug(q, depth, !from_schedule);
99e22598 2980
70460571 2981 if (from_schedule)
24ecfbe2 2982 blk_run_queue_async(q);
70460571 2983 else
24ecfbe2 2984 __blk_run_queue(q);
70460571 2985 spin_unlock(q->queue_lock);
94b5eb28
JA
2986}
2987
74018dc3 2988static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
2989{
2990 LIST_HEAD(callbacks);
2991
2a7d5559
SL
2992 while (!list_empty(&plug->cb_list)) {
2993 list_splice_init(&plug->cb_list, &callbacks);
048c9374 2994
2a7d5559
SL
2995 while (!list_empty(&callbacks)) {
2996 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
2997 struct blk_plug_cb,
2998 list);
2a7d5559 2999 list_del(&cb->list);
74018dc3 3000 cb->callback(cb, from_schedule);
2a7d5559 3001 }
048c9374
N
3002 }
3003}
3004
9cbb1750
N
3005struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3006 int size)
3007{
3008 struct blk_plug *plug = current->plug;
3009 struct blk_plug_cb *cb;
3010
3011 if (!plug)
3012 return NULL;
3013
3014 list_for_each_entry(cb, &plug->cb_list, list)
3015 if (cb->callback == unplug && cb->data == data)
3016 return cb;
3017
3018 /* Not currently on the callback list */
3019 BUG_ON(size < sizeof(*cb));
3020 cb = kzalloc(size, GFP_ATOMIC);
3021 if (cb) {
3022 cb->data = data;
3023 cb->callback = unplug;
3024 list_add(&cb->list, &plug->cb_list);
3025 }
3026 return cb;
3027}
3028EXPORT_SYMBOL(blk_check_plugged);
3029
49cac01e 3030void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3031{
3032 struct request_queue *q;
3033 unsigned long flags;
3034 struct request *rq;
109b8129 3035 LIST_HEAD(list);
94b5eb28 3036 unsigned int depth;
73c10101
JA
3037
3038 BUG_ON(plug->magic != PLUG_MAGIC);
3039
74018dc3 3040 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3041
3042 if (!list_empty(&plug->mq_list))
3043 blk_mq_flush_plug_list(plug, from_schedule);
3044
73c10101
JA
3045 if (list_empty(&plug->list))
3046 return;
3047
109b8129
N
3048 list_splice_init(&plug->list, &list);
3049
422765c2 3050 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3051
3052 q = NULL;
94b5eb28 3053 depth = 0;
18811272
JA
3054
3055 /*
3056 * Save and disable interrupts here, to avoid doing it for every
3057 * queue lock we have to take.
3058 */
73c10101 3059 local_irq_save(flags);
109b8129
N
3060 while (!list_empty(&list)) {
3061 rq = list_entry_rq(list.next);
73c10101 3062 list_del_init(&rq->queuelist);
73c10101
JA
3063 BUG_ON(!rq->q);
3064 if (rq->q != q) {
99e22598
JA
3065 /*
3066 * This drops the queue lock
3067 */
3068 if (q)
49cac01e 3069 queue_unplugged(q, depth, from_schedule);
73c10101 3070 q = rq->q;
94b5eb28 3071 depth = 0;
73c10101
JA
3072 spin_lock(q->queue_lock);
3073 }
8ba61435
TH
3074
3075 /*
3076 * Short-circuit if @q is dead
3077 */
3f3299d5 3078 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3079 __blk_end_request_all(rq, -ENODEV);
3080 continue;
3081 }
3082
73c10101
JA
3083 /*
3084 * rq is already accounted, so use raw insert
3085 */
401a18e9
JA
3086 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3087 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3088 else
3089 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3090
3091 depth++;
73c10101
JA
3092 }
3093
99e22598
JA
3094 /*
3095 * This drops the queue lock
3096 */
3097 if (q)
49cac01e 3098 queue_unplugged(q, depth, from_schedule);
73c10101 3099
73c10101
JA
3100 local_irq_restore(flags);
3101}
73c10101
JA
3102
3103void blk_finish_plug(struct blk_plug *plug)
3104{
f6603783 3105 blk_flush_plug_list(plug, false);
73c10101 3106
88b996cd
CH
3107 if (plug == current->plug)
3108 current->plug = NULL;
73c10101 3109}
88b996cd 3110EXPORT_SYMBOL(blk_finish_plug);
73c10101 3111
6c954667
LM
3112#ifdef CONFIG_PM_RUNTIME
3113/**
3114 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3115 * @q: the queue of the device
3116 * @dev: the device the queue belongs to
3117 *
3118 * Description:
3119 * Initialize runtime-PM-related fields for @q and start auto suspend for
3120 * @dev. Drivers that want to take advantage of request-based runtime PM
3121 * should call this function after @dev has been initialized, and its
3122 * request queue @q has been allocated, and runtime PM for it can not happen
3123 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3124 * cases, driver should call this function before any I/O has taken place.
3125 *
3126 * This function takes care of setting up using auto suspend for the device,
3127 * the autosuspend delay is set to -1 to make runtime suspend impossible
3128 * until an updated value is either set by user or by driver. Drivers do
3129 * not need to touch other autosuspend settings.
3130 *
3131 * The block layer runtime PM is request based, so only works for drivers
3132 * that use request as their IO unit instead of those directly use bio's.
