]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-core.c
block: properly stack underlying max_segment_size to DM device
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
aaf7c680 32#include <linux/ratelimit.h>
6c954667 33#include <linux/pm_runtime.h>
55782138
LZ
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/block.h>
1da177e4 37
8324aa91 38#include "blk.h"
5efd6113 39#include "blk-cgroup.h"
8324aa91 40
d07335e5 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 42EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
cbae8d45 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 45
a73f730d
TH
46DEFINE_IDA(blk_queue_ida);
47
1da177e4
LT
48/*
49 * For the allocated request tables
50 */
5ece6c52 51static struct kmem_cache *request_cachep;
1da177e4
LT
52
53/*
54 * For queue allocation
55 */
6728cb0e 56struct kmem_cache *blk_requestq_cachep;
1da177e4 57
1da177e4
LT
58/*
59 * Controlling structure to kblockd
60 */
ff856bad 61static struct workqueue_struct *kblockd_workqueue;
1da177e4 62
26b8256e
JA
63static void drive_stat_acct(struct request *rq, int new_io)
64{
28f13702 65 struct hd_struct *part;
26b8256e 66 int rw = rq_data_dir(rq);
c9959059 67 int cpu;
26b8256e 68
c2553b58 69 if (!blk_do_io_stat(rq))
26b8256e
JA
70 return;
71
074a7aca 72 cpu = part_stat_lock();
c9959059 73
09e099d4
JM
74 if (!new_io) {
75 part = rq->part;
074a7aca 76 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
77 } else {
78 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 79 if (!hd_struct_try_get(part)) {
09e099d4
JM
80 /*
81 * The partition is already being removed,
82 * the request will be accounted on the disk only
83 *
84 * We take a reference on disk->part0 although that
85 * partition will never be deleted, so we can treat
86 * it as any other partition.
87 */
88 part = &rq->rq_disk->part0;
6c23a968 89 hd_struct_get(part);
09e099d4 90 }
074a7aca 91 part_round_stats(cpu, part);
316d315b 92 part_inc_in_flight(part, rw);
09e099d4 93 rq->part = part;
26b8256e 94 }
e71bf0d0 95
074a7aca 96 part_stat_unlock();
26b8256e
JA
97}
98
8324aa91 99void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
100{
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112}
113
1da177e4
LT
114/**
115 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * @bdev: device
117 *
118 * Locates the passed device's request queue and returns the address of its
119 * backing_dev_info
120 *
121 * Will return NULL if the request queue cannot be located.
122 */
123struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
124{
125 struct backing_dev_info *ret = NULL;
165125e1 126 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
127
128 if (q)
129 ret = &q->backing_dev_info;
130 return ret;
131}
1da177e4
LT
132EXPORT_SYMBOL(blk_get_backing_dev_info);
133
2a4aa30c 134void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 135{
1afb20f3
FT
136 memset(rq, 0, sizeof(*rq));
137
1da177e4 138 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 139 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 140 rq->cpu = -1;
63a71386 141 rq->q = q;
a2dec7b3 142 rq->__sector = (sector_t) -1;
2e662b65
JA
143 INIT_HLIST_NODE(&rq->hash);
144 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 145 rq->cmd = rq->__cmd;
e2494e1b 146 rq->cmd_len = BLK_MAX_CDB;
63a71386 147 rq->tag = -1;
1da177e4 148 rq->ref_count = 1;
b243ddcb 149 rq->start_time = jiffies;
9195291e 150 set_start_time_ns(rq);
09e099d4 151 rq->part = NULL;
1da177e4 152}
2a4aa30c 153EXPORT_SYMBOL(blk_rq_init);
1da177e4 154
5bb23a68
N
155static void req_bio_endio(struct request *rq, struct bio *bio,
156 unsigned int nbytes, int error)
1da177e4 157{
143a87f4
TH
158 if (error)
159 clear_bit(BIO_UPTODATE, &bio->bi_flags);
160 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
161 error = -EIO;
797e7dbb 162
143a87f4
TH
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 165
f79ea416 166 bio_advance(bio, nbytes);
7ba1ba12 167
143a87f4
TH
168 /* don't actually finish bio if it's part of flush sequence */
169 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
170 bio_endio(bio, error);
1da177e4 171}
1da177e4 172
1da177e4
LT
173void blk_dump_rq_flags(struct request *rq, char *msg)
174{
175 int bit;
176
6728cb0e 177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
1da177e4 180
83096ebf
TH
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 186
33659ebb 187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 188 printk(KERN_INFO " cdb: ");
d34c87e4 189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193}
1da177e4
LT
194EXPORT_SYMBOL(blk_dump_rq_flags);
195
3cca6dc1 196static void blk_delay_work(struct work_struct *work)
1da177e4 197{
3cca6dc1 198 struct request_queue *q;
1da177e4 199
3cca6dc1
JA
200 q = container_of(work, struct request_queue, delay_work.work);
201 spin_lock_irq(q->queue_lock);
24ecfbe2 202 __blk_run_queue(q);
3cca6dc1 203 spin_unlock_irq(q->queue_lock);
1da177e4 204}
1da177e4
LT
205
206/**
3cca6dc1
JA
207 * blk_delay_queue - restart queueing after defined interval
208 * @q: The &struct request_queue in question
209 * @msecs: Delay in msecs
1da177e4
LT
210 *
211 * Description:
3cca6dc1
JA
212 * Sometimes queueing needs to be postponed for a little while, to allow
213 * resources to come back. This function will make sure that queueing is
70460571 214 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
215 */
216void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 217{
70460571
BVA
218 if (likely(!blk_queue_dead(q)))
219 queue_delayed_work(kblockd_workqueue, &q->delay_work,
220 msecs_to_jiffies(msecs));
2ad8b1ef 221}
3cca6dc1 222EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 223
1da177e4
LT
224/**
225 * blk_start_queue - restart a previously stopped queue
165125e1 226 * @q: The &struct request_queue in question
1da177e4
LT
227 *
228 * Description:
229 * blk_start_queue() will clear the stop flag on the queue, and call
230 * the request_fn for the queue if it was in a stopped state when
231 * entered. Also see blk_stop_queue(). Queue lock must be held.
232 **/
165125e1 233void blk_start_queue(struct request_queue *q)
1da177e4 234{
a038e253
PBG
235 WARN_ON(!irqs_disabled());
236
75ad23bc 237 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 238 __blk_run_queue(q);
1da177e4 239}
1da177e4
LT
240EXPORT_SYMBOL(blk_start_queue);
241
242/**
243 * blk_stop_queue - stop a queue
165125e1 244 * @q: The &struct request_queue in question
1da177e4
LT
245 *
246 * Description:
247 * The Linux block layer assumes that a block driver will consume all
248 * entries on the request queue when the request_fn strategy is called.
249 * Often this will not happen, because of hardware limitations (queue
250 * depth settings). If a device driver gets a 'queue full' response,
251 * or if it simply chooses not to queue more I/O at one point, it can
252 * call this function to prevent the request_fn from being called until
253 * the driver has signalled it's ready to go again. This happens by calling
254 * blk_start_queue() to restart queue operations. Queue lock must be held.
255 **/
165125e1 256void blk_stop_queue(struct request_queue *q)
1da177e4 257{
136b5721 258 cancel_delayed_work(&q->delay_work);
75ad23bc 259 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
260}
261EXPORT_SYMBOL(blk_stop_queue);
262
263/**
264 * blk_sync_queue - cancel any pending callbacks on a queue
265 * @q: the queue
266 *
267 * Description:
268 * The block layer may perform asynchronous callback activity
269 * on a queue, such as calling the unplug function after a timeout.
270 * A block device may call blk_sync_queue to ensure that any
271 * such activity is cancelled, thus allowing it to release resources
59c51591 272 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
273 * that its ->make_request_fn will not re-add plugging prior to calling
274 * this function.
275 *
da527770
VG
276 * This function does not cancel any asynchronous activity arising
277 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 278 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 279 *
1da177e4
LT
280 */
281void blk_sync_queue(struct request_queue *q)
282{
70ed28b9 283 del_timer_sync(&q->timeout);
3cca6dc1 284 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
285}
286EXPORT_SYMBOL(blk_sync_queue);
287
c246e80d
BVA
288/**
289 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
290 * @q: The queue to run
291 *
292 * Description:
293 * Invoke request handling on a queue if there are any pending requests.
294 * May be used to restart request handling after a request has completed.
295 * This variant runs the queue whether or not the queue has been
296 * stopped. Must be called with the queue lock held and interrupts
297 * disabled. See also @blk_run_queue.
298 */
299inline void __blk_run_queue_uncond(struct request_queue *q)
300{
301 if (unlikely(blk_queue_dead(q)))
302 return;
303
24faf6f6
BVA
304 /*
305 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
306 * the queue lock internally. As a result multiple threads may be
307 * running such a request function concurrently. Keep track of the
308 * number of active request_fn invocations such that blk_drain_queue()
309 * can wait until all these request_fn calls have finished.
310 */
311 q->request_fn_active++;
c246e80d 312 q->request_fn(q);
24faf6f6 313 q->request_fn_active--;
c246e80d
BVA
314}
315
1da177e4 316/**
80a4b58e 317 * __blk_run_queue - run a single device queue
1da177e4 318 * @q: The queue to run
80a4b58e
JA
319 *
320 * Description:
321 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 322 * held and interrupts disabled.
1da177e4 323 */
24ecfbe2 324void __blk_run_queue(struct request_queue *q)
1da177e4 325{
a538cd03
TH
326 if (unlikely(blk_queue_stopped(q)))
327 return;
328
c246e80d 329 __blk_run_queue_uncond(q);
75ad23bc
NP
330}
331EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 332
24ecfbe2
CH
333/**
334 * blk_run_queue_async - run a single device queue in workqueue context
335 * @q: The queue to run
336 *
337 * Description:
338 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 339 * of us. The caller must hold the queue lock.
24ecfbe2
CH
340 */
341void blk_run_queue_async(struct request_queue *q)
342{
70460571 343 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 344 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 345}
c21e6beb 346EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 347
75ad23bc
NP
348/**
349 * blk_run_queue - run a single device queue
350 * @q: The queue to run
80a4b58e
JA
351 *
352 * Description:
353 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 354 * May be used to restart queueing when a request has completed.
75ad23bc
NP
355 */
356void blk_run_queue(struct request_queue *q)
357{
358 unsigned long flags;
359
360 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 361 __blk_run_queue(q);
1da177e4
LT
362 spin_unlock_irqrestore(q->queue_lock, flags);
363}
364EXPORT_SYMBOL(blk_run_queue);
365
165125e1 366void blk_put_queue(struct request_queue *q)
483f4afc
AV
367{
368 kobject_put(&q->kobj);
369}
d86e0e83 370EXPORT_SYMBOL(blk_put_queue);
483f4afc 371
e3c78ca5 372/**
807592a4 373 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 374 * @q: queue to drain
c9a929dd 375 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 376 *
c9a929dd
TH
377 * Drain requests from @q. If @drain_all is set, all requests are drained.
378 * If not, only ELVPRIV requests are drained. The caller is responsible
379 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 380 */
807592a4
BVA
381static void __blk_drain_queue(struct request_queue *q, bool drain_all)
382 __releases(q->queue_lock)
383 __acquires(q->queue_lock)
e3c78ca5 384{
458f27a9
AH
385 int i;
386
807592a4
BVA
387 lockdep_assert_held(q->queue_lock);
388
e3c78ca5 389 while (true) {
481a7d64 390 bool drain = false;
e3c78ca5 391
b855b04a
TH
392 /*
393 * The caller might be trying to drain @q before its
394 * elevator is initialized.
395 */
396 if (q->elevator)
397 elv_drain_elevator(q);
398
5efd6113 399 blkcg_drain_queue(q);
e3c78ca5 400
4eabc941
TH
401 /*
402 * This function might be called on a queue which failed
b855b04a
TH
403 * driver init after queue creation or is not yet fully
404 * active yet. Some drivers (e.g. fd and loop) get unhappy
405 * in such cases. Kick queue iff dispatch queue has
406 * something on it and @q has request_fn set.
4eabc941 407 */
b855b04a 408 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 409 __blk_run_queue(q);
c9a929dd 410
8a5ecdd4 411 drain |= q->nr_rqs_elvpriv;
24faf6f6 412 drain |= q->request_fn_active;
481a7d64
TH
413
414 /*
415 * Unfortunately, requests are queued at and tracked from
416 * multiple places and there's no single counter which can
417 * be drained. Check all the queues and counters.
418 */
419 if (drain_all) {
420 drain |= !list_empty(&q->queue_head);
421 for (i = 0; i < 2; i++) {
8a5ecdd4 422 drain |= q->nr_rqs[i];
481a7d64
TH
423 drain |= q->in_flight[i];
424 drain |= !list_empty(&q->flush_queue[i]);
425 }
426 }
e3c78ca5 427
481a7d64 428 if (!drain)
e3c78ca5 429 break;
807592a4
BVA
430
431 spin_unlock_irq(q->queue_lock);
432
e3c78ca5 433 msleep(10);
807592a4
BVA
434
435 spin_lock_irq(q->queue_lock);
e3c78ca5 436 }
458f27a9
AH
437
438 /*
439 * With queue marked dead, any woken up waiter will fail the
440 * allocation path, so the wakeup chaining is lost and we're
441 * left with hung waiters. We need to wake up those waiters.
