]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-core.c
block: lift the initial queue bypass mode on blk_register_queue() instead of blk_init...
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
aaf7c680 32#include <linux/ratelimit.h>
55782138
LZ
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/block.h>
1da177e4 36
8324aa91 37#include "blk.h"
5efd6113 38#include "blk-cgroup.h"
8324aa91 39
d07335e5 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 42EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 43
a73f730d
TH
44DEFINE_IDA(blk_queue_ida);
45
1da177e4
LT
46/*
47 * For the allocated request tables
48 */
5ece6c52 49static struct kmem_cache *request_cachep;
1da177e4
LT
50
51/*
52 * For queue allocation
53 */
6728cb0e 54struct kmem_cache *blk_requestq_cachep;
1da177e4 55
1da177e4
LT
56/*
57 * Controlling structure to kblockd
58 */
ff856bad 59static struct workqueue_struct *kblockd_workqueue;
1da177e4 60
26b8256e
JA
61static void drive_stat_acct(struct request *rq, int new_io)
62{
28f13702 63 struct hd_struct *part;
26b8256e 64 int rw = rq_data_dir(rq);
c9959059 65 int cpu;
26b8256e 66
c2553b58 67 if (!blk_do_io_stat(rq))
26b8256e
JA
68 return;
69
074a7aca 70 cpu = part_stat_lock();
c9959059 71
09e099d4
JM
72 if (!new_io) {
73 part = rq->part;
074a7aca 74 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 77 if (!hd_struct_try_get(part)) {
09e099d4
JM
78 /*
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
81 *
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
85 */
86 part = &rq->rq_disk->part0;
6c23a968 87 hd_struct_get(part);
09e099d4 88 }
074a7aca 89 part_round_stats(cpu, part);
316d315b 90 part_inc_in_flight(part, rw);
09e099d4 91 rq->part = part;
26b8256e 92 }
e71bf0d0 93
074a7aca 94 part_stat_unlock();
26b8256e
JA
95}
96
8324aa91 97void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
98{
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110}
111
1da177e4
LT
112/**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122{
123 struct backing_dev_info *ret = NULL;
165125e1 124 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129}
1da177e4
LT
130EXPORT_SYMBOL(blk_get_backing_dev_info);
131
2a4aa30c 132void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 133{
1afb20f3
FT
134 memset(rq, 0, sizeof(*rq));
135
1da177e4 136 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 137 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 138 rq->cpu = -1;
63a71386 139 rq->q = q;
a2dec7b3 140 rq->__sector = (sector_t) -1;
2e662b65
JA
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 143 rq->cmd = rq->__cmd;
e2494e1b 144 rq->cmd_len = BLK_MAX_CDB;
63a71386 145 rq->tag = -1;
1da177e4 146 rq->ref_count = 1;
b243ddcb 147 rq->start_time = jiffies;
9195291e 148 set_start_time_ns(rq);
09e099d4 149 rq->part = NULL;
1da177e4 150}
2a4aa30c 151EXPORT_SYMBOL(blk_rq_init);
1da177e4 152
5bb23a68
N
153static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
1da177e4 155{
143a87f4
TH
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
797e7dbb 160
143a87f4
TH
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
5bb23a68 165 }
797e7dbb 166
143a87f4
TH
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 169
143a87f4
TH
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
7ba1ba12 172
143a87f4
TH
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
7ba1ba12 175
143a87f4
TH
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
1da177e4 179}
1da177e4 180
1da177e4
LT
181void blk_dump_rq_flags(struct request *rq, char *msg)
182{
183 int bit;
184
6728cb0e 185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
1da177e4 188
83096ebf
TH
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 194
33659ebb 195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 196 printk(KERN_INFO " cdb: ");
d34c87e4 197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201}
1da177e4
LT
202EXPORT_SYMBOL(blk_dump_rq_flags);
203
3cca6dc1 204static void blk_delay_work(struct work_struct *work)
1da177e4 205{
3cca6dc1 206 struct request_queue *q;
1da177e4 207
3cca6dc1
JA
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
24ecfbe2 210 __blk_run_queue(q);
3cca6dc1 211 spin_unlock_irq(q->queue_lock);
1da177e4 212}
1da177e4
LT
213
214/**
3cca6dc1
JA
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
1da177e4
LT
218 *
219 * Description:
3cca6dc1
JA
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
223 */
224void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 225{
4521cc4e
JA
226 queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 msecs_to_jiffies(msecs));
2ad8b1ef 228}
3cca6dc1 229EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 230
1da177e4
LT
231/**
232 * blk_start_queue - restart a previously stopped queue
165125e1 233 * @q: The &struct request_queue in question
1da177e4
LT
234 *
235 * Description:
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
239 **/
165125e1 240void blk_start_queue(struct request_queue *q)
1da177e4 241{
a038e253
PBG
242 WARN_ON(!irqs_disabled());
243
75ad23bc 244 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 245 __blk_run_queue(q);
1da177e4 246}
1da177e4
LT
247EXPORT_SYMBOL(blk_start_queue);
248
249/**
250 * blk_stop_queue - stop a queue
165125e1 251 * @q: The &struct request_queue in question
1da177e4
LT
252 *
253 * Description:
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
262 **/
165125e1 263void blk_stop_queue(struct request_queue *q)
1da177e4 264{
ad3d9d7e 265 __cancel_delayed_work(&q->delay_work);
75ad23bc 266 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
267}
268EXPORT_SYMBOL(blk_stop_queue);
269
270/**
271 * blk_sync_queue - cancel any pending callbacks on a queue
272 * @q: the queue
273 *
274 * Description:
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
59c51591 279 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
280 * that its ->make_request_fn will not re-add plugging prior to calling
281 * this function.
282 *
da527770
VG
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 285 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 286 *
1da177e4
LT
287 */
288void blk_sync_queue(struct request_queue *q)
289{
70ed28b9 290 del_timer_sync(&q->timeout);
3cca6dc1 291 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
292}
293EXPORT_SYMBOL(blk_sync_queue);
294
295/**
80a4b58e 296 * __blk_run_queue - run a single device queue
1da177e4 297 * @q: The queue to run
80a4b58e
JA
298 *
299 * Description:
300 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 301 * held and interrupts disabled.
1da177e4 302 */
24ecfbe2 303void __blk_run_queue(struct request_queue *q)
1da177e4 304{
a538cd03
TH
305 if (unlikely(blk_queue_stopped(q)))
306 return;
307
c21e6beb 308 q->request_fn(q);
75ad23bc
NP
309}
310EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 311
24ecfbe2
CH
312/**
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
315 *
316 * Description:
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318 * of us.
319 */
320void blk_run_queue_async(struct request_queue *q)
321{
3ec717b7
SL
322 if (likely(!blk_queue_stopped(q))) {
323 __cancel_delayed_work(&q->delay_work);
24ecfbe2 324 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 325 }
24ecfbe2 326}
c21e6beb 327EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 328
75ad23bc
NP
329/**
330 * blk_run_queue - run a single device queue
331 * @q: The queue to run
80a4b58e
JA
332 *
333 * Description:
334 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 335 * May be used to restart queueing when a request has completed.
75ad23bc
NP
336 */
337void blk_run_queue(struct request_queue *q)
338{
339 unsigned long flags;
340
341 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 342 __blk_run_queue(q);
1da177e4
LT
343 spin_unlock_irqrestore(q->queue_lock, flags);
344}
345EXPORT_SYMBOL(blk_run_queue);
346
165125e1 347void blk_put_queue(struct request_queue *q)
483f4afc
AV
348{
349 kobject_put(&q->kobj);
350}
d86e0e83 351EXPORT_SYMBOL(blk_put_queue);
483f4afc 352
e3c78ca5
TH
353/**
354 * blk_drain_queue - drain requests from request_queue
355 * @q: queue to drain
c9a929dd 356 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 357 *
c9a929dd
TH
358 * Drain requests from @q. If @drain_all is set, all requests are drained.
359 * If not, only ELVPRIV requests are drained. The caller is responsible
360 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 361 */
c9a929dd 362void blk_drain_queue(struct request_queue *q, bool drain_all)
e3c78ca5 363{
458f27a9
AH
364 int i;
365
e3c78ca5 366 while (true) {
481a7d64 367 bool drain = false;
e3c78ca5
TH
368
369 spin_lock_irq(q->queue_lock);
370
b855b04a
TH
371 /*
372 * The caller might be trying to drain @q before its
373 * elevator is initialized.
374 */
375 if (q->elevator)
376 elv_drain_elevator(q);
377
5efd6113 378 blkcg_drain_queue(q);
e3c78ca5 379
4eabc941
TH
380 /*
381 * This function might be called on a queue which failed
b855b04a
TH
382 * driver init after queue creation or is not yet fully
383 * active yet. Some drivers (e.g. fd and loop) get unhappy
384 * in such cases. Kick queue iff dispatch queue has
385 * something on it and @q has request_fn set.
4eabc941 386 */
b855b04a 387 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 388 __blk_run_queue(q);
c9a929dd 389
8a5ecdd4 390 drain |= q->nr_rqs_elvpriv;
481a7d64
TH
391
392 /*
393 * Unfortunately, requests are queued at and tracked from
394 * multiple places and there's no single counter which can
395 * be drained. Check all the queues and counters.
396 */
397 if (drain_all) {
398 drain |= !list_empty(&q->queue_head);
399 for (i = 0; i < 2; i++) {
8a5ecdd4 400 drain |= q->nr_rqs[i];
481a7d64
TH
401 drain |= q->in_flight[i];
402 drain |= !list_empty(&q->flush_queue[i]);
403 }
404 }
e3c78ca5
TH
405
406 spin_unlock_irq(q->queue_lock);
407
481a7d64 408 if (!drain)
e3c78ca5
TH
409 break;
410 msleep(10);
411 }
458f27a9
AH
412
413 /*
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
417 */
418 if (q->request_fn) {
a051661c
TH
419 struct request_list *rl;
420
458f27a9 421 spin_lock_irq(q->queue_lock);
a051661c
TH
422
423 blk_queue_for_each_rl(rl, q)
424 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 wake_up_all(&rl->wait[i]);
426
458f27a9
AH
427 spin_unlock_irq(q->queue_lock);
428 }
e3c78ca5
TH
429}
430
d732580b
TH
431/**
432 * blk_queue_bypass_start - enter queue bypass mode
433 * @q: queue of interest
434 *
435 * In bypass mode, only the dispatch FIFO queue of @q is used. This
436 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 437 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
438 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
439 * inside queue or RCU read lock.
d732580b
TH
440 */
441void blk_queue_bypass_start(struct request_queue *q)
442{
b82d4b19
TH
443 bool drain;
444
d732580b 445 spin_lock_irq(q->queue_lock);
b82d4b19 446 drain = !q->bypass_depth++;
d732580b
TH
447 queue_flag_set(QUEUE_FLAG_BYPASS, q);
448 spin_unlock_irq(q->queue_lock);
449
b82d4b19
TH
450 if (drain) {
451 blk_drain_queue(q, false);
452 /* ensure blk_queue_bypass() is %true inside RCU read lock */
453 synchronize_rcu();
454 }
d732580b
TH
455}
456EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
457
458/**
459 * blk_queue_bypass_end - leave queue bypass mode
460 * @q: queue of interest
461 *
462 * Leave bypass mode and restore the normal queueing behavior.
463 */
464void blk_queue_bypass_end(struct request_queue *q)
465{
466 spin_lock_irq(q->queue_lock);
467 if (!--q->bypass_depth)
468 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
469 WARN_ON_ONCE(q->bypass_depth < 0);
470 spin_unlock_irq(q->queue_lock);
471}
472EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
473
c9a929dd
TH
474/**
475 * blk_cleanup_queue - shutdown a request queue
476 * @q: request queue to shutdown
477 *
478 * Mark @q DEAD, drain all pending requests, destroy and put it. All
479 * future requests will be failed immediately with -ENODEV.
c94a96ac 480 */
6728cb0e 481void blk_cleanup_queue(struct request_queue *q)
483f4afc 482{
c9a929dd 483 spinlock_t *lock = q->queue_lock;
e3335de9 484
c9a929dd 485 /* mark @q DEAD, no new request or merges will be allowed afterwards */
483f4afc 486 mutex_lock(&q->sysfs_lock);
75ad23bc 487 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
c9a929dd 488 spin_lock_irq(lock);
6ecf23af 489
80fd9979
TH
490 /*
491 * Dead queue is permanently in bypass mode till released. Note
492 * that, unlike blk_queue_bypass_start(), we aren't performing
493 * synchronize_rcu() after entering bypass mode to avoid the delay
494 * as some drivers create and destroy a lot of queues while
495 * probing. This is still safe because blk_release_queue() will be
496 * called only after the queue refcnt drops to zero and nothing,
497 * RCU or not, would be traversing the queue by then.
