]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
block: lift the initial queue bypass mode on blk_register_queue() instead of blk_init...
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
36
37 #include "blk.h"
38 #include "blk-cgroup.h"
39
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43
44 DEFINE_IDA(blk_queue_ida);
45
46 /*
47 * For the allocated request tables
48 */
49 static struct kmem_cache *request_cachep;
50
51 /*
52 * For queue allocation
53 */
54 struct kmem_cache *blk_requestq_cachep;
55
56 /*
57 * Controlling structure to kblockd
58 */
59 static struct workqueue_struct *kblockd_workqueue;
60
61 static void drive_stat_acct(struct request *rq, int new_io)
62 {
63 struct hd_struct *part;
64 int rw = rq_data_dir(rq);
65 int cpu;
66
67 if (!blk_do_io_stat(rq))
68 return;
69
70 cpu = part_stat_lock();
71
72 if (!new_io) {
73 part = rq->part;
74 part_stat_inc(cpu, part, merges[rw]);
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 if (!hd_struct_try_get(part)) {
78 /*
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
81 *
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
85 */
86 part = &rq->rq_disk->part0;
87 hd_struct_get(part);
88 }
89 part_round_stats(cpu, part);
90 part_inc_in_flight(part, rw);
91 rq->part = part;
92 }
93
94 part_stat_unlock();
95 }
96
97 void blk_queue_congestion_threshold(struct request_queue *q)
98 {
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110 }
111
112 /**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122 {
123 struct backing_dev_info *ret = NULL;
124 struct request_queue *q = bdev_get_queue(bdev);
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129 }
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
131
132 void blk_rq_init(struct request_queue *q, struct request *rq)
133 {
134 memset(rq, 0, sizeof(*rq));
135
136 INIT_LIST_HEAD(&rq->queuelist);
137 INIT_LIST_HEAD(&rq->timeout_list);
138 rq->cpu = -1;
139 rq->q = q;
140 rq->__sector = (sector_t) -1;
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
143 rq->cmd = rq->__cmd;
144 rq->cmd_len = BLK_MAX_CDB;
145 rq->tag = -1;
146 rq->ref_count = 1;
147 rq->start_time = jiffies;
148 set_start_time_ns(rq);
149 rq->part = NULL;
150 }
151 EXPORT_SYMBOL(blk_rq_init);
152
153 static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
155 {
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
160
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
165 }
166
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
169
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
172
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
175
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
179 }
180
181 void blk_dump_rq_flags(struct request *rq, char *msg)
182 {
183 int bit;
184
185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
188
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
194
195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 printk(KERN_INFO " cdb: ");
197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201 }
202 EXPORT_SYMBOL(blk_dump_rq_flags);
203
204 static void blk_delay_work(struct work_struct *work)
205 {
206 struct request_queue *q;
207
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
210 __blk_run_queue(q);
211 spin_unlock_irq(q->queue_lock);
212 }
213
214 /**
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
218 *
219 * Description:
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
223 */
224 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
225 {
226 queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 msecs_to_jiffies(msecs));
228 }
229 EXPORT_SYMBOL(blk_delay_queue);
230
231 /**
232 * blk_start_queue - restart a previously stopped queue
233 * @q: The &struct request_queue in question
234 *
235 * Description:
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
239 **/
240 void blk_start_queue(struct request_queue *q)
241 {
242 WARN_ON(!irqs_disabled());
243
244 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
245 __blk_run_queue(q);
246 }
247 EXPORT_SYMBOL(blk_start_queue);
248
249 /**
250 * blk_stop_queue - stop a queue
251 * @q: The &struct request_queue in question
252 *
253 * Description:
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
262 **/
263 void blk_stop_queue(struct request_queue *q)
264 {
265 __cancel_delayed_work(&q->delay_work);
266 queue_flag_set(QUEUE_FLAG_STOPPED, q);
267 }
268 EXPORT_SYMBOL(blk_stop_queue);
269
270 /**
271 * blk_sync_queue - cancel any pending callbacks on a queue
272 * @q: the queue
273 *
274 * Description:
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
279 * that the callbacks might use. The caller must already have made sure
280 * that its ->make_request_fn will not re-add plugging prior to calling
281 * this function.
282 *
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
285 * and blkcg_exit_queue() to be called with queue lock initialized.
286 *
287 */
288 void blk_sync_queue(struct request_queue *q)
289 {
290 del_timer_sync(&q->timeout);
291 cancel_delayed_work_sync(&q->delay_work);
292 }
293 EXPORT_SYMBOL(blk_sync_queue);
294
295 /**
296 * __blk_run_queue - run a single device queue
297 * @q: The queue to run
298 *
299 * Description:
300 * See @blk_run_queue. This variant must be called with the queue lock
301 * held and interrupts disabled.
302 */
303 void __blk_run_queue(struct request_queue *q)
304 {
305 if (unlikely(blk_queue_stopped(q)))
306 return;
307
308 q->request_fn(q);
309 }
310 EXPORT_SYMBOL(__blk_run_queue);
311
312 /**
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
315 *
316 * Description:
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318 * of us.
319 */
320 void blk_run_queue_async(struct request_queue *q)
321 {
322 if (likely(!blk_queue_stopped(q))) {
323 __cancel_delayed_work(&q->delay_work);
324 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
325 }
326 }
327 EXPORT_SYMBOL(blk_run_queue_async);
328
329 /**
330 * blk_run_queue - run a single device queue
331 * @q: The queue to run
332 *
333 * Description:
334 * Invoke request handling on this queue, if it has pending work to do.
335 * May be used to restart queueing when a request has completed.
336 */
337 void blk_run_queue(struct request_queue *q)
338 {
339 unsigned long flags;
340
341 spin_lock_irqsave(q->queue_lock, flags);
342 __blk_run_queue(q);
343 spin_unlock_irqrestore(q->queue_lock, flags);
344 }
345 EXPORT_SYMBOL(blk_run_queue);
346
347 void blk_put_queue(struct request_queue *q)
348 {
349 kobject_put(&q->kobj);
350 }
351 EXPORT_SYMBOL(blk_put_queue);
352
353 /**
354 * blk_drain_queue - drain requests from request_queue
355 * @q: queue to drain
356 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
357 *
358 * Drain requests from @q. If @drain_all is set, all requests are drained.
359 * If not, only ELVPRIV requests are drained. The caller is responsible
360 * for ensuring that no new requests which need to be drained are queued.
361 */
362 void blk_drain_queue(struct request_queue *q, bool drain_all)
363 {
364 int i;
365
366 while (true) {
367 bool drain = false;
368
369 spin_lock_irq(q->queue_lock);
370
371 /*
372 * The caller might be trying to drain @q before its
373 * elevator is initialized.
374 */
375 if (q->elevator)
376 elv_drain_elevator(q);
377
378 blkcg_drain_queue(q);
379
380 /*
381 * This function might be called on a queue which failed
382 * driver init after queue creation or is not yet fully
383 * active yet. Some drivers (e.g. fd and loop) get unhappy
384 * in such cases. Kick queue iff dispatch queue has
385 * something on it and @q has request_fn set.
386 */
387 if (!list_empty(&q->queue_head) && q->request_fn)
388 __blk_run_queue(q);
389
390 drain |= q->nr_rqs_elvpriv;
391
392 /*
393 * Unfortunately, requests are queued at and tracked from
394 * multiple places and there's no single counter which can
395 * be drained. Check all the queues and counters.
396 */
397 if (drain_all) {
398 drain |= !list_empty(&q->queue_head);
399 for (i = 0; i < 2; i++) {
400 drain |= q->nr_rqs[i];
401 drain |= q->in_flight[i];
402 drain |= !list_empty(&q->flush_queue[i]);
403 }
404 }
405
406 spin_unlock_irq(q->queue_lock);
407
408 if (!drain)
409 break;
410 msleep(10);
411 }
412
413 /*
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
417 */
418 if (q->request_fn) {
419 struct request_list *rl;
420
421 spin_lock_irq(q->queue_lock);
422
423 blk_queue_for_each_rl(rl, q)
424 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 wake_up_all(&rl->wait[i]);
426
427 spin_unlock_irq(q->queue_lock);
428 }
429 }
430
431 /**
432 * blk_queue_bypass_start - enter queue bypass mode
433 * @q: queue of interest
434 *
435 * In bypass mode, only the dispatch FIFO queue of @q is used. This
436 * function makes @q enter bypass mode and drains all requests which were
437 * throttled or issued before. On return, it's guaranteed that no request
438 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
439 * inside queue or RCU read lock.
440 */
441 void blk_queue_bypass_start(struct request_queue *q)
442 {
443 bool drain;
444
445 spin_lock_irq(q->queue_lock);
446 drain = !q->bypass_depth++;
447 queue_flag_set(QUEUE_FLAG_BYPASS, q);
448 spin_unlock_irq(q->queue_lock);
449
450 if (drain) {
451 blk_drain_queue(q, false);
452 /* ensure blk_queue_bypass() is %true inside RCU read lock */
453 synchronize_rcu();
454 }
455 }
456 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
457
458 /**
459 * blk_queue_bypass_end - leave queue bypass mode
460 * @q: queue of interest
461 *
462 * Leave bypass mode and restore the normal queueing behavior.
463 */
464 void blk_queue_bypass_end(struct request_queue *q)
465 {
466 spin_lock_irq(q->queue_lock);
467 if (!--q->bypass_depth)
468 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
469 WARN_ON_ONCE(q->bypass_depth < 0);
470 spin_unlock_irq(q->queue_lock);
471 }
472 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
473
474 /**
475 * blk_cleanup_queue - shutdown a request queue
476 * @q: request queue to shutdown
477 *
478 * Mark @q DEAD, drain all pending requests, destroy and put it. All
479 * future requests will be failed immediately with -ENODEV.
480 */
481 void blk_cleanup_queue(struct request_queue *q)
482 {
483 spinlock_t *lock = q->queue_lock;
484
485 /* mark @q DEAD, no new request or merges will be allowed afterwards */
486 mutex_lock(&q->sysfs_lock);
487 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
488 spin_lock_irq(lock);
489
490 /*
491 * Dead queue is permanently in bypass mode till released. Note
492 * that, unlike blk_queue_bypass_start(), we aren't performing
493 * synchronize_rcu() after entering bypass mode to avoid the delay
494 * as some drivers create and destroy a lot of queues while
495 * probing. This is still safe because blk_release_queue() will be
496 * called only after the queue refcnt drops to zero and nothing,
497 * RCU or not, would be traversing the queue by then.