3133 */
3134void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3135{
3136 q->dev = dev;
3137 q->rpm_status = RPM_ACTIVE;
3138 pm_runtime_set_autosuspend_delay(q->dev, -1);
3139 pm_runtime_use_autosuspend(q->dev);
3140}
3141EXPORT_SYMBOL(blk_pm_runtime_init);
3142
3143/**
3144 * blk_pre_runtime_suspend - Pre runtime suspend check
3145 * @q: the queue of the device
3146 *
3147 * Description:
3148 * This function will check if runtime suspend is allowed for the device
3149 * by examining if there are any requests pending in the queue. If there
3150 * are requests pending, the device can not be runtime suspended; otherwise,
3151 * the queue's status will be updated to SUSPENDING and the driver can
3152 * proceed to suspend the device.
3153 *
3154 * For the not allowed case, we mark last busy for the device so that
3155 * runtime PM core will try to autosuspend it some time later.
3156 *
3157 * This function should be called near the start of the device's
3158 * runtime_suspend callback.
3159 *
3160 * Return:
3161 * 0 - OK to runtime suspend the device
3162 * -EBUSY - Device should not be runtime suspended
3163 */
3164int blk_pre_runtime_suspend(struct request_queue *q)
3165{
3166 int ret = 0;
3167
3168 spin_lock_irq(q->queue_lock);
3169 if (q->nr_pending) {
3170 ret = -EBUSY;
3171 pm_runtime_mark_last_busy(q->dev);
3172 } else {
3173 q->rpm_status = RPM_SUSPENDING;
3174 }
3175 spin_unlock_irq(q->queue_lock);
3176 return ret;
3177}
3178EXPORT_SYMBOL(blk_pre_runtime_suspend);
3179
3180/**
3181 * blk_post_runtime_suspend - Post runtime suspend processing
3182 * @q: the queue of the device
3183 * @err: return value of the device's runtime_suspend function
3184 *
3185 * Description:
3186 * Update the queue's runtime status according to the return value of the
3187 * device's runtime suspend function and mark last busy for the device so
3188 * that PM core will try to auto suspend the device at a later time.
3189 *
3190 * This function should be called near the end of the device's
3191 * runtime_suspend callback.
3192 */
3193void blk_post_runtime_suspend(struct request_queue *q, int err)
3194{
3195 spin_lock_irq(q->queue_lock);
3196 if (!err) {
3197 q->rpm_status = RPM_SUSPENDED;
3198 } else {
3199 q->rpm_status = RPM_ACTIVE;
3200 pm_runtime_mark_last_busy(q->dev);
3201 }
3202 spin_unlock_irq(q->queue_lock);
3203}
3204EXPORT_SYMBOL(blk_post_runtime_suspend);
3205
3206/**
3207 * blk_pre_runtime_resume - Pre runtime resume processing
3208 * @q: the queue of the device
3209 *
3210 * Description:
3211 * Update the queue's runtime status to RESUMING in preparation for the
3212 * runtime resume of the device.
3213 *
3214 * This function should be called near the start of the device's
3215 * runtime_resume callback.
3216 */
3217void blk_pre_runtime_resume(struct request_queue *q)
3218{
3219 spin_lock_irq(q->queue_lock);
3220 q->rpm_status = RPM_RESUMING;
3221 spin_unlock_irq(q->queue_lock);
3222}
3223EXPORT_SYMBOL(blk_pre_runtime_resume);
3224
3225/**
3226 * blk_post_runtime_resume - Post runtime resume processing
3227 * @q: the queue of the device
3228 * @err: return value of the device's runtime_resume function
3229 *
3230 * Description:
3231 * Update the queue's runtime status according to the return value of the
3232 * device's runtime_resume function. If it is successfully resumed, process
3233 * the requests that are queued into the device's queue when it is resuming
3234 * and then mark last busy and initiate autosuspend for it.
3235 *
3236 * This function should be called near the end of the device's
3237 * runtime_resume callback.
3238 */
3239void blk_post_runtime_resume(struct request_queue *q, int err)
3240{
3241 spin_lock_irq(q->queue_lock);
3242 if (!err) {
3243 q->rpm_status = RPM_ACTIVE;
3244 __blk_run_queue(q);
3245 pm_runtime_mark_last_busy(q->dev);
c60855cd 3246 pm_request_autosuspend(q->dev);
6c954667
LM
3247 } else {
3248 q->rpm_status = RPM_SUSPENDED;
3249 }
3250 spin_unlock_irq(q->queue_lock);
3251}
3252EXPORT_SYMBOL(blk_post_runtime_resume);
3253#endif
3254
1da177e4
LT
3255int __init blk_dev_init(void)
3256{
9eb55b03
NK
3257 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3258 sizeof(((struct request *)0)->cmd_flags));
3259
89b90be2
TH
3260 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3261 kblockd_workqueue = alloc_workqueue("kblockd",
695588f9
VK
3262 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3263 WQ_POWER_EFFICIENT, 0);
1da177e4
LT
3264 if (!kblockd_workqueue)
3265 panic("Failed to create kblockd\n");
3266
3267 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3268 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3269
8324aa91 3270 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3271 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3272
d38ecf93 3273 return 0;
1da177e4 3274}