498 */
6ecf23af
TH
499 q->bypass_depth++;
500 queue_flag_set(QUEUE_FLAG_BYPASS, q);
501
c9a929dd
TH
502 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
503 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
504 queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd
TH
505 spin_unlock_irq(lock);
506 mutex_unlock(&q->sysfs_lock);
507
b855b04a
TH
508 /* drain all requests queued before DEAD marking */
509 blk_drain_queue(q, true);
c9a929dd
TH
510
511 /* @q won't process any more request, flush async actions */
512 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
513 blk_sync_queue(q);
514
5e5cfac0
AH
515 spin_lock_irq(lock);
516 if (q->queue_lock != &q->__queue_lock)
517 q->queue_lock = &q->__queue_lock;
518 spin_unlock_irq(lock);
519
c9a929dd 520 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
521 blk_put_queue(q);
522}
1da177e4
LT
523EXPORT_SYMBOL(blk_cleanup_queue);
524
5b788ce3
TH
525int blk_init_rl(struct request_list *rl, struct request_queue *q,
526 gfp_t gfp_mask)
1da177e4 527{
1abec4fd
MS
528 if (unlikely(rl->rq_pool))
529 return 0;
530
5b788ce3 531 rl->q = q;
1faa16d2
JA
532 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
533 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
534 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
535 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 536
1946089a 537 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 538 mempool_free_slab, request_cachep,
5b788ce3 539 gfp_mask, q->node);
1da177e4
LT
540 if (!rl->rq_pool)
541 return -ENOMEM;
542
543 return 0;
544}
545
5b788ce3
TH
546void blk_exit_rl(struct request_list *rl)
547{
548 if (rl->rq_pool)
549 mempool_destroy(rl->rq_pool);
550}
551
165125e1 552struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 553{
1946089a
CL
554 return blk_alloc_queue_node(gfp_mask, -1);
555}
556EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 557
165125e1 558struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 559{
165125e1 560 struct request_queue *q;
e0bf68dd 561 int err;
1946089a 562
8324aa91 563 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 564 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
565 if (!q)
566 return NULL;
567
00380a40 568 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d
TH
569 if (q->id < 0)
570 goto fail_q;
571
0989a025
JA
572 q->backing_dev_info.ra_pages =
573 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
574 q->backing_dev_info.state = 0;
575 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 576 q->backing_dev_info.name = "block";
5151412d 577 q->node = node_id;
0989a025 578
e0bf68dd 579 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
580 if (err)
581 goto fail_id;
e0bf68dd 582
31373d09
MG
583 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
584 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 585 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 586 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 587 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 588 INIT_LIST_HEAD(&q->icq_list);
4eef3049 589#ifdef CONFIG_BLK_CGROUP
e8989fae 590 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 591#endif
ae1b1539
TH
592 INIT_LIST_HEAD(&q->flush_queue[0]);
593 INIT_LIST_HEAD(&q->flush_queue[1]);
594 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 595 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 596
8324aa91 597 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 598
483f4afc 599 mutex_init(&q->sysfs_lock);
e7e72bf6 600 spin_lock_init(&q->__queue_lock);
483f4afc 601
c94a96ac
VG
602 /*
603 * By default initialize queue_lock to internal lock and driver can
604 * override it later if need be.
605 */
606 q->queue_lock = &q->__queue_lock;
607
b82d4b19
TH
608 /*
609 * A queue starts its life with bypass turned on to avoid
610 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
611 * init. The initial bypass will be finished when the queue is
612 * registered by blk_register_queue().
b82d4b19
TH
613 */
614 q->bypass_depth = 1;
615 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
616
5efd6113 617 if (blkcg_init_queue(q))
f51b802c
TH
618 goto fail_id;
619
1da177e4 620 return q;
a73f730d
TH
621
622fail_id:
623 ida_simple_remove(&blk_queue_ida, q->id);
624fail_q:
625 kmem_cache_free(blk_requestq_cachep, q);
626 return NULL;
1da177e4 627}
1946089a 628EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
629
630/**
631 * blk_init_queue - prepare a request queue for use with a block device
632 * @rfn: The function to be called to process requests that have been
633 * placed on the queue.
634 * @lock: Request queue spin lock
635 *
636 * Description:
637 * If a block device wishes to use the standard request handling procedures,
638 * which sorts requests and coalesces adjacent requests, then it must
639 * call blk_init_queue(). The function @rfn will be called when there
640 * are requests on the queue that need to be processed. If the device
641 * supports plugging, then @rfn may not be called immediately when requests
642 * are available on the queue, but may be called at some time later instead.
643 * Plugged queues are generally unplugged when a buffer belonging to one
644 * of the requests on the queue is needed, or due to memory pressure.
645 *
646 * @rfn is not required, or even expected, to remove all requests off the
647 * queue, but only as many as it can handle at a time. If it does leave
648 * requests on the queue, it is responsible for arranging that the requests
649 * get dealt with eventually.
650 *
651 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
652 * request queue; this lock will be taken also from interrupt context, so irq
653 * disabling is needed for it.
1da177e4 654 *
710027a4 655 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
656 * it didn't succeed.
657 *
658 * Note:
659 * blk_init_queue() must be paired with a blk_cleanup_queue() call
660 * when the block device is deactivated (such as at module unload).
661 **/
1946089a 662
165125e1 663struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 664{
1946089a
CL
665 return blk_init_queue_node(rfn, lock, -1);
666}
667EXPORT_SYMBOL(blk_init_queue);
668
165125e1 669struct request_queue *
1946089a
CL
670blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
671{
c86d1b8a 672 struct request_queue *uninit_q, *q;
1da177e4 673
c86d1b8a
MS
674 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
675 if (!uninit_q)
676 return NULL;
677
5151412d 678 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
679 if (!q)
680 blk_cleanup_queue(uninit_q);
681
682 return q;
01effb0d
MS
683}
684EXPORT_SYMBOL(blk_init_queue_node);
685
686struct request_queue *
687blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
688 spinlock_t *lock)
01effb0d 689{
1da177e4
LT
690 if (!q)
691 return NULL;
692
a051661c 693 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
8669aafd 694 return NULL;
1da177e4
LT
695
696 q->request_fn = rfn;
1da177e4 697 q->prep_rq_fn = NULL;
28018c24 698 q->unprep_rq_fn = NULL;
bc58ba94 699 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
700
701 /* Override internal queue lock with supplied lock pointer */
702 if (lock)
703 q->queue_lock = lock;
1da177e4 704
f3b144aa
JA
705 /*
706 * This also sets hw/phys segments, boundary and size
707 */
c20e8de2 708 blk_queue_make_request(q, blk_queue_bio);
1da177e4 709
44ec9542
AS
710 q->sg_reserved_size = INT_MAX;
711
b82d4b19
TH
712 /* init elevator */
713 if (elevator_init(q, NULL))
714 return NULL;
b82d4b19 715 return q;
1da177e4 716}
5151412d 717EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 718
09ac46c4 719bool blk_get_queue(struct request_queue *q)
1da177e4 720{
34f6055c 721 if (likely(!blk_queue_dead(q))) {
09ac46c4
TH
722 __blk_get_queue(q);
723 return true;
1da177e4
LT
724 }
725
09ac46c4 726 return false;
1da177e4 727}
d86e0e83 728EXPORT_SYMBOL(blk_get_queue);
1da177e4 729
5b788ce3 730static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 731{
f1f8cc94 732 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 733 elv_put_request(rl->q, rq);
f1f8cc94 734 if (rq->elv.icq)
11a3122f 735 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
736 }
737
5b788ce3 738 mempool_free(rq, rl->rq_pool);
1da177e4
LT
739}
740
1da177e4
LT
741/*
742 * ioc_batching returns true if the ioc is a valid batching request and
743 * should be given priority access to a request.
744 */
165125e1 745static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
746{
747 if (!ioc)
748 return 0;
749
750 /*
751 * Make sure the process is able to allocate at least 1 request
752 * even if the batch times out, otherwise we could theoretically
753 * lose wakeups.
754 */
755 return ioc->nr_batch_requests == q->nr_batching ||
756 (ioc->nr_batch_requests > 0
757 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
758}
759
760/*
761 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
762 * will cause the process to be a "batcher" on all queues in the system. This
763 * is the behaviour we want though - once it gets a wakeup it should be given
764 * a nice run.
765 */
165125e1 766static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
767{
768 if (!ioc || ioc_batching(q, ioc))
769 return;
770
771 ioc->nr_batch_requests = q->nr_batching;
772 ioc->last_waited = jiffies;
773}
774
5b788ce3 775static void __freed_request(struct request_list *rl, int sync)
1da177e4 776{
5b788ce3 777 struct request_queue *q = rl->q;
1da177e4 778
a051661c
TH
779 /*
780 * bdi isn't aware of blkcg yet. As all async IOs end up root
781 * blkcg anyway, just use root blkcg state.
782 */
783 if (rl == &q->root_rl &&
784 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 785 blk_clear_queue_congested(q, sync);
1da177e4 786
1faa16d2
JA
787 if (rl->count[sync] + 1 <= q->nr_requests) {
788 if (waitqueue_active(&rl->wait[sync]))
789 wake_up(&rl->wait[sync]);
1da177e4 790
5b788ce3 791 blk_clear_rl_full(rl, sync);
1da177e4
LT
792 }
793}
794
795/*
796 * A request has just been released. Account for it, update the full and
797 * congestion status, wake up any waiters. Called under q->queue_lock.
798 */
5b788ce3 799static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 800{
5b788ce3 801 struct request_queue *q = rl->q;
75eb6c37 802 int sync = rw_is_sync(flags);
1da177e4 803
8a5ecdd4 804 q->nr_rqs[sync]--;
1faa16d2 805 rl->count[sync]--;
75eb6c37 806 if (flags & REQ_ELVPRIV)
8a5ecdd4 807 q->nr_rqs_elvpriv--;
1da177e4 808
5b788ce3 809 __freed_request(rl, sync);
1da177e4 810
1faa16d2 811 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 812 __freed_request(rl, sync ^ 1);
1da177e4
LT
813}
814
9d5a4e94
MS
815/*
816 * Determine if elevator data should be initialized when allocating the
817 * request associated with @bio.
818 */
819static bool blk_rq_should_init_elevator(struct bio *bio)
820{
821 if (!bio)
822 return true;
823
824 /*
825 * Flush requests do not use the elevator so skip initialization.
826 * This allows a request to share the flush and elevator data.
827 */
828 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
829 return false;
830
831 return true;
832}
833
852c788f
TH
834/**
835 * rq_ioc - determine io_context for request allocation
836 * @bio: request being allocated is for this bio (can be %NULL)
837 *
838 * Determine io_context to use for request allocation for @bio. May return
839 * %NULL if %current->io_context doesn't exist.
840 */
841static struct io_context *rq_ioc(struct bio *bio)
842{
843#ifdef CONFIG_BLK_CGROUP
844 if (bio && bio->bi_ioc)
845 return bio->bi_ioc;
846#endif
847 return current->io_context;
848}
849
da8303c6 850/**
a06e05e6 851 * __get_request - get a free request
5b788ce3 852 * @rl: request list to allocate from
da8303c6
TH
853 * @rw_flags: RW and SYNC flags
854 * @bio: bio to allocate request for (can be %NULL)
855 * @gfp_mask: allocation mask
856 *
857 * Get a free request from @q. This function may fail under memory
858 * pressure or if @q is dead.
