]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-core.c
block: add plug for blkdev_issue_discard
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
aaf7c680 32#include <linux/ratelimit.h>
55782138
LZ
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/block.h>
1da177e4 36
8324aa91 37#include "blk.h"
5efd6113 38#include "blk-cgroup.h"
8324aa91 39
d07335e5 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 42EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 43
a73f730d
TH
44DEFINE_IDA(blk_queue_ida);
45
1da177e4
LT
46/*
47 * For the allocated request tables
48 */
5ece6c52 49static struct kmem_cache *request_cachep;
1da177e4
LT
50
51/*
52 * For queue allocation
53 */
6728cb0e 54struct kmem_cache *blk_requestq_cachep;
1da177e4 55
1da177e4
LT
56/*
57 * Controlling structure to kblockd
58 */
ff856bad 59static struct workqueue_struct *kblockd_workqueue;
1da177e4 60
26b8256e
JA
61static void drive_stat_acct(struct request *rq, int new_io)
62{
28f13702 63 struct hd_struct *part;
26b8256e 64 int rw = rq_data_dir(rq);
c9959059 65 int cpu;
26b8256e 66
c2553b58 67 if (!blk_do_io_stat(rq))
26b8256e
JA
68 return;
69
074a7aca 70 cpu = part_stat_lock();
c9959059 71
09e099d4
JM
72 if (!new_io) {
73 part = rq->part;
074a7aca 74 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 77 if (!hd_struct_try_get(part)) {
09e099d4
JM
78 /*
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
81 *
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
85 */
86 part = &rq->rq_disk->part0;
6c23a968 87 hd_struct_get(part);
09e099d4 88 }
074a7aca 89 part_round_stats(cpu, part);
316d315b 90 part_inc_in_flight(part, rw);
09e099d4 91 rq->part = part;
26b8256e 92 }
e71bf0d0 93
074a7aca 94 part_stat_unlock();
26b8256e
JA
95}
96
8324aa91 97void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
98{
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110}
111
1da177e4
LT
112/**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122{
123 struct backing_dev_info *ret = NULL;
165125e1 124 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129}
1da177e4
LT
130EXPORT_SYMBOL(blk_get_backing_dev_info);
131
2a4aa30c 132void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 133{
1afb20f3
FT
134 memset(rq, 0, sizeof(*rq));
135
1da177e4 136 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 137 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 138 rq->cpu = -1;
63a71386 139 rq->q = q;
a2dec7b3 140 rq->__sector = (sector_t) -1;
2e662b65
JA
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 143 rq->cmd = rq->__cmd;
e2494e1b 144 rq->cmd_len = BLK_MAX_CDB;
63a71386 145 rq->tag = -1;
1da177e4 146 rq->ref_count = 1;
b243ddcb 147 rq->start_time = jiffies;
9195291e 148 set_start_time_ns(rq);
09e099d4 149 rq->part = NULL;
1da177e4 150}
2a4aa30c 151EXPORT_SYMBOL(blk_rq_init);
1da177e4 152
5bb23a68
N
153static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
1da177e4 155{
143a87f4
TH
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
797e7dbb 160
143a87f4
TH
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
5bb23a68 165 }
797e7dbb 166
143a87f4
TH
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 169
143a87f4
TH
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
7ba1ba12 172
143a87f4
TH
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
7ba1ba12 175
143a87f4
TH
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
1da177e4 179}
1da177e4 180
1da177e4
LT
181void blk_dump_rq_flags(struct request *rq, char *msg)
182{
183 int bit;
184
6728cb0e 185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
1da177e4 188
83096ebf
TH
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 194
33659ebb 195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 196 printk(KERN_INFO " cdb: ");
d34c87e4 197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201}
1da177e4
LT
202EXPORT_SYMBOL(blk_dump_rq_flags);
203
3cca6dc1 204static void blk_delay_work(struct work_struct *work)
1da177e4 205{
3cca6dc1 206 struct request_queue *q;
1da177e4 207
3cca6dc1
JA
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
24ecfbe2 210 __blk_run_queue(q);
3cca6dc1 211 spin_unlock_irq(q->queue_lock);
1da177e4 212}
1da177e4
LT
213
214/**
3cca6dc1
JA
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
1da177e4
LT
218 *
219 * Description:
3cca6dc1
JA
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
70460571 222 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
223 */
224void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 225{
70460571
BVA
226 if (likely(!blk_queue_dead(q)))
227 queue_delayed_work(kblockd_workqueue, &q->delay_work,
228 msecs_to_jiffies(msecs));
2ad8b1ef 229}
3cca6dc1 230EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 231
1da177e4
LT
232/**
233 * blk_start_queue - restart a previously stopped queue
165125e1 234 * @q: The &struct request_queue in question
1da177e4
LT
235 *
236 * Description:
237 * blk_start_queue() will clear the stop flag on the queue, and call
238 * the request_fn for the queue if it was in a stopped state when
239 * entered. Also see blk_stop_queue(). Queue lock must be held.
240 **/
165125e1 241void blk_start_queue(struct request_queue *q)
1da177e4 242{
a038e253
PBG
243 WARN_ON(!irqs_disabled());
244
75ad23bc 245 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 246 __blk_run_queue(q);
1da177e4 247}
1da177e4
LT
248EXPORT_SYMBOL(blk_start_queue);
249
250/**
251 * blk_stop_queue - stop a queue
165125e1 252 * @q: The &struct request_queue in question
1da177e4
LT
253 *
254 * Description:
255 * The Linux block layer assumes that a block driver will consume all
256 * entries on the request queue when the request_fn strategy is called.