498 */
499 q->bypass_depth++;
500 queue_flag_set(QUEUE_FLAG_BYPASS, q);
501
502 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
503 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
504 queue_flag_set(QUEUE_FLAG_DEAD, q);
505 spin_unlock_irq(lock);
506 mutex_unlock(&q->sysfs_lock);
507
508 /* drain all requests queued before DEAD marking */
509 blk_drain_queue(q, true);
510
511 /* @q won't process any more request, flush async actions */
512 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
513 blk_sync_queue(q);
514
515 spin_lock_irq(lock);
516 if (q->queue_lock != &q->__queue_lock)
517 q->queue_lock = &q->__queue_lock;
518 spin_unlock_irq(lock);
519
520 /* @q is and will stay empty, shutdown and put */
521 blk_put_queue(q);
522 }
523 EXPORT_SYMBOL(blk_cleanup_queue);
524
525 int blk_init_rl(struct request_list *rl, struct request_queue *q,
526 gfp_t gfp_mask)
527 {
528 if (unlikely(rl->rq_pool))
529 return 0;
530
531 rl->q = q;
532 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
533 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
534 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
535 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
536
537 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
538 mempool_free_slab, request_cachep,
539 gfp_mask, q->node);
540 if (!rl->rq_pool)
541 return -ENOMEM;
542
543 return 0;
544 }
545
546 void blk_exit_rl(struct request_list *rl)
547 {
548 if (rl->rq_pool)
549 mempool_destroy(rl->rq_pool);
550 }
551
552 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
553 {
554 return blk_alloc_queue_node(gfp_mask, -1);
555 }
556 EXPORT_SYMBOL(blk_alloc_queue);
557
558 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
559 {
560 struct request_queue *q;
561 int err;
562
563 q = kmem_cache_alloc_node(blk_requestq_cachep,
564 gfp_mask | __GFP_ZERO, node_id);
565 if (!q)
566 return NULL;
567
568 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
569 if (q->id < 0)
570 goto fail_q;
571
572 q->backing_dev_info.ra_pages =
573 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
574 q->backing_dev_info.state = 0;
575 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
576 q->backing_dev_info.name = "block";
577 q->node = node_id;
578
579 err = bdi_init(&q->backing_dev_info);
580 if (err)
581 goto fail_id;
582
583 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
584 laptop_mode_timer_fn, (unsigned long) q);
585 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
586 INIT_LIST_HEAD(&q->queue_head);
587 INIT_LIST_HEAD(&q->timeout_list);
588 INIT_LIST_HEAD(&q->icq_list);
589 #ifdef CONFIG_BLK_CGROUP
590 INIT_LIST_HEAD(&q->blkg_list);
591 #endif
592 INIT_LIST_HEAD(&q->flush_queue[0]);
593 INIT_LIST_HEAD(&q->flush_queue[1]);
594 INIT_LIST_HEAD(&q->flush_data_in_flight);
595 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
596
597 kobject_init(&q->kobj, &blk_queue_ktype);
598
599 mutex_init(&q->sysfs_lock);
600 spin_lock_init(&q->__queue_lock);
601
602 /*
603 * By default initialize queue_lock to internal lock and driver can
604 * override it later if need be.
605 */
606 q->queue_lock = &q->__queue_lock;
607
608 /*
609 * A queue starts its life with bypass turned on to avoid
610 * unnecessary bypass on/off overhead and nasty surprises during
611 * init. The initial bypass will be finished when the queue is
612 * registered by blk_register_queue().
613 */
614 q->bypass_depth = 1;
615 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
616
617 if (blkcg_init_queue(q))
618 goto fail_id;
619
620 return q;
621
622 fail_id:
623 ida_simple_remove(&blk_queue_ida, q->id);
624 fail_q:
625 kmem_cache_free(blk_requestq_cachep, q);
626 return NULL;
627 }
628 EXPORT_SYMBOL(blk_alloc_queue_node);
629
630 /**
631 * blk_init_queue - prepare a request queue for use with a block device
632 * @rfn: The function to be called to process requests that have been
633 * placed on the queue.
634 * @lock: Request queue spin lock
635 *
636 * Description:
637 * If a block device wishes to use the standard request handling procedures,
638 * which sorts requests and coalesces adjacent requests, then it must
639 * call blk_init_queue(). The function @rfn will be called when there
640 * are requests on the queue that need to be processed. If the device
641 * supports plugging, then @rfn may not be called immediately when requests
642 * are available on the queue, but may be called at some time later instead.
643 * Plugged queues are generally unplugged when a buffer belonging to one
644 * of the requests on the queue is needed, or due to memory pressure.
645 *
646 * @rfn is not required, or even expected, to remove all requests off the
647 * queue, but only as many as it can handle at a time. If it does leave
648 * requests on the queue, it is responsible for arranging that the requests
649 * get dealt with eventually.
650 *
651 * The queue spin lock must be held while manipulating the requests on the
652 * request queue; this lock will be taken also from interrupt context, so irq
653 * disabling is needed for it.
654 *
655 * Function returns a pointer to the initialized request queue, or %NULL if
656 * it didn't succeed.
657 *
658 * Note:
659 * blk_init_queue() must be paired with a blk_cleanup_queue() call
660 * when the block device is deactivated (such as at module unload).
661 **/
662
663 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
664 {
665 return blk_init_queue_node(rfn, lock, -1);
666 }
667 EXPORT_SYMBOL(blk_init_queue);
668
669 struct request_queue *
670 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
671 {
672 struct request_queue *uninit_q, *q;
673
674 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
675 if (!uninit_q)
676 return NULL;
677
678 q = blk_init_allocated_queue(uninit_q, rfn, lock);
679 if (!q)
680 blk_cleanup_queue(uninit_q);
681
682 return q;
683 }
684 EXPORT_SYMBOL(blk_init_queue_node);
685
686 struct request_queue *
687 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
688 spinlock_t *lock)
689 {
690 if (!q)
691 return NULL;
692
693 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
694 return NULL;
695
696 q->request_fn = rfn;
697 q->prep_rq_fn = NULL;
698 q->unprep_rq_fn = NULL;
699 q->queue_flags = QUEUE_FLAG_DEFAULT;
700
701 /* Override internal queue lock with supplied lock pointer */
702 if (lock)
703 q->queue_lock = lock;
704
705 /*
706 * This also sets hw/phys segments, boundary and size
707 */
708 blk_queue_make_request(q, blk_queue_bio);
709
710 q->sg_reserved_size = INT_MAX;
711
712 /* init elevator */
713 if (elevator_init(q, NULL))
714 return NULL;
715 return q;
716 }
717 EXPORT_SYMBOL(blk_init_allocated_queue);
718
719 bool blk_get_queue(struct request_queue *q)
720 {
721 if (likely(!blk_queue_dead(q))) {
722 __blk_get_queue(q);
723 return true;
724 }
725
726 return false;
727 }
728 EXPORT_SYMBOL(blk_get_queue);
729
730 static inline void blk_free_request(struct request_list *rl, struct request *rq)
731 {
732 if (rq->cmd_flags & REQ_ELVPRIV) {
733 elv_put_request(rl->q, rq);
734 if (rq->elv.icq)
735 put_io_context(rq->elv.icq->ioc);
736 }
737
738 mempool_free(rq, rl->rq_pool);
739 }
740
741 /*
742 * ioc_batching returns true if the ioc is a valid batching request and
743 * should be given priority access to a request.
744 */
745 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
746 {
747 if (!ioc)
748 return 0;
749
750 /*
751 * Make sure the process is able to allocate at least 1 request
752 * even if the batch times out, otherwise we could theoretically
753 * lose wakeups.
754 */
755 return ioc->nr_batch_requests == q->nr_batching ||
756 (ioc->nr_batch_requests > 0
757 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
758 }
759
760 /*
761 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
762 * will cause the process to be a "batcher" on all queues in the system. This
763 * is the behaviour we want though - once it gets a wakeup it should be given
764 * a nice run.
765 */
766 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
767 {
768 if (!ioc || ioc_batching(q, ioc))
769 return;
770
771 ioc->nr_batch_requests = q->nr_batching;
772 ioc->last_waited = jiffies;
773 }
774
775 static void __freed_request(struct request_list *rl, int sync)
776 {
777 struct request_queue *q = rl->q;
778
779 /*
780 * bdi isn't aware of blkcg yet. As all async IOs end up root
781 * blkcg anyway, just use root blkcg state.
782 */
783 if (rl == &q->root_rl &&
784 rl->count[sync] < queue_congestion_off_threshold(q))
785 blk_clear_queue_congested(q, sync);
786
787 if (rl->count[sync] + 1 <= q->nr_requests) {
788 if (waitqueue_active(&rl->wait[sync]))
789 wake_up(&rl->wait[sync]);
790
791 blk_clear_rl_full(rl, sync);
792 }
793 }
794
795 /*
796 * A request has just been released. Account for it, update the full and
797 * congestion status, wake up any waiters. Called under q->queue_lock.
798 */
799 static void freed_request(struct request_list *rl, unsigned int flags)
800 {
801 struct request_queue *q = rl->q;
802 int sync = rw_is_sync(flags);
803
804 q->nr_rqs[sync]--;
805 rl->count[sync]--;
806 if (flags & REQ_ELVPRIV)
807 q->nr_rqs_elvpriv--;
808
809 __freed_request(rl, sync);
810
811 if (unlikely(rl->starved[sync ^ 1]))
812 __freed_request(rl, sync ^ 1);
813 }
814
815 /*
816 * Determine if elevator data should be initialized when allocating the
817 * request associated with @bio.
818 */
819 static bool blk_rq_should_init_elevator(struct bio *bio)
820 {
821 if (!bio)
822 return true;
823
824 /*
825 * Flush requests do not use the elevator so skip initialization.
826 * This allows a request to share the flush and elevator data.
827 */
828 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
829 return false;
830
831 return true;
832 }
833
834 /**
835 * rq_ioc - determine io_context for request allocation
836 * @bio: request being allocated is for this bio (can be %NULL)
837 *
838 * Determine io_context to use for request allocation for @bio. May return
839 * %NULL if %current->io_context doesn't exist.
840 */
841 static struct io_context *rq_ioc(struct bio *bio)
842 {
843 #ifdef CONFIG_BLK_CGROUP
844 if (bio && bio->bi_ioc)
845 return bio->bi_ioc;
846 #endif
847 return current->io_context;
848 }
849
850 /**
851 * __get_request - get a free request
852 * @rl: request list to allocate from
853 * @rw_flags: RW and SYNC flags
854 * @bio: bio to allocate request for (can be %NULL)
855 * @gfp_mask: allocation mask
856 *
857 * Get a free request from @q. This function may fail under memory
858 * pressure or if @q is dead.
859 *
860 * Must be callled with @q->queue_lock held and,
861 * Returns %NULL on failure, with @q->queue_lock held.
862 * Returns !%NULL on success, with @q->queue_lock *not held*.
863 */
864 static struct request *__get_request(struct request_list *rl, int rw_flags,
865 struct bio *bio, gfp_t gfp_mask)
866 {
867 struct request_queue *q = rl->q;
868 struct request *rq;
869 struct elevator_type *et = q->elevator->type;
870 struct io_context *ioc = rq_ioc(bio);
871 struct io_cq *icq = NULL;
872 const bool is_sync = rw_is_sync(rw_flags) != 0;
873 int may_queue;
874
875 if (unlikely(blk_queue_dead(q)))
876 return NULL;
877
878 may_queue = elv_may_queue(q, rw_flags);
879 if (may_queue == ELV_MQUEUE_NO)
880 goto rq_starved;
881
882 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
883 if (rl->count[is_sync]+1 >= q->nr_requests) {
884 /*
885 * The queue will fill after this allocation, so set
886 * it as full, and mark this process as "batching".
887 * This process will be allowed to complete a batch of
888 * requests, others will be blocked.