859 *
860 * Must be callled with @q->queue_lock held and,
861 * Returns %NULL on failure, with @q->queue_lock held.
862 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 863 */
5b788ce3 864static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 865 struct bio *bio, gfp_t gfp_mask)
1da177e4 866{
5b788ce3 867 struct request_queue *q = rl->q;
b679281a 868 struct request *rq;
7f4b35d1
TH
869 struct elevator_type *et = q->elevator->type;
870 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 871 struct io_cq *icq = NULL;
1faa16d2 872 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 873 int may_queue;
88ee5ef1 874
34f6055c 875 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
876 return NULL;
877
7749a8d4 878 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
879 if (may_queue == ELV_MQUEUE_NO)
880 goto rq_starved;
881
1faa16d2
JA
882 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
883 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
884 /*
885 * The queue will fill after this allocation, so set
886 * it as full, and mark this process as "batching".
887 * This process will be allowed to complete a batch of
888 * requests, others will be blocked.
889 */
5b788ce3 890 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 891 ioc_set_batching(q, ioc);
5b788ce3 892 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
893 } else {
894 if (may_queue != ELV_MQUEUE_MUST
895 && !ioc_batching(q, ioc)) {
896 /*
897 * The queue is full and the allocating
898 * process is not a "batcher", and not
899 * exempted by the IO scheduler
900 */
b679281a 901 return NULL;
88ee5ef1
JA
902 }
903 }
1da177e4 904 }
a051661c
TH
905 /*
906 * bdi isn't aware of blkcg yet. As all async IOs end up
907 * root blkcg anyway, just use root blkcg state.
908 */
909 if (rl == &q->root_rl)
910 blk_set_queue_congested(q, is_sync);
1da177e4
LT
911 }
912
082cf69e
JA
913 /*
914 * Only allow batching queuers to allocate up to 50% over the defined
915 * limit of requests, otherwise we could have thousands of requests
916 * allocated with any setting of ->nr_requests
917 */
1faa16d2 918 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 919 return NULL;
fd782a4a 920
8a5ecdd4 921 q->nr_rqs[is_sync]++;
1faa16d2
JA
922 rl->count[is_sync]++;
923 rl->starved[is_sync] = 0;
cb98fc8b 924
f1f8cc94
TH
925 /*
926 * Decide whether the new request will be managed by elevator. If
927 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
928 * prevent the current elevator from being destroyed until the new
929 * request is freed. This guarantees icq's won't be destroyed and
930 * makes creating new ones safe.
931 *
932 * Also, lookup icq while holding queue_lock. If it doesn't exist,
933 * it will be created after releasing queue_lock.
934 */
d732580b 935 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 936 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 937 q->nr_rqs_elvpriv++;
f1f8cc94
TH
938 if (et->icq_cache && ioc)
939 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 940 }
cb98fc8b 941
f253b86b
JA
942 if (blk_queue_io_stat(q))
943 rw_flags |= REQ_IO_STAT;
1da177e4
LT
944 spin_unlock_irq(q->queue_lock);
945
29e2b09a 946 /* allocate and init request */
5b788ce3 947 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 948 if (!rq)
b679281a 949 goto fail_alloc;
1da177e4 950
29e2b09a 951 blk_rq_init(q, rq);
a051661c 952 blk_rq_set_rl(rq, rl);
29e2b09a
TH
953 rq->cmd_flags = rw_flags | REQ_ALLOCED;
954
aaf7c680 955 /* init elvpriv */
29e2b09a 956 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 957 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
958 if (ioc)
959 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
960 if (!icq)
961 goto fail_elvpriv;
29e2b09a 962 }
aaf7c680
TH
963
964 rq->elv.icq = icq;
965 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
966 goto fail_elvpriv;
967
968 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
969 if (icq)
970 get_io_context(icq->ioc);
971 }
aaf7c680 972out:
88ee5ef1
JA
973 /*
974 * ioc may be NULL here, and ioc_batching will be false. That's
975 * OK, if the queue is under the request limit then requests need
976 * not count toward the nr_batch_requests limit. There will always
977 * be some limit enforced by BLK_BATCH_TIME.
978 */
1da177e4
LT
979 if (ioc_batching(q, ioc))
980 ioc->nr_batch_requests--;
6728cb0e 981
1faa16d2 982 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 983 return rq;
b679281a 984
aaf7c680
TH
985fail_elvpriv:
986 /*
987 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
988 * and may fail indefinitely under memory pressure and thus
989 * shouldn't stall IO. Treat this request as !elvpriv. This will
990 * disturb iosched and blkcg but weird is bettern than dead.
991 */
992 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
993 dev_name(q->backing_dev_info.dev));
994
995 rq->cmd_flags &= ~REQ_ELVPRIV;
996 rq->elv.icq = NULL;
997
998 spin_lock_irq(q->queue_lock);
8a5ecdd4 999 q->nr_rqs_elvpriv--;
aaf7c680
TH
1000 spin_unlock_irq(q->queue_lock);
1001 goto out;
1002
b679281a
TH
1003fail_alloc:
1004 /*
1005 * Allocation failed presumably due to memory. Undo anything we
1006 * might have messed up.
1007 *
1008 * Allocating task should really be put onto the front of the wait
1009 * queue, but this is pretty rare.
1010 */
1011 spin_lock_irq(q->queue_lock);
5b788ce3 1012 freed_request(rl, rw_flags);
b679281a
TH
1013
1014 /*
1015 * in the very unlikely event that allocation failed and no
1016 * requests for this direction was pending, mark us starved so that
1017 * freeing of a request in the other direction will notice
1018 * us. another possible fix would be to split the rq mempool into
1019 * READ and WRITE
1020 */
1021rq_starved:
1022 if (unlikely(rl->count[is_sync] == 0))
1023 rl->starved[is_sync] = 1;
1024 return NULL;
1da177e4
LT
1025}
1026
da8303c6 1027/**
a06e05e6 1028 * get_request - get a free request
da8303c6
TH
1029 * @q: request_queue to allocate request from
1030 * @rw_flags: RW and SYNC flags
1031 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1032 * @gfp_mask: allocation mask
da8303c6 1033 *
a06e05e6
TH
1034 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1035 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1036 *
da8303c6
TH
1037 * Must be callled with @q->queue_lock held and,
1038 * Returns %NULL on failure, with @q->queue_lock held.
1039 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1040 */
a06e05e6
TH
1041static struct request *get_request(struct request_queue *q, int rw_flags,
1042 struct bio *bio, gfp_t gfp_mask)
1da177e4 1043{
1faa16d2 1044 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1045 DEFINE_WAIT(wait);
a051661c 1046 struct request_list *rl;
1da177e4 1047 struct request *rq;
a051661c
TH
1048
1049 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1050retry:
a051661c 1051 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1052 if (rq)
1053 return rq;
1da177e4 1054
a051661c
TH
1055 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dead(q))) {
1056 blk_put_rl(rl);
a06e05e6 1057 return NULL;
a051661c 1058 }
1da177e4 1059
a06e05e6
TH
1060 /* wait on @rl and retry */
1061 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1062 TASK_UNINTERRUPTIBLE);
1da177e4 1063
a06e05e6 1064 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1065
a06e05e6
TH
1066 spin_unlock_irq(q->queue_lock);
1067 io_schedule();
d6344532 1068
a06e05e6
TH
1069 /*
1070 * After sleeping, we become a "batching" process and will be able
1071 * to allocate at least one request, and up to a big batch of them
1072 * for a small period time. See ioc_batching, ioc_set_batching
1073 */
a06e05e6 1074 ioc_set_batching(q, current->io_context);
05caf8db 1075
a06e05e6
TH
1076 spin_lock_irq(q->queue_lock);
1077 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1078
a06e05e6 1079 goto retry;
1da177e4
LT
1080}
1081
165125e1 1082struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1083{
1084 struct request *rq;
1085
1086 BUG_ON(rw != READ && rw != WRITE);
1087
7f4b35d1
TH
1088 /* create ioc upfront */
1089 create_io_context(gfp_mask, q->node);
1090
d6344532 1091 spin_lock_irq(q->queue_lock);
a06e05e6 1092 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1093 if (!rq)
1094 spin_unlock_irq(q->queue_lock);
d6344532 1095 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1096
1097 return rq;
1098}
1da177e4
LT
1099EXPORT_SYMBOL(blk_get_request);
1100
dc72ef4a 1101/**
79eb63e9 1102 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1103 * @q: target request queue
79eb63e9
BH
1104 * @bio: The bio describing the memory mappings that will be submitted for IO.
1105 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1106 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1107 *
79eb63e9
BH
1108 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1109 * type commands. Where the struct request needs to be farther initialized by
1110 * the caller. It is passed a &struct bio, which describes the memory info of
1111 * the I/O transfer.
dc72ef4a 1112 *
79eb63e9
BH
1113 * The caller of blk_make_request must make sure that bi_io_vec
1114 * are set to describe the memory buffers. That bio_data_dir() will return
1115 * the needed direction of the request. (And all bio's in the passed bio-chain
1116 * are properly set accordingly)
1117 *
1118 * If called under none-sleepable conditions, mapped bio buffers must not
1119 * need bouncing, by calling the appropriate masked or flagged allocator,
1120 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1121 * BUG.
53674ac5
JA
1122 *
1123 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1124 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1125 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1126 * completion of a bio that hasn't been submitted yet, thus resulting in a
1127 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1128 * of bio_alloc(), as that avoids the mempool deadlock.
1129 * If possible a big IO should be split into smaller parts when allocation
1130 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1131 */
79eb63e9
BH
1132struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1133 gfp_t gfp_mask)
dc72ef4a 1134{
79eb63e9
BH
1135 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1136
1137 if (unlikely(!rq))
1138 return ERR_PTR(-ENOMEM);
1139
1140 for_each_bio(bio) {
1141 struct bio *bounce_bio = bio;
1142 int ret;
1143
1144 blk_queue_bounce(q, &bounce_bio);
1145 ret = blk_rq_append_bio(q, rq, bounce_bio);
1146 if (unlikely(ret)) {
1147 blk_put_request(rq);
1148 return ERR_PTR(ret);
1149 }
1150 }
1151
1152 return rq;
dc72ef4a 1153}
79eb63e9 1154EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1155
1da177e4
LT
1156/**
1157 * blk_requeue_request - put a request back on queue
1158 * @q: request queue where request should be inserted
1159 * @rq: request to be inserted
1160 *
1161 * Description:
1162 * Drivers often keep queueing requests until the hardware cannot accept
1163 * more, when that condition happens we need to put the request back
1164 * on the queue. Must be called with queue lock held.
1165 */
165125e1 1166void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1167{
242f9dcb
JA
1168 blk_delete_timer(rq);
1169 blk_clear_rq_complete(rq);
5f3ea37c 1170 trace_block_rq_requeue(q, rq);
2056a782 1171
1da177e4
LT
1172 if (blk_rq_tagged(rq))
1173 blk_queue_end_tag(q, rq);
1174
ba396a6c
JB
1175 BUG_ON(blk_queued_rq(rq));
1176
1da177e4
LT
1177 elv_requeue_request(q, rq);
1178}
1da177e4
LT
1179EXPORT_SYMBOL(blk_requeue_request);
1180
73c10101
JA
1181static void add_acct_request(struct request_queue *q, struct request *rq,
1182 int where)
1183{
1184 drive_stat_acct(rq, 1);
7eaceacc 1185 __elv_add_request(q, rq, where);
73c10101
JA
1186}
1187
074a7aca
TH
1188static void part_round_stats_single(int cpu, struct hd_struct *part,
1189 unsigned long now)
1190{
1191 if (now == part->stamp)
1192 return;
1193
316d315b 1194 if (part_in_flight(part)) {
074a7aca 1195 __part_stat_add(cpu, part, time_in_queue,
316d315b 1196 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1197 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1198 }
1199 part->stamp = now;
1200}
1201
1202/**
496aa8a9
RD
1203 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1204 * @cpu: cpu number for stats access
1205 * @part: target partition
1da177e4
LT
1206 *
1207 * The average IO queue length and utilisation statistics are maintained
1208 * by observing the current state of the queue length and the amount of
1209 * time it has been in this state for.