257 * Often this will not happen, because of hardware limitations (queue
258 * depth settings). If a device driver gets a 'queue full' response,
259 * or if it simply chooses not to queue more I/O at one point, it can
260 * call this function to prevent the request_fn from being called until
261 * the driver has signalled it's ready to go again. This happens by calling
262 * blk_start_queue() to restart queue operations. Queue lock must be held.
263 **/
165125e1 264void blk_stop_queue(struct request_queue *q)
1da177e4 265{
136b5721 266 cancel_delayed_work(&q->delay_work);
75ad23bc 267 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
268}
269EXPORT_SYMBOL(blk_stop_queue);
270
271/**
272 * blk_sync_queue - cancel any pending callbacks on a queue
273 * @q: the queue
274 *
275 * Description:
276 * The block layer may perform asynchronous callback activity
277 * on a queue, such as calling the unplug function after a timeout.
278 * A block device may call blk_sync_queue to ensure that any
279 * such activity is cancelled, thus allowing it to release resources
59c51591 280 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
281 * that its ->make_request_fn will not re-add plugging prior to calling
282 * this function.
283 *
da527770
VG
284 * This function does not cancel any asynchronous activity arising
285 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 286 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 287 *
1da177e4
LT
288 */
289void blk_sync_queue(struct request_queue *q)
290{
70ed28b9 291 del_timer_sync(&q->timeout);
3cca6dc1 292 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
293}
294EXPORT_SYMBOL(blk_sync_queue);
295
c246e80d
BVA
296/**
297 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
298 * @q: The queue to run
299 *
300 * Description:
301 * Invoke request handling on a queue if there are any pending requests.
302 * May be used to restart request handling after a request has completed.
303 * This variant runs the queue whether or not the queue has been
304 * stopped. Must be called with the queue lock held and interrupts
305 * disabled. See also @blk_run_queue.
306 */
307inline void __blk_run_queue_uncond(struct request_queue *q)
308{
309 if (unlikely(blk_queue_dead(q)))
310 return;
311
24faf6f6
BVA
312 /*
313 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
314 * the queue lock internally. As a result multiple threads may be
315 * running such a request function concurrently. Keep track of the
316 * number of active request_fn invocations such that blk_drain_queue()
317 * can wait until all these request_fn calls have finished.
318 */
319 q->request_fn_active++;
c246e80d 320 q->request_fn(q);
24faf6f6 321 q->request_fn_active--;
c246e80d
BVA
322}
323
1da177e4 324/**
80a4b58e 325 * __blk_run_queue - run a single device queue
1da177e4 326 * @q: The queue to run
80a4b58e
JA
327 *
328 * Description:
329 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 330 * held and interrupts disabled.
1da177e4 331 */
24ecfbe2 332void __blk_run_queue(struct request_queue *q)
1da177e4 333{
a538cd03
TH
334 if (unlikely(blk_queue_stopped(q)))
335 return;
336
c246e80d 337 __blk_run_queue_uncond(q);
75ad23bc
NP
338}
339EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 340
24ecfbe2
CH
341/**
342 * blk_run_queue_async - run a single device queue in workqueue context
343 * @q: The queue to run
344 *
345 * Description:
346 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 347 * of us. The caller must hold the queue lock.
24ecfbe2
CH
348 */
349void blk_run_queue_async(struct request_queue *q)
350{
70460571 351 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 352 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 353}
c21e6beb 354EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 355
75ad23bc
NP
356/**
357 * blk_run_queue - run a single device queue
358 * @q: The queue to run
80a4b58e
JA
359 *
360 * Description:
361 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 362 * May be used to restart queueing when a request has completed.
75ad23bc
NP
363 */
364void blk_run_queue(struct request_queue *q)
365{
366 unsigned long flags;
367
368 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 369 __blk_run_queue(q);
1da177e4
LT
370 spin_unlock_irqrestore(q->queue_lock, flags);
371}
372EXPORT_SYMBOL(blk_run_queue);
373
165125e1 374void blk_put_queue(struct request_queue *q)
483f4afc
AV
375{
376 kobject_put(&q->kobj);
377}
d86e0e83 378EXPORT_SYMBOL(blk_put_queue);
483f4afc 379
e3c78ca5 380/**
807592a4 381 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 382 * @q: queue to drain
c9a929dd 383 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 384 *
c9a929dd
TH
385 * Drain requests from @q. If @drain_all is set, all requests are drained.
386 * If not, only ELVPRIV requests are drained. The caller is responsible
387 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 388 */
807592a4
BVA
389static void __blk_drain_queue(struct request_queue *q, bool drain_all)
390 __releases(q->queue_lock)
391 __acquires(q->queue_lock)
e3c78ca5 392{
458f27a9
AH
393 int i;
394
807592a4
BVA
395 lockdep_assert_held(q->queue_lock);
396
e3c78ca5 397 while (true) {
481a7d64 398 bool drain = false;
e3c78ca5 399
b855b04a
TH
400 /*
401 * The caller might be trying to drain @q before its
402 * elevator is initialized.
403 */
404 if (q->elevator)
405 elv_drain_elevator(q);
406
5efd6113 407 blkcg_drain_queue(q);
e3c78ca5 408
4eabc941
TH
409 /*
410 * This function might be called on a queue which failed
b855b04a
TH
411 * driver init after queue creation or is not yet fully
412 * active yet. Some drivers (e.g. fd and loop) get unhappy
413 * in such cases. Kick queue iff dispatch queue has
414 * something on it and @q has request_fn set.
4eabc941 415 */
b855b04a 416 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 417 __blk_run_queue(q);
c9a929dd 418
8a5ecdd4 419 drain |= q->nr_rqs_elvpriv;
24faf6f6 420 drain |= q->request_fn_active;
481a7d64
TH
421
422 /*
423 * Unfortunately, requests are queued at and tracked from
424 * multiple places and there's no single counter which can
425 * be drained. Check all the queues and counters.