442 */
443 if (q->request_fn) {
a051661c
TH
444 struct request_list *rl;
445
a051661c
TH
446 blk_queue_for_each_rl(rl, q)
447 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
448 wake_up_all(&rl->wait[i]);
458f27a9 449 }
e3c78ca5
TH
450}
451
d732580b
TH
452/**
453 * blk_queue_bypass_start - enter queue bypass mode
454 * @q: queue of interest
455 *
456 * In bypass mode, only the dispatch FIFO queue of @q is used. This
457 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 458 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
459 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
460 * inside queue or RCU read lock.
d732580b
TH
461 */
462void blk_queue_bypass_start(struct request_queue *q)
463{
b82d4b19
TH
464 bool drain;
465
d732580b 466 spin_lock_irq(q->queue_lock);
b82d4b19 467 drain = !q->bypass_depth++;
d732580b
TH
468 queue_flag_set(QUEUE_FLAG_BYPASS, q);
469 spin_unlock_irq(q->queue_lock);
470
b82d4b19 471 if (drain) {
807592a4
BVA
472 spin_lock_irq(q->queue_lock);
473 __blk_drain_queue(q, false);
474 spin_unlock_irq(q->queue_lock);
475
b82d4b19
TH
476 /* ensure blk_queue_bypass() is %true inside RCU read lock */
477 synchronize_rcu();
478 }
d732580b
TH
479}
480EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
481
482/**
483 * blk_queue_bypass_end - leave queue bypass mode
484 * @q: queue of interest
485 *
486 * Leave bypass mode and restore the normal queueing behavior.
487 */
488void blk_queue_bypass_end(struct request_queue *q)
489{
490 spin_lock_irq(q->queue_lock);
491 if (!--q->bypass_depth)
492 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
493 WARN_ON_ONCE(q->bypass_depth < 0);
494 spin_unlock_irq(q->queue_lock);
495}
496EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
497
c9a929dd
TH
498/**
499 * blk_cleanup_queue - shutdown a request queue
500 * @q: request queue to shutdown
501 *
c246e80d
BVA
502 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
503 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 504 */
6728cb0e 505void blk_cleanup_queue(struct request_queue *q)
483f4afc 506{
c9a929dd 507 spinlock_t *lock = q->queue_lock;
e3335de9 508
3f3299d5 509 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 510 mutex_lock(&q->sysfs_lock);
3f3299d5 511 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 512 spin_lock_irq(lock);
6ecf23af 513
80fd9979 514 /*
3f3299d5 515 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
516 * that, unlike blk_queue_bypass_start(), we aren't performing
517 * synchronize_rcu() after entering bypass mode to avoid the delay
518 * as some drivers create and destroy a lot of queues while
519 * probing. This is still safe because blk_release_queue() will be
520 * called only after the queue refcnt drops to zero and nothing,
521 * RCU or not, would be traversing the queue by then.
522 */
6ecf23af
TH
523 q->bypass_depth++;
524 queue_flag_set(QUEUE_FLAG_BYPASS, q);
525
c9a929dd
TH
526 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
527 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 528 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
529 spin_unlock_irq(lock);
530 mutex_unlock(&q->sysfs_lock);
531
c246e80d
BVA
532 /*
533 * Drain all requests queued before DYING marking. Set DEAD flag to
534 * prevent that q->request_fn() gets invoked after draining finished.
535 */
807592a4
BVA
536 spin_lock_irq(lock);
537 __blk_drain_queue(q, true);
c246e80d 538 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 539 spin_unlock_irq(lock);
c9a929dd
TH
540
541 /* @q won't process any more request, flush async actions */
542 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
543 blk_sync_queue(q);
544
5e5cfac0
AH
545 spin_lock_irq(lock);
546 if (q->queue_lock != &q->__queue_lock)
547 q->queue_lock = &q->__queue_lock;
548 spin_unlock_irq(lock);
549
c9a929dd 550 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
551 blk_put_queue(q);
552}
1da177e4
LT
553EXPORT_SYMBOL(blk_cleanup_queue);
554
5b788ce3
TH
555int blk_init_rl(struct request_list *rl, struct request_queue *q,
556 gfp_t gfp_mask)
1da177e4 557{
1abec4fd
MS
558 if (unlikely(rl->rq_pool))
559 return 0;
560
5b788ce3 561 rl->q = q;
1faa16d2
JA
562 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
563 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
564 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
565 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 566
1946089a 567 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 568 mempool_free_slab, request_cachep,
5b788ce3 569 gfp_mask, q->node);
1da177e4
LT
570 if (!rl->rq_pool)
571 return -ENOMEM;
572
573 return 0;
574}
575
5b788ce3
TH
576void blk_exit_rl(struct request_list *rl)
577{
578 if (rl->rq_pool)
579 mempool_destroy(rl->rq_pool);
580}
581
165125e1 582struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 583{
c304a51b 584 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
585}
586EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 587
165125e1 588struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 589{
165125e1 590 struct request_queue *q;
e0bf68dd 591 int err;
1946089a 592
8324aa91 593 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 594 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
595 if (!q)
596 return NULL;
597
00380a40 598 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d
TH
599 if (q->id < 0)
600 goto fail_q;
601
0989a025
JA
602 q->backing_dev_info.ra_pages =
603 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
604 q->backing_dev_info.state = 0;
605 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 606 q->backing_dev_info.name = "block";
5151412d 607 q->node = node_id;
0989a025 608
e0bf68dd 609 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
610 if (err)
611 goto fail_id;
e0bf68dd 612
31373d09
MG
613 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
614 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 615 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 616 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 617 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 618 INIT_LIST_HEAD(&q->icq_list);
4eef3049 619#ifdef CONFIG_BLK_CGROUP
e8989fae 620 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 621#endif
ae1b1539
TH
622 INIT_LIST_HEAD(&q->flush_queue[0]);
623 INIT_LIST_HEAD(&q->flush_queue[1]);
624 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 625 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 626
8324aa91 627 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 628
483f4afc 629 mutex_init(&q->sysfs_lock);
e7e72bf6 630 spin_lock_init(&q->__queue_lock);
483f4afc 631
c94a96ac
VG
632 /*
633 * By default initialize queue_lock to internal lock and driver can
634 * override it later if need be.
635 */
636 q->queue_lock = &q->__queue_lock;
637
b82d4b19
TH
638 /*
639 * A queue starts its life with bypass turned on to avoid
640 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
641 * init. The initial bypass will be finished when the queue is
642 * registered by blk_register_queue().
b82d4b19
TH
643 */
644 q->bypass_depth = 1;
645 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
646
5efd6113 647 if (blkcg_init_queue(q))
fff4996b 648 goto fail_bdi;
f51b802c 649
1da177e4 650 return q;
a73f730d 651
fff4996b
MP
652fail_bdi:
653 bdi_destroy(&q->backing_dev_info);
a73f730d
TH
654fail_id:
655 ida_simple_remove(&blk_queue_ida, q->id);
656fail_q:
657 kmem_cache_free(blk_requestq_cachep, q);
658 return NULL;
1da177e4 659}
1946089a 660EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
661
662/**
663 * blk_init_queue - prepare a request queue for use with a block device
664 * @rfn: The function to be called to process requests that have been
665 * placed on the queue.
666 * @lock: Request queue spin lock
667 *
668 * Description:
669 * If a block device wishes to use the standard request handling procedures,
670 * which sorts requests and coalesces adjacent requests, then it must
671 * call blk_init_queue(). The function @rfn will be called when there
672 * are requests on the queue that need to be processed. If the device
673 * supports plugging, then @rfn may not be called immediately when requests
674 * are available on the queue, but may be called at some time later instead.
675 * Plugged queues are generally unplugged when a buffer belonging to one
676 * of the requests on the queue is needed, or due to memory pressure.
677 *
678 * @rfn is not required, or even expected, to remove all requests off the
679 * queue, but only as many as it can handle at a time. If it does leave
680 * requests on the queue, it is responsible for arranging that the requests
681 * get dealt with eventually.
682 *
683 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
684 * request queue; this lock will be taken also from interrupt context, so irq
685 * disabling is needed for it.
1da177e4 686 *
710027a4 687 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
688 * it didn't succeed.
689 *
690 * Note:
691 * blk_init_queue() must be paired with a blk_cleanup_queue() call
692 * when the block device is deactivated (such as at module unload).
693 **/
1946089a 694
165125e1 695struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 696{
c304a51b 697 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
698}
699EXPORT_SYMBOL(blk_init_queue);
700
165125e1 701struct request_queue *
1946089a
CL
702blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
703{
c86d1b8a 704 struct request_queue *uninit_q, *q;
1da177e4 705
c86d1b8a
MS
706 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
707 if (!uninit_q)
708 return NULL;
709
5151412d 710 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
711 if (!q)
712 blk_cleanup_queue(uninit_q);
713
714 return q;
01effb0d
MS
715}
716EXPORT_SYMBOL(blk_init_queue_node);
717
718struct request_queue *
719blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
720 spinlock_t *lock)
01effb0d 721{
1da177e4
LT
722 if (!q)
723 return NULL;
724
a051661c 725 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
8669aafd 726 return NULL;
1da177e4
LT
727
728 q->request_fn = rfn;
1da177e4 729 q->prep_rq_fn = NULL;
28018c24 730 q->unprep_rq_fn = NULL;
60ea8226 731 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
732
733 /* Override internal queue lock with supplied lock pointer */
734 if (lock)
735 q->queue_lock = lock;
1da177e4 736
f3b144aa
JA
737 /*
738 * This also sets hw/phys segments, boundary and size
739 */
c20e8de2 740 blk_queue_make_request(q, blk_queue_bio);
1da177e4 741
44ec9542
AS
742 q->sg_reserved_size = INT_MAX;
743
eb1c160b
TS
744 /* Protect q->elevator from elevator_change */
745 mutex_lock(&q->sysfs_lock);
746
b82d4b19 747 /* init elevator */
eb1c160b
TS
748 if (elevator_init(q, NULL)) {
749 mutex_unlock(&q->sysfs_lock);
b82d4b19 750 return NULL;
eb1c160b
TS
751 }
752
753 mutex_unlock(&q->sysfs_lock);
754
b82d4b19 755 return q;
1da177e4 756}
5151412d 757EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 758
09ac46c4 759bool blk_get_queue(struct request_queue *q)
1da177e4 760{
3f3299d5 761 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
762 __blk_get_queue(q);
763 return true;
1da177e4
LT
764 }
765
09ac46c4 766 return false;
1da177e4 767}
d86e0e83 768EXPORT_SYMBOL(blk_get_queue);
1da177e4 769
5b788ce3 770static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 771{
f1f8cc94 772 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 773 elv_put_request(rl->q, rq);
f1f8cc94 774 if (rq->elv.icq)
11a3122f 775 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
776 }
777
5b788ce3 778 mempool_free(rq, rl->rq_pool);
1da177e4
LT
779}
780
1da177e4
LT
781/*
782 * ioc_batching returns true if the ioc is a valid batching request and
783 * should be given priority access to a request.
784 */
165125e1 785static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
786{
787 if (!ioc)
788 return 0;
789
790 /*
791 * Make sure the process is able to allocate at least 1 request
792 * even if the batch times out, otherwise we could theoretically
793 * lose wakeups.
794 */
795 return ioc->nr_batch_requests == q->nr_batching ||
796 (ioc->nr_batch_requests > 0
797 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
798}
799
800/*
801 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
802 * will cause the process to be a "batcher" on all queues in the system. This
803 * is the behaviour we want though - once it gets a wakeup it should be given
804 * a nice run.
805 */
165125e1 806static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
807{
808 if (!ioc || ioc_batching(q, ioc))
809 return;
810
811 ioc->nr_batch_requests = q->nr_batching;
812 ioc->last_waited = jiffies;
813}
814
5b788ce3 815static void __freed_request(struct request_list *rl, int sync)
1da177e4 816{
5b788ce3 817 struct request_queue *q = rl->q;
1da177e4 818
a051661c
TH
819 /*
820 * bdi isn't aware of blkcg yet. As all async IOs end up root
821 * blkcg anyway, just use root blkcg state.
822 */
823 if (rl == &q->root_rl &&
824 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 825 blk_clear_queue_congested(q, sync);
1da177e4 826
1faa16d2
JA
827 if (rl->count[sync] + 1 <= q->nr_requests) {
828 if (waitqueue_active(&rl->wait[sync]))
829 wake_up(&rl->wait[sync]);
1da177e4 830
5b788ce3 831 blk_clear_rl_full(rl, sync);
1da177e4
LT
832 }
833}
834
835/*
836 * A request has just been released. Account for it, update the full and
837 * congestion status, wake up any waiters. Called under q->queue_lock.