889 */
890 if (!blk_rl_full(rl, is_sync)) {
891 ioc_set_batching(q, ioc);
892 blk_set_rl_full(rl, is_sync);
893 } else {
894 if (may_queue != ELV_MQUEUE_MUST
895 && !ioc_batching(q, ioc)) {
896 /*
897 * The queue is full and the allocating
898 * process is not a "batcher", and not
899 * exempted by the IO scheduler
900 */
901 return NULL;
902 }
903 }
904 }
905 /*
906 * bdi isn't aware of blkcg yet. As all async IOs end up
907 * root blkcg anyway, just use root blkcg state.
908 */
909 if (rl == &q->root_rl)
910 blk_set_queue_congested(q, is_sync);
911 }
912
913 /*
914 * Only allow batching queuers to allocate up to 50% over the defined
915 * limit of requests, otherwise we could have thousands of requests
916 * allocated with any setting of ->nr_requests
917 */
918 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
919 return NULL;
920
921 q->nr_rqs[is_sync]++;
922 rl->count[is_sync]++;
923 rl->starved[is_sync] = 0;
924
925 /*
926 * Decide whether the new request will be managed by elevator. If
927 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
928 * prevent the current elevator from being destroyed until the new
929 * request is freed. This guarantees icq's won't be destroyed and
930 * makes creating new ones safe.
931 *
932 * Also, lookup icq while holding queue_lock. If it doesn't exist,
933 * it will be created after releasing queue_lock.
934 */
935 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
936 rw_flags |= REQ_ELVPRIV;
937 q->nr_rqs_elvpriv++;
938 if (et->icq_cache && ioc)
939 icq = ioc_lookup_icq(ioc, q);
940 }
941
942 if (blk_queue_io_stat(q))
943 rw_flags |= REQ_IO_STAT;
944 spin_unlock_irq(q->queue_lock);
945
946 /* allocate and init request */
947 rq = mempool_alloc(rl->rq_pool, gfp_mask);
948 if (!rq)
949 goto fail_alloc;
950
951 blk_rq_init(q, rq);
952 blk_rq_set_rl(rq, rl);
953 rq->cmd_flags = rw_flags | REQ_ALLOCED;
954
955 /* init elvpriv */
956 if (rw_flags & REQ_ELVPRIV) {
957 if (unlikely(et->icq_cache && !icq)) {
958 if (ioc)
959 icq = ioc_create_icq(ioc, q, gfp_mask);
960 if (!icq)
961 goto fail_elvpriv;
962 }
963
964 rq->elv.icq = icq;
965 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
966 goto fail_elvpriv;
967
968 /* @rq->elv.icq holds io_context until @rq is freed */
969 if (icq)
970 get_io_context(icq->ioc);
971 }
972 out:
973 /*
974 * ioc may be NULL here, and ioc_batching will be false. That's
975 * OK, if the queue is under the request limit then requests need
976 * not count toward the nr_batch_requests limit. There will always
977 * be some limit enforced by BLK_BATCH_TIME.
978 */
979 if (ioc_batching(q, ioc))
980 ioc->nr_batch_requests--;
981
982 trace_block_getrq(q, bio, rw_flags & 1);
983 return rq;
984
985 fail_elvpriv:
986 /*
987 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
988 * and may fail indefinitely under memory pressure and thus
989 * shouldn't stall IO. Treat this request as !elvpriv. This will
990 * disturb iosched and blkcg but weird is bettern than dead.
991 */
992 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
993 dev_name(q->backing_dev_info.dev));
994
995 rq->cmd_flags &= ~REQ_ELVPRIV;
996 rq->elv.icq = NULL;
997
998 spin_lock_irq(q->queue_lock);
999 q->nr_rqs_elvpriv--;
1000 spin_unlock_irq(q->queue_lock);
1001 goto out;
1002
1003 fail_alloc:
1004 /*
1005 * Allocation failed presumably due to memory. Undo anything we
1006 * might have messed up.
1007 *
1008 * Allocating task should really be put onto the front of the wait
1009 * queue, but this is pretty rare.
1010 */
1011 spin_lock_irq(q->queue_lock);
1012 freed_request(rl, rw_flags);
1013
1014 /*
1015 * in the very unlikely event that allocation failed and no
1016 * requests for this direction was pending, mark us starved so that
1017 * freeing of a request in the other direction will notice
1018 * us. another possible fix would be to split the rq mempool into
1019 * READ and WRITE
1020 */
1021 rq_starved:
1022 if (unlikely(rl->count[is_sync] == 0))
1023 rl->starved[is_sync] = 1;
1024 return NULL;
1025 }
1026
1027 /**
1028 * get_request - get a free request
1029 * @q: request_queue to allocate request from
1030 * @rw_flags: RW and SYNC flags
1031 * @bio: bio to allocate request for (can be %NULL)
1032 * @gfp_mask: allocation mask
1033 *
1034 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1035 * function keeps retrying under memory pressure and fails iff @q is dead.
1036 *
1037 * Must be callled with @q->queue_lock held and,
1038 * Returns %NULL on failure, with @q->queue_lock held.
1039 * Returns !%NULL on success, with @q->queue_lock *not held*.
1040 */
1041 static struct request *get_request(struct request_queue *q, int rw_flags,
1042 struct bio *bio, gfp_t gfp_mask)
1043 {
1044 const bool is_sync = rw_is_sync(rw_flags) != 0;
1045 DEFINE_WAIT(wait);
1046 struct request_list *rl;
1047 struct request *rq;
1048
1049 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1050 retry:
1051 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1052 if (rq)
1053 return rq;
1054
1055 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dead(q))) {
1056 blk_put_rl(rl);
1057 return NULL;
1058 }
1059
1060 /* wait on @rl and retry */
1061 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1062 TASK_UNINTERRUPTIBLE);
1063
1064 trace_block_sleeprq(q, bio, rw_flags & 1);
1065
1066 spin_unlock_irq(q->queue_lock);
1067 io_schedule();
1068
1069 /*
1070 * After sleeping, we become a "batching" process and will be able
1071 * to allocate at least one request, and up to a big batch of them
1072 * for a small period time. See ioc_batching, ioc_set_batching
1073 */
1074 ioc_set_batching(q, current->io_context);
1075
1076 spin_lock_irq(q->queue_lock);
1077 finish_wait(&rl->wait[is_sync], &wait);
1078
1079 goto retry;
1080 }
1081
1082 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1083 {
1084 struct request *rq;
1085
1086 BUG_ON(rw != READ && rw != WRITE);
1087
1088 /* create ioc upfront */
1089 create_io_context(gfp_mask, q->node);
1090
1091 spin_lock_irq(q->queue_lock);
1092 rq = get_request(q, rw, NULL, gfp_mask);
1093 if (!rq)
1094 spin_unlock_irq(q->queue_lock);
1095 /* q->queue_lock is unlocked at this point */
1096
1097 return rq;
1098 }
1099 EXPORT_SYMBOL(blk_get_request);
1100
1101 /**
1102 * blk_make_request - given a bio, allocate a corresponding struct request.
1103 * @q: target request queue
1104 * @bio: The bio describing the memory mappings that will be submitted for IO.
1105 * It may be a chained-bio properly constructed by block/bio layer.
1106 * @gfp_mask: gfp flags to be used for memory allocation
1107 *
1108 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1109 * type commands. Where the struct request needs to be farther initialized by
1110 * the caller. It is passed a &struct bio, which describes the memory info of
1111 * the I/O transfer.
1112 *
1113 * The caller of blk_make_request must make sure that bi_io_vec
1114 * are set to describe the memory buffers. That bio_data_dir() will return
1115 * the needed direction of the request. (And all bio's in the passed bio-chain
1116 * are properly set accordingly)
1117 *
1118 * If called under none-sleepable conditions, mapped bio buffers must not
1119 * need bouncing, by calling the appropriate masked or flagged allocator,
1120 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1121 * BUG.
1122 *
1123 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1124 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1125 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1126 * completion of a bio that hasn't been submitted yet, thus resulting in a
1127 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1128 * of bio_alloc(), as that avoids the mempool deadlock.
1129 * If possible a big IO should be split into smaller parts when allocation
1130 * fails. Partial allocation should not be an error, or you risk a live-lock.
1131 */
1132 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1133 gfp_t gfp_mask)
1134 {
1135 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1136
1137 if (unlikely(!rq))
1138 return ERR_PTR(-ENOMEM);
1139
1140 for_each_bio(bio) {
1141 struct bio *bounce_bio = bio;
1142 int ret;
1143
1144 blk_queue_bounce(q, &bounce_bio);
1145 ret = blk_rq_append_bio(q, rq, bounce_bio);
1146 if (unlikely(ret)) {
1147 blk_put_request(rq);
1148 return ERR_PTR(ret);
1149 }
1150 }
1151
1152 return rq;
1153 }
1154 EXPORT_SYMBOL(blk_make_request);
1155
1156 /**
1157 * blk_requeue_request - put a request back on queue
1158 * @q: request queue where request should be inserted
1159 * @rq: request to be inserted
1160 *
1161 * Description:
1162 * Drivers often keep queueing requests until the hardware cannot accept
1163 * more, when that condition happens we need to put the request back
1164 * on the queue. Must be called with queue lock held.
1165 */
1166 void blk_requeue_request(struct request_queue *q, struct request *rq)
1167 {
1168 blk_delete_timer(rq);
1169 blk_clear_rq_complete(rq);
1170 trace_block_rq_requeue(q, rq);
1171
1172 if (blk_rq_tagged(rq))
1173 blk_queue_end_tag(q, rq);
1174
1175 BUG_ON(blk_queued_rq(rq));
1176
1177 elv_requeue_request(q, rq);
1178 }
1179 EXPORT_SYMBOL(blk_requeue_request);
1180
1181 static void add_acct_request(struct request_queue *q, struct request *rq,
1182 int where)
1183 {
1184 drive_stat_acct(rq, 1);
1185 __elv_add_request(q, rq, where);
1186 }
1187
1188 static void part_round_stats_single(int cpu, struct hd_struct *part,
1189 unsigned long now)
1190 {
1191 if (now == part->stamp)
1192 return;
1193
1194 if (part_in_flight(part)) {
1195 __part_stat_add(cpu, part, time_in_queue,
1196 part_in_flight(part) * (now - part->stamp));
1197 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1198 }
1199 part->stamp = now;
1200 }
1201
1202 /**
1203 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1204 * @cpu: cpu number for stats access
1205 * @part: target partition
1206 *
1207 * The average IO queue length and utilisation statistics are maintained
1208 * by observing the current state of the queue length and the amount of
1209 * time it has been in this state for.
1210 *
1211 * Normally, that accounting is done on IO completion, but that can result
1212 * in more than a second's worth of IO being accounted for within any one
1213 * second, leading to >100% utilisation. To deal with that, we call this
1214 * function to do a round-off before returning the results when reading
1215 * /proc/diskstats. This accounts immediately for all queue usage up to
1216 * the current jiffies and restarts the counters again.