426 */
427 if (drain_all) {
428 drain |= !list_empty(&q->queue_head);
429 for (i = 0; i < 2; i++) {
8a5ecdd4 430 drain |= q->nr_rqs[i];
481a7d64
TH
431 drain |= q->in_flight[i];
432 drain |= !list_empty(&q->flush_queue[i]);
433 }
434 }
e3c78ca5 435
481a7d64 436 if (!drain)
e3c78ca5 437 break;
807592a4
BVA
438
439 spin_unlock_irq(q->queue_lock);
440
e3c78ca5 441 msleep(10);
807592a4
BVA
442
443 spin_lock_irq(q->queue_lock);
e3c78ca5 444 }
458f27a9
AH
445
446 /*
447 * With queue marked dead, any woken up waiter will fail the
448 * allocation path, so the wakeup chaining is lost and we're
449 * left with hung waiters. We need to wake up those waiters.
450 */
451 if (q->request_fn) {
a051661c
TH
452 struct request_list *rl;
453
a051661c
TH
454 blk_queue_for_each_rl(rl, q)
455 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
456 wake_up_all(&rl->wait[i]);
458f27a9 457 }
e3c78ca5
TH
458}
459
d732580b
TH
460/**
461 * blk_queue_bypass_start - enter queue bypass mode
462 * @q: queue of interest
463 *
464 * In bypass mode, only the dispatch FIFO queue of @q is used. This
465 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 466 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
467 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
468 * inside queue or RCU read lock.
d732580b
TH
469 */
470void blk_queue_bypass_start(struct request_queue *q)
471{
b82d4b19
TH
472 bool drain;
473
d732580b 474 spin_lock_irq(q->queue_lock);
b82d4b19 475 drain = !q->bypass_depth++;
d732580b
TH
476 queue_flag_set(QUEUE_FLAG_BYPASS, q);
477 spin_unlock_irq(q->queue_lock);
478
b82d4b19 479 if (drain) {
807592a4
BVA
480 spin_lock_irq(q->queue_lock);
481 __blk_drain_queue(q, false);
482 spin_unlock_irq(q->queue_lock);
483
b82d4b19
TH
484 /* ensure blk_queue_bypass() is %true inside RCU read lock */
485 synchronize_rcu();
486 }
d732580b
TH
487}
488EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
489
490/**
491 * blk_queue_bypass_end - leave queue bypass mode
492 * @q: queue of interest
493 *
494 * Leave bypass mode and restore the normal queueing behavior.
495 */
496void blk_queue_bypass_end(struct request_queue *q)
497{
498 spin_lock_irq(q->queue_lock);
499 if (!--q->bypass_depth)
500 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
501 WARN_ON_ONCE(q->bypass_depth < 0);
502 spin_unlock_irq(q->queue_lock);
503}
504EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
505
c9a929dd
TH
506/**
507 * blk_cleanup_queue - shutdown a request queue
508 * @q: request queue to shutdown
509 *
c246e80d
BVA
510 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
511 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 512 */
6728cb0e 513void blk_cleanup_queue(struct request_queue *q)
483f4afc 514{
c9a929dd 515 spinlock_t *lock = q->queue_lock;
e3335de9 516
3f3299d5 517 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 518 mutex_lock(&q->sysfs_lock);
3f3299d5 519 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 520 spin_lock_irq(lock);
6ecf23af 521
80fd9979 522 /*
3f3299d5 523 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
524 * that, unlike blk_queue_bypass_start(), we aren't performing
525 * synchronize_rcu() after entering bypass mode to avoid the delay
526 * as some drivers create and destroy a lot of queues while
527 * probing. This is still safe because blk_release_queue() will be
528 * called only after the queue refcnt drops to zero and nothing,
529 * RCU or not, would be traversing the queue by then.
530 */
6ecf23af
TH
531 q->bypass_depth++;
532 queue_flag_set(QUEUE_FLAG_BYPASS, q);
533
c9a929dd
TH
534 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
535 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 536 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
537 spin_unlock_irq(lock);
538 mutex_unlock(&q->sysfs_lock);
539
c246e80d
BVA
540 /*
541 * Drain all requests queued before DYING marking. Set DEAD flag to
542 * prevent that q->request_fn() gets invoked after draining finished.