838 */
5b788ce3 839static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 840{
5b788ce3 841 struct request_queue *q = rl->q;
75eb6c37 842 int sync = rw_is_sync(flags);
1da177e4 843
8a5ecdd4 844 q->nr_rqs[sync]--;
1faa16d2 845 rl->count[sync]--;
75eb6c37 846 if (flags & REQ_ELVPRIV)
8a5ecdd4 847 q->nr_rqs_elvpriv--;
1da177e4 848
5b788ce3 849 __freed_request(rl, sync);
1da177e4 850
1faa16d2 851 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 852 __freed_request(rl, sync ^ 1);
1da177e4
LT
853}
854
9d5a4e94
MS
855/*
856 * Determine if elevator data should be initialized when allocating the
857 * request associated with @bio.
858 */
859static bool blk_rq_should_init_elevator(struct bio *bio)
860{
861 if (!bio)
862 return true;
863
864 /*
865 * Flush requests do not use the elevator so skip initialization.
866 * This allows a request to share the flush and elevator data.
867 */
868 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
869 return false;
870
871 return true;
872}
873
852c788f
TH
874/**
875 * rq_ioc - determine io_context for request allocation
876 * @bio: request being allocated is for this bio (can be %NULL)
877 *
878 * Determine io_context to use for request allocation for @bio. May return
879 * %NULL if %current->io_context doesn't exist.
880 */
881static struct io_context *rq_ioc(struct bio *bio)
882{
883#ifdef CONFIG_BLK_CGROUP
884 if (bio && bio->bi_ioc)
885 return bio->bi_ioc;
886#endif
887 return current->io_context;
888}
889
da8303c6 890/**
a06e05e6 891 * __get_request - get a free request
5b788ce3 892 * @rl: request list to allocate from
da8303c6
TH
893 * @rw_flags: RW and SYNC flags
894 * @bio: bio to allocate request for (can be %NULL)
895 * @gfp_mask: allocation mask
896 *
897 * Get a free request from @q. This function may fail under memory
898 * pressure or if @q is dead.
899 *
900 * Must be callled with @q->queue_lock held and,
901 * Returns %NULL on failure, with @q->queue_lock held.
902 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 903 */
5b788ce3 904static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 905 struct bio *bio, gfp_t gfp_mask)
1da177e4 906{
5b788ce3 907 struct request_queue *q = rl->q;
b679281a 908 struct request *rq;
7f4b35d1
TH
909 struct elevator_type *et = q->elevator->type;
910 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 911 struct io_cq *icq = NULL;
1faa16d2 912 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 913 int may_queue;
88ee5ef1 914
3f3299d5 915 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
916 return NULL;
917
7749a8d4 918 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
919 if (may_queue == ELV_MQUEUE_NO)
920 goto rq_starved;
921
1faa16d2
JA
922 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
923 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
924 /*
925 * The queue will fill after this allocation, so set
926 * it as full, and mark this process as "batching".
927 * This process will be allowed to complete a batch of
928 * requests, others will be blocked.
929 */
5b788ce3 930 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 931 ioc_set_batching(q, ioc);
5b788ce3 932 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
933 } else {
934 if (may_queue != ELV_MQUEUE_MUST
935 && !ioc_batching(q, ioc)) {
936 /*
937 * The queue is full and the allocating
938 * process is not a "batcher", and not
939 * exempted by the IO scheduler
940 */
b679281a 941 return NULL;
88ee5ef1
JA
942 }
943 }
1da177e4 944 }
a051661c
TH
945 /*
946 * bdi isn't aware of blkcg yet. As all async IOs end up
947 * root blkcg anyway, just use root blkcg state.
948 */
949 if (rl == &q->root_rl)
950 blk_set_queue_congested(q, is_sync);
1da177e4
LT
951 }
952
082cf69e
JA
953 /*
954 * Only allow batching queuers to allocate up to 50% over the defined
955 * limit of requests, otherwise we could have thousands of requests
956 * allocated with any setting of ->nr_requests
957 */
1faa16d2 958 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 959 return NULL;
fd782a4a 960
8a5ecdd4 961 q->nr_rqs[is_sync]++;
1faa16d2
JA
962 rl->count[is_sync]++;
963 rl->starved[is_sync] = 0;
cb98fc8b 964
f1f8cc94
TH
965 /*
966 * Decide whether the new request will be managed by elevator. If
967 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
968 * prevent the current elevator from being destroyed until the new
969 * request is freed. This guarantees icq's won't be destroyed and
970 * makes creating new ones safe.
971 *
972 * Also, lookup icq while holding queue_lock. If it doesn't exist,
973 * it will be created after releasing queue_lock.
974 */
d732580b 975 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 976 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 977 q->nr_rqs_elvpriv++;
f1f8cc94
TH
978 if (et->icq_cache && ioc)
979 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 980 }
cb98fc8b 981
f253b86b
JA
982 if (blk_queue_io_stat(q))
983 rw_flags |= REQ_IO_STAT;
1da177e4
LT
984 spin_unlock_irq(q->queue_lock);
985
29e2b09a 986 /* allocate and init request */
5b788ce3 987 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 988 if (!rq)
b679281a 989 goto fail_alloc;
1da177e4 990
29e2b09a 991 blk_rq_init(q, rq);
a051661c 992 blk_rq_set_rl(rq, rl);
29e2b09a
TH
993 rq->cmd_flags = rw_flags | REQ_ALLOCED;
994
aaf7c680 995 /* init elvpriv */
29e2b09a 996 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 997 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
998 if (ioc)
999 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1000 if (!icq)
1001 goto fail_elvpriv;
29e2b09a 1002 }
aaf7c680
TH
1003
1004 rq->elv.icq = icq;
1005 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1006 goto fail_elvpriv;
1007
1008 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1009 if (icq)
1010 get_io_context(icq->ioc);
1011 }
aaf7c680 1012out:
88ee5ef1
JA
1013 /*
1014 * ioc may be NULL here, and ioc_batching will be false. That's
1015 * OK, if the queue is under the request limit then requests need
1016 * not count toward the nr_batch_requests limit. There will always
1017 * be some limit enforced by BLK_BATCH_TIME.
1018 */
1da177e4
LT
1019 if (ioc_batching(q, ioc))
1020 ioc->nr_batch_requests--;
6728cb0e 1021
1faa16d2 1022 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1023 return rq;
b679281a 1024
aaf7c680
TH
1025fail_elvpriv:
1026 /*
1027 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1028 * and may fail indefinitely under memory pressure and thus
1029 * shouldn't stall IO. Treat this request as !elvpriv. This will
1030 * disturb iosched and blkcg but weird is bettern than dead.
1031 */
1032 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1033 dev_name(q->backing_dev_info.dev));
1034
1035 rq->cmd_flags &= ~REQ_ELVPRIV;
1036 rq->elv.icq = NULL;
1037
1038 spin_lock_irq(q->queue_lock);
8a5ecdd4 1039 q->nr_rqs_elvpriv--;
aaf7c680
TH
1040 spin_unlock_irq(q->queue_lock);
1041 goto out;
1042
b679281a
TH
1043fail_alloc:
1044 /*
1045 * Allocation failed presumably due to memory. Undo anything we
1046 * might have messed up.
1047 *
1048 * Allocating task should really be put onto the front of the wait
1049 * queue, but this is pretty rare.
1050 */
1051 spin_lock_irq(q->queue_lock);
5b788ce3 1052 freed_request(rl, rw_flags);
b679281a
TH
1053
1054 /*
1055 * in the very unlikely event that allocation failed and no
1056 * requests for this direction was pending, mark us starved so that
1057 * freeing of a request in the other direction will notice
1058 * us. another possible fix would be to split the rq mempool into
1059 * READ and WRITE
1060 */
1061rq_starved:
1062 if (unlikely(rl->count[is_sync] == 0))
1063 rl->starved[is_sync] = 1;
1064 return NULL;
1da177e4
LT
1065}
1066
da8303c6 1067/**
a06e05e6 1068 * get_request - get a free request
da8303c6
TH
1069 * @q: request_queue to allocate request from
1070 * @rw_flags: RW and SYNC flags
1071 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1072 * @gfp_mask: allocation mask
da8303c6 1073 *
a06e05e6
TH
1074 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1075 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1076 *
da8303c6
TH
1077 * Must be callled with @q->queue_lock held and,
1078 * Returns %NULL on failure, with @q->queue_lock held.
1079 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1080 */
a06e05e6
TH
1081static struct request *get_request(struct request_queue *q, int rw_flags,
1082 struct bio *bio, gfp_t gfp_mask)
1da177e4 1083{
1faa16d2 1084 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1085 DEFINE_WAIT(wait);
a051661c 1086 struct request_list *rl;
1da177e4 1087 struct request *rq;
a051661c
TH
1088
1089 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1090retry:
a051661c 1091 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1092 if (rq)
1093 return rq;
1da177e4 1094
3f3299d5 1095 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1096 blk_put_rl(rl);
a06e05e6 1097 return NULL;
a051661c 1098 }
1da177e4 1099
a06e05e6
TH
1100 /* wait on @rl and retry */
1101 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1102 TASK_UNINTERRUPTIBLE);
1da177e4 1103
a06e05e6 1104 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1105
a06e05e6
TH
1106 spin_unlock_irq(q->queue_lock);
1107 io_schedule();
d6344532 1108
a06e05e6
TH
1109 /*
1110 * After sleeping, we become a "batching" process and will be able
1111 * to allocate at least one request, and up to a big batch of them
1112 * for a small period time. See ioc_batching, ioc_set_batching
1113 */
a06e05e6 1114 ioc_set_batching(q, current->io_context);
05caf8db 1115
a06e05e6
TH
1116 spin_lock_irq(q->queue_lock);
1117 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1118
a06e05e6 1119 goto retry;
1da177e4
LT
1120}
1121
165125e1 1122struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1123{
1124 struct request *rq;
1125
1126 BUG_ON(rw != READ && rw != WRITE);
1127
7f4b35d1
TH
1128 /* create ioc upfront */
1129 create_io_context(gfp_mask, q->node);
1130
d6344532 1131 spin_lock_irq(q->queue_lock);
a06e05e6 1132 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1133 if (!rq)
1134 spin_unlock_irq(q->queue_lock);
d6344532 1135 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1136
1137 return rq;
1138}
1da177e4
LT
1139EXPORT_SYMBOL(blk_get_request);
1140
dc72ef4a 1141/**
79eb63e9 1142 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1143 * @q: target request queue
79eb63e9
BH
1144 * @bio: The bio describing the memory mappings that will be submitted for IO.
1145 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1146 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1147 *
79eb63e9
BH
1148 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1149 * type commands. Where the struct request needs to be farther initialized by
1150 * the caller. It is passed a &struct bio, which describes the memory info of
1151 * the I/O transfer.
dc72ef4a 1152 *
79eb63e9
BH
1153 * The caller of blk_make_request must make sure that bi_io_vec
1154 * are set to describe the memory buffers. That bio_data_dir() will return
1155 * the needed direction of the request. (And all bio's in the passed bio-chain
1156 * are properly set accordingly)
1157 *
1158 * If called under none-sleepable conditions, mapped bio buffers must not
1159 * need bouncing, by calling the appropriate masked or flagged allocator,
1160 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1161 * BUG.
53674ac5
JA
1162 *
1163 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1164 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1165 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1166 * completion of a bio that hasn't been submitted yet, thus resulting in a
1167 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1168 * of bio_alloc(), as that avoids the mempool deadlock.
1169 * If possible a big IO should be split into smaller parts when allocation
1170 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1171 */
79eb63e9
BH
1172struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1173 gfp_t gfp_mask)
dc72ef4a 1174{
79eb63e9
BH
1175 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1176
1177 if (unlikely(!rq))
1178 return ERR_PTR(-ENOMEM);
1179
1180 for_each_bio(bio) {
1181 struct bio *bounce_bio = bio;
1182 int ret;
1183
1184 blk_queue_bounce(q, &bounce_bio);
1185 ret = blk_rq_append_bio(q, rq, bounce_bio);
1186 if (unlikely(ret)) {
1187 blk_put_request(rq);
1188 return ERR_PTR(ret);
1189 }
1190 }
1191
1192 return rq;
dc72ef4a 1193}
79eb63e9 1194EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1195
1da177e4
LT
1196/**
1197 * blk_requeue_request - put a request back on queue
1198 * @q: request queue where request should be inserted
1199 * @rq: request to be inserted
1200 *
1201 * Description:
1202 * Drivers often keep queueing requests until the hardware cannot accept
1203 * more, when that condition happens we need to put the request back
1204 * on the queue. Must be called with queue lock held.
1205 */
165125e1 1206void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1207{
242f9dcb
JA
1208 blk_delete_timer(rq);
1209 blk_clear_rq_complete(rq);
5f3ea37c 1210 trace_block_rq_requeue(q, rq);
2056a782 1211
1da177e4
LT
1212 if (blk_rq_tagged(rq))
1213 blk_queue_end_tag(q, rq);
1214
ba396a6c
JB
1215 BUG_ON(blk_queued_rq(rq));
1216
1da177e4
LT
1217 elv_requeue_request(q, rq);
1218}
1da177e4
LT
1219EXPORT_SYMBOL(blk_requeue_request);
1220
73c10101
JA
1221static void add_acct_request(struct request_queue *q, struct request *rq,
1222 int where)
1223{
1224 drive_stat_acct(rq, 1);
7eaceacc 1225 __elv_add_request(q, rq, where);
73c10101
JA
1226}
1227
074a7aca
TH
1228static void part_round_stats_single(int cpu, struct hd_struct *part,
1229 unsigned long now)
1230{
1231 if (now == part->stamp)
1232 return;
1233
316d315b 1234 if (part_in_flight(part)) {
074a7aca 1235 __part_stat_add(cpu, part, time_in_queue,
316d315b 1236 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1237 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1238 }
1239 part->stamp = now;
1240}
1241
1242/**
496aa8a9
RD
1243 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1244 * @cpu: cpu number for stats access
1245 * @part: target partition
1da177e4
LT
1246 *
1247 * The average IO queue length and utilisation statistics are maintained
1248 * by observing the current state of the queue length and the amount of
1249 * time it has been in this state for.