1217 */
1218 void part_round_stats(int cpu, struct hd_struct *part)
1219 {
1220 unsigned long now = jiffies;
1221
1222 if (part->partno)
1223 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1224 part_round_stats_single(cpu, part, now);
1225 }
1226 EXPORT_SYMBOL_GPL(part_round_stats);
1227
1228 /*
1229 * queue lock must be held
1230 */
1231 void __blk_put_request(struct request_queue *q, struct request *req)
1232 {
1233 if (unlikely(!q))
1234 return;
1235 if (unlikely(--req->ref_count))
1236 return;
1237
1238 elv_completed_request(q, req);
1239
1240 /* this is a bio leak */
1241 WARN_ON(req->bio != NULL);
1242
1243 /*
1244 * Request may not have originated from ll_rw_blk. if not,
1245 * it didn't come out of our reserved rq pools
1246 */
1247 if (req->cmd_flags & REQ_ALLOCED) {
1248 unsigned int flags = req->cmd_flags;
1249 struct request_list *rl = blk_rq_rl(req);
1250
1251 BUG_ON(!list_empty(&req->queuelist));
1252 BUG_ON(!hlist_unhashed(&req->hash));
1253
1254 blk_free_request(rl, req);
1255 freed_request(rl, flags);
1256 blk_put_rl(rl);
1257 }
1258 }
1259 EXPORT_SYMBOL_GPL(__blk_put_request);
1260
1261 void blk_put_request(struct request *req)
1262 {
1263 unsigned long flags;
1264 struct request_queue *q = req->q;
1265
1266 spin_lock_irqsave(q->queue_lock, flags);
1267 __blk_put_request(q, req);
1268 spin_unlock_irqrestore(q->queue_lock, flags);
1269 }
1270 EXPORT_SYMBOL(blk_put_request);
1271
1272 /**
1273 * blk_add_request_payload - add a payload to a request
1274 * @rq: request to update
1275 * @page: page backing the payload
1276 * @len: length of the payload.
1277 *
1278 * This allows to later add a payload to an already submitted request by
1279 * a block driver. The driver needs to take care of freeing the payload
1280 * itself.
1281 *
1282 * Note that this is a quite horrible hack and nothing but handling of
1283 * discard requests should ever use it.
1284 */
1285 void blk_add_request_payload(struct request *rq, struct page *page,
1286 unsigned int len)
1287 {
1288 struct bio *bio = rq->bio;
1289
1290 bio->bi_io_vec->bv_page = page;
1291 bio->bi_io_vec->bv_offset = 0;
1292 bio->bi_io_vec->bv_len = len;
1293
1294 bio->bi_size = len;
1295 bio->bi_vcnt = 1;
1296 bio->bi_phys_segments = 1;
1297
1298 rq->__data_len = rq->resid_len = len;
1299 rq->nr_phys_segments = 1;
1300 rq->buffer = bio_data(bio);
1301 }
1302 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1303
1304 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1305 struct bio *bio)
1306 {
1307 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1308
1309 if (!ll_back_merge_fn(q, req, bio))
1310 return false;
1311
1312 trace_block_bio_backmerge(q, bio);
1313
1314 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1315 blk_rq_set_mixed_merge(req);
1316
1317 req->biotail->bi_next = bio;
1318 req->biotail = bio;
1319 req->__data_len += bio->bi_size;
1320 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1321
1322 drive_stat_acct(req, 0);
1323 return true;
1324 }
1325
1326 static bool bio_attempt_front_merge(struct request_queue *q,
1327 struct request *req, struct bio *bio)
1328 {
1329 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1330
1331 if (!ll_front_merge_fn(q, req, bio))
1332 return false;
1333
1334 trace_block_bio_frontmerge(q, bio);
1335
1336 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1337 blk_rq_set_mixed_merge(req);
1338
1339 bio->bi_next = req->bio;
1340 req->bio = bio;
1341
1342 /*
1343 * may not be valid. if the low level driver said
1344 * it didn't need a bounce buffer then it better
1345 * not touch req->buffer either...
1346 */
1347 req->buffer = bio_data(bio);
1348 req->__sector = bio->bi_sector;
1349 req->__data_len += bio->bi_size;
1350 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1351
1352 drive_stat_acct(req, 0);
1353 return true;
1354 }
1355
1356 /**
1357 * attempt_plug_merge - try to merge with %current's plugged list
1358 * @q: request_queue new bio is being queued at
1359 * @bio: new bio being queued
1360 * @request_count: out parameter for number of traversed plugged requests
1361 *
1362 * Determine whether @bio being queued on @q can be merged with a request
1363 * on %current's plugged list. Returns %true if merge was successful,
1364 * otherwise %false.
1365 *
1366 * Plugging coalesces IOs from the same issuer for the same purpose without
1367 * going through @q->queue_lock. As such it's more of an issuing mechanism
1368 * than scheduling, and the request, while may have elvpriv data, is not
1369 * added on the elevator at this point. In addition, we don't have
1370 * reliable access to the elevator outside queue lock. Only check basic
1371 * merging parameters without querying the elevator.
1372 */
1373 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1374 unsigned int *request_count)
1375 {
1376 struct blk_plug *plug;
1377 struct request *rq;
1378 bool ret = false;
1379
1380 plug = current->plug;
1381 if (!plug)
1382 goto out;
1383 *request_count = 0;
1384
1385 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1386 int el_ret;
1387
1388 if (rq->q == q)
1389 (*request_count)++;
1390
1391 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1392 continue;
1393
1394 el_ret = blk_try_merge(rq, bio);
1395 if (el_ret == ELEVATOR_BACK_MERGE) {
1396 ret = bio_attempt_back_merge(q, rq, bio);
1397 if (ret)
1398 break;
1399 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1400 ret = bio_attempt_front_merge(q, rq, bio);
1401 if (ret)
1402 break;
1403 }
1404 }
1405 out:
1406 return ret;
1407 }
1408
1409 void init_request_from_bio(struct request *req, struct bio *bio)
1410 {
1411 req->cmd_type = REQ_TYPE_FS;
1412
1413 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1414 if (bio->bi_rw & REQ_RAHEAD)
1415 req->cmd_flags |= REQ_FAILFAST_MASK;
1416
1417 req->errors = 0;
1418 req->__sector = bio->bi_sector;
1419 req->ioprio = bio_prio(bio);
1420 blk_rq_bio_prep(req->q, req, bio);
1421 }
1422
1423 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1424 {
1425 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1426 struct blk_plug *plug;
1427 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1428 struct request *req;
1429 unsigned int request_count = 0;
1430
1431 /*
1432 * low level driver can indicate that it wants pages above a
1433 * certain limit bounced to low memory (ie for highmem, or even
1434 * ISA dma in theory)
1435 */
1436 blk_queue_bounce(q, &bio);
1437
1438 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1439 spin_lock_irq(q->queue_lock);
1440 where = ELEVATOR_INSERT_FLUSH;
1441 goto get_rq;
1442 }
1443
1444 /*
1445 * Check if we can merge with the plugged list before grabbing
1446 * any locks.
1447 */
1448 if (attempt_plug_merge(q, bio, &request_count))
1449 return;
1450
1451 spin_lock_irq(q->queue_lock);
1452
1453 el_ret = elv_merge(q, &req, bio);
1454 if (el_ret == ELEVATOR_BACK_MERGE) {
1455 if (bio_attempt_back_merge(q, req, bio)) {
1456 elv_bio_merged(q, req, bio);
1457 if (!attempt_back_merge(q, req))
1458 elv_merged_request(q, req, el_ret);
1459 goto out_unlock;
1460 }
1461 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1462 if (bio_attempt_front_merge(q, req, bio)) {
1463 elv_bio_merged(q, req, bio);
1464 if (!attempt_front_merge(q, req))
1465 elv_merged_request(q, req, el_ret);
1466 goto out_unlock;
1467 }
1468 }
1469
1470 get_rq:
1471 /*
1472 * This sync check and mask will be re-done in init_request_from_bio(),
1473 * but we need to set it earlier to expose the sync flag to the
1474 * rq allocator and io schedulers.
1475 */
1476 rw_flags = bio_data_dir(bio);
1477 if (sync)
1478 rw_flags |= REQ_SYNC;
1479
1480 /*
1481 * Grab a free request. This is might sleep but can not fail.
1482 * Returns with the queue unlocked.
1483 */
1484 req = get_request(q, rw_flags, bio, GFP_NOIO);
1485 if (unlikely(!req)) {
1486 bio_endio(bio, -ENODEV); /* @q is dead */
1487 goto out_unlock;
1488 }
1489
1490 /*
1491 * After dropping the lock and possibly sleeping here, our request
1492 * may now be mergeable after it had proven unmergeable (above).
1493 * We don't worry about that case for efficiency. It won't happen
1494 * often, and the elevators are able to handle it.
1495 */
1496 init_request_from_bio(req, bio);
1497
1498 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1499 req->cpu = raw_smp_processor_id();
1500
1501 plug = current->plug;
1502 if (plug) {
1503 /*
1504 * If this is the first request added after a plug, fire
1505 * of a plug trace. If others have been added before, check
1506 * if we have multiple devices in this plug. If so, make a
1507 * note to sort the list before dispatch.
1508 */
1509 if (list_empty(&plug->list))
1510 trace_block_plug(q);
1511 else {
1512 if (!plug->should_sort) {
1513 struct request *__rq;
1514
1515 __rq = list_entry_rq(plug->list.prev);
1516 if (__rq->q != q)
1517 plug->should_sort = 1;
1518 }
1519 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1520 blk_flush_plug_list(plug, false);
1521 trace_block_plug(q);
1522 }
1523 }
1524 list_add_tail(&req->queuelist, &plug->list);
1525 drive_stat_acct(req, 1);
1526 } else {
1527 spin_lock_irq(q->queue_lock);
1528 add_acct_request(q, req, where);
1529 __blk_run_queue(q);
1530 out_unlock:
1531 spin_unlock_irq(q->queue_lock);
1532 }
1533 }
1534 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1535
1536 /*
1537 * If bio->bi_dev is a partition, remap the location
1538 */
1539 static inline void blk_partition_remap(struct bio *bio)
1540 {
1541 struct block_device *bdev = bio->bi_bdev;
1542
1543 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1544 struct hd_struct *p = bdev->bd_part;
1545
1546 bio->bi_sector += p->start_sect;
1547 bio->bi_bdev = bdev->bd_contains;
1548
1549 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1550 bdev->bd_dev,
1551 bio->bi_sector - p->start_sect);
1552 }
1553 }
1554
1555 static void handle_bad_sector(struct bio *bio)
1556 {
1557 char b[BDEVNAME_SIZE];
1558
1559 printk(KERN_INFO "attempt to access beyond end of device\n");
1560 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1561 bdevname(bio->bi_bdev, b),
1562 bio->bi_rw,
1563 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1564 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1565
1566 set_bit(BIO_EOF, &bio->bi_flags);
1567 }
1568
1569 #ifdef CONFIG_FAIL_MAKE_REQUEST
1570
1571 static DECLARE_FAULT_ATTR(fail_make_request);
1572
1573 static int __init setup_fail_make_request(char *str)
1574 {
1575 return setup_fault_attr(&fail_make_request, str);
1576 }
1577 __setup("fail_make_request=", setup_fail_make_request);
1578
1579 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1580 {
1581 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1582 }
1583
1584 static int __init fail_make_request_debugfs(void)
1585 {
1586 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1587 NULL, &fail_make_request);
1588
1589 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1590 }
1591
1592 late_initcall(fail_make_request_debugfs);
1593
1594 #else /* CONFIG_FAIL_MAKE_REQUEST */
1595
1596 static inline bool should_fail_request(struct hd_struct *part,
1597 unsigned int bytes)
1598 {
1599 return false;
1600 }
1601
1602 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1603
1604 /*
1605 * Check whether this bio extends beyond the end of the device.