543 */
807592a4
BVA
544 spin_lock_irq(lock);
545 __blk_drain_queue(q, true);
c246e80d 546 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 547 spin_unlock_irq(lock);
c9a929dd
TH
548
549 /* @q won't process any more request, flush async actions */
550 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
551 blk_sync_queue(q);
552
5e5cfac0
AH
553 spin_lock_irq(lock);
554 if (q->queue_lock != &q->__queue_lock)
555 q->queue_lock = &q->__queue_lock;
556 spin_unlock_irq(lock);
557
c9a929dd 558 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
559 blk_put_queue(q);
560}
1da177e4
LT
561EXPORT_SYMBOL(blk_cleanup_queue);
562
5b788ce3
TH
563int blk_init_rl(struct request_list *rl, struct request_queue *q,
564 gfp_t gfp_mask)
1da177e4 565{
1abec4fd
MS
566 if (unlikely(rl->rq_pool))
567 return 0;
568
5b788ce3 569 rl->q = q;
1faa16d2
JA
570 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
571 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
572 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
573 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 574
1946089a 575 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 576 mempool_free_slab, request_cachep,
5b788ce3 577 gfp_mask, q->node);
1da177e4
LT
578 if (!rl->rq_pool)
579 return -ENOMEM;
580
581 return 0;
582}
583
5b788ce3
TH
584void blk_exit_rl(struct request_list *rl)
585{
586 if (rl->rq_pool)
587 mempool_destroy(rl->rq_pool);
588}
589
165125e1 590struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 591{
c304a51b 592 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
593}
594EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 595
165125e1 596struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 597{
165125e1 598 struct request_queue *q;
e0bf68dd 599 int err;
1946089a 600
8324aa91 601 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 602 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
603 if (!q)
604 return NULL;
605
00380a40 606 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d
TH
607 if (q->id < 0)
608 goto fail_q;
609
0989a025
JA
610 q->backing_dev_info.ra_pages =
611 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
612 q->backing_dev_info.state = 0;
613 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 614 q->backing_dev_info.name = "block";
5151412d 615 q->node = node_id;
0989a025 616
e0bf68dd 617 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
618 if (err)
619 goto fail_id;
e0bf68dd 620
31373d09
MG
621 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
622 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 623 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 624 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 625 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 626 INIT_LIST_HEAD(&q->icq_list);
4eef3049 627#ifdef CONFIG_BLK_CGROUP
e8989fae 628 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 629#endif
ae1b1539
TH
630 INIT_LIST_HEAD(&q->flush_queue[0]);
631 INIT_LIST_HEAD(&q->flush_queue[1]);
632 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 633 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 634
8324aa91 635 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 636
483f4afc 637 mutex_init(&q->sysfs_lock);
e7e72bf6 638 spin_lock_init(&q->__queue_lock);
483f4afc 639
c94a96ac
VG
640 /*
641 * By default initialize queue_lock to internal lock and driver can
642 * override it later if need be.
643 */
644 q->queue_lock = &q->__queue_lock;
645
b82d4b19
TH
646 /*
647 * A queue starts its life with bypass turned on to avoid
648 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
649 * init. The initial bypass will be finished when the queue is
650 * registered by blk_register_queue().
b82d4b19
TH
651 */
652 q->bypass_depth = 1;
653 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
654
5efd6113 655 if (blkcg_init_queue(q))
f51b802c
TH
656 goto fail_id;
657
1da177e4 658 return q;
a73f730d
TH
659
660fail_id:
661 ida_simple_remove(&blk_queue_ida, q->id);
662fail_q:
663 kmem_cache_free(blk_requestq_cachep, q);
664 return NULL;
1da177e4 665}
1946089a 666EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
667
668/**
669 * blk_init_queue - prepare a request queue for use with a block device
670 * @rfn: The function to be called to process requests that have been
671 * placed on the queue.
672 * @lock: Request queue spin lock
673 *
674 * Description:
675 * If a block device wishes to use the standard request handling procedures,
676 * which sorts requests and coalesces adjacent requests, then it must
677 * call blk_init_queue(). The function @rfn will be called when there
678 * are requests on the queue that need to be processed. If the device
679 * supports plugging, then @rfn may not be called immediately when requests
680 * are available on the queue, but may be called at some time later instead.
681 * Plugged queues are generally unplugged when a buffer belonging to one
682 * of the requests on the queue is needed, or due to memory pressure.
683 *
684 * @rfn is not required, or even expected, to remove all requests off the
685 * queue, but only as many as it can handle at a time. If it does leave
686 * requests on the queue, it is responsible for arranging that the requests
687 * get dealt with eventually.
688 *
689 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
690 * request queue; this lock will be taken also from interrupt context, so irq
691 * disabling is needed for it.
1da177e4 692 *
710027a4 693 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
694 * it didn't succeed.
695 *
696 * Note:
697 * blk_init_queue() must be paired with a blk_cleanup_queue() call
698 * when the block device is deactivated (such as at module unload).
699 **/
1946089a 700
165125e1 701struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 702{
c304a51b 703 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
704}
705EXPORT_SYMBOL(blk_init_queue);
706
165125e1 707struct request_queue *
1946089a
CL
708blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
709{
c86d1b8a 710 struct request_queue *uninit_q, *q;
1da177e4 711
c86d1b8a
MS
712 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
713 if (!uninit_q)
714 return NULL;
715
5151412d 716 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
717 if (!q)
718 blk_cleanup_queue(uninit_q);
719
720 return q;
01effb0d
MS
721}
722EXPORT_SYMBOL(blk_init_queue_node);
723
724struct request_queue *
725blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
726 spinlock_t *lock)
01effb0d 727{
1da177e4
LT
728 if (!q)
729 return NULL;
730
a051661c 731 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
8669aafd 732 return NULL;
1da177e4
LT
733
734 q->request_fn = rfn;
1da177e4 735 q->prep_rq_fn = NULL;
28018c24 736 q->unprep_rq_fn = NULL;
60ea8226 737 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
738
739 /* Override internal queue lock with supplied lock pointer */
740 if (lock)
741 q->queue_lock = lock;
1da177e4 742
f3b144aa
JA
743 /*
744 * This also sets hw/phys segments, boundary and size
745 */
c20e8de2 746 blk_queue_make_request(q, blk_queue_bio);
1da177e4 747
44ec9542
AS
748 q->sg_reserved_size = INT_MAX;
749
b82d4b19
TH
750 /* init elevator */
751 if (elevator_init(q, NULL))
752 return NULL;
b82d4b19 753 return q;
1da177e4 754}
5151412d 755EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 756
09ac46c4 757bool blk_get_queue(struct request_queue *q)
1da177e4 758{
3f3299d5 759 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
760 __blk_get_queue(q);
761 return true;
1da177e4
LT
762 }
763
09ac46c4 764 return false;
1da177e4 765}
d86e0e83 766EXPORT_SYMBOL(blk_get_queue);
1da177e4 767
5b788ce3 768static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 769{
f1f8cc94 770 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 771 elv_put_request(rl->q, rq);
f1f8cc94 772 if (rq->elv.icq)
11a3122f 773 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
774 }
775
5b788ce3 776 mempool_free(rq, rl->rq_pool);
1da177e4
LT
777}
778
1da177e4
LT
779/*
780 * ioc_batching returns true if the ioc is a valid batching request and
781 * should be given priority access to a request.