1250 *
1251 * Normally, that accounting is done on IO completion, but that can result
1252 * in more than a second's worth of IO being accounted for within any one
1253 * second, leading to >100% utilisation. To deal with that, we call this
1254 * function to do a round-off before returning the results when reading
1255 * /proc/diskstats. This accounts immediately for all queue usage up to
1256 * the current jiffies and restarts the counters again.
1257 */
c9959059 1258void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1259{
1260 unsigned long now = jiffies;
1261
074a7aca
TH
1262 if (part->partno)
1263 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1264 part_round_stats_single(cpu, part, now);
6f2576af 1265}
074a7aca 1266EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1267
c8158819
LM
1268#ifdef CONFIG_PM_RUNTIME
1269static void blk_pm_put_request(struct request *rq)
1270{
1271 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1272 pm_runtime_mark_last_busy(rq->q->dev);
1273}
1274#else
1275static inline void blk_pm_put_request(struct request *rq) {}
1276#endif
1277
1da177e4
LT
1278/*
1279 * queue lock must be held
1280 */
165125e1 1281void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1282{
1da177e4
LT
1283 if (unlikely(!q))
1284 return;
1285 if (unlikely(--req->ref_count))
1286 return;
1287
c8158819
LM
1288 blk_pm_put_request(req);
1289
8922e16c
TH
1290 elv_completed_request(q, req);
1291
1cd96c24
BH
1292 /* this is a bio leak */
1293 WARN_ON(req->bio != NULL);
1294
1da177e4
LT
1295 /*
1296 * Request may not have originated from ll_rw_blk. if not,
1297 * it didn't come out of our reserved rq pools
1298 */
49171e5c 1299 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1300 unsigned int flags = req->cmd_flags;
a051661c 1301 struct request_list *rl = blk_rq_rl(req);
1da177e4 1302
1da177e4 1303 BUG_ON(!list_empty(&req->queuelist));
9817064b 1304 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4 1305
a051661c
TH
1306 blk_free_request(rl, req);
1307 freed_request(rl, flags);
1308 blk_put_rl(rl);
1da177e4
LT
1309 }
1310}
6e39b69e
MC
1311EXPORT_SYMBOL_GPL(__blk_put_request);
1312
1da177e4
LT
1313void blk_put_request(struct request *req)
1314{
8922e16c 1315 unsigned long flags;
165125e1 1316 struct request_queue *q = req->q;
8922e16c 1317
52a93ba8
FT
1318 spin_lock_irqsave(q->queue_lock, flags);
1319 __blk_put_request(q, req);
1320 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1321}
1da177e4
LT
1322EXPORT_SYMBOL(blk_put_request);
1323
66ac0280
CH
1324/**
1325 * blk_add_request_payload - add a payload to a request
1326 * @rq: request to update
1327 * @page: page backing the payload
1328 * @len: length of the payload.
1329 *
1330 * This allows to later add a payload to an already submitted request by
1331 * a block driver. The driver needs to take care of freeing the payload
1332 * itself.
1333 *
1334 * Note that this is a quite horrible hack and nothing but handling of
1335 * discard requests should ever use it.
1336 */
1337void blk_add_request_payload(struct request *rq, struct page *page,
1338 unsigned int len)
1339{
1340 struct bio *bio = rq->bio;
1341
1342 bio->bi_io_vec->bv_page = page;
1343 bio->bi_io_vec->bv_offset = 0;
1344 bio->bi_io_vec->bv_len = len;
1345
1346 bio->bi_size = len;
1347 bio->bi_vcnt = 1;
1348 bio->bi_phys_segments = 1;
1349
1350 rq->__data_len = rq->resid_len = len;
1351 rq->nr_phys_segments = 1;
1352 rq->buffer = bio_data(bio);
1353}
1354EXPORT_SYMBOL_GPL(blk_add_request_payload);
1355
73c10101
JA
1356static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1357 struct bio *bio)
1358{
1359 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1360
73c10101
JA
1361 if (!ll_back_merge_fn(q, req, bio))
1362 return false;
1363
8c1cf6bb 1364 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1365
1366 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1367 blk_rq_set_mixed_merge(req);
1368
1369 req->biotail->bi_next = bio;
1370 req->biotail = bio;
1371 req->__data_len += bio->bi_size;
1372 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1373
1374 drive_stat_acct(req, 0);
1375 return true;
1376}
1377
1378static bool bio_attempt_front_merge(struct request_queue *q,
1379 struct request *req, struct bio *bio)
1380{
1381 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1382
73c10101
JA
1383 if (!ll_front_merge_fn(q, req, bio))
1384 return false;
1385
8c1cf6bb 1386 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1387
1388 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1389 blk_rq_set_mixed_merge(req);
1390
73c10101
JA
1391 bio->bi_next = req->bio;
1392 req->bio = bio;
1393
1394 /*
1395 * may not be valid. if the low level driver said
1396 * it didn't need a bounce buffer then it better
1397 * not touch req->buffer either...
1398 */
1399 req->buffer = bio_data(bio);
1400 req->__sector = bio->bi_sector;
1401 req->__data_len += bio->bi_size;
1402 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1403
1404 drive_stat_acct(req, 0);
1405 return true;
1406}
1407
bd87b589
TH
1408/**
1409 * attempt_plug_merge - try to merge with %current's plugged list
1410 * @q: request_queue new bio is being queued at
1411 * @bio: new bio being queued
1412 * @request_count: out parameter for number of traversed plugged requests
1413 *
1414 * Determine whether @bio being queued on @q can be merged with a request
1415 * on %current's plugged list. Returns %true if merge was successful,
1416 * otherwise %false.
1417 *
07c2bd37
TH
1418 * Plugging coalesces IOs from the same issuer for the same purpose without
1419 * going through @q->queue_lock. As such it's more of an issuing mechanism
1420 * than scheduling, and the request, while may have elvpriv data, is not
1421 * added on the elevator at this point. In addition, we don't have
1422 * reliable access to the elevator outside queue lock. Only check basic
1423 * merging parameters without querying the elevator.
73c10101 1424 */
bd87b589
TH
1425static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1426 unsigned int *request_count)
73c10101
JA
1427{
1428 struct blk_plug *plug;
1429 struct request *rq;
1430 bool ret = false;
1431
bd87b589 1432 plug = current->plug;
73c10101
JA
1433 if (!plug)
1434 goto out;
56ebdaf2 1435 *request_count = 0;
73c10101
JA
1436
1437 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1438 int el_ret;
1439
1b2e19f1
SL
1440 if (rq->q == q)
1441 (*request_count)++;
56ebdaf2 1442
07c2bd37 1443 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1444 continue;
1445
050c8ea8 1446 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1447 if (el_ret == ELEVATOR_BACK_MERGE) {
1448 ret = bio_attempt_back_merge(q, rq, bio);
1449 if (ret)
1450 break;
1451 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1452 ret = bio_attempt_front_merge(q, rq, bio);
1453 if (ret)
1454 break;
1455 }
1456 }
1457out:
1458 return ret;
1459}
1460
86db1e29 1461void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1462{
4aff5e23 1463 req->cmd_type = REQ_TYPE_FS;
52d9e675 1464
7b6d91da
CH
1465 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1466 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1467 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1468
52d9e675 1469 req->errors = 0;
a2dec7b3 1470 req->__sector = bio->bi_sector;
52d9e675 1471 req->ioprio = bio_prio(bio);
bc1c56fd 1472 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1473}
1474
5a7bbad2 1475void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1476{
5e00d1b5 1477 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1478 struct blk_plug *plug;
1479 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1480 struct request *req;
56ebdaf2 1481 unsigned int request_count = 0;
1da177e4 1482
1da177e4
LT
1483 /*
1484 * low level driver can indicate that it wants pages above a
1485 * certain limit bounced to low memory (ie for highmem, or even
1486 * ISA dma in theory)
1487 */
1488 blk_queue_bounce(q, &bio);
1489
ffecfd1a
DW
1490 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1491 bio_endio(bio, -EIO);
1492 return;
1493 }
1494
4fed947c 1495 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1496 spin_lock_irq(q->queue_lock);
ae1b1539 1497 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1498 goto get_rq;
1499 }
1500
73c10101
JA
1501 /*
1502 * Check if we can merge with the plugged list before grabbing
1503 * any locks.
1504 */
bd87b589 1505 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1506 return;
1da177e4 1507
73c10101 1508 spin_lock_irq(q->queue_lock);
2056a782 1509
73c10101
JA
1510 el_ret = elv_merge(q, &req, bio);
1511 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1512 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1513 elv_bio_merged(q, req, bio);
73c10101
JA
1514 if (!attempt_back_merge(q, req))
1515 elv_merged_request(q, req, el_ret);
1516 goto out_unlock;
1517 }
1518 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1519 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1520 elv_bio_merged(q, req, bio);
73c10101
JA
1521 if (!attempt_front_merge(q, req))
1522 elv_merged_request(q, req, el_ret);
1523 goto out_unlock;
80a761fd 1524 }
1da177e4
LT
1525 }
1526
450991bc 1527get_rq:
7749a8d4
JA
1528 /*
1529 * This sync check and mask will be re-done in init_request_from_bio(),
1530 * but we need to set it earlier to expose the sync flag to the
1531 * rq allocator and io schedulers.
1532 */
1533 rw_flags = bio_data_dir(bio);
1534 if (sync)
7b6d91da 1535 rw_flags |= REQ_SYNC;
7749a8d4 1536
1da177e4 1537 /*
450991bc 1538 * Grab a free request. This is might sleep but can not fail.
d6344532 1539 * Returns with the queue unlocked.
450991bc 1540 */
a06e05e6 1541 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1542 if (unlikely(!req)) {
1543 bio_endio(bio, -ENODEV); /* @q is dead */
1544 goto out_unlock;
1545 }
d6344532 1546
450991bc
NP
1547 /*
1548 * After dropping the lock and possibly sleeping here, our request
1549 * may now be mergeable after it had proven unmergeable (above).
1550 * We don't worry about that case for efficiency. It won't happen
1551 * often, and the elevators are able to handle it.
1da177e4 1552 */
52d9e675 1553 init_request_from_bio(req, bio);
1da177e4 1554
9562ad9a 1555 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1556 req->cpu = raw_smp_processor_id();
73c10101
JA
1557
1558 plug = current->plug;
721a9602 1559 if (plug) {
dc6d36c9
JA
1560 /*
1561 * If this is the first request added after a plug, fire
7aef2e78 1562 * of a plug trace.
dc6d36c9 1563 */
7aef2e78 1564 if (!request_count)
dc6d36c9 1565 trace_block_plug(q);
3540d5e8 1566 else {
019ceb7d 1567 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1568 blk_flush_plug_list(plug, false);
019ceb7d
SL
1569 trace_block_plug(q);
1570 }
73c10101 1571 }
73c10101
JA
1572 list_add_tail(&req->queuelist, &plug->list);
1573 drive_stat_acct(req, 1);
1574 } else {
1575 spin_lock_irq(q->queue_lock);
1576 add_acct_request(q, req, where);
24ecfbe2 1577 __blk_run_queue(q);
73c10101
JA
1578out_unlock:
1579 spin_unlock_irq(q->queue_lock);
1580 }
1da177e4 1581}
c20e8de2 1582EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1583
1584/*
1585 * If bio->bi_dev is a partition, remap the location
1586 */
1587static inline void blk_partition_remap(struct bio *bio)
1588{
1589 struct block_device *bdev = bio->bi_bdev;
1590
bf2de6f5 1591 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1592 struct hd_struct *p = bdev->bd_part;
1593
1da177e4
LT
1594 bio->bi_sector += p->start_sect;
1595 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1596
d07335e5
MS
1597 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1598 bdev->bd_dev,
1599 bio->bi_sector - p->start_sect);
1da177e4
LT
1600 }
1601}
1602
1da177e4
LT
1603static void handle_bad_sector(struct bio *bio)
1604{
1605 char b[BDEVNAME_SIZE];
1606
1607 printk(KERN_INFO "attempt to access beyond end of device\n");
1608 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1609 bdevname(bio->bi_bdev, b),
1610 bio->bi_rw,
f73a1c7d 1611 (unsigned long long)bio_end_sector(bio),
77304d2a 1612 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1613
1614 set_bit(BIO_EOF, &bio->bi_flags);
1615}
1616
c17bb495
AM
1617#ifdef CONFIG_FAIL_MAKE_REQUEST
1618
1619static DECLARE_FAULT_ATTR(fail_make_request);
1620
1621static int __init setup_fail_make_request(char *str)
1622{
1623 return setup_fault_attr(&fail_make_request, str);
1624}
1625__setup("fail_make_request=", setup_fail_make_request);
1626
b2c9cd37 1627static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1628{
b2c9cd37 1629 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1630}
1631
1632static int __init fail_make_request_debugfs(void)
1633{
dd48c085
AM
1634 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1635 NULL, &fail_make_request);
1636
1637 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1638}
1639
1640late_initcall(fail_make_request_debugfs);
1641
1642#else /* CONFIG_FAIL_MAKE_REQUEST */
1643
b2c9cd37
AM
1644static inline bool should_fail_request(struct hd_struct *part,
1645 unsigned int bytes)
c17bb495 1646{
b2c9cd37 1647 return false;
c17bb495
AM
1648}
1649
1650#endif /* CONFIG_FAIL_MAKE_REQUEST */
1651
c07e2b41
JA
1652/*
1653 * Check whether this bio extends beyond the end of the device.