1210 *
1211 * Normally, that accounting is done on IO completion, but that can result
1212 * in more than a second's worth of IO being accounted for within any one
1213 * second, leading to >100% utilisation. To deal with that, we call this
1214 * function to do a round-off before returning the results when reading
1215 * /proc/diskstats. This accounts immediately for all queue usage up to
1216 * the current jiffies and restarts the counters again.
1217 */
c9959059 1218void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1219{
1220 unsigned long now = jiffies;
1221
074a7aca
TH
1222 if (part->partno)
1223 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1224 part_round_stats_single(cpu, part, now);
6f2576af 1225}
074a7aca 1226EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1227
1da177e4
LT
1228/*
1229 * queue lock must be held
1230 */
165125e1 1231void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1232{
1da177e4
LT
1233 if (unlikely(!q))
1234 return;
1235 if (unlikely(--req->ref_count))
1236 return;
1237
8922e16c
TH
1238 elv_completed_request(q, req);
1239
1cd96c24
BH
1240 /* this is a bio leak */
1241 WARN_ON(req->bio != NULL);
1242
1da177e4
LT
1243 /*
1244 * Request may not have originated from ll_rw_blk. if not,
1245 * it didn't come out of our reserved rq pools
1246 */
49171e5c 1247 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1248 unsigned int flags = req->cmd_flags;
a051661c 1249 struct request_list *rl = blk_rq_rl(req);
1da177e4 1250
1da177e4 1251 BUG_ON(!list_empty(&req->queuelist));
9817064b 1252 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4 1253
a051661c
TH
1254 blk_free_request(rl, req);
1255 freed_request(rl, flags);
1256 blk_put_rl(rl);
1da177e4
LT
1257 }
1258}
6e39b69e
MC
1259EXPORT_SYMBOL_GPL(__blk_put_request);
1260
1da177e4
LT
1261void blk_put_request(struct request *req)
1262{
8922e16c 1263 unsigned long flags;
165125e1 1264 struct request_queue *q = req->q;
8922e16c 1265
52a93ba8
FT
1266 spin_lock_irqsave(q->queue_lock, flags);
1267 __blk_put_request(q, req);
1268 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1269}
1da177e4
LT
1270EXPORT_SYMBOL(blk_put_request);
1271
66ac0280
CH
1272/**
1273 * blk_add_request_payload - add a payload to a request
1274 * @rq: request to update
1275 * @page: page backing the payload
1276 * @len: length of the payload.
1277 *
1278 * This allows to later add a payload to an already submitted request by
1279 * a block driver. The driver needs to take care of freeing the payload
1280 * itself.
1281 *
1282 * Note that this is a quite horrible hack and nothing but handling of
1283 * discard requests should ever use it.
1284 */
1285void blk_add_request_payload(struct request *rq, struct page *page,
1286 unsigned int len)
1287{
1288 struct bio *bio = rq->bio;
1289
1290 bio->bi_io_vec->bv_page = page;
1291 bio->bi_io_vec->bv_offset = 0;
1292 bio->bi_io_vec->bv_len = len;
1293
1294 bio->bi_size = len;
1295 bio->bi_vcnt = 1;
1296 bio->bi_phys_segments = 1;
1297
1298 rq->__data_len = rq->resid_len = len;
1299 rq->nr_phys_segments = 1;
1300 rq->buffer = bio_data(bio);
1301}
1302EXPORT_SYMBOL_GPL(blk_add_request_payload);
1303
73c10101
JA
1304static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1305 struct bio *bio)
1306{
1307 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1308
73c10101
JA
1309 if (!ll_back_merge_fn(q, req, bio))
1310 return false;
1311
1312 trace_block_bio_backmerge(q, bio);
1313
1314 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1315 blk_rq_set_mixed_merge(req);
1316
1317 req->biotail->bi_next = bio;
1318 req->biotail = bio;
1319 req->__data_len += bio->bi_size;
1320 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1321
1322 drive_stat_acct(req, 0);
1323 return true;
1324}
1325
1326static bool bio_attempt_front_merge(struct request_queue *q,
1327 struct request *req, struct bio *bio)
1328{
1329 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1330
73c10101
JA
1331 if (!ll_front_merge_fn(q, req, bio))
1332 return false;
1333
1334 trace_block_bio_frontmerge(q, bio);
1335
1336 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1337 blk_rq_set_mixed_merge(req);
1338
73c10101
JA
1339 bio->bi_next = req->bio;
1340 req->bio = bio;
1341
1342 /*
1343 * may not be valid. if the low level driver said
1344 * it didn't need a bounce buffer then it better
1345 * not touch req->buffer either...
1346 */
1347 req->buffer = bio_data(bio);
1348 req->__sector = bio->bi_sector;
1349 req->__data_len += bio->bi_size;
1350 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1351
1352 drive_stat_acct(req, 0);
1353 return true;
1354}
1355
bd87b589
TH
1356/**
1357 * attempt_plug_merge - try to merge with %current's plugged list
1358 * @q: request_queue new bio is being queued at
1359 * @bio: new bio being queued
1360 * @request_count: out parameter for number of traversed plugged requests
1361 *
1362 * Determine whether @bio being queued on @q can be merged with a request
1363 * on %current's plugged list. Returns %true if merge was successful,
1364 * otherwise %false.
1365 *
07c2bd37
TH
1366 * Plugging coalesces IOs from the same issuer for the same purpose without
1367 * going through @q->queue_lock. As such it's more of an issuing mechanism
1368 * than scheduling, and the request, while may have elvpriv data, is not
1369 * added on the elevator at this point. In addition, we don't have
1370 * reliable access to the elevator outside queue lock. Only check basic
1371 * merging parameters without querying the elevator.
73c10101 1372 */
bd87b589
TH
1373static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1374 unsigned int *request_count)
73c10101
JA
1375{
1376 struct blk_plug *plug;
1377 struct request *rq;
1378 bool ret = false;
1379
bd87b589 1380 plug = current->plug;
73c10101
JA
1381 if (!plug)
1382 goto out;
56ebdaf2 1383 *request_count = 0;
73c10101
JA
1384
1385 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1386 int el_ret;
1387
1b2e19f1
SL
1388 if (rq->q == q)
1389 (*request_count)++;
56ebdaf2 1390
07c2bd37 1391 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1392 continue;
1393
050c8ea8 1394 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1395 if (el_ret == ELEVATOR_BACK_MERGE) {
1396 ret = bio_attempt_back_merge(q, rq, bio);
1397 if (ret)
1398 break;
1399 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1400 ret = bio_attempt_front_merge(q, rq, bio);
1401 if (ret)
1402 break;
1403 }
1404 }
1405out:
1406 return ret;
1407}
1408
86db1e29 1409void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1410{
4aff5e23 1411 req->cmd_type = REQ_TYPE_FS;
52d9e675 1412
7b6d91da
CH
1413 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1414 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1415 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1416
52d9e675 1417 req->errors = 0;
a2dec7b3 1418 req->__sector = bio->bi_sector;
52d9e675 1419 req->ioprio = bio_prio(bio);
bc1c56fd 1420 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1421}
1422
5a7bbad2 1423void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1424{
5e00d1b5 1425 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1426 struct blk_plug *plug;
1427 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1428 struct request *req;
56ebdaf2 1429 unsigned int request_count = 0;
1da177e4 1430
1da177e4
LT
1431 /*
1432 * low level driver can indicate that it wants pages above a
1433 * certain limit bounced to low memory (ie for highmem, or even
1434 * ISA dma in theory)
1435 */
1436 blk_queue_bounce(q, &bio);
1437
4fed947c 1438 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1439 spin_lock_irq(q->queue_lock);
ae1b1539 1440 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1441 goto get_rq;
1442 }
1443
73c10101
JA
1444 /*
1445 * Check if we can merge with the plugged list before grabbing
1446 * any locks.
1447 */
bd87b589 1448 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1449 return;
1da177e4 1450
73c10101 1451 spin_lock_irq(q->queue_lock);
2056a782 1452
73c10101
JA
1453 el_ret = elv_merge(q, &req, bio);
1454 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1455 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1456 elv_bio_merged(q, req, bio);
73c10101
JA
1457 if (!attempt_back_merge(q, req))
1458 elv_merged_request(q, req, el_ret);
1459 goto out_unlock;
1460 }
1461 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1462 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1463 elv_bio_merged(q, req, bio);
73c10101
JA
1464 if (!attempt_front_merge(q, req))
1465 elv_merged_request(q, req, el_ret);
1466 goto out_unlock;
80a761fd 1467 }
1da177e4
LT
1468 }
1469
450991bc 1470get_rq:
7749a8d4
JA
1471 /*
1472 * This sync check and mask will be re-done in init_request_from_bio(),
1473 * but we need to set it earlier to expose the sync flag to the
1474 * rq allocator and io schedulers.
1475 */
1476 rw_flags = bio_data_dir(bio);
1477 if (sync)
7b6d91da 1478 rw_flags |= REQ_SYNC;
7749a8d4 1479
1da177e4 1480 /*
450991bc 1481 * Grab a free request. This is might sleep but can not fail.
d6344532 1482 * Returns with the queue unlocked.
450991bc 1483 */
a06e05e6 1484 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1485 if (unlikely(!req)) {
1486 bio_endio(bio, -ENODEV); /* @q is dead */
1487 goto out_unlock;
1488 }
d6344532 1489
450991bc
NP
1490 /*
1491 * After dropping the lock and possibly sleeping here, our request
1492 * may now be mergeable after it had proven unmergeable (above).
1493 * We don't worry about that case for efficiency. It won't happen
1494 * often, and the elevators are able to handle it.
1da177e4 1495 */
52d9e675 1496 init_request_from_bio(req, bio);
1da177e4 1497
9562ad9a 1498 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1499 req->cpu = raw_smp_processor_id();
73c10101
JA
1500
1501 plug = current->plug;
721a9602 1502 if (plug) {
dc6d36c9
JA
1503 /*
1504 * If this is the first request added after a plug, fire
1505 * of a plug trace. If others have been added before, check
1506 * if we have multiple devices in this plug. If so, make a
1507 * note to sort the list before dispatch.
1508 */
1509 if (list_empty(&plug->list))
1510 trace_block_plug(q);
3540d5e8
SL
1511 else {
1512 if (!plug->should_sort) {
1513 struct request *__rq;
73c10101 1514
3540d5e8
SL
1515 __rq = list_entry_rq(plug->list.prev);
1516 if (__rq->q != q)
1517 plug->should_sort = 1;
1518 }
019ceb7d 1519 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1520 blk_flush_plug_list(plug, false);
019ceb7d
SL
1521 trace_block_plug(q);
1522 }
73c10101 1523 }
73c10101
JA
1524 list_add_tail(&req->queuelist, &plug->list);
1525 drive_stat_acct(req, 1);
1526 } else {
1527 spin_lock_irq(q->queue_lock);
1528 add_acct_request(q, req, where);
24ecfbe2 1529 __blk_run_queue(q);
73c10101
JA
1530out_unlock:
1531 spin_unlock_irq(q->queue_lock);
1532 }
1da177e4 1533}
c20e8de2 1534EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1535
1536/*
1537 * If bio->bi_dev is a partition, remap the location
1538 */
1539static inline void blk_partition_remap(struct bio *bio)
1540{
1541 struct block_device *bdev = bio->bi_bdev;
1542
bf2de6f5 1543 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1544 struct hd_struct *p = bdev->bd_part;
1545
1da177e4
LT
1546 bio->bi_sector += p->start_sect;
1547 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1548
d07335e5
MS
1549 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1550 bdev->bd_dev,
1551 bio->bi_sector - p->start_sect);
1da177e4
LT
1552 }
1553}
1554
1da177e4
LT
1555static void handle_bad_sector(struct bio *bio)
1556{
1557 char b[BDEVNAME_SIZE];
1558
1559 printk(KERN_INFO "attempt to access beyond end of device\n");
1560 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1561 bdevname(bio->bi_bdev, b),
1562 bio->bi_rw,
1563 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1564 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1565
1566 set_bit(BIO_EOF, &bio->bi_flags);
1567}
1568
c17bb495
AM
1569#ifdef CONFIG_FAIL_MAKE_REQUEST
1570
1571static DECLARE_FAULT_ATTR(fail_make_request);
1572
1573static int __init setup_fail_make_request(char *str)
1574{
1575 return setup_fault_attr(&fail_make_request, str);
1576}
1577__setup("fail_make_request=", setup_fail_make_request);
1578
b2c9cd37 1579static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1580{
b2c9cd37 1581 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1582}
1583
1584static int __init fail_make_request_debugfs(void)
1585{
dd48c085
AM
1586 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1587 NULL, &fail_make_request);
1588
1589 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1590}
1591
1592late_initcall(fail_make_request_debugfs);
1593
1594#else /* CONFIG_FAIL_MAKE_REQUEST */
1595
b2c9cd37
AM
1596static inline bool should_fail_request(struct hd_struct *part,
1597 unsigned int bytes)
c17bb495 1598{
b2c9cd37 1599 return false;
c17bb495
AM
1600}
1601
1602#endif /* CONFIG_FAIL_MAKE_REQUEST */
1603
c07e2b41
JA
1604/*
1605 * Check whether this bio extends beyond the end of the device.