782 */
165125e1 783static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
784{
785 if (!ioc)
786 return 0;
787
788 /*
789 * Make sure the process is able to allocate at least 1 request
790 * even if the batch times out, otherwise we could theoretically
791 * lose wakeups.
792 */
793 return ioc->nr_batch_requests == q->nr_batching ||
794 (ioc->nr_batch_requests > 0
795 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
796}
797
798/*
799 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
800 * will cause the process to be a "batcher" on all queues in the system. This
801 * is the behaviour we want though - once it gets a wakeup it should be given
802 * a nice run.
803 */
165125e1 804static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
805{
806 if (!ioc || ioc_batching(q, ioc))
807 return;
808
809 ioc->nr_batch_requests = q->nr_batching;
810 ioc->last_waited = jiffies;
811}
812
5b788ce3 813static void __freed_request(struct request_list *rl, int sync)
1da177e4 814{
5b788ce3 815 struct request_queue *q = rl->q;
1da177e4 816
a051661c
TH
817 /*
818 * bdi isn't aware of blkcg yet. As all async IOs end up root
819 * blkcg anyway, just use root blkcg state.
820 */
821 if (rl == &q->root_rl &&
822 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 823 blk_clear_queue_congested(q, sync);
1da177e4 824
1faa16d2
JA
825 if (rl->count[sync] + 1 <= q->nr_requests) {
826 if (waitqueue_active(&rl->wait[sync]))
827 wake_up(&rl->wait[sync]);
1da177e4 828
5b788ce3 829 blk_clear_rl_full(rl, sync);
1da177e4
LT
830 }
831}
832
833/*
834 * A request has just been released. Account for it, update the full and
835 * congestion status, wake up any waiters. Called under q->queue_lock.
836 */
5b788ce3 837static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 838{
5b788ce3 839 struct request_queue *q = rl->q;
75eb6c37 840 int sync = rw_is_sync(flags);
1da177e4 841
8a5ecdd4 842 q->nr_rqs[sync]--;
1faa16d2 843 rl->count[sync]--;
75eb6c37 844 if (flags & REQ_ELVPRIV)
8a5ecdd4 845 q->nr_rqs_elvpriv--;
1da177e4 846
5b788ce3 847 __freed_request(rl, sync);
1da177e4 848
1faa16d2 849 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 850 __freed_request(rl, sync ^ 1);
1da177e4
LT
851}
852
9d5a4e94
MS
853/*
854 * Determine if elevator data should be initialized when allocating the
855 * request associated with @bio.
856 */
857static bool blk_rq_should_init_elevator(struct bio *bio)
858{
859 if (!bio)
860 return true;
861
862 /*
863 * Flush requests do not use the elevator so skip initialization.
864 * This allows a request to share the flush and elevator data.
865 */
866 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
867 return false;
868
869 return true;
870}
871
852c788f
TH
872/**
873 * rq_ioc - determine io_context for request allocation
874 * @bio: request being allocated is for this bio (can be %NULL)
875 *
876 * Determine io_context to use for request allocation for @bio. May return
877 * %NULL if %current->io_context doesn't exist.
878 */
879static struct io_context *rq_ioc(struct bio *bio)
880{
881#ifdef CONFIG_BLK_CGROUP
882 if (bio && bio->bi_ioc)
883 return bio->bi_ioc;
884#endif
885 return current->io_context;
886}
887
da8303c6 888/**
a06e05e6 889 * __get_request - get a free request
5b788ce3 890 * @rl: request list to allocate from
da8303c6
TH
891 * @rw_flags: RW and SYNC flags
892 * @bio: bio to allocate request for (can be %NULL)
893 * @gfp_mask: allocation mask
894 *
895 * Get a free request from @q. This function may fail under memory
896 * pressure or if @q is dead.
897 *
898 * Must be callled with @q->queue_lock held and,
899 * Returns %NULL on failure, with @q->queue_lock held.
900 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 901 */
5b788ce3 902static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 903 struct bio *bio, gfp_t gfp_mask)
1da177e4 904{
5b788ce3 905 struct request_queue *q = rl->q;
b679281a 906 struct request *rq;
7f4b35d1
TH
907 struct elevator_type *et = q->elevator->type;
908 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 909 struct io_cq *icq = NULL;
1faa16d2 910 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 911 int may_queue;
88ee5ef1 912
3f3299d5 913 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
914 return NULL;
915
7749a8d4 916 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
917 if (may_queue == ELV_MQUEUE_NO)
918 goto rq_starved;
919
1faa16d2
JA
920 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
921 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
922 /*
923 * The queue will fill after this allocation, so set
924 * it as full, and mark this process as "batching".
925 * This process will be allowed to complete a batch of
926 * requests, others will be blocked.
927 */
5b788ce3 928 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 929 ioc_set_batching(q, ioc);
5b788ce3 930 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
931 } else {
932 if (may_queue != ELV_MQUEUE_MUST
933 && !ioc_batching(q, ioc)) {
934 /*
935 * The queue is full and the allocating
936 * process is not a "batcher", and not
937 * exempted by the IO scheduler
938 */
b679281a 939 return NULL;
88ee5ef1
JA
940 }
941 }
1da177e4 942 }
a051661c
TH
943 /*
944 * bdi isn't aware of blkcg yet. As all async IOs end up
945 * root blkcg anyway, just use root blkcg state.