1654 */
1655static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1656{
1657 sector_t maxsector;
1658
1659 if (!nr_sectors)
1660 return 0;
1661
1662 /* Test device or partition size, when known. */
77304d2a 1663 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1664 if (maxsector) {
1665 sector_t sector = bio->bi_sector;
1666
1667 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1668 /*
1669 * This may well happen - the kernel calls bread()
1670 * without checking the size of the device, e.g., when
1671 * mounting a device.
1672 */
1673 handle_bad_sector(bio);
1674 return 1;
1675 }
1676 }
1677
1678 return 0;
1679}
1680
27a84d54
CH
1681static noinline_for_stack bool
1682generic_make_request_checks(struct bio *bio)
1da177e4 1683{
165125e1 1684 struct request_queue *q;
5a7bbad2 1685 int nr_sectors = bio_sectors(bio);
51fd77bd 1686 int err = -EIO;
5a7bbad2
CH
1687 char b[BDEVNAME_SIZE];
1688 struct hd_struct *part;
1da177e4
LT
1689
1690 might_sleep();
1da177e4 1691
c07e2b41
JA
1692 if (bio_check_eod(bio, nr_sectors))
1693 goto end_io;
1da177e4 1694
5a7bbad2
CH
1695 q = bdev_get_queue(bio->bi_bdev);
1696 if (unlikely(!q)) {
1697 printk(KERN_ERR
1698 "generic_make_request: Trying to access "
1699 "nonexistent block-device %s (%Lu)\n",
1700 bdevname(bio->bi_bdev, b),
1701 (long long) bio->bi_sector);
1702 goto end_io;
1703 }
c17bb495 1704
e2a60da7
MP
1705 if (likely(bio_is_rw(bio) &&
1706 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1707 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1708 bdevname(bio->bi_bdev, b),
1709 bio_sectors(bio),
1710 queue_max_hw_sectors(q));
1711 goto end_io;
1712 }
1da177e4 1713
5a7bbad2
CH
1714 part = bio->bi_bdev->bd_part;
1715 if (should_fail_request(part, bio->bi_size) ||
1716 should_fail_request(&part_to_disk(part)->part0,
1717 bio->bi_size))
1718 goto end_io;
2056a782 1719
5a7bbad2
CH
1720 /*
1721 * If this device has partitions, remap block n
1722 * of partition p to block n+start(p) of the disk.
1723 */
1724 blk_partition_remap(bio);
2056a782 1725
5a7bbad2
CH
1726 if (bio_check_eod(bio, nr_sectors))
1727 goto end_io;
1e87901e 1728
5a7bbad2
CH
1729 /*
1730 * Filter flush bio's early so that make_request based
1731 * drivers without flush support don't have to worry
1732 * about them.
1733 */
1734 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1735 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1736 if (!nr_sectors) {
1737 err = 0;
51fd77bd
JA
1738 goto end_io;
1739 }
5a7bbad2 1740 }
5ddfe969 1741
5a7bbad2
CH
1742 if ((bio->bi_rw & REQ_DISCARD) &&
1743 (!blk_queue_discard(q) ||
e2a60da7 1744 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1745 err = -EOPNOTSUPP;
1746 goto end_io;
1747 }
01edede4 1748
4363ac7c 1749 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1750 err = -EOPNOTSUPP;
1751 goto end_io;
1752 }
01edede4 1753
7f4b35d1
TH
1754 /*
1755 * Various block parts want %current->io_context and lazy ioc
1756 * allocation ends up trading a lot of pain for a small amount of
1757 * memory. Just allocate it upfront. This may fail and block
1758 * layer knows how to live with it.
1759 */
1760 create_io_context(GFP_ATOMIC, q->node);
1761
bc16a4f9
TH
1762 if (blk_throtl_bio(q, bio))
1763 return false; /* throttled, will be resubmitted later */
27a84d54 1764
5a7bbad2 1765 trace_block_bio_queue(q, bio);
27a84d54 1766 return true;
a7384677
TH
1767
1768end_io:
1769 bio_endio(bio, err);
27a84d54 1770 return false;
1da177e4
LT
1771}
1772
27a84d54
CH
1773/**
1774 * generic_make_request - hand a buffer to its device driver for I/O
1775 * @bio: The bio describing the location in memory and on the device.
1776 *
1777 * generic_make_request() is used to make I/O requests of block
1778 * devices. It is passed a &struct bio, which describes the I/O that needs
1779 * to be done.
1780 *
1781 * generic_make_request() does not return any status. The
1782 * success/failure status of the request, along with notification of
1783 * completion, is delivered asynchronously through the bio->bi_end_io
1784 * function described (one day) else where.
1785 *
1786 * The caller of generic_make_request must make sure that bi_io_vec
1787 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1788 * set to describe the device address, and the
1789 * bi_end_io and optionally bi_private are set to describe how
1790 * completion notification should be signaled.
1791 *
1792 * generic_make_request and the drivers it calls may use bi_next if this
1793 * bio happens to be merged with someone else, and may resubmit the bio to
1794 * a lower device by calling into generic_make_request recursively, which
1795 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1796 */
1797void generic_make_request(struct bio *bio)
1798{
bddd87c7
AM
1799 struct bio_list bio_list_on_stack;
1800
27a84d54
CH
1801 if (!generic_make_request_checks(bio))
1802 return;
1803
1804 /*
1805 * We only want one ->make_request_fn to be active at a time, else
1806 * stack usage with stacked devices could be a problem. So use
1807 * current->bio_list to keep a list of requests submited by a
1808 * make_request_fn function. current->bio_list is also used as a
1809 * flag to say if generic_make_request is currently active in this
1810 * task or not. If it is NULL, then no make_request is active. If
1811 * it is non-NULL, then a make_request is active, and new requests
1812 * should be added at the tail
1813 */
bddd87c7 1814 if (current->bio_list) {
bddd87c7 1815 bio_list_add(current->bio_list, bio);
d89d8796
NB
1816 return;
1817 }
27a84d54 1818
d89d8796
NB
1819 /* following loop may be a bit non-obvious, and so deserves some
1820 * explanation.
1821 * Before entering the loop, bio->bi_next is NULL (as all callers
1822 * ensure that) so we have a list with a single bio.
1823 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1824 * we assign bio_list to a pointer to the bio_list_on_stack,
1825 * thus initialising the bio_list of new bios to be
27a84d54 1826 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1827 * through a recursive call to generic_make_request. If it
1828 * did, we find a non-NULL value in bio_list and re-enter the loop
1829 * from the top. In this case we really did just take the bio
bddd87c7 1830 * of the top of the list (no pretending) and so remove it from
27a84d54 1831 * bio_list, and call into ->make_request() again.
d89d8796
NB
1832 */
1833 BUG_ON(bio->bi_next);
bddd87c7
AM
1834 bio_list_init(&bio_list_on_stack);
1835 current->bio_list = &bio_list_on_stack;
d89d8796 1836 do {
27a84d54
CH
1837 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1838
1839 q->make_request_fn(q, bio);
1840
bddd87c7 1841 bio = bio_list_pop(current->bio_list);
d89d8796 1842 } while (bio);
bddd87c7 1843 current->bio_list = NULL; /* deactivate */
d89d8796 1844}
1da177e4
LT
1845EXPORT_SYMBOL(generic_make_request);
1846
1847/**
710027a4 1848 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1849 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1850 * @bio: The &struct bio which describes the I/O
1851 *
1852 * submit_bio() is very similar in purpose to generic_make_request(), and
1853 * uses that function to do most of the work. Both are fairly rough
710027a4 1854 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1855 *
1856 */
1857void submit_bio(int rw, struct bio *bio)
1858{
22e2c507 1859 bio->bi_rw |= rw;
1da177e4 1860
bf2de6f5
JA
1861 /*
1862 * If it's a regular read/write or a barrier with data attached,
1863 * go through the normal accounting stuff before submission.
1864 */
e2a60da7 1865 if (bio_has_data(bio)) {
4363ac7c
MP
1866 unsigned int count;
1867
1868 if (unlikely(rw & REQ_WRITE_SAME))
1869 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1870 else
1871 count = bio_sectors(bio);
1872
bf2de6f5
JA
1873 if (rw & WRITE) {
1874 count_vm_events(PGPGOUT, count);
1875 } else {
1876 task_io_account_read(bio->bi_size);
1877 count_vm_events(PGPGIN, count);
1878 }
1879
1880 if (unlikely(block_dump)) {
1881 char b[BDEVNAME_SIZE];
8dcbdc74 1882 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1883 current->comm, task_pid_nr(current),
bf2de6f5
JA
1884 (rw & WRITE) ? "WRITE" : "READ",
1885 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1886 bdevname(bio->bi_bdev, b),
1887 count);
bf2de6f5 1888 }
1da177e4
LT
1889 }
1890
1891 generic_make_request(bio);
1892}
1da177e4
LT
1893EXPORT_SYMBOL(submit_bio);
1894
82124d60
KU
1895/**
1896 * blk_rq_check_limits - Helper function to check a request for the queue limit
1897 * @q: the queue
1898 * @rq: the request being checked
1899 *
1900 * Description:
1901 * @rq may have been made based on weaker limitations of upper-level queues
1902 * in request stacking drivers, and it may violate the limitation of @q.
1903 * Since the block layer and the underlying device driver trust @rq
1904 * after it is inserted to @q, it should be checked against @q before
1905 * the insertion using this generic function.
1906 *
1907 * This function should also be useful for request stacking drivers
eef35c2d 1908 * in some cases below, so export this function.
82124d60
KU
1909 * Request stacking drivers like request-based dm may change the queue
1910 * limits while requests are in the queue (e.g. dm's table swapping).
1911 * Such request stacking drivers should check those requests agaist
1912 * the new queue limits again when they dispatch those requests,
1913 * although such checkings are also done against the old queue limits
1914 * when submitting requests.
1915 */
1916int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1917{
e2a60da7 1918 if (!rq_mergeable(rq))
3383977f
S
1919 return 0;
1920
f31dc1cd 1921 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1922 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1923 return -EIO;
1924 }
1925
1926 /*
1927 * queue's settings related to segment counting like q->bounce_pfn
1928 * may differ from that of other stacking queues.
1929 * Recalculate it to check the request correctly on this queue's
1930 * limitation.
1931 */
1932 blk_recalc_rq_segments(rq);
8a78362c 1933 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1934 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1935 return -EIO;
1936 }
1937
1938 return 0;
1939}
1940EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1941
1942/**
1943 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1944 * @q: the queue to submit the request
1945 * @rq: the request being queued
1946 */
1947int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1948{
1949 unsigned long flags;
4853abaa 1950 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1951
1952 if (blk_rq_check_limits(q, rq))
1953 return -EIO;
1954
b2c9cd37
AM
1955 if (rq->rq_disk &&
1956 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1957 return -EIO;
82124d60
KU
1958
1959 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 1960 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
1961 spin_unlock_irqrestore(q->queue_lock, flags);
1962 return -ENODEV;
1963 }
82124d60
KU
1964
1965 /*
1966 * Submitting request must be dequeued before calling this function
1967 * because it will be linked to another request_queue
1968 */
1969 BUG_ON(blk_queued_rq(rq));
1970
4853abaa
JM
1971 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1972 where = ELEVATOR_INSERT_FLUSH;
1973
1974 add_acct_request(q, rq, where);
e67b77c7
JM
1975 if (where == ELEVATOR_INSERT_FLUSH)
1976 __blk_run_queue(q);
82124d60
KU
1977 spin_unlock_irqrestore(q->queue_lock, flags);
1978
1979 return 0;
1980}
1981EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1982
80a761fd
TH
1983/**
1984 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1985 * @rq: request to examine
1986 *
1987 * Description:
1988 * A request could be merge of IOs which require different failure
1989 * handling. This function determines the number of bytes which
1990 * can be failed from the beginning of the request without
1991 * crossing into area which need to be retried further.
1992 *
1993 * Return:
1994 * The number of bytes to fail.
1995 *
1996 * Context:
1997 * queue_lock must be held.
1998 */
1999unsigned int blk_rq_err_bytes(const struct request *rq)
2000{
2001 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2002 unsigned int bytes = 0;
2003 struct bio *bio;
2004
2005 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2006 return blk_rq_bytes(rq);
2007
2008 /*
2009 * Currently the only 'mixing' which can happen is between
2010 * different fastfail types. We can safely fail portions
2011 * which have all the failfast bits that the first one has -
2012 * the ones which are at least as eager to fail as the first
2013 * one.