1606 */
1607 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1608 {
1609 sector_t maxsector;
1610
1611 if (!nr_sectors)
1612 return 0;
1613
1614 /* Test device or partition size, when known. */
1615 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1616 if (maxsector) {
1617 sector_t sector = bio->bi_sector;
1618
1619 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1620 /*
1621 * This may well happen - the kernel calls bread()
1622 * without checking the size of the device, e.g., when
1623 * mounting a device.
1624 */
1625 handle_bad_sector(bio);
1626 return 1;
1627 }
1628 }
1629
1630 return 0;
1631 }
1632
1633 static noinline_for_stack bool
1634 generic_make_request_checks(struct bio *bio)
1635 {
1636 struct request_queue *q;
1637 int nr_sectors = bio_sectors(bio);
1638 int err = -EIO;
1639 char b[BDEVNAME_SIZE];
1640 struct hd_struct *part;
1641
1642 might_sleep();
1643
1644 if (bio_check_eod(bio, nr_sectors))
1645 goto end_io;
1646
1647 q = bdev_get_queue(bio->bi_bdev);
1648 if (unlikely(!q)) {
1649 printk(KERN_ERR
1650 "generic_make_request: Trying to access "
1651 "nonexistent block-device %s (%Lu)\n",
1652 bdevname(bio->bi_bdev, b),
1653 (long long) bio->bi_sector);
1654 goto end_io;
1655 }
1656
1657 if (likely(bio_is_rw(bio) &&
1658 nr_sectors > queue_max_hw_sectors(q))) {
1659 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1660 bdevname(bio->bi_bdev, b),
1661 bio_sectors(bio),
1662 queue_max_hw_sectors(q));
1663 goto end_io;
1664 }
1665
1666 part = bio->bi_bdev->bd_part;
1667 if (should_fail_request(part, bio->bi_size) ||
1668 should_fail_request(&part_to_disk(part)->part0,
1669 bio->bi_size))
1670 goto end_io;
1671
1672 /*
1673 * If this device has partitions, remap block n
1674 * of partition p to block n+start(p) of the disk.
1675 */
1676 blk_partition_remap(bio);
1677
1678 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1679 goto end_io;
1680
1681 if (bio_check_eod(bio, nr_sectors))
1682 goto end_io;
1683
1684 /*
1685 * Filter flush bio's early so that make_request based
1686 * drivers without flush support don't have to worry
1687 * about them.
1688 */
1689 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1690 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1691 if (!nr_sectors) {
1692 err = 0;
1693 goto end_io;
1694 }
1695 }
1696
1697 if ((bio->bi_rw & REQ_DISCARD) &&
1698 (!blk_queue_discard(q) ||
1699 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1700 err = -EOPNOTSUPP;
1701 goto end_io;
1702 }
1703
1704 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1705 err = -EOPNOTSUPP;
1706 goto end_io;
1707 }
1708
1709 /*
1710 * Various block parts want %current->io_context and lazy ioc
1711 * allocation ends up trading a lot of pain for a small amount of
1712 * memory. Just allocate it upfront. This may fail and block
1713 * layer knows how to live with it.
1714 */
1715 create_io_context(GFP_ATOMIC, q->node);
1716
1717 if (blk_throtl_bio(q, bio))
1718 return false; /* throttled, will be resubmitted later */
1719
1720 trace_block_bio_queue(q, bio);
1721 return true;
1722
1723 end_io:
1724 bio_endio(bio, err);
1725 return false;
1726 }
1727
1728 /**
1729 * generic_make_request - hand a buffer to its device driver for I/O
1730 * @bio: The bio describing the location in memory and on the device.
1731 *
1732 * generic_make_request() is used to make I/O requests of block
1733 * devices. It is passed a &struct bio, which describes the I/O that needs
1734 * to be done.
1735 *
1736 * generic_make_request() does not return any status. The
1737 * success/failure status of the request, along with notification of
1738 * completion, is delivered asynchronously through the bio->bi_end_io
1739 * function described (one day) else where.
1740 *
1741 * The caller of generic_make_request must make sure that bi_io_vec
1742 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1743 * set to describe the device address, and the
1744 * bi_end_io and optionally bi_private are set to describe how
1745 * completion notification should be signaled.
1746 *
1747 * generic_make_request and the drivers it calls may use bi_next if this
1748 * bio happens to be merged with someone else, and may resubmit the bio to
1749 * a lower device by calling into generic_make_request recursively, which
1750 * means the bio should NOT be touched after the call to ->make_request_fn.
1751 */
1752 void generic_make_request(struct bio *bio)
1753 {
1754 struct bio_list bio_list_on_stack;
1755
1756 if (!generic_make_request_checks(bio))
1757 return;
1758
1759 /*
1760 * We only want one ->make_request_fn to be active at a time, else
1761 * stack usage with stacked devices could be a problem. So use
1762 * current->bio_list to keep a list of requests submited by a
1763 * make_request_fn function. current->bio_list is also used as a
1764 * flag to say if generic_make_request is currently active in this
1765 * task or not. If it is NULL, then no make_request is active. If
1766 * it is non-NULL, then a make_request is active, and new requests
1767 * should be added at the tail
1768 */
1769 if (current->bio_list) {
1770 bio_list_add(current->bio_list, bio);
1771 return;
1772 }
1773
1774 /* following loop may be a bit non-obvious, and so deserves some
1775 * explanation.
1776 * Before entering the loop, bio->bi_next is NULL (as all callers
1777 * ensure that) so we have a list with a single bio.
1778 * We pretend that we have just taken it off a longer list, so
1779 * we assign bio_list to a pointer to the bio_list_on_stack,
1780 * thus initialising the bio_list of new bios to be
1781 * added. ->make_request() may indeed add some more bios
1782 * through a recursive call to generic_make_request. If it
1783 * did, we find a non-NULL value in bio_list and re-enter the loop
1784 * from the top. In this case we really did just take the bio
1785 * of the top of the list (no pretending) and so remove it from
1786 * bio_list, and call into ->make_request() again.
1787 */
1788 BUG_ON(bio->bi_next);
1789 bio_list_init(&bio_list_on_stack);
1790 current->bio_list = &bio_list_on_stack;
1791 do {
1792 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1793
1794 q->make_request_fn(q, bio);
1795
1796 bio = bio_list_pop(current->bio_list);
1797 } while (bio);
1798 current->bio_list = NULL; /* deactivate */
1799 }
1800 EXPORT_SYMBOL(generic_make_request);
1801
1802 /**
1803 * submit_bio - submit a bio to the block device layer for I/O
1804 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1805 * @bio: The &struct bio which describes the I/O
1806 *
1807 * submit_bio() is very similar in purpose to generic_make_request(), and
1808 * uses that function to do most of the work. Both are fairly rough
1809 * interfaces; @bio must be presetup and ready for I/O.
1810 *
1811 */
1812 void submit_bio(int rw, struct bio *bio)
1813 {
1814 bio->bi_rw |= rw;
1815
1816 /*
1817 * If it's a regular read/write or a barrier with data attached,
1818 * go through the normal accounting stuff before submission.
1819 */
1820 if (bio_has_data(bio)) {
1821 unsigned int count;
1822
1823 if (unlikely(rw & REQ_WRITE_SAME))
1824 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1825 else
1826 count = bio_sectors(bio);
1827
1828 if (rw & WRITE) {
1829 count_vm_events(PGPGOUT, count);
1830 } else {
1831 task_io_account_read(bio->bi_size);
1832 count_vm_events(PGPGIN, count);
1833 }
1834
1835 if (unlikely(block_dump)) {
1836 char b[BDEVNAME_SIZE];
1837 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1838 current->comm, task_pid_nr(current),
1839 (rw & WRITE) ? "WRITE" : "READ",
1840 (unsigned long long)bio->bi_sector,
1841 bdevname(bio->bi_bdev, b),
1842 count);
1843 }
1844 }
1845
1846 generic_make_request(bio);
1847 }
1848 EXPORT_SYMBOL(submit_bio);
1849
1850 /**
1851 * blk_rq_check_limits - Helper function to check a request for the queue limit
1852 * @q: the queue
1853 * @rq: the request being checked
1854 *
1855 * Description:
1856 * @rq may have been made based on weaker limitations of upper-level queues
1857 * in request stacking drivers, and it may violate the limitation of @q.
1858 * Since the block layer and the underlying device driver trust @rq
1859 * after it is inserted to @q, it should be checked against @q before
1860 * the insertion using this generic function.
1861 *
1862 * This function should also be useful for request stacking drivers
1863 * in some cases below, so export this function.
1864 * Request stacking drivers like request-based dm may change the queue
1865 * limits while requests are in the queue (e.g. dm's table swapping).
1866 * Such request stacking drivers should check those requests agaist
1867 * the new queue limits again when they dispatch those requests,
1868 * although such checkings are also done against the old queue limits
1869 * when submitting requests.
1870 */
1871 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1872 {
1873 if (!rq_mergeable(rq))
1874 return 0;
1875
1876 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1877 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1878 return -EIO;
1879 }
1880
1881 /*
1882 * queue's settings related to segment counting like q->bounce_pfn
1883 * may differ from that of other stacking queues.
1884 * Recalculate it to check the request correctly on this queue's
1885 * limitation.
1886 */
1887 blk_recalc_rq_segments(rq);
1888 if (rq->nr_phys_segments > queue_max_segments(q)) {
1889 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1890 return -EIO;
1891 }
1892
1893 return 0;
1894 }
1895 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1896
1897 /**
1898 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1899 * @q: the queue to submit the request
1900 * @rq: the request being queued
1901 */
1902 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1903 {
1904 unsigned long flags;
1905 int where = ELEVATOR_INSERT_BACK;
1906
1907 if (blk_rq_check_limits(q, rq))
1908 return -EIO;
1909
1910 if (rq->rq_disk &&
1911 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1912 return -EIO;
1913
1914 spin_lock_irqsave(q->queue_lock, flags);
1915 if (unlikely(blk_queue_dead(q))) {
1916 spin_unlock_irqrestore(q->queue_lock, flags);
1917 return -ENODEV;
1918 }
1919
1920 /*
1921 * Submitting request must be dequeued before calling this function
1922 * because it will be linked to another request_queue
1923 */
1924 BUG_ON(blk_queued_rq(rq));
1925
1926 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1927 where = ELEVATOR_INSERT_FLUSH;
1928
1929 add_acct_request(q, rq, where);
1930 if (where == ELEVATOR_INSERT_FLUSH)
1931 __blk_run_queue(q);
1932 spin_unlock_irqrestore(q->queue_lock, flags);
1933
1934 return 0;
1935 }
1936 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1937
1938 /**
1939 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1940 * @rq: request to examine
1941 *
1942 * Description:
1943 * A request could be merge of IOs which require different failure
1944 * handling. This function determines the number of bytes which
1945 * can be failed from the beginning of the request without
1946 * crossing into area which need to be retried further.