1606 */
1607static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1608{
1609 sector_t maxsector;
1610
1611 if (!nr_sectors)
1612 return 0;
1613
1614 /* Test device or partition size, when known. */
77304d2a 1615 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1616 if (maxsector) {
1617 sector_t sector = bio->bi_sector;
1618
1619 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1620 /*
1621 * This may well happen - the kernel calls bread()
1622 * without checking the size of the device, e.g., when
1623 * mounting a device.
1624 */
1625 handle_bad_sector(bio);
1626 return 1;
1627 }
1628 }
1629
1630 return 0;
1631}
1632
27a84d54
CH
1633static noinline_for_stack bool
1634generic_make_request_checks(struct bio *bio)
1da177e4 1635{
165125e1 1636 struct request_queue *q;
5a7bbad2 1637 int nr_sectors = bio_sectors(bio);
51fd77bd 1638 int err = -EIO;
5a7bbad2
CH
1639 char b[BDEVNAME_SIZE];
1640 struct hd_struct *part;
1da177e4
LT
1641
1642 might_sleep();
1da177e4 1643
c07e2b41
JA
1644 if (bio_check_eod(bio, nr_sectors))
1645 goto end_io;
1da177e4 1646
5a7bbad2
CH
1647 q = bdev_get_queue(bio->bi_bdev);
1648 if (unlikely(!q)) {
1649 printk(KERN_ERR
1650 "generic_make_request: Trying to access "
1651 "nonexistent block-device %s (%Lu)\n",
1652 bdevname(bio->bi_bdev, b),
1653 (long long) bio->bi_sector);
1654 goto end_io;
1655 }
c17bb495 1656
e2a60da7
MP
1657 if (likely(bio_is_rw(bio) &&
1658 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1659 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1660 bdevname(bio->bi_bdev, b),
1661 bio_sectors(bio),
1662 queue_max_hw_sectors(q));
1663 goto end_io;
1664 }
1da177e4 1665
5a7bbad2
CH
1666 part = bio->bi_bdev->bd_part;
1667 if (should_fail_request(part, bio->bi_size) ||
1668 should_fail_request(&part_to_disk(part)->part0,
1669 bio->bi_size))
1670 goto end_io;
2056a782 1671
5a7bbad2
CH
1672 /*
1673 * If this device has partitions, remap block n
1674 * of partition p to block n+start(p) of the disk.
1675 */
1676 blk_partition_remap(bio);
2056a782 1677
5a7bbad2
CH
1678 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1679 goto end_io;
a7384677 1680
5a7bbad2
CH
1681 if (bio_check_eod(bio, nr_sectors))
1682 goto end_io;
1e87901e 1683
5a7bbad2
CH
1684 /*
1685 * Filter flush bio's early so that make_request based
1686 * drivers without flush support don't have to worry
1687 * about them.
1688 */
1689 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1690 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1691 if (!nr_sectors) {
1692 err = 0;
51fd77bd
JA
1693 goto end_io;
1694 }
5a7bbad2 1695 }
5ddfe969 1696
5a7bbad2
CH
1697 if ((bio->bi_rw & REQ_DISCARD) &&
1698 (!blk_queue_discard(q) ||
e2a60da7 1699 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1700 err = -EOPNOTSUPP;
1701 goto end_io;
1702 }
01edede4 1703
4363ac7c
MP
1704 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1705 err = -EOPNOTSUPP;
1706 goto end_io;
1707 }
1708
7f4b35d1
TH
1709 /*
1710 * Various block parts want %current->io_context and lazy ioc
1711 * allocation ends up trading a lot of pain for a small amount of
1712 * memory. Just allocate it upfront. This may fail and block
1713 * layer knows how to live with it.
1714 */
1715 create_io_context(GFP_ATOMIC, q->node);
1716
bc16a4f9
TH
1717 if (blk_throtl_bio(q, bio))
1718 return false; /* throttled, will be resubmitted later */
27a84d54 1719
5a7bbad2 1720 trace_block_bio_queue(q, bio);
27a84d54 1721 return true;
a7384677
TH
1722
1723end_io:
1724 bio_endio(bio, err);
27a84d54 1725 return false;
1da177e4
LT
1726}
1727
27a84d54
CH
1728/**
1729 * generic_make_request - hand a buffer to its device driver for I/O
1730 * @bio: The bio describing the location in memory and on the device.
1731 *
1732 * generic_make_request() is used to make I/O requests of block
1733 * devices. It is passed a &struct bio, which describes the I/O that needs
1734 * to be done.
1735 *
1736 * generic_make_request() does not return any status. The
1737 * success/failure status of the request, along with notification of
1738 * completion, is delivered asynchronously through the bio->bi_end_io
1739 * function described (one day) else where.
1740 *
1741 * The caller of generic_make_request must make sure that bi_io_vec
1742 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1743 * set to describe the device address, and the
1744 * bi_end_io and optionally bi_private are set to describe how
1745 * completion notification should be signaled.
1746 *
1747 * generic_make_request and the drivers it calls may use bi_next if this
1748 * bio happens to be merged with someone else, and may resubmit the bio to
1749 * a lower device by calling into generic_make_request recursively, which
1750 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1751 */
1752void generic_make_request(struct bio *bio)
1753{
bddd87c7
AM
1754 struct bio_list bio_list_on_stack;
1755
27a84d54
CH
1756 if (!generic_make_request_checks(bio))
1757 return;
1758
1759 /*
1760 * We only want one ->make_request_fn to be active at a time, else
1761 * stack usage with stacked devices could be a problem. So use
1762 * current->bio_list to keep a list of requests submited by a
1763 * make_request_fn function. current->bio_list is also used as a
1764 * flag to say if generic_make_request is currently active in this
1765 * task or not. If it is NULL, then no make_request is active. If
1766 * it is non-NULL, then a make_request is active, and new requests
1767 * should be added at the tail
1768 */
bddd87c7 1769 if (current->bio_list) {
bddd87c7 1770 bio_list_add(current->bio_list, bio);
d89d8796
NB
1771 return;
1772 }
27a84d54 1773
d89d8796
NB
1774 /* following loop may be a bit non-obvious, and so deserves some
1775 * explanation.
1776 * Before entering the loop, bio->bi_next is NULL (as all callers
1777 * ensure that) so we have a list with a single bio.
1778 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1779 * we assign bio_list to a pointer to the bio_list_on_stack,
1780 * thus initialising the bio_list of new bios to be
27a84d54 1781 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1782 * through a recursive call to generic_make_request. If it
1783 * did, we find a non-NULL value in bio_list and re-enter the loop
1784 * from the top. In this case we really did just take the bio
bddd87c7 1785 * of the top of the list (no pretending) and so remove it from
27a84d54 1786 * bio_list, and call into ->make_request() again.
d89d8796
NB
1787 */
1788 BUG_ON(bio->bi_next);
bddd87c7
AM
1789 bio_list_init(&bio_list_on_stack);
1790 current->bio_list = &bio_list_on_stack;
d89d8796 1791 do {
27a84d54
CH
1792 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1793
1794 q->make_request_fn(q, bio);
1795
bddd87c7 1796 bio = bio_list_pop(current->bio_list);
d89d8796 1797 } while (bio);
bddd87c7 1798 current->bio_list = NULL; /* deactivate */
d89d8796 1799}
1da177e4
LT
1800EXPORT_SYMBOL(generic_make_request);
1801
1802/**
710027a4 1803 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1804 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1805 * @bio: The &struct bio which describes the I/O
1806 *
1807 * submit_bio() is very similar in purpose to generic_make_request(), and
1808 * uses that function to do most of the work. Both are fairly rough
710027a4 1809 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1810 *
1811 */
1812void submit_bio(int rw, struct bio *bio)
1813{
22e2c507 1814 bio->bi_rw |= rw;
1da177e4 1815
bf2de6f5
JA
1816 /*
1817 * If it's a regular read/write or a barrier with data attached,
1818 * go through the normal accounting stuff before submission.
1819 */
e2a60da7 1820 if (bio_has_data(bio)) {
4363ac7c
MP
1821 unsigned int count;
1822
1823 if (unlikely(rw & REQ_WRITE_SAME))
1824 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1825 else
1826 count = bio_sectors(bio);
1827
bf2de6f5
JA
1828 if (rw & WRITE) {
1829 count_vm_events(PGPGOUT, count);
1830 } else {
1831 task_io_account_read(bio->bi_size);
1832 count_vm_events(PGPGIN, count);
1833 }
1834
1835 if (unlikely(block_dump)) {
1836 char b[BDEVNAME_SIZE];
8dcbdc74 1837 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1838 current->comm, task_pid_nr(current),
bf2de6f5
JA
1839 (rw & WRITE) ? "WRITE" : "READ",
1840 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1841 bdevname(bio->bi_bdev, b),
1842 count);
bf2de6f5 1843 }
1da177e4
LT
1844 }
1845
1846 generic_make_request(bio);
1847}
1da177e4
LT
1848EXPORT_SYMBOL(submit_bio);
1849
82124d60
KU
1850/**
1851 * blk_rq_check_limits - Helper function to check a request for the queue limit
1852 * @q: the queue
1853 * @rq: the request being checked
1854 *
1855 * Description:
1856 * @rq may have been made based on weaker limitations of upper-level queues
1857 * in request stacking drivers, and it may violate the limitation of @q.
1858 * Since the block layer and the underlying device driver trust @rq
1859 * after it is inserted to @q, it should be checked against @q before
1860 * the insertion using this generic function.
1861 *
1862 * This function should also be useful for request stacking drivers
eef35c2d 1863 * in some cases below, so export this function.
82124d60
KU
1864 * Request stacking drivers like request-based dm may change the queue
1865 * limits while requests are in the queue (e.g. dm's table swapping).
1866 * Such request stacking drivers should check those requests agaist
1867 * the new queue limits again when they dispatch those requests,
1868 * although such checkings are also done against the old queue limits
1869 * when submitting requests.
1870 */
1871int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1872{
e2a60da7 1873 if (!rq_mergeable(rq))
3383977f
S
1874 return 0;
1875
f31dc1cd 1876 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1877 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1878 return -EIO;
1879 }
1880
1881 /*
1882 * queue's settings related to segment counting like q->bounce_pfn
1883 * may differ from that of other stacking queues.
1884 * Recalculate it to check the request correctly on this queue's
1885 * limitation.