2014 */
2015 for (bio = rq->bio; bio; bio = bio->bi_next) {
2016 if ((bio->bi_rw & ff) != ff)
2017 break;
2018 bytes += bio->bi_size;
2019 }
2020
2021 /* this could lead to infinite loop */
2022 BUG_ON(blk_rq_bytes(rq) && !bytes);
2023 return bytes;
2024}
2025EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2026
bc58ba94
JA
2027static void blk_account_io_completion(struct request *req, unsigned int bytes)
2028{
c2553b58 2029 if (blk_do_io_stat(req)) {
bc58ba94
JA
2030 const int rw = rq_data_dir(req);
2031 struct hd_struct *part;
2032 int cpu;
2033
2034 cpu = part_stat_lock();
09e099d4 2035 part = req->part;
bc58ba94
JA
2036 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2037 part_stat_unlock();
2038 }
2039}
2040
2041static void blk_account_io_done(struct request *req)
2042{
bc58ba94 2043 /*
dd4c133f
TH
2044 * Account IO completion. flush_rq isn't accounted as a
2045 * normal IO on queueing nor completion. Accounting the
2046 * containing request is enough.
bc58ba94 2047 */
414b4ff5 2048 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2049 unsigned long duration = jiffies - req->start_time;
2050 const int rw = rq_data_dir(req);
2051 struct hd_struct *part;
2052 int cpu;
2053
2054 cpu = part_stat_lock();
09e099d4 2055 part = req->part;
bc58ba94
JA
2056
2057 part_stat_inc(cpu, part, ios[rw]);
2058 part_stat_add(cpu, part, ticks[rw], duration);
2059 part_round_stats(cpu, part);
316d315b 2060 part_dec_in_flight(part, rw);
bc58ba94 2061
6c23a968 2062 hd_struct_put(part);
bc58ba94
JA
2063 part_stat_unlock();
2064 }
2065}
2066
c8158819
LM
2067#ifdef CONFIG_PM_RUNTIME
2068/*
2069 * Don't process normal requests when queue is suspended
2070 * or in the process of suspending/resuming
2071 */
2072static struct request *blk_pm_peek_request(struct request_queue *q,
2073 struct request *rq)
2074{
2075 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2076 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2077 return NULL;
2078 else
2079 return rq;
2080}
2081#else
2082static inline struct request *blk_pm_peek_request(struct request_queue *q,
2083 struct request *rq)
2084{
2085 return rq;
2086}
2087#endif
2088
3bcddeac 2089/**
9934c8c0
TH
2090 * blk_peek_request - peek at the top of a request queue
2091 * @q: request queue to peek at
2092 *
2093 * Description:
2094 * Return the request at the top of @q. The returned request
2095 * should be started using blk_start_request() before LLD starts
2096 * processing it.
2097 *
2098 * Return:
2099 * Pointer to the request at the top of @q if available. Null
2100 * otherwise.
2101 *
2102 * Context:
2103 * queue_lock must be held.
2104 */
2105struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2106{
2107 struct request *rq;
2108 int ret;
2109
2110 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2111
2112 rq = blk_pm_peek_request(q, rq);
2113 if (!rq)
2114 break;
2115
158dbda0
TH
2116 if (!(rq->cmd_flags & REQ_STARTED)) {
2117 /*
2118 * This is the first time the device driver
2119 * sees this request (possibly after
2120 * requeueing). Notify IO scheduler.
2121 */
33659ebb 2122 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2123 elv_activate_rq(q, rq);
2124
2125 /*
2126 * just mark as started even if we don't start
2127 * it, a request that has been delayed should
2128 * not be passed by new incoming requests
2129 */
2130 rq->cmd_flags |= REQ_STARTED;
2131 trace_block_rq_issue(q, rq);
2132 }
2133
2134 if (!q->boundary_rq || q->boundary_rq == rq) {
2135 q->end_sector = rq_end_sector(rq);
2136 q->boundary_rq = NULL;
2137 }
2138
2139 if (rq->cmd_flags & REQ_DONTPREP)
2140 break;
2141
2e46e8b2 2142 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2143 /*
2144 * make sure space for the drain appears we
2145 * know we can do this because max_hw_segments
2146 * has been adjusted to be one fewer than the
2147 * device can handle
2148 */
2149 rq->nr_phys_segments++;
2150 }
2151
2152 if (!q->prep_rq_fn)
2153 break;
2154
2155 ret = q->prep_rq_fn(q, rq);
2156 if (ret == BLKPREP_OK) {
2157 break;
2158 } else if (ret == BLKPREP_DEFER) {
2159 /*
2160 * the request may have been (partially) prepped.
2161 * we need to keep this request in the front to
2162 * avoid resource deadlock. REQ_STARTED will
2163 * prevent other fs requests from passing this one.
2164 */
2e46e8b2 2165 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2166 !(rq->cmd_flags & REQ_DONTPREP)) {
2167 /*
2168 * remove the space for the drain we added
2169 * so that we don't add it again
2170 */
2171 --rq->nr_phys_segments;
2172 }
2173
2174 rq = NULL;
2175 break;
2176 } else if (ret == BLKPREP_KILL) {
2177 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2178 /*
2179 * Mark this request as started so we don't trigger
2180 * any debug logic in the end I/O path.
2181 */
2182 blk_start_request(rq);
40cbbb78 2183 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2184 } else {
2185 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2186 break;
2187 }
2188 }
2189
2190 return rq;
2191}
9934c8c0 2192EXPORT_SYMBOL(blk_peek_request);
158dbda0 2193
9934c8c0 2194void blk_dequeue_request(struct request *rq)
158dbda0 2195{
9934c8c0
TH
2196 struct request_queue *q = rq->q;
2197
158dbda0
TH
2198 BUG_ON(list_empty(&rq->queuelist));
2199 BUG_ON(ELV_ON_HASH(rq));
2200
2201 list_del_init(&rq->queuelist);
2202
2203 /*
2204 * the time frame between a request being removed from the lists
2205 * and to it is freed is accounted as io that is in progress at
2206 * the driver side.
2207 */
9195291e 2208 if (blk_account_rq(rq)) {
0a7ae2ff 2209 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2210 set_io_start_time_ns(rq);
2211 }
158dbda0
TH
2212}
2213
9934c8c0
TH
2214/**
2215 * blk_start_request - start request processing on the driver
2216 * @req: request to dequeue
2217 *
2218 * Description:
2219 * Dequeue @req and start timeout timer on it. This hands off the
2220 * request to the driver.
2221 *
2222 * Block internal functions which don't want to start timer should
2223 * call blk_dequeue_request().
2224 *
2225 * Context:
2226 * queue_lock must be held.
2227 */
2228void blk_start_request(struct request *req)
2229{
2230 blk_dequeue_request(req);
2231
2232 /*
5f49f631
TH
2233 * We are now handing the request to the hardware, initialize
2234 * resid_len to full count and add the timeout handler.
9934c8c0 2235 */
5f49f631 2236 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2237 if (unlikely(blk_bidi_rq(req)))
2238 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2239
4912aa6c 2240 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2241 blk_add_timer(req);
2242}
2243EXPORT_SYMBOL(blk_start_request);
2244
2245/**
2246 * blk_fetch_request - fetch a request from a request queue
2247 * @q: request queue to fetch a request from
2248 *
2249 * Description:
2250 * Return the request at the top of @q. The request is started on
2251 * return and LLD can start processing it immediately.
2252 *
2253 * Return:
2254 * Pointer to the request at the top of @q if available. Null
2255 * otherwise.
2256 *
2257 * Context:
2258 * queue_lock must be held.
2259 */
2260struct request *blk_fetch_request(struct request_queue *q)
2261{
2262 struct request *rq;
2263
2264 rq = blk_peek_request(q);
2265 if (rq)
2266 blk_start_request(rq);
2267 return rq;
2268}
2269EXPORT_SYMBOL(blk_fetch_request);
2270
3bcddeac 2271/**
2e60e022 2272 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2273 * @req: the request being processed
710027a4 2274 * @error: %0 for success, < %0 for error
8ebf9756 2275 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2276 *
2277 * Description:
8ebf9756
RD
2278 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2279 * the request structure even if @req doesn't have leftover.
2280 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2281 *
2282 * This special helper function is only for request stacking drivers
2283 * (e.g. request-based dm) so that they can handle partial completion.
2284 * Actual device drivers should use blk_end_request instead.
2285 *
2286 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2287 * %false return from this function.
3bcddeac
KU
2288 *
2289 * Return:
2e60e022
TH
2290 * %false - this request doesn't have any more data
2291 * %true - this request has more data
3bcddeac 2292 **/
2e60e022 2293bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2294{
f79ea416 2295 int total_bytes;
1da177e4 2296
2e60e022
TH
2297 if (!req->bio)
2298 return false;
2299
5f3ea37c 2300 trace_block_rq_complete(req->q, req);
2056a782 2301
1da177e4 2302 /*
6f41469c
TH
2303 * For fs requests, rq is just carrier of independent bio's
2304 * and each partial completion should be handled separately.
2305 * Reset per-request error on each partial completion.
2306 *
2307 * TODO: tj: This is too subtle. It would be better to let
2308 * low level drivers do what they see fit.
1da177e4 2309 */
33659ebb 2310 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2311 req->errors = 0;
2312
33659ebb
CH
2313 if (error && req->cmd_type == REQ_TYPE_FS &&
2314 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2315 char *error_type;
2316
2317 switch (error) {
2318 case -ENOLINK:
2319 error_type = "recoverable transport";
2320 break;
2321 case -EREMOTEIO:
2322 error_type = "critical target";
2323 break;
2324 case -EBADE:
2325 error_type = "critical nexus";
2326 break;
d1ffc1f8
HR
2327 case -ETIMEDOUT:
2328 error_type = "timeout";
2329 break;
a9d6ceb8
HR
2330 case -ENOSPC:
2331 error_type = "critical space allocation";
2332 break;
7e782af5
HR
2333 case -ENODATA:
2334 error_type = "critical medium";
2335 break;
79775567
HR
2336 case -EIO:
2337 default:
2338 error_type = "I/O";
2339 break;
2340 }
37d7b34f
YZ
2341 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2342 error_type, req->rq_disk ?
2343 req->rq_disk->disk_name : "?",
2344 (unsigned long long)blk_rq_pos(req));
2345
1da177e4
LT
2346 }
2347
bc58ba94 2348 blk_account_io_completion(req, nr_bytes);
d72d904a 2349
f79ea416
KO
2350 total_bytes = 0;
2351 while (req->bio) {
2352 struct bio *bio = req->bio;
2353 unsigned bio_bytes = min(bio->bi_size, nr_bytes);
1da177e4 2354
f79ea416 2355 if (bio_bytes == bio->bi_size)
1da177e4 2356 req->bio = bio->bi_next;
1da177e4 2357
f79ea416 2358 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2359
f79ea416
KO
2360 total_bytes += bio_bytes;
2361 nr_bytes -= bio_bytes;
1da177e4 2362
f79ea416
KO
2363 if (!nr_bytes)
2364 break;
1da177e4
LT
2365 }
2366
2367 /*
2368 * completely done
2369 */
2e60e022
TH
2370 if (!req->bio) {
2371 /*
2372 * Reset counters so that the request stacking driver
2373 * can find how many bytes remain in the request
2374 * later.
2375 */
a2dec7b3 2376 req->__data_len = 0;
2e60e022
TH
2377 return false;
2378 }
1da177e4 2379
a2dec7b3 2380 req->__data_len -= total_bytes;
2e46e8b2
TH
2381 req->buffer = bio_data(req->bio);
2382
2383 /* update sector only for requests with clear definition of sector */
e2a60da7 2384 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2385 req->__sector += total_bytes >> 9;
2e46e8b2 2386
80a761fd
TH
2387 /* mixed attributes always follow the first bio */
2388 if (req->cmd_flags & REQ_MIXED_MERGE) {
2389 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2390 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2391 }
2392
2e46e8b2
TH
2393 /*
2394 * If total number of sectors is less than the first segment
2395 * size, something has gone terribly wrong.
2396 */
2397 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2398 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2399 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2400 }
2401
2402 /* recalculate the number of segments */
1da177e4 2403 blk_recalc_rq_segments(req);
2e46e8b2 2404
2e60e022 2405 return true;
1da177e4 2406}
2e60e022 2407EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2408
2e60e022
TH
2409static bool blk_update_bidi_request(struct request *rq, int error,
2410 unsigned int nr_bytes,
2411 unsigned int bidi_bytes)
5efccd17 2412{
2e60e022
TH
2413 if (blk_update_request(rq, error, nr_bytes))
2414 return true;
5efccd17 2415
2e60e022
TH
2416 /* Bidi request must be completed as a whole */
2417 if (unlikely(blk_bidi_rq(rq)) &&
2418 blk_update_request(rq->next_rq, error, bidi_bytes))
2419 return true;
5efccd17 2420
e2e1a148
JA
2421 if (blk_queue_add_random(rq->q))
2422 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2423
2424 return false;
1da177e4
LT
2425}
2426
28018c24
JB
2427/**
2428 * blk_unprep_request - unprepare a request
2429 * @req: the request
2430 *
2431 * This function makes a request ready for complete resubmission (or
2432 * completion). It happens only after all error handling is complete,
2433 * so represents the appropriate moment to deallocate any resources
2434 * that were allocated to the request in the prep_rq_fn. The queue
2435 * lock is held when calling this.