1947 *
1948 * Return:
1949 * The number of bytes to fail.
1950 *
1951 * Context:
1952 * queue_lock must be held.
1953 */
1954 unsigned int blk_rq_err_bytes(const struct request *rq)
1955 {
1956 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1957 unsigned int bytes = 0;
1958 struct bio *bio;
1959
1960 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1961 return blk_rq_bytes(rq);
1962
1963 /*
1964 * Currently the only 'mixing' which can happen is between
1965 * different fastfail types. We can safely fail portions
1966 * which have all the failfast bits that the first one has -
1967 * the ones which are at least as eager to fail as the first
1968 * one.
1969 */
1970 for (bio = rq->bio; bio; bio = bio->bi_next) {
1971 if ((bio->bi_rw & ff) != ff)
1972 break;
1973 bytes += bio->bi_size;
1974 }
1975
1976 /* this could lead to infinite loop */
1977 BUG_ON(blk_rq_bytes(rq) && !bytes);
1978 return bytes;
1979 }
1980 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1981
1982 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1983 {
1984 if (blk_do_io_stat(req)) {
1985 const int rw = rq_data_dir(req);
1986 struct hd_struct *part;
1987 int cpu;
1988
1989 cpu = part_stat_lock();
1990 part = req->part;
1991 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1992 part_stat_unlock();
1993 }
1994 }
1995
1996 static void blk_account_io_done(struct request *req)
1997 {
1998 /*
1999 * Account IO completion. flush_rq isn't accounted as a
2000 * normal IO on queueing nor completion. Accounting the
2001 * containing request is enough.
2002 */
2003 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2004 unsigned long duration = jiffies - req->start_time;
2005 const int rw = rq_data_dir(req);
2006 struct hd_struct *part;
2007 int cpu;
2008
2009 cpu = part_stat_lock();
2010 part = req->part;
2011
2012 part_stat_inc(cpu, part, ios[rw]);
2013 part_stat_add(cpu, part, ticks[rw], duration);
2014 part_round_stats(cpu, part);
2015 part_dec_in_flight(part, rw);
2016
2017 hd_struct_put(part);
2018 part_stat_unlock();
2019 }
2020 }
2021
2022 /**
2023 * blk_peek_request - peek at the top of a request queue
2024 * @q: request queue to peek at
2025 *
2026 * Description:
2027 * Return the request at the top of @q. The returned request
2028 * should be started using blk_start_request() before LLD starts
2029 * processing it.
2030 *
2031 * Return:
2032 * Pointer to the request at the top of @q if available. Null
2033 * otherwise.
2034 *
2035 * Context:
2036 * queue_lock must be held.
2037 */
2038 struct request *blk_peek_request(struct request_queue *q)
2039 {
2040 struct request *rq;
2041 int ret;
2042
2043 while ((rq = __elv_next_request(q)) != NULL) {
2044 if (!(rq->cmd_flags & REQ_STARTED)) {
2045 /*
2046 * This is the first time the device driver
2047 * sees this request (possibly after
2048 * requeueing). Notify IO scheduler.
2049 */
2050 if (rq->cmd_flags & REQ_SORTED)
2051 elv_activate_rq(q, rq);
2052
2053 /*
2054 * just mark as started even if we don't start
2055 * it, a request that has been delayed should
2056 * not be passed by new incoming requests
2057 */
2058 rq->cmd_flags |= REQ_STARTED;
2059 trace_block_rq_issue(q, rq);
2060 }
2061
2062 if (!q->boundary_rq || q->boundary_rq == rq) {
2063 q->end_sector = rq_end_sector(rq);
2064 q->boundary_rq = NULL;
2065 }
2066
2067 if (rq->cmd_flags & REQ_DONTPREP)
2068 break;
2069
2070 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2071 /*
2072 * make sure space for the drain appears we
2073 * know we can do this because max_hw_segments
2074 * has been adjusted to be one fewer than the
2075 * device can handle
2076 */
2077 rq->nr_phys_segments++;
2078 }
2079
2080 if (!q->prep_rq_fn)
2081 break;
2082
2083 ret = q->prep_rq_fn(q, rq);
2084 if (ret == BLKPREP_OK) {
2085 break;
2086 } else if (ret == BLKPREP_DEFER) {
2087 /*
2088 * the request may have been (partially) prepped.
2089 * we need to keep this request in the front to
2090 * avoid resource deadlock. REQ_STARTED will
2091 * prevent other fs requests from passing this one.
2092 */
2093 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2094 !(rq->cmd_flags & REQ_DONTPREP)) {
2095 /*
2096 * remove the space for the drain we added
2097 * so that we don't add it again
2098 */
2099 --rq->nr_phys_segments;
2100 }
2101
2102 rq = NULL;
2103 break;
2104 } else if (ret == BLKPREP_KILL) {
2105 rq->cmd_flags |= REQ_QUIET;
2106 /*
2107 * Mark this request as started so we don't trigger
2108 * any debug logic in the end I/O path.
2109 */
2110 blk_start_request(rq);
2111 __blk_end_request_all(rq, -EIO);
2112 } else {
2113 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2114 break;
2115 }
2116 }
2117
2118 return rq;
2119 }
2120 EXPORT_SYMBOL(blk_peek_request);
2121
2122 void blk_dequeue_request(struct request *rq)
2123 {
2124 struct request_queue *q = rq->q;
2125
2126 BUG_ON(list_empty(&rq->queuelist));
2127 BUG_ON(ELV_ON_HASH(rq));
2128
2129 list_del_init(&rq->queuelist);
2130
2131 /*
2132 * the time frame between a request being removed from the lists
2133 * and to it is freed is accounted as io that is in progress at
2134 * the driver side.
2135 */
2136 if (blk_account_rq(rq)) {
2137 q->in_flight[rq_is_sync(rq)]++;
2138 set_io_start_time_ns(rq);
2139 }
2140 }
2141
2142 /**
2143 * blk_start_request - start request processing on the driver
2144 * @req: request to dequeue
2145 *
2146 * Description:
2147 * Dequeue @req and start timeout timer on it. This hands off the
2148 * request to the driver.
2149 *
2150 * Block internal functions which don't want to start timer should
2151 * call blk_dequeue_request().
2152 *
2153 * Context:
2154 * queue_lock must be held.
2155 */
2156 void blk_start_request(struct request *req)
2157 {
2158 blk_dequeue_request(req);
2159
2160 /*
2161 * We are now handing the request to the hardware, initialize
2162 * resid_len to full count and add the timeout handler.
2163 */
2164 req->resid_len = blk_rq_bytes(req);
2165 if (unlikely(blk_bidi_rq(req)))
2166 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2167
2168 blk_add_timer(req);
2169 }
2170 EXPORT_SYMBOL(blk_start_request);
2171
2172 /**
2173 * blk_fetch_request - fetch a request from a request queue
2174 * @q: request queue to fetch a request from
2175 *
2176 * Description:
2177 * Return the request at the top of @q. The request is started on
2178 * return and LLD can start processing it immediately.
2179 *
2180 * Return:
2181 * Pointer to the request at the top of @q if available. Null
2182 * otherwise.
2183 *
2184 * Context:
2185 * queue_lock must be held.
2186 */
2187 struct request *blk_fetch_request(struct request_queue *q)
2188 {
2189 struct request *rq;
2190
2191 rq = blk_peek_request(q);
2192 if (rq)
2193 blk_start_request(rq);
2194 return rq;
2195 }
2196 EXPORT_SYMBOL(blk_fetch_request);
2197
2198 /**
2199 * blk_update_request - Special helper function for request stacking drivers
2200 * @req: the request being processed
2201 * @error: %0 for success, < %0 for error
2202 * @nr_bytes: number of bytes to complete @req
2203 *
2204 * Description:
2205 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2206 * the request structure even if @req doesn't have leftover.
2207 * If @req has leftover, sets it up for the next range of segments.
2208 *
2209 * This special helper function is only for request stacking drivers
2210 * (e.g. request-based dm) so that they can handle partial completion.
2211 * Actual device drivers should use blk_end_request instead.
2212 *
2213 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2214 * %false return from this function.
2215 *
2216 * Return:
2217 * %false - this request doesn't have any more data
2218 * %true - this request has more data
2219 **/
2220 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2221 {
2222 int total_bytes, bio_nbytes, next_idx = 0;
2223 struct bio *bio;
2224
2225 if (!req->bio)
2226 return false;
2227
2228 trace_block_rq_complete(req->q, req);
2229
2230 /*
2231 * For fs requests, rq is just carrier of independent bio's
2232 * and each partial completion should be handled separately.
2233 * Reset per-request error on each partial completion.
2234 *
2235 * TODO: tj: This is too subtle. It would be better to let
2236 * low level drivers do what they see fit.
2237 */
2238 if (req->cmd_type == REQ_TYPE_FS)
2239 req->errors = 0;
2240
2241 if (error && req->cmd_type == REQ_TYPE_FS &&
2242 !(req->cmd_flags & REQ_QUIET)) {
2243 char *error_type;
2244
2245 switch (error) {
2246 case -ENOLINK:
2247 error_type = "recoverable transport";
2248 break;
2249 case -EREMOTEIO:
2250 error_type = "critical target";
2251 break;
2252 case -EBADE:
2253 error_type = "critical nexus";
2254 break;
2255 case -EIO:
2256 default:
2257 error_type = "I/O";
2258 break;
2259 }
2260 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2261 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2262 (unsigned long long)blk_rq_pos(req));
2263 }
2264
2265 blk_account_io_completion(req, nr_bytes);
2266
2267 total_bytes = bio_nbytes = 0;
2268 while ((bio = req->bio) != NULL) {
2269 int nbytes;
2270
2271 if (nr_bytes >= bio->bi_size) {
2272 req->bio = bio->bi_next;
2273 nbytes = bio->bi_size;
2274 req_bio_endio(req, bio, nbytes, error);
2275 next_idx = 0;
2276 bio_nbytes = 0;
2277 } else {
2278 int idx = bio->bi_idx + next_idx;
2279
2280 if (unlikely(idx >= bio->bi_vcnt)) {
2281 blk_dump_rq_flags(req, "__end_that");
2282 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2283 __func__, idx, bio->bi_vcnt);
2284 break;
2285 }
2286
2287 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2288 BIO_BUG_ON(nbytes > bio->bi_size);
2289
2290 /*
2291 * not a complete bvec done
2292 */
2293 if (unlikely(nbytes > nr_bytes)) {
2294 bio_nbytes += nr_bytes;
2295 total_bytes += nr_bytes;
2296 break;
2297 }
2298
2299 /*
2300 * advance to the next vector
2301 */
2302 next_idx++;
2303 bio_nbytes += nbytes;
2304 }
2305
2306 total_bytes += nbytes;
2307 nr_bytes -= nbytes;
2308
2309 bio = req->bio;
2310 if (bio) {
2311 /*
2312 * end more in this run, or just return 'not-done'
2313 */
2314 if (unlikely(nr_bytes <= 0))
2315 break;
2316 }
2317 }
2318
2319 /*
2320 * completely done
2321 */
2322 if (!req->bio) {
2323 /*
2324 * Reset counters so that the request stacking driver
2325 * can find how many bytes remain in the request
2326 * later.