1886 */
1887 blk_recalc_rq_segments(rq);
8a78362c 1888 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1889 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1890 return -EIO;
1891 }
1892
1893 return 0;
1894}
1895EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1896
1897/**
1898 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1899 * @q: the queue to submit the request
1900 * @rq: the request being queued
1901 */
1902int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1903{
1904 unsigned long flags;
4853abaa 1905 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1906
1907 if (blk_rq_check_limits(q, rq))
1908 return -EIO;
1909
b2c9cd37
AM
1910 if (rq->rq_disk &&
1911 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1912 return -EIO;
82124d60
KU
1913
1914 spin_lock_irqsave(q->queue_lock, flags);
8ba61435
TH
1915 if (unlikely(blk_queue_dead(q))) {
1916 spin_unlock_irqrestore(q->queue_lock, flags);
1917 return -ENODEV;
1918 }
82124d60
KU
1919
1920 /*
1921 * Submitting request must be dequeued before calling this function
1922 * because it will be linked to another request_queue
1923 */
1924 BUG_ON(blk_queued_rq(rq));
1925
4853abaa
JM
1926 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1927 where = ELEVATOR_INSERT_FLUSH;
1928
1929 add_acct_request(q, rq, where);
e67b77c7
JM
1930 if (where == ELEVATOR_INSERT_FLUSH)
1931 __blk_run_queue(q);
82124d60
KU
1932 spin_unlock_irqrestore(q->queue_lock, flags);
1933
1934 return 0;
1935}
1936EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1937
80a761fd
TH
1938/**
1939 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1940 * @rq: request to examine
1941 *
1942 * Description:
1943 * A request could be merge of IOs which require different failure
1944 * handling. This function determines the number of bytes which
1945 * can be failed from the beginning of the request without
1946 * crossing into area which need to be retried further.
1947 *
1948 * Return:
1949 * The number of bytes to fail.
1950 *
1951 * Context:
1952 * queue_lock must be held.
1953 */
1954unsigned int blk_rq_err_bytes(const struct request *rq)
1955{
1956 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1957 unsigned int bytes = 0;
1958 struct bio *bio;
1959
1960 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1961 return blk_rq_bytes(rq);
1962
1963 /*
1964 * Currently the only 'mixing' which can happen is between
1965 * different fastfail types. We can safely fail portions
1966 * which have all the failfast bits that the first one has -
1967 * the ones which are at least as eager to fail as the first
1968 * one.
1969 */
1970 for (bio = rq->bio; bio; bio = bio->bi_next) {
1971 if ((bio->bi_rw & ff) != ff)
1972 break;
1973 bytes += bio->bi_size;
1974 }
1975
1976 /* this could lead to infinite loop */
1977 BUG_ON(blk_rq_bytes(rq) && !bytes);
1978 return bytes;
1979}
1980EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1981
bc58ba94
JA
1982static void blk_account_io_completion(struct request *req, unsigned int bytes)
1983{
c2553b58 1984 if (blk_do_io_stat(req)) {
bc58ba94
JA
1985 const int rw = rq_data_dir(req);
1986 struct hd_struct *part;
1987 int cpu;
1988
1989 cpu = part_stat_lock();
09e099d4 1990 part = req->part;
bc58ba94
JA
1991 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1992 part_stat_unlock();
1993 }
1994}
1995
1996static void blk_account_io_done(struct request *req)
1997{
bc58ba94 1998 /*
dd4c133f
TH
1999 * Account IO completion. flush_rq isn't accounted as a
2000 * normal IO on queueing nor completion. Accounting the
2001 * containing request is enough.
bc58ba94 2002 */
414b4ff5 2003 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2004 unsigned long duration = jiffies - req->start_time;
2005 const int rw = rq_data_dir(req);
2006 struct hd_struct *part;
2007 int cpu;
2008
2009 cpu = part_stat_lock();
09e099d4 2010 part = req->part;
bc58ba94
JA
2011
2012 part_stat_inc(cpu, part, ios[rw]);
2013 part_stat_add(cpu, part, ticks[rw], duration);
2014 part_round_stats(cpu, part);
316d315b 2015 part_dec_in_flight(part, rw);
bc58ba94 2016
6c23a968 2017 hd_struct_put(part);
bc58ba94
JA
2018 part_stat_unlock();
2019 }
2020}
2021
3bcddeac 2022/**
9934c8c0
TH
2023 * blk_peek_request - peek at the top of a request queue
2024 * @q: request queue to peek at
2025 *
2026 * Description:
2027 * Return the request at the top of @q. The returned request
2028 * should be started using blk_start_request() before LLD starts
2029 * processing it.
2030 *
2031 * Return:
2032 * Pointer to the request at the top of @q if available. Null
2033 * otherwise.
2034 *
2035 * Context:
2036 * queue_lock must be held.
2037 */
2038struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2039{
2040 struct request *rq;
2041 int ret;
2042
2043 while ((rq = __elv_next_request(q)) != NULL) {
2044 if (!(rq->cmd_flags & REQ_STARTED)) {
2045 /*
2046 * This is the first time the device driver
2047 * sees this request (possibly after
2048 * requeueing). Notify IO scheduler.
2049 */
33659ebb 2050 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2051 elv_activate_rq(q, rq);
2052
2053 /*
2054 * just mark as started even if we don't start
2055 * it, a request that has been delayed should
2056 * not be passed by new incoming requests
2057 */
2058 rq->cmd_flags |= REQ_STARTED;
2059 trace_block_rq_issue(q, rq);
2060 }
2061
2062 if (!q->boundary_rq || q->boundary_rq == rq) {
2063 q->end_sector = rq_end_sector(rq);
2064 q->boundary_rq = NULL;
2065 }
2066
2067 if (rq->cmd_flags & REQ_DONTPREP)
2068 break;
2069
2e46e8b2 2070 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2071 /*
2072 * make sure space for the drain appears we
2073 * know we can do this because max_hw_segments
2074 * has been adjusted to be one fewer than the
2075 * device can handle
2076 */
2077 rq->nr_phys_segments++;
2078 }
2079
2080 if (!q->prep_rq_fn)
2081 break;
2082
2083 ret = q->prep_rq_fn(q, rq);
2084 if (ret == BLKPREP_OK) {
2085 break;
2086 } else if (ret == BLKPREP_DEFER) {
2087 /*
2088 * the request may have been (partially) prepped.
2089 * we need to keep this request in the front to
2090 * avoid resource deadlock. REQ_STARTED will
2091 * prevent other fs requests from passing this one.
2092 */
2e46e8b2 2093 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2094 !(rq->cmd_flags & REQ_DONTPREP)) {
2095 /*
2096 * remove the space for the drain we added
2097 * so that we don't add it again
2098 */
2099 --rq->nr_phys_segments;
2100 }
2101
2102 rq = NULL;
2103 break;
2104 } else if (ret == BLKPREP_KILL) {
2105 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2106 /*
2107 * Mark this request as started so we don't trigger
2108 * any debug logic in the end I/O path.
2109 */
2110 blk_start_request(rq);
40cbbb78 2111 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2112 } else {
2113 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2114 break;
2115 }
2116 }
2117
2118 return rq;
2119}
9934c8c0 2120EXPORT_SYMBOL(blk_peek_request);
158dbda0 2121
9934c8c0 2122void blk_dequeue_request(struct request *rq)
158dbda0 2123{
9934c8c0
TH
2124 struct request_queue *q = rq->q;
2125
158dbda0
TH
2126 BUG_ON(list_empty(&rq->queuelist));
2127 BUG_ON(ELV_ON_HASH(rq));
2128
2129 list_del_init(&rq->queuelist);
2130
2131 /*
2132 * the time frame between a request being removed from the lists
2133 * and to it is freed is accounted as io that is in progress at
2134 * the driver side.
2135 */
9195291e 2136 if (blk_account_rq(rq)) {
0a7ae2ff 2137 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2138 set_io_start_time_ns(rq);
2139 }
158dbda0
TH
2140}
2141
9934c8c0
TH
2142/**
2143 * blk_start_request - start request processing on the driver
2144 * @req: request to dequeue
2145 *
2146 * Description:
2147 * Dequeue @req and start timeout timer on it. This hands off the
2148 * request to the driver.
2149 *
2150 * Block internal functions which don't want to start timer should
2151 * call blk_dequeue_request().
2152 *
2153 * Context:
2154 * queue_lock must be held.
2155 */
2156void blk_start_request(struct request *req)
2157{
2158 blk_dequeue_request(req);
2159
2160 /*
5f49f631
TH
2161 * We are now handing the request to the hardware, initialize
2162 * resid_len to full count and add the timeout handler.
9934c8c0 2163 */
5f49f631 2164 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2165 if (unlikely(blk_bidi_rq(req)))
2166 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2167
9934c8c0
TH
2168 blk_add_timer(req);
2169}
2170EXPORT_SYMBOL(blk_start_request);
2171
2172/**
2173 * blk_fetch_request - fetch a request from a request queue
2174 * @q: request queue to fetch a request from
2175 *
2176 * Description:
2177 * Return the request at the top of @q. The request is started on
2178 * return and LLD can start processing it immediately.
2179 *
2180 * Return:
2181 * Pointer to the request at the top of @q if available. Null
2182 * otherwise.
2183 *
2184 * Context:
2185 * queue_lock must be held.
2186 */
2187struct request *blk_fetch_request(struct request_queue *q)
2188{
2189 struct request *rq;
2190
2191 rq = blk_peek_request(q);
2192 if (rq)
2193 blk_start_request(rq);
2194 return rq;
2195}
2196EXPORT_SYMBOL(blk_fetch_request);
2197
3bcddeac 2198/**
2e60e022 2199 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2200 * @req: the request being processed
710027a4 2201 * @error: %0 for success, < %0 for error
8ebf9756 2202 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2203 *
2204 * Description:
8ebf9756
RD
2205 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2206 * the request structure even if @req doesn't have leftover.
2207 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2208 *
2209 * This special helper function is only for request stacking drivers
2210 * (e.g. request-based dm) so that they can handle partial completion.
2211 * Actual device drivers should use blk_end_request instead.
2212 *
2213 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2214 * %false return from this function.
3bcddeac
KU
2215 *
2216 * Return:
2e60e022
TH
2217 * %false - this request doesn't have any more data
2218 * %true - this request has more data
3bcddeac 2219 **/
2e60e022 2220bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2221{
5450d3e1 2222 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2223 struct bio *bio;
2224
2e60e022
TH
2225 if (!req->bio)
2226 return false;
2227
5f3ea37c 2228 trace_block_rq_complete(req->q, req);
2056a782 2229
1da177e4 2230 /*
6f41469c
TH
2231 * For fs requests, rq is just carrier of independent bio's
2232 * and each partial completion should be handled separately.
2233 * Reset per-request error on each partial completion.
2234 *
2235 * TODO: tj: This is too subtle. It would be better to let
2236 * low level drivers do what they see fit.
1da177e4 2237 */
33659ebb 2238 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2239 req->errors = 0;
2240
33659ebb
CH
2241 if (error && req->cmd_type == REQ_TYPE_FS &&
2242 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2243 char *error_type;
2244
2245 switch (error) {
2246 case -ENOLINK:
2247 error_type = "recoverable transport";
2248 break;
2249 case -EREMOTEIO:
2250 error_type = "critical target";
2251 break;
2252 case -EBADE:
2253 error_type = "critical nexus";
2254 break;
2255 case -EIO:
2256 default:
2257 error_type = "I/O";
2258 break;
2259 }
2260 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2261 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2262 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2263 }
2264
bc58ba94 2265 blk_account_io_completion(req, nr_bytes);
d72d904a 2266
1da177e4
LT
2267 total_bytes = bio_nbytes = 0;
2268 while ((bio = req->bio) != NULL) {
2269 int nbytes;
2270
2271 if (nr_bytes >= bio->bi_size) {
2272 req->bio = bio->bi_next;
2273 nbytes = bio->bi_size;
5bb23a68 2274 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2275 next_idx = 0;
2276 bio_nbytes = 0;
2277 } else {
2278 int idx = bio->bi_idx + next_idx;
2279
af498d7f 2280 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2281 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2282 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2283 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2284 break;
2285 }
2286
2287 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2288 BIO_BUG_ON(nbytes > bio->bi_size);
2289
2290 /*
2291 * not a complete bvec done
2292 */
2293 if (unlikely(nbytes > nr_bytes)) {
2294 bio_nbytes += nr_bytes;
2295 total_bytes += nr_bytes;
2296 break;
2297 }
2298
2299 /*
2300 * advance to the next vector
2301 */
2302 next_idx++;
2303 bio_nbytes += nbytes;
2304 }
2305
2306 total_bytes += nbytes;
2307 nr_bytes -= nbytes;
2308
6728cb0e
JA
2309 bio = req->bio;
2310 if (bio) {
1da177e4
LT
2311 /*
2312 * end more in this run, or just return 'not-done'
2313 */
2314 if (unlikely(nr_bytes <= 0))
2315 break;
2316 }
2317 }
2318
2319 /*
2320 * completely done
2321 */
2e60e022
TH
2322 if (!req->bio) {
2323 /*
2324 * Reset counters so that the request stacking driver
2325 * can find how many bytes remain in the request
2326 * later.