946 */
947 if (rl == &q->root_rl)
948 blk_set_queue_congested(q, is_sync);
1da177e4
LT
949 }
950
082cf69e
JA
951 /*
952 * Only allow batching queuers to allocate up to 50% over the defined
953 * limit of requests, otherwise we could have thousands of requests
954 * allocated with any setting of ->nr_requests
955 */
1faa16d2 956 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 957 return NULL;
fd782a4a 958
8a5ecdd4 959 q->nr_rqs[is_sync]++;
1faa16d2
JA
960 rl->count[is_sync]++;
961 rl->starved[is_sync] = 0;
cb98fc8b 962
f1f8cc94
TH
963 /*
964 * Decide whether the new request will be managed by elevator. If
965 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
966 * prevent the current elevator from being destroyed until the new
967 * request is freed. This guarantees icq's won't be destroyed and
968 * makes creating new ones safe.
969 *
970 * Also, lookup icq while holding queue_lock. If it doesn't exist,
971 * it will be created after releasing queue_lock.
972 */
d732580b 973 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 974 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 975 q->nr_rqs_elvpriv++;
f1f8cc94
TH
976 if (et->icq_cache && ioc)
977 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 978 }
cb98fc8b 979
f253b86b
JA
980 if (blk_queue_io_stat(q))
981 rw_flags |= REQ_IO_STAT;
1da177e4
LT
982 spin_unlock_irq(q->queue_lock);
983
29e2b09a 984 /* allocate and init request */
5b788ce3 985 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 986 if (!rq)
b679281a 987 goto fail_alloc;
1da177e4 988
29e2b09a 989 blk_rq_init(q, rq);
a051661c 990 blk_rq_set_rl(rq, rl);
29e2b09a
TH
991 rq->cmd_flags = rw_flags | REQ_ALLOCED;
992
aaf7c680 993 /* init elvpriv */
29e2b09a 994 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 995 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
996 if (ioc)
997 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
998 if (!icq)
999 goto fail_elvpriv;
29e2b09a 1000 }
aaf7c680
TH
1001
1002 rq->elv.icq = icq;
1003 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1004 goto fail_elvpriv;
1005
1006 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1007 if (icq)
1008 get_io_context(icq->ioc);
1009 }
aaf7c680 1010out:
88ee5ef1
JA
1011 /*
1012 * ioc may be NULL here, and ioc_batching will be false. That's
1013 * OK, if the queue is under the request limit then requests need
1014 * not count toward the nr_batch_requests limit. There will always
1015 * be some limit enforced by BLK_BATCH_TIME.
1016 */
1da177e4
LT
1017 if (ioc_batching(q, ioc))
1018 ioc->nr_batch_requests--;
6728cb0e 1019
1faa16d2 1020 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1021 return rq;
b679281a 1022
aaf7c680
TH
1023fail_elvpriv:
1024 /*
1025 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1026 * and may fail indefinitely under memory pressure and thus
1027 * shouldn't stall IO. Treat this request as !elvpriv. This will
1028 * disturb iosched and blkcg but weird is bettern than dead.
1029 */
1030 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1031 dev_name(q->backing_dev_info.dev));
1032
1033 rq->cmd_flags &= ~REQ_ELVPRIV;
1034 rq->elv.icq = NULL;
1035
1036 spin_lock_irq(q->queue_lock);
8a5ecdd4 1037 q->nr_rqs_elvpriv--;
aaf7c680
TH
1038 spin_unlock_irq(q->queue_lock);
1039 goto out;
1040
b679281a
TH
1041fail_alloc:
1042 /*
1043 * Allocation failed presumably due to memory. Undo anything we
1044 * might have messed up.
1045 *
1046 * Allocating task should really be put onto the front of the wait
1047 * queue, but this is pretty rare.
1048 */
1049 spin_lock_irq(q->queue_lock);
5b788ce3 1050 freed_request(rl, rw_flags);
b679281a
TH
1051
1052 /*
1053 * in the very unlikely event that allocation failed and no
1054 * requests for this direction was pending, mark us starved so that
1055 * freeing of a request in the other direction will notice
1056 * us. another possible fix would be to split the rq mempool into
1057 * READ and WRITE
1058 */
1059rq_starved:
1060 if (unlikely(rl->count[is_sync] == 0))
1061 rl->starved[is_sync] = 1;
1062 return NULL;
1da177e4
LT
1063}
1064
da8303c6 1065/**
a06e05e6 1066 * get_request - get a free request
da8303c6
TH
1067 * @q: request_queue to allocate request from
1068 * @rw_flags: RW and SYNC flags
1069 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1070 * @gfp_mask: allocation mask
da8303c6 1071 *
a06e05e6
TH
1072 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1073 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1074 *
da8303c6
TH
1075 * Must be callled with @q->queue_lock held and,
1076 * Returns %NULL on failure, with @q->queue_lock held.