2327 */
2328 req->__data_len = 0;
2329 return false;
2330 }
2331
2332 /*
2333 * if the request wasn't completed, update state
2334 */
2335 if (bio_nbytes) {
2336 req_bio_endio(req, bio, bio_nbytes, error);
2337 bio->bi_idx += next_idx;
2338 bio_iovec(bio)->bv_offset += nr_bytes;
2339 bio_iovec(bio)->bv_len -= nr_bytes;
2340 }
2341
2342 req->__data_len -= total_bytes;
2343 req->buffer = bio_data(req->bio);
2344
2345 /* update sector only for requests with clear definition of sector */
2346 if (req->cmd_type == REQ_TYPE_FS)
2347 req->__sector += total_bytes >> 9;
2348
2349 /* mixed attributes always follow the first bio */
2350 if (req->cmd_flags & REQ_MIXED_MERGE) {
2351 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2352 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2353 }
2354
2355 /*
2356 * If total number of sectors is less than the first segment
2357 * size, something has gone terribly wrong.
2358 */
2359 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2360 blk_dump_rq_flags(req, "request botched");
2361 req->__data_len = blk_rq_cur_bytes(req);
2362 }
2363
2364 /* recalculate the number of segments */
2365 blk_recalc_rq_segments(req);
2366
2367 return true;
2368 }
2369 EXPORT_SYMBOL_GPL(blk_update_request);
2370
2371 static bool blk_update_bidi_request(struct request *rq, int error,
2372 unsigned int nr_bytes,
2373 unsigned int bidi_bytes)
2374 {
2375 if (blk_update_request(rq, error, nr_bytes))
2376 return true;
2377
2378 /* Bidi request must be completed as a whole */
2379 if (unlikely(blk_bidi_rq(rq)) &&
2380 blk_update_request(rq->next_rq, error, bidi_bytes))
2381 return true;
2382
2383 if (blk_queue_add_random(rq->q))
2384 add_disk_randomness(rq->rq_disk);
2385
2386 return false;
2387 }
2388
2389 /**
2390 * blk_unprep_request - unprepare a request
2391 * @req: the request
2392 *
2393 * This function makes a request ready for complete resubmission (or
2394 * completion). It happens only after all error handling is complete,
2395 * so represents the appropriate moment to deallocate any resources
2396 * that were allocated to the request in the prep_rq_fn. The queue
2397 * lock is held when calling this.
2398 */
2399 void blk_unprep_request(struct request *req)
2400 {
2401 struct request_queue *q = req->q;
2402
2403 req->cmd_flags &= ~REQ_DONTPREP;
2404 if (q->unprep_rq_fn)
2405 q->unprep_rq_fn(q, req);
2406 }
2407 EXPORT_SYMBOL_GPL(blk_unprep_request);
2408
2409 /*
2410 * queue lock must be held
2411 */
2412 static void blk_finish_request(struct request *req, int error)
2413 {
2414 if (blk_rq_tagged(req))
2415 blk_queue_end_tag(req->q, req);
2416
2417 BUG_ON(blk_queued_rq(req));
2418
2419 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2420 laptop_io_completion(&req->q->backing_dev_info);
2421
2422 blk_delete_timer(req);
2423
2424 if (req->cmd_flags & REQ_DONTPREP)
2425 blk_unprep_request(req);
2426
2427
2428 blk_account_io_done(req);
2429
2430 if (req->end_io)
2431 req->end_io(req, error);
2432 else {
2433 if (blk_bidi_rq(req))
2434 __blk_put_request(req->next_rq->q, req->next_rq);
2435
2436 __blk_put_request(req->q, req);
2437 }
2438 }
2439
2440 /**
2441 * blk_end_bidi_request - Complete a bidi request
2442 * @rq: the request to complete
2443 * @error: %0 for success, < %0 for error
2444 * @nr_bytes: number of bytes to complete @rq
2445 * @bidi_bytes: number of bytes to complete @rq->next_rq
2446 *
2447 * Description:
2448 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2449 * Drivers that supports bidi can safely call this member for any
2450 * type of request, bidi or uni. In the later case @bidi_bytes is
2451 * just ignored.
2452 *
2453 * Return:
2454 * %false - we are done with this request
2455 * %true - still buffers pending for this request
2456 **/
2457 static bool blk_end_bidi_request(struct request *rq, int error,
2458 unsigned int nr_bytes, unsigned int bidi_bytes)
2459 {
2460 struct request_queue *q = rq->q;
2461 unsigned long flags;
2462
2463 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2464 return true;
2465
2466 spin_lock_irqsave(q->queue_lock, flags);
2467 blk_finish_request(rq, error);
2468 spin_unlock_irqrestore(q->queue_lock, flags);
2469
2470 return false;
2471 }
2472
2473 /**
2474 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2475 * @rq: the request to complete
2476 * @error: %0 for success, < %0 for error
2477 * @nr_bytes: number of bytes to complete @rq
2478 * @bidi_bytes: number of bytes to complete @rq->next_rq
2479 *
2480 * Description:
2481 * Identical to blk_end_bidi_request() except that queue lock is
2482 * assumed to be locked on entry and remains so on return.
2483 *
2484 * Return:
2485 * %false - we are done with this request
2486 * %true - still buffers pending for this request
2487 **/
2488 bool __blk_end_bidi_request(struct request *rq, int error,
2489 unsigned int nr_bytes, unsigned int bidi_bytes)
2490 {
2491 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2492 return true;
2493
2494 blk_finish_request(rq, error);
2495
2496 return false;
2497 }
2498
2499 /**
2500 * blk_end_request - Helper function for drivers to complete the request.
2501 * @rq: the request being processed
2502 * @error: %0 for success, < %0 for error
2503 * @nr_bytes: number of bytes to complete
2504 *
2505 * Description:
2506 * Ends I/O on a number of bytes attached to @rq.
2507 * If @rq has leftover, sets it up for the next range of segments.
2508 *
2509 * Return:
2510 * %false - we are done with this request
2511 * %true - still buffers pending for this request
2512 **/
2513 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2514 {
2515 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2516 }
2517 EXPORT_SYMBOL(blk_end_request);
2518
2519 /**
2520 * blk_end_request_all - Helper function for drives to finish the request.
2521 * @rq: the request to finish
2522 * @error: %0 for success, < %0 for error
2523 *
2524 * Description:
2525 * Completely finish @rq.
2526 */
2527 void blk_end_request_all(struct request *rq, int error)
2528 {
2529 bool pending;
2530 unsigned int bidi_bytes = 0;
2531
2532 if (unlikely(blk_bidi_rq(rq)))
2533 bidi_bytes = blk_rq_bytes(rq->next_rq);
2534
2535 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2536 BUG_ON(pending);
2537 }
2538 EXPORT_SYMBOL(blk_end_request_all);
2539
2540 /**
2541 * blk_end_request_cur - Helper function to finish the current request chunk.
2542 * @rq: the request to finish the current chunk for
2543 * @error: %0 for success, < %0 for error
2544 *
2545 * Description:
2546 * Complete the current consecutively mapped chunk from @rq.
2547 *
2548 * Return:
2549 * %false - we are done with this request
2550 * %true - still buffers pending for this request
2551 */
2552 bool blk_end_request_cur(struct request *rq, int error)
2553 {
2554 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2555 }
2556 EXPORT_SYMBOL(blk_end_request_cur);
2557
2558 /**
2559 * blk_end_request_err - Finish a request till the next failure boundary.
2560 * @rq: the request to finish till the next failure boundary for
2561 * @error: must be negative errno
2562 *
2563 * Description:
2564 * Complete @rq till the next failure boundary.
2565 *
2566 * Return:
2567 * %false - we are done with this request
2568 * %true - still buffers pending for this request
2569 */
2570 bool blk_end_request_err(struct request *rq, int error)
2571 {
2572 WARN_ON(error >= 0);
2573 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2574 }
2575 EXPORT_SYMBOL_GPL(blk_end_request_err);
2576
2577 /**
2578 * __blk_end_request - Helper function for drivers to complete the request.
2579 * @rq: the request being processed
2580 * @error: %0 for success, < %0 for error
2581 * @nr_bytes: number of bytes to complete
2582 *
2583 * Description:
2584 * Must be called with queue lock held unlike blk_end_request().
2585 *
2586 * Return:
2587 * %false - we are done with this request
2588 * %true - still buffers pending for this request
2589 **/
2590 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2591 {
2592 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2593 }
2594 EXPORT_SYMBOL(__blk_end_request);
2595
2596 /**
2597 * __blk_end_request_all - Helper function for drives to finish the request.
2598 * @rq: the request to finish
2599 * @error: %0 for success, < %0 for error
2600 *
2601 * Description:
2602 * Completely finish @rq. Must be called with queue lock held.
2603 */
2604 void __blk_end_request_all(struct request *rq, int error)
2605 {
2606 bool pending;
2607 unsigned int bidi_bytes = 0;
2608
2609 if (unlikely(blk_bidi_rq(rq)))
2610 bidi_bytes = blk_rq_bytes(rq->next_rq);
2611
2612 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2613 BUG_ON(pending);
2614 }
2615 EXPORT_SYMBOL(__blk_end_request_all);
2616
2617 /**
2618 * __blk_end_request_cur - Helper function to finish the current request chunk.
2619 * @rq: the request to finish the current chunk for
2620 * @error: %0 for success, < %0 for error
2621 *
2622 * Description:
2623 * Complete the current consecutively mapped chunk from @rq. Must
2624 * be called with queue lock held.
2625 *
2626 * Return:
2627 * %false - we are done with this request
2628 * %true - still buffers pending for this request
2629 */
2630 bool __blk_end_request_cur(struct request *rq, int error)
2631 {
2632 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2633 }
2634 EXPORT_SYMBOL(__blk_end_request_cur);
2635
2636 /**
2637 * __blk_end_request_err - Finish a request till the next failure boundary.
2638 * @rq: the request to finish till the next failure boundary for
2639 * @error: must be negative errno
2640 *
2641 * Description:
2642 * Complete @rq till the next failure boundary. Must be called
2643 * with queue lock held.
2644 *
2645 * Return:
2646 * %false - we are done with this request
2647 * %true - still buffers pending for this request
2648 */
2649 bool __blk_end_request_err(struct request *rq, int error)
2650 {
2651 WARN_ON(error >= 0);
2652 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2653 }
2654 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2655
2656 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2657 struct bio *bio)
2658 {
2659 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2660 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2661
2662 if (bio_has_data(bio)) {
2663 rq->nr_phys_segments = bio_phys_segments(q, bio);
2664 rq->buffer = bio_data(bio);
2665 }
2666 rq->__data_len = bio->bi_size;
2667 rq->bio = rq->biotail = bio;
2668
2669 if (bio->bi_bdev)
2670 rq->rq_disk = bio->bi_bdev->bd_disk;
2671 }
2672
2673 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2674 /**
2675 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2676 * @rq: the request to be flushed
2677 *
2678 * Description:
2679 * Flush all pages in @rq.