2327 */
a2dec7b3 2328 req->__data_len = 0;
2e60e022
TH
2329 return false;
2330 }
1da177e4
LT
2331
2332 /*
2333 * if the request wasn't completed, update state
2334 */
2335 if (bio_nbytes) {
5bb23a68 2336 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2337 bio->bi_idx += next_idx;
2338 bio_iovec(bio)->bv_offset += nr_bytes;
2339 bio_iovec(bio)->bv_len -= nr_bytes;
2340 }
2341
a2dec7b3 2342 req->__data_len -= total_bytes;
2e46e8b2
TH
2343 req->buffer = bio_data(req->bio);
2344
2345 /* update sector only for requests with clear definition of sector */
e2a60da7 2346 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2347 req->__sector += total_bytes >> 9;
2e46e8b2 2348
80a761fd
TH
2349 /* mixed attributes always follow the first bio */
2350 if (req->cmd_flags & REQ_MIXED_MERGE) {
2351 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2352 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2353 }
2354
2e46e8b2
TH
2355 /*
2356 * If total number of sectors is less than the first segment
2357 * size, something has gone terribly wrong.
2358 */
2359 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2360 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2361 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2362 }
2363
2364 /* recalculate the number of segments */
1da177e4 2365 blk_recalc_rq_segments(req);
2e46e8b2 2366
2e60e022 2367 return true;
1da177e4 2368}
2e60e022 2369EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2370
2e60e022
TH
2371static bool blk_update_bidi_request(struct request *rq, int error,
2372 unsigned int nr_bytes,
2373 unsigned int bidi_bytes)
5efccd17 2374{
2e60e022
TH
2375 if (blk_update_request(rq, error, nr_bytes))
2376 return true;
5efccd17 2377
2e60e022
TH
2378 /* Bidi request must be completed as a whole */
2379 if (unlikely(blk_bidi_rq(rq)) &&
2380 blk_update_request(rq->next_rq, error, bidi_bytes))
2381 return true;
5efccd17 2382
e2e1a148
JA
2383 if (blk_queue_add_random(rq->q))
2384 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2385
2386 return false;
1da177e4
LT
2387}
2388
28018c24
JB
2389/**
2390 * blk_unprep_request - unprepare a request
2391 * @req: the request
2392 *
2393 * This function makes a request ready for complete resubmission (or
2394 * completion). It happens only after all error handling is complete,
2395 * so represents the appropriate moment to deallocate any resources
2396 * that were allocated to the request in the prep_rq_fn. The queue
2397 * lock is held when calling this.
2398 */
2399void blk_unprep_request(struct request *req)
2400{
2401 struct request_queue *q = req->q;
2402
2403 req->cmd_flags &= ~REQ_DONTPREP;
2404 if (q->unprep_rq_fn)
2405 q->unprep_rq_fn(q, req);
2406}
2407EXPORT_SYMBOL_GPL(blk_unprep_request);
2408
1da177e4
LT
2409/*
2410 * queue lock must be held
2411 */
2e60e022 2412static void blk_finish_request(struct request *req, int error)
1da177e4 2413{
b8286239
KU
2414 if (blk_rq_tagged(req))
2415 blk_queue_end_tag(req->q, req);
2416
ba396a6c 2417 BUG_ON(blk_queued_rq(req));
1da177e4 2418
33659ebb 2419 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2420 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2421
e78042e5
MA
2422 blk_delete_timer(req);
2423
28018c24
JB
2424 if (req->cmd_flags & REQ_DONTPREP)
2425 blk_unprep_request(req);
2426
2427
bc58ba94 2428 blk_account_io_done(req);
b8286239 2429
1da177e4 2430 if (req->end_io)
8ffdc655 2431 req->end_io(req, error);
b8286239
KU
2432 else {
2433 if (blk_bidi_rq(req))
2434 __blk_put_request(req->next_rq->q, req->next_rq);
2435
1da177e4 2436 __blk_put_request(req->q, req);
b8286239 2437 }
1da177e4
LT
2438}
2439
3b11313a 2440/**
2e60e022
TH
2441 * blk_end_bidi_request - Complete a bidi request
2442 * @rq: the request to complete
2443 * @error: %0 for success, < %0 for error
2444 * @nr_bytes: number of bytes to complete @rq
2445 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2446 *
2447 * Description:
e3a04fe3 2448 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2449 * Drivers that supports bidi can safely call this member for any
2450 * type of request, bidi or uni. In the later case @bidi_bytes is
2451 * just ignored.
336cdb40
KU
2452 *
2453 * Return:
2e60e022
TH
2454 * %false - we are done with this request
2455 * %true - still buffers pending for this request
a0cd1285 2456 **/
b1f74493 2457static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2458 unsigned int nr_bytes, unsigned int bidi_bytes)
2459{
336cdb40 2460 struct request_queue *q = rq->q;
2e60e022 2461 unsigned long flags;
32fab448 2462
2e60e022
TH
2463 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2464 return true;
32fab448 2465
336cdb40 2466 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2467 blk_finish_request(rq, error);
336cdb40
KU
2468 spin_unlock_irqrestore(q->queue_lock, flags);
2469
2e60e022 2470 return false;
32fab448
KU
2471}
2472
336cdb40 2473/**
2e60e022
TH
2474 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2475 * @rq: the request to complete
710027a4 2476 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2477 * @nr_bytes: number of bytes to complete @rq
2478 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2479 *
2480 * Description:
2e60e022
TH
2481 * Identical to blk_end_bidi_request() except that queue lock is
2482 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2483 *
2484 * Return:
2e60e022
TH
2485 * %false - we are done with this request
2486 * %true - still buffers pending for this request
336cdb40 2487 **/
4853abaa 2488bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2489 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2490{
2e60e022
TH
2491 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2492 return true;
336cdb40 2493
2e60e022 2494 blk_finish_request(rq, error);
336cdb40 2495
2e60e022 2496 return false;
336cdb40 2497}
e19a3ab0
KU
2498
2499/**
2500 * blk_end_request - Helper function for drivers to complete the request.
2501 * @rq: the request being processed
710027a4 2502 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2503 * @nr_bytes: number of bytes to complete
2504 *
2505 * Description:
2506 * Ends I/O on a number of bytes attached to @rq.
2507 * If @rq has leftover, sets it up for the next range of segments.
2508 *
2509 * Return:
b1f74493
FT
2510 * %false - we are done with this request
2511 * %true - still buffers pending for this request
e19a3ab0 2512 **/
b1f74493 2513bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2514{
b1f74493 2515 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2516}
56ad1740 2517EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2518
2519/**
b1f74493
FT
2520 * blk_end_request_all - Helper function for drives to finish the request.
2521 * @rq: the request to finish
8ebf9756 2522 * @error: %0 for success, < %0 for error
336cdb40
KU
2523 *
2524 * Description:
b1f74493
FT
2525 * Completely finish @rq.
2526 */
2527void blk_end_request_all(struct request *rq, int error)
336cdb40 2528{
b1f74493
FT
2529 bool pending;
2530 unsigned int bidi_bytes = 0;
336cdb40 2531
b1f74493
FT
2532 if (unlikely(blk_bidi_rq(rq)))
2533 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2534
b1f74493
FT
2535 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2536 BUG_ON(pending);
2537}
56ad1740 2538EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2539
b1f74493
FT
2540/**
2541 * blk_end_request_cur - Helper function to finish the current request chunk.
2542 * @rq: the request to finish the current chunk for
8ebf9756 2543 * @error: %0 for success, < %0 for error
b1f74493
FT
2544 *
2545 * Description:
2546 * Complete the current consecutively mapped chunk from @rq.
2547 *
2548 * Return:
2549 * %false - we are done with this request
2550 * %true - still buffers pending for this request
2551 */
2552bool blk_end_request_cur(struct request *rq, int error)
2553{
2554 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2555}
56ad1740 2556EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2557
80a761fd
TH
2558/**
2559 * blk_end_request_err - Finish a request till the next failure boundary.
2560 * @rq: the request to finish till the next failure boundary for
2561 * @error: must be negative errno
2562 *
2563 * Description:
2564 * Complete @rq till the next failure boundary.
2565 *
2566 * Return:
2567 * %false - we are done with this request
2568 * %true - still buffers pending for this request
2569 */
2570bool blk_end_request_err(struct request *rq, int error)
2571{
2572 WARN_ON(error >= 0);
2573 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2574}
2575EXPORT_SYMBOL_GPL(blk_end_request_err);
2576
e3a04fe3 2577/**
b1f74493
FT
2578 * __blk_end_request - Helper function for drivers to complete the request.
2579 * @rq: the request being processed
2580 * @error: %0 for success, < %0 for error
2581 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2582 *
2583 * Description:
b1f74493 2584 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2585 *
2586 * Return:
b1f74493
FT
2587 * %false - we are done with this request
2588 * %true - still buffers pending for this request
e3a04fe3 2589 **/
b1f74493 2590bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2591{
b1f74493 2592 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2593}
56ad1740 2594EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2595
32fab448 2596/**
b1f74493
FT
2597 * __blk_end_request_all - Helper function for drives to finish the request.
2598 * @rq: the request to finish
8ebf9756 2599 * @error: %0 for success, < %0 for error
32fab448
KU
2600 *
2601 * Description:
b1f74493 2602 * Completely finish @rq. Must be called with queue lock held.
32fab448 2603 */
b1f74493 2604void __blk_end_request_all(struct request *rq, int error)
32fab448 2605{
b1f74493
FT
2606 bool pending;
2607 unsigned int bidi_bytes = 0;
2608
2609 if (unlikely(blk_bidi_rq(rq)))
2610 bidi_bytes = blk_rq_bytes(rq->next_rq);
2611
2612 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2613 BUG_ON(pending);
32fab448 2614}
56ad1740 2615EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2616
e19a3ab0 2617/**
b1f74493
FT
2618 * __blk_end_request_cur - Helper function to finish the current request chunk.
2619 * @rq: the request to finish the current chunk for
8ebf9756 2620 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2621 *
2622 * Description:
b1f74493
FT
2623 * Complete the current consecutively mapped chunk from @rq. Must
2624 * be called with queue lock held.
e19a3ab0
KU
2625 *
2626 * Return:
b1f74493
FT
2627 * %false - we are done with this request
2628 * %true - still buffers pending for this request
2629 */
2630bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2631{
b1f74493 2632 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2633}
56ad1740 2634EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2635
80a761fd
TH
2636/**
2637 * __blk_end_request_err - Finish a request till the next failure boundary.
2638 * @rq: the request to finish till the next failure boundary for
2639 * @error: must be negative errno
2640 *
2641 * Description:
2642 * Complete @rq till the next failure boundary. Must be called
2643 * with queue lock held.
2644 *
2645 * Return:
2646 * %false - we are done with this request
2647 * %true - still buffers pending for this request
2648 */
2649bool __blk_end_request_err(struct request *rq, int error)
2650{
2651 WARN_ON(error >= 0);
2652 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2653}
2654EXPORT_SYMBOL_GPL(__blk_end_request_err);
2655
86db1e29
JA
2656void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2657 struct bio *bio)
1da177e4 2658{
a82afdfc 2659 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2660 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2661
fb2dce86
DW
2662 if (bio_has_data(bio)) {
2663 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2664 rq->buffer = bio_data(bio);
2665 }
a2dec7b3 2666 rq->__data_len = bio->bi_size;
1da177e4 2667 rq->bio = rq->biotail = bio;
1da177e4 2668
66846572
N
2669 if (bio->bi_bdev)
2670 rq->rq_disk = bio->bi_bdev->bd_disk;
2671}
1da177e4 2672
2d4dc890
IL
2673#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2674/**
2675 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2676 * @rq: the request to be flushed
2677 *
2678 * Description:
2679 * Flush all pages in @rq.