1077 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1078 */
a06e05e6
TH
1079static struct request *get_request(struct request_queue *q, int rw_flags,
1080 struct bio *bio, gfp_t gfp_mask)
1da177e4 1081{
1faa16d2 1082 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1083 DEFINE_WAIT(wait);
a051661c 1084 struct request_list *rl;
1da177e4 1085 struct request *rq;
a051661c
TH
1086
1087 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1088retry:
a051661c 1089 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1090 if (rq)
1091 return rq;
1da177e4 1092
3f3299d5 1093 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1094 blk_put_rl(rl);
a06e05e6 1095 return NULL;
a051661c 1096 }
1da177e4 1097
a06e05e6
TH
1098 /* wait on @rl and retry */
1099 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1100 TASK_UNINTERRUPTIBLE);
1da177e4 1101
a06e05e6 1102 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1103
a06e05e6
TH
1104 spin_unlock_irq(q->queue_lock);
1105 io_schedule();
d6344532 1106
a06e05e6
TH
1107 /*
1108 * After sleeping, we become a "batching" process and will be able
1109 * to allocate at least one request, and up to a big batch of them
1110 * for a small period time. See ioc_batching, ioc_set_batching
1111 */
a06e05e6 1112 ioc_set_batching(q, current->io_context);
05caf8db 1113
a06e05e6
TH
1114 spin_lock_irq(q->queue_lock);
1115 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1116
a06e05e6 1117 goto retry;
1da177e4
LT
1118}
1119
165125e1 1120struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1121{
1122 struct request *rq;
1123
1124 BUG_ON(rw != READ && rw != WRITE);
1125
7f4b35d1
TH
1126 /* create ioc upfront */
1127 create_io_context(gfp_mask, q->node);
1128
d6344532 1129 spin_lock_irq(q->queue_lock);
a06e05e6 1130 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1131 if (!rq)
1132 spin_unlock_irq(q->queue_lock);
d6344532 1133 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1134
1135 return rq;
1136}
1da177e4
LT
1137EXPORT_SYMBOL(blk_get_request);
1138
dc72ef4a 1139/**
79eb63e9 1140 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1141 * @q: target request queue
79eb63e9
BH
1142 * @bio: The bio describing the memory mappings that will be submitted for IO.
1143 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1144 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1145 *
79eb63e9
BH
1146 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1147 * type commands. Where the struct request needs to be farther initialized by
1148 * the caller. It is passed a &struct bio, which describes the memory info of
1149 * the I/O transfer.
dc72ef4a 1150 *
79eb63e9
BH
1151 * The caller of blk_make_request must make sure that bi_io_vec
1152 * are set to describe the memory buffers. That bio_data_dir() will return
1153 * the needed direction of the request. (And all bio's in the passed bio-chain
1154 * are properly set accordingly)
1155 *
1156 * If called under none-sleepable conditions, mapped bio buffers must not
1157 * need bouncing, by calling the appropriate masked or flagged allocator,
1158 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1159 * BUG.
53674ac5
JA
1160 *
1161 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1162 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1163 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1164 * completion of a bio that hasn't been submitted yet, thus resulting in a
1165 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1166 * of bio_alloc(), as that avoids the mempool deadlock.
1167 * If possible a big IO should be split into smaller parts when allocation
1168 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1169 */
79eb63e9
BH
1170struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1171 gfp_t gfp_mask)
dc72ef4a 1172{
79eb63e9
BH
1173 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1174
1175 if (unlikely(!rq))
1176 return ERR_PTR(-ENOMEM);
1177
1178 for_each_bio(bio) {
1179 struct bio *bounce_bio = bio;
1180 int ret;
1181
1182 blk_queue_bounce(q, &bounce_bio);
1183 ret = blk_rq_append_bio(q, rq, bounce_bio);
1184 if (unlikely(ret)) {
1185 blk_put_request(rq);
1186 return ERR_PTR(ret);
1187 }
1188 }
1189
1190 return rq;
dc72ef4a 1191}
79eb63e9 1192EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1193
1da177e4
LT
1194/**
1195 * blk_requeue_request - put a request back on queue
1196 * @q: request queue where request should be inserted
1197 * @rq: request to be inserted
1198 *
1199 * Description:
1200 * Drivers often keep queueing requests until the hardware cannot accept
1201 * more, when that condition happens we need to put the request back
1202 * on the queue. Must be called with queue lock held.
1203 */
165125e1 1204void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1205{
242f9dcb
JA
1206 blk_delete_timer(rq);
1207 blk_clear_rq_complete(rq);
5f3ea37c 1208 trace_block_rq_requeue(q, rq);
2056a782 1209
1da177e4
LT
1210 if (blk_rq_tagged(rq))
1211 blk_queue_end_tag(q, rq);
1212
ba396a6c
JB
1213 BUG_ON(blk_queued_rq(rq));
1214
1da177e4
LT
1215 elv_requeue_request(q, rq);
1216}
1da177e4
LT
1217EXPORT_SYMBOL(blk_requeue_request);
1218
73c10101
JA
1219static void add_acct_request(struct request_queue *q, struct request *rq,
1220 int where)
1221{
1222 drive_stat_acct(rq, 1);
7eaceacc 1223 __elv_add_request(q, rq, where);
73c10101
JA
1224}
1225
074a7aca
TH
1226static void part_round_stats_single(int cpu, struct hd_struct *part,
1227 unsigned long now)
1228{
1229 if (now == part->stamp)
1230 return;
1231
316d315b 1232 if (part_in_flight(part)) {
074a7aca 1233 __part_stat_add(cpu, part, time_in_queue,
316d315b 1234 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1235 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1236 }
1237 part->stamp = now;
1238}
1239
1240/**
496aa8a9
RD
1241 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1242 * @cpu: cpu number for stats access
1243 * @part: target partition
1da177e4
LT
1244 *
1245 * The average IO queue length and utilisation statistics are maintained
1246 * by observing the current state of the queue length and the amount of
1247 * time it has been in this state for.
1248 *
1249 * Normally, that accounting is done on IO completion, but that can result
1250 * in more than a second's worth of IO being accounted for within any one
1251 * second, leading to >100% utilisation. To deal with that, we call this
1252 * function to do a round-off before returning the results when reading
1253 * /proc/diskstats. This accounts immediately for all queue usage up to
1254 * the current jiffies and restarts the counters again.