2680 */
2681 void rq_flush_dcache_pages(struct request *rq)
2682 {
2683 struct req_iterator iter;
2684 struct bio_vec *bvec;
2685
2686 rq_for_each_segment(bvec, rq, iter)
2687 flush_dcache_page(bvec->bv_page);
2688 }
2689 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2690 #endif
2691
2692 /**
2693 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2694 * @q : the queue of the device being checked
2695 *
2696 * Description:
2697 * Check if underlying low-level drivers of a device are busy.
2698 * If the drivers want to export their busy state, they must set own
2699 * exporting function using blk_queue_lld_busy() first.
2700 *
2701 * Basically, this function is used only by request stacking drivers
2702 * to stop dispatching requests to underlying devices when underlying
2703 * devices are busy. This behavior helps more I/O merging on the queue
2704 * of the request stacking driver and prevents I/O throughput regression
2705 * on burst I/O load.
2706 *
2707 * Return:
2708 * 0 - Not busy (The request stacking driver should dispatch request)
2709 * 1 - Busy (The request stacking driver should stop dispatching request)
2710 */
2711 int blk_lld_busy(struct request_queue *q)
2712 {
2713 if (q->lld_busy_fn)
2714 return q->lld_busy_fn(q);
2715
2716 return 0;
2717 }
2718 EXPORT_SYMBOL_GPL(blk_lld_busy);
2719
2720 /**
2721 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2722 * @rq: the clone request to be cleaned up
2723 *
2724 * Description:
2725 * Free all bios in @rq for a cloned request.
2726 */
2727 void blk_rq_unprep_clone(struct request *rq)
2728 {
2729 struct bio *bio;
2730
2731 while ((bio = rq->bio) != NULL) {
2732 rq->bio = bio->bi_next;
2733
2734 bio_put(bio);
2735 }
2736 }
2737 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2738
2739 /*
2740 * Copy attributes of the original request to the clone request.
2741 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2742 */
2743 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2744 {
2745 dst->cpu = src->cpu;
2746 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2747 dst->cmd_type = src->cmd_type;
2748 dst->__sector = blk_rq_pos(src);
2749 dst->__data_len = blk_rq_bytes(src);
2750 dst->nr_phys_segments = src->nr_phys_segments;
2751 dst->ioprio = src->ioprio;
2752 dst->extra_len = src->extra_len;
2753 }
2754
2755 /**
2756 * blk_rq_prep_clone - Helper function to setup clone request
2757 * @rq: the request to be setup
2758 * @rq_src: original request to be cloned
2759 * @bs: bio_set that bios for clone are allocated from
2760 * @gfp_mask: memory allocation mask for bio
2761 * @bio_ctr: setup function to be called for each clone bio.
2762 * Returns %0 for success, non %0 for failure.
2763 * @data: private data to be passed to @bio_ctr
2764 *
2765 * Description:
2766 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2767 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2768 * are not copied, and copying such parts is the caller's responsibility.
2769 * Also, pages which the original bios are pointing to are not copied
2770 * and the cloned bios just point same pages.
2771 * So cloned bios must be completed before original bios, which means
2772 * the caller must complete @rq before @rq_src.
2773 */
2774 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2775 struct bio_set *bs, gfp_t gfp_mask,
2776 int (*bio_ctr)(struct bio *, struct bio *, void *),
2777 void *data)
2778 {
2779 struct bio *bio, *bio_src;
2780
2781 if (!bs)
2782 bs = fs_bio_set;
2783
2784 blk_rq_init(NULL, rq);
2785
2786 __rq_for_each_bio(bio_src, rq_src) {
2787 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2788 if (!bio)
2789 goto free_and_out;
2790
2791 if (bio_ctr && bio_ctr(bio, bio_src, data))
2792 goto free_and_out;
2793
2794 if (rq->bio) {
2795 rq->biotail->bi_next = bio;
2796 rq->biotail = bio;
2797 } else
2798 rq->bio = rq->biotail = bio;
2799 }
2800
2801 __blk_rq_prep_clone(rq, rq_src);
2802
2803 return 0;
2804
2805 free_and_out:
2806 if (bio)
2807 bio_put(bio);
2808 blk_rq_unprep_clone(rq);
2809
2810 return -ENOMEM;
2811 }
2812 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2813
2814 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2815 {
2816 return queue_work(kblockd_workqueue, work);
2817 }
2818 EXPORT_SYMBOL(kblockd_schedule_work);
2819
2820 int kblockd_schedule_delayed_work(struct request_queue *q,
2821 struct delayed_work *dwork, unsigned long delay)
2822 {
2823 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2824 }
2825 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2826
2827 #define PLUG_MAGIC 0x91827364
2828
2829 /**
2830 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2831 * @plug: The &struct blk_plug that needs to be initialized
2832 *
2833 * Description:
2834 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2835 * pending I/O should the task end up blocking between blk_start_plug() and
2836 * blk_finish_plug(). This is important from a performance perspective, but
2837 * also ensures that we don't deadlock. For instance, if the task is blocking
2838 * for a memory allocation, memory reclaim could end up wanting to free a
2839 * page belonging to that request that is currently residing in our private
2840 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2841 * this kind of deadlock.
2842 */
2843 void blk_start_plug(struct blk_plug *plug)
2844 {
2845 struct task_struct *tsk = current;
2846
2847 plug->magic = PLUG_MAGIC;
2848 INIT_LIST_HEAD(&plug->list);
2849 INIT_LIST_HEAD(&plug->cb_list);
2850 plug->should_sort = 0;
2851
2852 /*
2853 * If this is a nested plug, don't actually assign it. It will be
2854 * flushed on its own.
2855 */
2856 if (!tsk->plug) {
2857 /*
2858 * Store ordering should not be needed here, since a potential
2859 * preempt will imply a full memory barrier
2860 */
2861 tsk->plug = plug;
2862 }
2863 }
2864 EXPORT_SYMBOL(blk_start_plug);
2865
2866 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2867 {
2868 struct request *rqa = container_of(a, struct request, queuelist);
2869 struct request *rqb = container_of(b, struct request, queuelist);
2870
2871 return !(rqa->q <= rqb->q);
2872 }
2873
2874 /*
2875 * If 'from_schedule' is true, then postpone the dispatch of requests
2876 * until a safe kblockd context. We due this to avoid accidental big
2877 * additional stack usage in driver dispatch, in places where the originally
2878 * plugger did not intend it.
2879 */
2880 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2881 bool from_schedule)
2882 __releases(q->queue_lock)
2883 {
2884 trace_block_unplug(q, depth, !from_schedule);
2885
2886 /*
2887 * Don't mess with dead queue.
2888 */
2889 if (unlikely(blk_queue_dead(q))) {
2890 spin_unlock(q->queue_lock);
2891 return;
2892 }
2893
2894 /*
2895 * If we are punting this to kblockd, then we can safely drop
2896 * the queue_lock before waking kblockd (which needs to take
2897 * this lock).
2898 */
2899 if (from_schedule) {
2900 spin_unlock(q->queue_lock);
2901 blk_run_queue_async(q);
2902 } else {
2903 __blk_run_queue(q);
2904 spin_unlock(q->queue_lock);
2905 }
2906
2907 }
2908
2909 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2910 {
2911 LIST_HEAD(callbacks);
2912
2913 while (!list_empty(&plug->cb_list)) {
2914 list_splice_init(&plug->cb_list, &callbacks);
2915
2916 while (!list_empty(&callbacks)) {
2917 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2918 struct blk_plug_cb,
2919 list);
2920 list_del(&cb->list);
2921 cb->callback(cb, from_schedule);
2922 }
2923 }
2924 }
2925
2926 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2927 int size)
2928 {
2929 struct blk_plug *plug = current->plug;
2930 struct blk_plug_cb *cb;
2931
2932 if (!plug)
2933 return NULL;
2934
2935 list_for_each_entry(cb, &plug->cb_list, list)
2936 if (cb->callback == unplug && cb->data == data)
2937 return cb;
2938
2939 /* Not currently on the callback list */
2940 BUG_ON(size < sizeof(*cb));
2941 cb = kzalloc(size, GFP_ATOMIC);
2942 if (cb) {
2943 cb->data = data;
2944 cb->callback = unplug;
2945 list_add(&cb->list, &plug->cb_list);
2946 }
2947 return cb;
2948 }
2949 EXPORT_SYMBOL(blk_check_plugged);
2950
2951 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2952 {
2953 struct request_queue *q;
2954 unsigned long flags;
2955 struct request *rq;
2956 LIST_HEAD(list);
2957 unsigned int depth;
2958
2959 BUG_ON(plug->magic != PLUG_MAGIC);
2960
2961 flush_plug_callbacks(plug, from_schedule);
2962 if (list_empty(&plug->list))
2963 return;
2964
2965 list_splice_init(&plug->list, &list);
2966
2967 if (plug->should_sort) {
2968 list_sort(NULL, &list, plug_rq_cmp);
2969 plug->should_sort = 0;
2970 }
2971
2972 q = NULL;
2973 depth = 0;
2974
2975 /*
2976 * Save and disable interrupts here, to avoid doing it for every
2977 * queue lock we have to take.
2978 */
2979 local_irq_save(flags);
2980 while (!list_empty(&list)) {
2981 rq = list_entry_rq(list.next);
2982 list_del_init(&rq->queuelist);
2983 BUG_ON(!rq->q);
2984 if (rq->q != q) {
2985 /*
2986 * This drops the queue lock
2987 */
2988 if (q)
2989 queue_unplugged(q, depth, from_schedule);
2990 q = rq->q;
2991 depth = 0;
2992 spin_lock(q->queue_lock);
2993 }
2994
2995 /*
2996 * Short-circuit if @q is dead
2997 */
2998 if (unlikely(blk_queue_dead(q))) {
2999 __blk_end_request_all(rq, -ENODEV);
3000 continue;
3001 }
3002
3003 /*
3004 * rq is already accounted, so use raw insert
3005 */
3006 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3007 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3008 else
3009 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3010
3011 depth++;
3012 }
3013
3014 /*
3015 * This drops the queue lock
3016 */
3017 if (q)
3018 queue_unplugged(q, depth, from_schedule);
3019
3020 local_irq_restore(flags);
3021 }
3022
3023 void blk_finish_plug(struct blk_plug *plug)
3024 {
3025 blk_flush_plug_list(plug, false);
3026
3027 if (plug == current->plug)
3028 current->plug = NULL;
3029 }
3030 EXPORT_SYMBOL(blk_finish_plug);
3031
3032 int __init blk_dev_init(void)
3033 {
3034 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3035 sizeof(((struct request *)0)->cmd_flags));
3036
3037 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3038 kblockd_workqueue = alloc_workqueue("kblockd",
3039 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3040 if (!kblockd_workqueue)
3041 panic("Failed to create kblockd\n");
3042
3043 request_cachep = kmem_cache_create("blkdev_requests",
3044 sizeof(struct request), 0, SLAB_PANIC, NULL);
3045
3046 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3047 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3048
3049 return 0;
3050 }