2680 */
2681void rq_flush_dcache_pages(struct request *rq)
2682{
2683 struct req_iterator iter;
2684 struct bio_vec *bvec;
2685
2686 rq_for_each_segment(bvec, rq, iter)
2687 flush_dcache_page(bvec->bv_page);
2688}
2689EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2690#endif
2691
ef9e3fac
KU
2692/**
2693 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2694 * @q : the queue of the device being checked
2695 *
2696 * Description:
2697 * Check if underlying low-level drivers of a device are busy.
2698 * If the drivers want to export their busy state, they must set own
2699 * exporting function using blk_queue_lld_busy() first.
2700 *
2701 * Basically, this function is used only by request stacking drivers
2702 * to stop dispatching requests to underlying devices when underlying
2703 * devices are busy. This behavior helps more I/O merging on the queue
2704 * of the request stacking driver and prevents I/O throughput regression
2705 * on burst I/O load.
2706 *
2707 * Return:
2708 * 0 - Not busy (The request stacking driver should dispatch request)
2709 * 1 - Busy (The request stacking driver should stop dispatching request)
2710 */
2711int blk_lld_busy(struct request_queue *q)
2712{
2713 if (q->lld_busy_fn)
2714 return q->lld_busy_fn(q);
2715
2716 return 0;
2717}
2718EXPORT_SYMBOL_GPL(blk_lld_busy);
2719
b0fd271d
KU
2720/**
2721 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2722 * @rq: the clone request to be cleaned up
2723 *
2724 * Description:
2725 * Free all bios in @rq for a cloned request.
2726 */
2727void blk_rq_unprep_clone(struct request *rq)
2728{
2729 struct bio *bio;
2730
2731 while ((bio = rq->bio) != NULL) {
2732 rq->bio = bio->bi_next;
2733
2734 bio_put(bio);
2735 }
2736}
2737EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2738
2739/*
2740 * Copy attributes of the original request to the clone request.
2741 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2742 */
2743static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2744{
2745 dst->cpu = src->cpu;
3a2edd0d 2746 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2747 dst->cmd_type = src->cmd_type;
2748 dst->__sector = blk_rq_pos(src);
2749 dst->__data_len = blk_rq_bytes(src);
2750 dst->nr_phys_segments = src->nr_phys_segments;
2751 dst->ioprio = src->ioprio;
2752 dst->extra_len = src->extra_len;
2753}
2754
2755/**
2756 * blk_rq_prep_clone - Helper function to setup clone request
2757 * @rq: the request to be setup
2758 * @rq_src: original request to be cloned
2759 * @bs: bio_set that bios for clone are allocated from
2760 * @gfp_mask: memory allocation mask for bio
2761 * @bio_ctr: setup function to be called for each clone bio.
2762 * Returns %0 for success, non %0 for failure.
2763 * @data: private data to be passed to @bio_ctr
2764 *
2765 * Description:
2766 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2767 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2768 * are not copied, and copying such parts is the caller's responsibility.
2769 * Also, pages which the original bios are pointing to are not copied
2770 * and the cloned bios just point same pages.
2771 * So cloned bios must be completed before original bios, which means
2772 * the caller must complete @rq before @rq_src.
2773 */
2774int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2775 struct bio_set *bs, gfp_t gfp_mask,
2776 int (*bio_ctr)(struct bio *, struct bio *, void *),
2777 void *data)
2778{
2779 struct bio *bio, *bio_src;
2780
2781 if (!bs)
2782 bs = fs_bio_set;
2783
2784 blk_rq_init(NULL, rq);
2785
2786 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2787 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2788 if (!bio)
2789 goto free_and_out;
2790
b0fd271d
KU
2791 if (bio_ctr && bio_ctr(bio, bio_src, data))
2792 goto free_and_out;
2793
2794 if (rq->bio) {
2795 rq->biotail->bi_next = bio;
2796 rq->biotail = bio;
2797 } else
2798 rq->bio = rq->biotail = bio;
2799 }
2800
2801 __blk_rq_prep_clone(rq, rq_src);
2802
2803 return 0;
2804
2805free_and_out:
2806 if (bio)
4254bba1 2807 bio_put(bio);
b0fd271d
KU
2808 blk_rq_unprep_clone(rq);
2809
2810 return -ENOMEM;
2811}
2812EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2813
18887ad9 2814int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2815{
2816 return queue_work(kblockd_workqueue, work);
2817}
1da177e4
LT
2818EXPORT_SYMBOL(kblockd_schedule_work);
2819
e43473b7
VG
2820int kblockd_schedule_delayed_work(struct request_queue *q,
2821 struct delayed_work *dwork, unsigned long delay)
2822{
2823 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2824}
2825EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2826
73c10101
JA
2827#define PLUG_MAGIC 0x91827364
2828
75df7136
SJ
2829/**
2830 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2831 * @plug: The &struct blk_plug that needs to be initialized
2832 *
2833 * Description:
2834 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2835 * pending I/O should the task end up blocking between blk_start_plug() and
2836 * blk_finish_plug(). This is important from a performance perspective, but
2837 * also ensures that we don't deadlock. For instance, if the task is blocking
2838 * for a memory allocation, memory reclaim could end up wanting to free a
2839 * page belonging to that request that is currently residing in our private
2840 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2841 * this kind of deadlock.
2842 */
73c10101
JA
2843void blk_start_plug(struct blk_plug *plug)
2844{
2845 struct task_struct *tsk = current;
2846
2847 plug->magic = PLUG_MAGIC;
2848 INIT_LIST_HEAD(&plug->list);
048c9374 2849 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2850 plug->should_sort = 0;
2851
2852 /*
2853 * If this is a nested plug, don't actually assign it. It will be
2854 * flushed on its own.
2855 */
2856 if (!tsk->plug) {
2857 /*
2858 * Store ordering should not be needed here, since a potential
2859 * preempt will imply a full memory barrier
2860 */
2861 tsk->plug = plug;
2862 }
2863}
2864EXPORT_SYMBOL(blk_start_plug);
2865
2866static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2867{
2868 struct request *rqa = container_of(a, struct request, queuelist);
2869 struct request *rqb = container_of(b, struct request, queuelist);
2870
f83e8261 2871 return !(rqa->q <= rqb->q);
73c10101
JA
2872}
2873
49cac01e
JA
2874/*
2875 * If 'from_schedule' is true, then postpone the dispatch of requests
2876 * until a safe kblockd context. We due this to avoid accidental big
2877 * additional stack usage in driver dispatch, in places where the originally
2878 * plugger did not intend it.
2879 */
f6603783 2880static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2881 bool from_schedule)
99e22598 2882 __releases(q->queue_lock)
94b5eb28 2883{
49cac01e 2884 trace_block_unplug(q, depth, !from_schedule);
99e22598 2885
8ba61435
TH
2886 /*
2887 * Don't mess with dead queue.
2888 */
2889 if (unlikely(blk_queue_dead(q))) {
2890 spin_unlock(q->queue_lock);
2891 return;
2892 }
2893
99e22598
JA
2894 /*
2895 * If we are punting this to kblockd, then we can safely drop
2896 * the queue_lock before waking kblockd (which needs to take
2897 * this lock).
2898 */
2899 if (from_schedule) {
2900 spin_unlock(q->queue_lock);
24ecfbe2 2901 blk_run_queue_async(q);
99e22598 2902 } else {
24ecfbe2 2903 __blk_run_queue(q);
99e22598
JA
2904 spin_unlock(q->queue_lock);
2905 }
2906
94b5eb28
JA
2907}
2908
74018dc3 2909static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
2910{
2911 LIST_HEAD(callbacks);
2912
2a7d5559
SL
2913 while (!list_empty(&plug->cb_list)) {
2914 list_splice_init(&plug->cb_list, &callbacks);
048c9374 2915
2a7d5559
SL
2916 while (!list_empty(&callbacks)) {
2917 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
2918 struct blk_plug_cb,
2919 list);
2a7d5559 2920 list_del(&cb->list);
74018dc3 2921 cb->callback(cb, from_schedule);
2a7d5559 2922 }
048c9374
N
2923 }
2924}
2925
9cbb1750
N
2926struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2927 int size)
2928{
2929 struct blk_plug *plug = current->plug;
2930 struct blk_plug_cb *cb;
2931
2932 if (!plug)
2933 return NULL;
2934
2935 list_for_each_entry(cb, &plug->cb_list, list)
2936 if (cb->callback == unplug && cb->data == data)
2937 return cb;
2938
2939 /* Not currently on the callback list */
2940 BUG_ON(size < sizeof(*cb));
2941 cb = kzalloc(size, GFP_ATOMIC);
2942 if (cb) {
2943 cb->data = data;
2944 cb->callback = unplug;
2945 list_add(&cb->list, &plug->cb_list);
2946 }
2947 return cb;
2948}
2949EXPORT_SYMBOL(blk_check_plugged);
2950
49cac01e 2951void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2952{
2953 struct request_queue *q;
2954 unsigned long flags;
2955 struct request *rq;
109b8129 2956 LIST_HEAD(list);
94b5eb28 2957 unsigned int depth;
73c10101
JA
2958
2959 BUG_ON(plug->magic != PLUG_MAGIC);
2960
74018dc3 2961 flush_plug_callbacks(plug, from_schedule);
73c10101
JA
2962 if (list_empty(&plug->list))
2963 return;
2964
109b8129
N
2965 list_splice_init(&plug->list, &list);
2966
2967 if (plug->should_sort) {
2968 list_sort(NULL, &list, plug_rq_cmp);
2969 plug->should_sort = 0;
2970 }
73c10101
JA
2971
2972 q = NULL;
94b5eb28 2973 depth = 0;
18811272
JA
2974
2975 /*
2976 * Save and disable interrupts here, to avoid doing it for every
2977 * queue lock we have to take.
2978 */
73c10101 2979 local_irq_save(flags);
109b8129
N
2980 while (!list_empty(&list)) {
2981 rq = list_entry_rq(list.next);
73c10101 2982 list_del_init(&rq->queuelist);
73c10101
JA
2983 BUG_ON(!rq->q);
2984 if (rq->q != q) {
99e22598
JA
2985 /*
2986 * This drops the queue lock
2987 */
2988 if (q)
49cac01e 2989 queue_unplugged(q, depth, from_schedule);
73c10101 2990 q = rq->q;
94b5eb28 2991 depth = 0;
73c10101
JA
2992 spin_lock(q->queue_lock);
2993 }
8ba61435
TH
2994
2995 /*
2996 * Short-circuit if @q is dead
2997 */
2998 if (unlikely(blk_queue_dead(q))) {
2999 __blk_end_request_all(rq, -ENODEV);
3000 continue;
3001 }
3002
73c10101
JA
3003 /*
3004 * rq is already accounted, so use raw insert
3005 */
401a18e9
JA
3006 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3007 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3008 else
3009 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3010
3011 depth++;
73c10101
JA
3012 }
3013
99e22598
JA
3014 /*
3015 * This drops the queue lock
3016 */
3017 if (q)
49cac01e 3018 queue_unplugged(q, depth, from_schedule);
73c10101 3019
73c10101
JA
3020 local_irq_restore(flags);
3021}
73c10101
JA
3022
3023void blk_finish_plug(struct blk_plug *plug)
3024{
f6603783 3025 blk_flush_plug_list(plug, false);
73c10101 3026
88b996cd
CH
3027 if (plug == current->plug)
3028 current->plug = NULL;
73c10101 3029}
88b996cd 3030EXPORT_SYMBOL(blk_finish_plug);
73c10101 3031
1da177e4
LT
3032int __init blk_dev_init(void)
3033{
9eb55b03
NK
3034 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3035 sizeof(((struct request *)0)->cmd_flags));
3036
89b90be2
TH
3037 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3038 kblockd_workqueue = alloc_workqueue("kblockd",
3039 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3040 if (!kblockd_workqueue)
3041 panic("Failed to create kblockd\n");
3042
3043 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3044 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3045
8324aa91 3046 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3047 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3048
d38ecf93 3049 return 0;
1da177e4 3050}