2436 */
2437void blk_unprep_request(struct request *req)
2438{
2439 struct request_queue *q = req->q;
2440
2441 req->cmd_flags &= ~REQ_DONTPREP;
2442 if (q->unprep_rq_fn)
2443 q->unprep_rq_fn(q, req);
2444}
2445EXPORT_SYMBOL_GPL(blk_unprep_request);
2446
1da177e4
LT
2447/*
2448 * queue lock must be held
2449 */
2e60e022 2450static void blk_finish_request(struct request *req, int error)
1da177e4 2451{
b8286239
KU
2452 if (blk_rq_tagged(req))
2453 blk_queue_end_tag(req->q, req);
2454
ba396a6c 2455 BUG_ON(blk_queued_rq(req));
1da177e4 2456
33659ebb 2457 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2458 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2459
e78042e5
MA
2460 blk_delete_timer(req);
2461
28018c24
JB
2462 if (req->cmd_flags & REQ_DONTPREP)
2463 blk_unprep_request(req);
2464
2465
bc58ba94 2466 blk_account_io_done(req);
b8286239 2467
1da177e4 2468 if (req->end_io)
8ffdc655 2469 req->end_io(req, error);
b8286239
KU
2470 else {
2471 if (blk_bidi_rq(req))
2472 __blk_put_request(req->next_rq->q, req->next_rq);
2473
1da177e4 2474 __blk_put_request(req->q, req);
b8286239 2475 }
1da177e4
LT
2476}
2477
3b11313a 2478/**
2e60e022
TH
2479 * blk_end_bidi_request - Complete a bidi request
2480 * @rq: the request to complete
2481 * @error: %0 for success, < %0 for error
2482 * @nr_bytes: number of bytes to complete @rq
2483 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2484 *
2485 * Description:
e3a04fe3 2486 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2487 * Drivers that supports bidi can safely call this member for any
2488 * type of request, bidi or uni. In the later case @bidi_bytes is
2489 * just ignored.
336cdb40
KU
2490 *
2491 * Return:
2e60e022
TH
2492 * %false - we are done with this request
2493 * %true - still buffers pending for this request
a0cd1285 2494 **/
b1f74493 2495static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2496 unsigned int nr_bytes, unsigned int bidi_bytes)
2497{
336cdb40 2498 struct request_queue *q = rq->q;
2e60e022 2499 unsigned long flags;
32fab448 2500
2e60e022
TH
2501 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2502 return true;
32fab448 2503
336cdb40 2504 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2505 blk_finish_request(rq, error);
336cdb40
KU
2506 spin_unlock_irqrestore(q->queue_lock, flags);
2507
2e60e022 2508 return false;
32fab448
KU
2509}
2510
336cdb40 2511/**
2e60e022
TH
2512 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2513 * @rq: the request to complete
710027a4 2514 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2515 * @nr_bytes: number of bytes to complete @rq
2516 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2517 *
2518 * Description:
2e60e022
TH
2519 * Identical to blk_end_bidi_request() except that queue lock is
2520 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2521 *
2522 * Return:
2e60e022
TH
2523 * %false - we are done with this request
2524 * %true - still buffers pending for this request
336cdb40 2525 **/
4853abaa 2526bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2527 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2528{
2e60e022
TH
2529 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2530 return true;
336cdb40 2531
2e60e022 2532 blk_finish_request(rq, error);
336cdb40 2533
2e60e022 2534 return false;
336cdb40 2535}
e19a3ab0
KU
2536
2537/**
2538 * blk_end_request - Helper function for drivers to complete the request.
2539 * @rq: the request being processed
710027a4 2540 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2541 * @nr_bytes: number of bytes to complete
2542 *
2543 * Description:
2544 * Ends I/O on a number of bytes attached to @rq.
2545 * If @rq has leftover, sets it up for the next range of segments.
2546 *
2547 * Return:
b1f74493
FT
2548 * %false - we are done with this request
2549 * %true - still buffers pending for this request
e19a3ab0 2550 **/
b1f74493 2551bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2552{
b1f74493 2553 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2554}
56ad1740 2555EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2556
2557/**
b1f74493
FT
2558 * blk_end_request_all - Helper function for drives to finish the request.
2559 * @rq: the request to finish
8ebf9756 2560 * @error: %0 for success, < %0 for error
336cdb40
KU
2561 *
2562 * Description:
b1f74493
FT
2563 * Completely finish @rq.
2564 */
2565void blk_end_request_all(struct request *rq, int error)
336cdb40 2566{
b1f74493
FT
2567 bool pending;
2568 unsigned int bidi_bytes = 0;
336cdb40 2569
b1f74493
FT
2570 if (unlikely(blk_bidi_rq(rq)))
2571 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2572
b1f74493
FT
2573 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2574 BUG_ON(pending);
2575}
56ad1740 2576EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2577
b1f74493
FT
2578/**
2579 * blk_end_request_cur - Helper function to finish the current request chunk.
2580 * @rq: the request to finish the current chunk for
8ebf9756 2581 * @error: %0 for success, < %0 for error
b1f74493
FT
2582 *
2583 * Description:
2584 * Complete the current consecutively mapped chunk from @rq.
2585 *
2586 * Return:
2587 * %false - we are done with this request
2588 * %true - still buffers pending for this request
2589 */
2590bool blk_end_request_cur(struct request *rq, int error)
2591{
2592 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2593}
56ad1740 2594EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2595
80a761fd
TH
2596/**
2597 * blk_end_request_err - Finish a request till the next failure boundary.
2598 * @rq: the request to finish till the next failure boundary for
2599 * @error: must be negative errno
2600 *
2601 * Description:
2602 * Complete @rq till the next failure boundary.
2603 *
2604 * Return:
2605 * %false - we are done with this request
2606 * %true - still buffers pending for this request
2607 */
2608bool blk_end_request_err(struct request *rq, int error)
2609{
2610 WARN_ON(error >= 0);
2611 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2612}
2613EXPORT_SYMBOL_GPL(blk_end_request_err);
2614
e3a04fe3 2615/**
b1f74493
FT
2616 * __blk_end_request - Helper function for drivers to complete the request.
2617 * @rq: the request being processed
2618 * @error: %0 for success, < %0 for error
2619 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2620 *
2621 * Description:
b1f74493 2622 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2623 *
2624 * Return:
b1f74493
FT
2625 * %false - we are done with this request
2626 * %true - still buffers pending for this request
e3a04fe3 2627 **/
b1f74493 2628bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2629{
b1f74493 2630 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2631}
56ad1740 2632EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2633
32fab448 2634/**
b1f74493
FT
2635 * __blk_end_request_all - Helper function for drives to finish the request.
2636 * @rq: the request to finish
8ebf9756 2637 * @error: %0 for success, < %0 for error
32fab448
KU
2638 *
2639 * Description:
b1f74493 2640 * Completely finish @rq. Must be called with queue lock held.
32fab448 2641 */
b1f74493 2642void __blk_end_request_all(struct request *rq, int error)
32fab448 2643{
b1f74493
FT
2644 bool pending;
2645 unsigned int bidi_bytes = 0;
2646
2647 if (unlikely(blk_bidi_rq(rq)))
2648 bidi_bytes = blk_rq_bytes(rq->next_rq);
2649
2650 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2651 BUG_ON(pending);
32fab448 2652}
56ad1740 2653EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2654
e19a3ab0 2655/**
b1f74493
FT
2656 * __blk_end_request_cur - Helper function to finish the current request chunk.
2657 * @rq: the request to finish the current chunk for
8ebf9756 2658 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2659 *
2660 * Description:
b1f74493
FT
2661 * Complete the current consecutively mapped chunk from @rq. Must
2662 * be called with queue lock held.
e19a3ab0
KU
2663 *
2664 * Return:
b1f74493
FT
2665 * %false - we are done with this request
2666 * %true - still buffers pending for this request
2667 */
2668bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2669{
b1f74493 2670 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2671}
56ad1740 2672EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2673
80a761fd
TH
2674/**
2675 * __blk_end_request_err - Finish a request till the next failure boundary.
2676 * @rq: the request to finish till the next failure boundary for
2677 * @error: must be negative errno
2678 *
2679 * Description:
2680 * Complete @rq till the next failure boundary. Must be called
2681 * with queue lock held.
2682 *
2683 * Return:
2684 * %false - we are done with this request
2685 * %true - still buffers pending for this request
2686 */
2687bool __blk_end_request_err(struct request *rq, int error)
2688{
2689 WARN_ON(error >= 0);
2690 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2691}
2692EXPORT_SYMBOL_GPL(__blk_end_request_err);
2693
86db1e29
JA
2694void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2695 struct bio *bio)
1da177e4 2696{
a82afdfc 2697 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2698 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2699
fb2dce86
DW
2700 if (bio_has_data(bio)) {
2701 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2702 rq->buffer = bio_data(bio);
2703 }
a2dec7b3 2704 rq->__data_len = bio->bi_size;
1da177e4 2705 rq->bio = rq->biotail = bio;
1da177e4 2706
66846572
N
2707 if (bio->bi_bdev)
2708 rq->rq_disk = bio->bi_bdev->bd_disk;
2709}
1da177e4 2710
2d4dc890
IL
2711#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2712/**
2713 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2714 * @rq: the request to be flushed
2715 *
2716 * Description:
2717 * Flush all pages in @rq.
2718 */
2719void rq_flush_dcache_pages(struct request *rq)
2720{
2721 struct req_iterator iter;
2722 struct bio_vec *bvec;
2723
2724 rq_for_each_segment(bvec, rq, iter)
2725 flush_dcache_page(bvec->bv_page);
2726}
2727EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2728#endif
2729
ef9e3fac
KU
2730/**
2731 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2732 * @q : the queue of the device being checked
2733 *
2734 * Description:
2735 * Check if underlying low-level drivers of a device are busy.
2736 * If the drivers want to export their busy state, they must set own
2737 * exporting function using blk_queue_lld_busy() first.
2738 *
2739 * Basically, this function is used only by request stacking drivers
2740 * to stop dispatching requests to underlying devices when underlying
2741 * devices are busy. This behavior helps more I/O merging on the queue
2742 * of the request stacking driver and prevents I/O throughput regression
2743 * on burst I/O load.
2744 *
2745 * Return:
2746 * 0 - Not busy (The request stacking driver should dispatch request)
2747 * 1 - Busy (The request stacking driver should stop dispatching request)
2748 */
2749int blk_lld_busy(struct request_queue *q)
2750{
2751 if (q->lld_busy_fn)
2752 return q->lld_busy_fn(q);
2753
2754 return 0;
2755}
2756EXPORT_SYMBOL_GPL(blk_lld_busy);
2757
b0fd271d
KU
2758/**
2759 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2760 * @rq: the clone request to be cleaned up
2761 *
2762 * Description:
2763 * Free all bios in @rq for a cloned request.
2764 */
2765void blk_rq_unprep_clone(struct request *rq)
2766{
2767 struct bio *bio;
2768
2769 while ((bio = rq->bio) != NULL) {
2770 rq->bio = bio->bi_next;
2771
2772 bio_put(bio);
2773 }
2774}
2775EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2776
2777/*
2778 * Copy attributes of the original request to the clone request.
2779 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2780 */
2781static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2782{
2783 dst->cpu = src->cpu;
3a2edd0d 2784 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2785 dst->cmd_type = src->cmd_type;
2786 dst->__sector = blk_rq_pos(src);
2787 dst->__data_len = blk_rq_bytes(src);
2788 dst->nr_phys_segments = src->nr_phys_segments;
2789 dst->ioprio = src->ioprio;
2790 dst->extra_len = src->extra_len;
2791}
2792
2793/**
2794 * blk_rq_prep_clone - Helper function to setup clone request
2795 * @rq: the request to be setup
2796 * @rq_src: original request to be cloned
2797 * @bs: bio_set that bios for clone are allocated from
2798 * @gfp_mask: memory allocation mask for bio
2799 * @bio_ctr: setup function to be called for each clone bio.
2800 * Returns %0 for success, non %0 for failure.
2801 * @data: private data to be passed to @bio_ctr
2802 *
2803 * Description:
2804 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2805 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2806 * are not copied, and copying such parts is the caller's responsibility.
2807 * Also, pages which the original bios are pointing to are not copied
2808 * and the cloned bios just point same pages.
2809 * So cloned bios must be completed before original bios, which means
2810 * the caller must complete @rq before @rq_src.
2811 */
2812int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2813 struct bio_set *bs, gfp_t gfp_mask,
2814 int (*bio_ctr)(struct bio *, struct bio *, void *),
2815 void *data)
2816{
2817 struct bio *bio, *bio_src;
2818
2819 if (!bs)
2820 bs = fs_bio_set;
2821
2822 blk_rq_init(NULL, rq);
2823
2824 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2825 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2826 if (!bio)
2827 goto free_and_out;
2828
b0fd271d
KU
2829 if (bio_ctr && bio_ctr(bio, bio_src, data))
2830 goto free_and_out;
2831
2832 if (rq->bio) {
2833 rq->biotail->bi_next = bio;
2834 rq->biotail = bio;
2835 } else
2836 rq->bio = rq->biotail = bio;
2837 }
2838
2839 __blk_rq_prep_clone(rq, rq_src);
2840
2841 return 0;
2842
2843free_and_out:
2844 if (bio)
4254bba1 2845 bio_put(bio);
b0fd271d
KU
2846 blk_rq_unprep_clone(rq);
2847
2848 return -ENOMEM;
2849}
2850EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2851
18887ad9 2852int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2853{
2854 return queue_work(kblockd_workqueue, work);
2855}
1da177e4
LT
2856EXPORT_SYMBOL(kblockd_schedule_work);
2857
e43473b7
VG
2858int kblockd_schedule_delayed_work(struct request_queue *q,
2859 struct delayed_work *dwork, unsigned long delay)
2860{
2861 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2862}
2863EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2864
73c10101
JA
2865#define PLUG_MAGIC 0x91827364
2866
75df7136
SJ
2867/**
2868 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2869 * @plug: The &struct blk_plug that needs to be initialized
2870 *
2871 * Description:
2872 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2873 * pending I/O should the task end up blocking between blk_start_plug() and
2874 * blk_finish_plug(). This is important from a performance perspective, but
2875 * also ensures that we don't deadlock. For instance, if the task is blocking
2876 * for a memory allocation, memory reclaim could end up wanting to free a
2877 * page belonging to that request that is currently residing in our private
2878 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2879 * this kind of deadlock.
2880 */
73c10101
JA
2881void blk_start_plug(struct blk_plug *plug)
2882{
2883 struct task_struct *tsk = current;
2884
2885 plug->magic = PLUG_MAGIC;
2886 INIT_LIST_HEAD(&plug->list);
048c9374 2887 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2888
2889 /*
2890 * If this is a nested plug, don't actually assign it. It will be
2891 * flushed on its own.
2892 */
2893 if (!tsk->plug) {
2894 /*
2895 * Store ordering should not be needed here, since a potential
2896 * preempt will imply a full memory barrier
2897 */
2898 tsk->plug = plug;
2899 }
2900}
2901EXPORT_SYMBOL(blk_start_plug);
2902
2903static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2904{
2905 struct request *rqa = container_of(a, struct request, queuelist);
2906 struct request *rqb = container_of(b, struct request, queuelist);
2907
975927b9
JM
2908 return !(rqa->q < rqb->q ||
2909 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
2910}
2911
49cac01e
JA
2912/*
2913 * If 'from_schedule' is true, then postpone the dispatch of requests
2914 * until a safe kblockd context. We due this to avoid accidental big
2915 * additional stack usage in driver dispatch, in places where the originally
2916 * plugger did not intend it.
2917 */
f6603783 2918static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2919 bool from_schedule)
99e22598 2920 __releases(q->queue_lock)
94b5eb28 2921{
49cac01e 2922 trace_block_unplug(q, depth, !from_schedule);
99e22598 2923
70460571 2924 if (from_schedule)
24ecfbe2 2925 blk_run_queue_async(q);
70460571 2926 else
24ecfbe2 2927 __blk_run_queue(q);
70460571 2928 spin_unlock(q->queue_lock);
94b5eb28
JA
2929}
2930
74018dc3 2931static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
2932{
2933 LIST_HEAD(callbacks);
2934
2a7d5559
SL
2935 while (!list_empty(&plug->cb_list)) {
2936 list_splice_init(&plug->cb_list, &callbacks);
048c9374 2937
2a7d5559
SL
2938 while (!list_empty(&callbacks)) {
2939 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
2940 struct blk_plug_cb,
2941 list);
2a7d5559 2942 list_del(&cb->list);
74018dc3 2943 cb->callback(cb, from_schedule);
2a7d5559 2944 }
048c9374
N
2945 }
2946}
2947
9cbb1750
N
2948struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2949 int size)
2950{
2951 struct blk_plug *plug = current->plug;
2952 struct blk_plug_cb *cb;
2953
2954 if (!plug)
2955 return NULL;
2956
2957 list_for_each_entry(cb, &plug->cb_list, list)
2958 if (cb->callback == unplug && cb->data == data)
2959 return cb;
2960
2961 /* Not currently on the callback list */
2962 BUG_ON(size < sizeof(*cb));
2963 cb = kzalloc(size, GFP_ATOMIC);
2964 if (cb) {
2965 cb->data = data;
2966 cb->callback = unplug;
2967 list_add(&cb->list, &plug->cb_list);
2968 }
2969 return cb;
2970}
2971EXPORT_SYMBOL(blk_check_plugged);
2972
49cac01e 2973void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2974{
2975 struct request_queue *q;
2976 unsigned long flags;
2977 struct request *rq;
109b8129 2978 LIST_HEAD(list);
94b5eb28 2979 unsigned int depth;
73c10101
JA
2980
2981 BUG_ON(plug->magic != PLUG_MAGIC);
2982
74018dc3 2983 flush_plug_callbacks(plug, from_schedule);
73c10101
JA
2984 if (list_empty(&plug->list))
2985 return;
2986
109b8129
N
2987 list_splice_init(&plug->list, &list);
2988
422765c2 2989 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
2990
2991 q = NULL;
94b5eb28 2992 depth = 0;
18811272
JA
2993
2994 /*
2995 * Save and disable interrupts here, to avoid doing it for every
2996 * queue lock we have to take.
2997 */
73c10101 2998 local_irq_save(flags);
109b8129
N
2999 while (!list_empty(&list)) {
3000 rq = list_entry_rq(list.next);
73c10101 3001 list_del_init(&rq->queuelist);
73c10101
JA
3002 BUG_ON(!rq->q);
3003 if (rq->q != q) {
99e22598
JA
3004 /*
3005 * This drops the queue lock
3006 */
3007 if (q)
49cac01e 3008 queue_unplugged(q, depth, from_schedule);
73c10101 3009 q = rq->q;
94b5eb28 3010 depth = 0;
73c10101
JA
3011 spin_lock(q->queue_lock);
3012 }
8ba61435
TH
3013
3014 /*
3015 * Short-circuit if @q is dead
3016 */
3f3299d5 3017 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3018 __blk_end_request_all(rq, -ENODEV);
3019 continue;
3020 }
3021
73c10101
JA
3022 /*
3023 * rq is already accounted, so use raw insert
3024 */
401a18e9
JA
3025 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3026 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3027 else
3028 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3029
3030 depth++;
73c10101
JA
3031 }
3032
99e22598
JA
3033 /*
3034 * This drops the queue lock
3035 */
3036 if (q)
49cac01e 3037 queue_unplugged(q, depth, from_schedule);
73c10101 3038
73c10101
JA
3039 local_irq_restore(flags);
3040}
73c10101
JA
3041
3042void blk_finish_plug(struct blk_plug *plug)
3043{
f6603783 3044 blk_flush_plug_list(plug, false);
73c10101 3045
88b996cd
CH
3046 if (plug == current->plug)
3047 current->plug = NULL;
73c10101 3048}
88b996cd 3049EXPORT_SYMBOL(blk_finish_plug);
73c10101 3050
6c954667
LM
3051#ifdef CONFIG_PM_RUNTIME
3052/**
3053 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3054 * @q: the queue of the device
3055 * @dev: the device the queue belongs to
3056 *
3057 * Description:
3058 * Initialize runtime-PM-related fields for @q and start auto suspend for
3059 * @dev. Drivers that want to take advantage of request-based runtime PM
3060 * should call this function after @dev has been initialized, and its
3061 * request queue @q has been allocated, and runtime PM for it can not happen
3062 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3063 * cases, driver should call this function before any I/O has taken place.
3064 *
3065 * This function takes care of setting up using auto suspend for the device,
3066 * the autosuspend delay is set to -1 to make runtime suspend impossible
3067 * until an updated value is either set by user or by driver. Drivers do
3068 * not need to touch other autosuspend settings.
3069 *
3070 * The block layer runtime PM is request based, so only works for drivers
3071 * that use request as their IO unit instead of those directly use bio's.
3072 */
3073void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3074{
3075 q->dev = dev;
3076 q->rpm_status = RPM_ACTIVE;
3077 pm_runtime_set_autosuspend_delay(q->dev, -1);
3078 pm_runtime_use_autosuspend(q->dev);
3079}
3080EXPORT_SYMBOL(blk_pm_runtime_init);
3081
3082/**
3083 * blk_pre_runtime_suspend - Pre runtime suspend check
3084 * @q: the queue of the device
3085 *
3086 * Description:
3087 * This function will check if runtime suspend is allowed for the device
3088 * by examining if there are any requests pending in the queue. If there
3089 * are requests pending, the device can not be runtime suspended; otherwise,
3090 * the queue's status will be updated to SUSPENDING and the driver can
3091 * proceed to suspend the device.
3092 *
3093 * For the not allowed case, we mark last busy for the device so that
3094 * runtime PM core will try to autosuspend it some time later.
3095 *
3096 * This function should be called near the start of the device's
3097 * runtime_suspend callback.
3098 *
3099 * Return:
3100 * 0 - OK to runtime suspend the device
3101 * -EBUSY - Device should not be runtime suspended
3102 */
3103int blk_pre_runtime_suspend(struct request_queue *q)
3104{
3105 int ret = 0;
3106
3107 spin_lock_irq(q->queue_lock);
3108 if (q->nr_pending) {
3109 ret = -EBUSY;
3110 pm_runtime_mark_last_busy(q->dev);
3111 } else {
3112 q->rpm_status = RPM_SUSPENDING;
3113 }
3114 spin_unlock_irq(q->queue_lock);
3115 return ret;
3116}
3117EXPORT_SYMBOL(blk_pre_runtime_suspend);
3118
3119/**
3120 * blk_post_runtime_suspend - Post runtime suspend processing
3121 * @q: the queue of the device
3122 * @err: return value of the device's runtime_suspend function
3123 *
3124 * Description:
3125 * Update the queue's runtime status according to the return value of the
3126 * device's runtime suspend function and mark last busy for the device so
3127 * that PM core will try to auto suspend the device at a later time.
3128 *
3129 * This function should be called near the end of the device's
3130 * runtime_suspend callback.
3131 */
3132void blk_post_runtime_suspend(struct request_queue *q, int err)
3133{
3134 spin_lock_irq(q->queue_lock);
3135 if (!err) {
3136 q->rpm_status = RPM_SUSPENDED;
3137 } else {
3138 q->rpm_status = RPM_ACTIVE;
3139 pm_runtime_mark_last_busy(q->dev);
3140 }
3141 spin_unlock_irq(q->queue_lock);
3142}
3143EXPORT_SYMBOL(blk_post_runtime_suspend);
3144
3145/**
3146 * blk_pre_runtime_resume - Pre runtime resume processing
3147 * @q: the queue of the device
3148 *
3149 * Description:
3150 * Update the queue's runtime status to RESUMING in preparation for the
3151 * runtime resume of the device.
3152 *
3153 * This function should be called near the start of the device's
3154 * runtime_resume callback.
3155 */
3156void blk_pre_runtime_resume(struct request_queue *q)
3157{
3158 spin_lock_irq(q->queue_lock);
3159 q->rpm_status = RPM_RESUMING;
3160 spin_unlock_irq(q->queue_lock);
3161}
3162EXPORT_SYMBOL(blk_pre_runtime_resume);
3163
3164/**
3165 * blk_post_runtime_resume - Post runtime resume processing
3166 * @q: the queue of the device
3167 * @err: return value of the device's runtime_resume function
3168 *
3169 * Description:
3170 * Update the queue's runtime status according to the return value of the
3171 * device's runtime_resume function. If it is successfully resumed, process
3172 * the requests that are queued into the device's queue when it is resuming
3173 * and then mark last busy and initiate autosuspend for it.
3174 *
3175 * This function should be called near the end of the device's
3176 * runtime_resume callback.
3177 */
3178void blk_post_runtime_resume(struct request_queue *q, int err)
3179{
3180 spin_lock_irq(q->queue_lock);
3181 if (!err) {
3182 q->rpm_status = RPM_ACTIVE;
3183 __blk_run_queue(q);
3184 pm_runtime_mark_last_busy(q->dev);
c60855cd 3185 pm_request_autosuspend(q->dev);
6c954667
LM
3186 } else {
3187 q->rpm_status = RPM_SUSPENDED;
3188 }
3189 spin_unlock_irq(q->queue_lock);
3190}
3191EXPORT_SYMBOL(blk_post_runtime_resume);
3192#endif
3193
1da177e4
LT
3194int __init blk_dev_init(void)
3195{
9eb55b03
NK
3196 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3197 sizeof(((struct request *)0)->cmd_flags));
3198
89b90be2
TH
3199 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3200 kblockd_workqueue = alloc_workqueue("kblockd",
695588f9
VK
3201 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3202 WQ_POWER_EFFICIENT, 0);
1da177e4
LT
3203 if (!kblockd_workqueue)
3204 panic("Failed to create kblockd\n");
3205
3206 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3207 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3208
8324aa91 3209 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3210 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3211
d38ecf93 3212 return 0;
1da177e4 3213}