1255 */
c9959059 1256void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1257{
1258 unsigned long now = jiffies;
1259
074a7aca
TH
1260 if (part->partno)
1261 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1262 part_round_stats_single(cpu, part, now);
6f2576af 1263}
074a7aca 1264EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1265
1da177e4
LT
1266/*
1267 * queue lock must be held
1268 */
165125e1 1269void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1270{
1da177e4
LT
1271 if (unlikely(!q))
1272 return;
1273 if (unlikely(--req->ref_count))
1274 return;
1275
8922e16c
TH
1276 elv_completed_request(q, req);
1277
1cd96c24
BH
1278 /* this is a bio leak */
1279 WARN_ON(req->bio != NULL);
1280
1da177e4
LT
1281 /*
1282 * Request may not have originated from ll_rw_blk. if not,
1283 * it didn't come out of our reserved rq pools
1284 */
49171e5c 1285 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1286 unsigned int flags = req->cmd_flags;
a051661c 1287 struct request_list *rl = blk_rq_rl(req);
1da177e4 1288
1da177e4 1289 BUG_ON(!list_empty(&req->queuelist));
9817064b 1290 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4 1291
a051661c
TH
1292 blk_free_request(rl, req);
1293 freed_request(rl, flags);
1294 blk_put_rl(rl);
1da177e4
LT
1295 }
1296}
6e39b69e
MC
1297EXPORT_SYMBOL_GPL(__blk_put_request);
1298
1da177e4
LT
1299void blk_put_request(struct request *req)
1300{
8922e16c 1301 unsigned long flags;
165125e1 1302 struct request_queue *q = req->q;
8922e16c 1303
52a93ba8
FT
1304 spin_lock_irqsave(q->queue_lock, flags);
1305 __blk_put_request(q, req);
1306 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1307}
1da177e4
LT
1308EXPORT_SYMBOL(blk_put_request);
1309
66ac0280
CH
1310/**
1311 * blk_add_request_payload - add a payload to a request
1312 * @rq: request to update
1313 * @page: page backing the payload
1314 * @len: length of the payload.
1315 *
1316 * This allows to later add a payload to an already submitted request by
1317 * a block driver. The driver needs to take care of freeing the payload
1318 * itself.
1319 *
1320 * Note that this is a quite horrible hack and nothing but handling of
1321 * discard requests should ever use it.
1322 */
1323void blk_add_request_payload(struct request *rq, struct page *page,
1324 unsigned int len)
1325{
1326 struct bio *bio = rq->bio;
1327
1328 bio->bi_io_vec->bv_page = page;
1329 bio->bi_io_vec->bv_offset = 0;
1330 bio->bi_io_vec->bv_len = len;
1331
1332 bio->bi_size = len;
1333 bio->bi_vcnt = 1;
1334 bio->bi_phys_segments = 1;
1335
1336 rq->__data_len = rq->resid_len = len;
1337 rq->nr_phys_segments = 1;
1338 rq->buffer = bio_data(bio);
1339}
1340EXPORT_SYMBOL_GPL(blk_add_request_payload);
1341
73c10101
JA
1342static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1343 struct bio *bio)
1344{
1345 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1346
73c10101
JA
1347 if (!ll_back_merge_fn(q, req, bio))
1348 return false;
1349
1350 trace_block_bio_backmerge(q, bio);
1351
1352 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1353 blk_rq_set_mixed_merge(req);
1354
1355 req->biotail->bi_next = bio;
1356 req->biotail = bio;
1357 req->__data_len += bio->bi_size;
1358 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1359
1360 drive_stat_acct(req, 0);
1361 return true;
1362}
1363
1364static bool bio_attempt_front_merge(struct request_queue *q,
1365 struct request *req, struct bio *bio)
1366{
1367 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1368
73c10101
JA
1369 if (!ll_front_merge_fn(q, req, bio))
1370 return false;
1371
1372 trace_block_bio_frontmerge(q, bio);
1373
1374 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1375 blk_rq_set_mixed_merge(req);
1376
73c10101
JA
1377 bio->bi_next = req->bio;
1378 req->bio = bio;
1379
1380 /*
1381 * may not be valid. if the low level driver said
1382 * it didn't need a bounce buffer then it better
1383 * not touch req->buffer either...
1384 */
1385 req->buffer = bio_data(bio);
1386 req->__sector = bio->bi_sector;
1387 req->__data_len += bio->bi_size;
1388 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1389
1390 drive_stat_acct(req, 0);
1391 return true;
1392}
1393
bd87b589
TH
1394/**
1395 * attempt_plug_merge - try to merge with %current's plugged list
1396 * @q: request_queue new bio is being queued at
1397 * @bio: new bio being queued
1398 * @request_count: out parameter for number of traversed plugged requests
1399 *
1400 * Determine whether @bio being queued on @q can be merged with a request
1401 * on %current's plugged list. Returns %true if merge was successful,
1402 * otherwise %false.
1403 *
07c2bd37
TH
1404 * Plugging coalesces IOs from the same issuer for the same purpose without
1405 * going through @q->queue_lock. As such it's more of an issuing mechanism
1406 * than scheduling, and the request, while may have elvpriv data, is not
1407 * added on the elevator at this point. In addition, we don't have
1408 * reliable access to the elevator outside queue lock. Only check basic
1409 * merging parameters without querying the elevator.
73c10101 1410 */
bd87b589
TH
1411static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1412 unsigned int *request_count)
73c10101
JA
1413{
1414 struct blk_plug *plug;
1415 struct request *rq;
1416 bool ret = false;
1417
bd87b589 1418 plug = current->plug;
73c10101
JA
1419 if (!plug)
1420 goto out;
56ebdaf2 1421 *request_count = 0;
73c10101
JA
1422
1423 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1424 int el_ret;
1425
1b2e19f1
SL
1426 if (rq->q == q)
1427 (*request_count)++;
56ebdaf2 1428
07c2bd37 1429 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1430 continue;
1431
050c8ea8 1432 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1433 if (el_ret == ELEVATOR_BACK_MERGE) {
1434 ret = bio_attempt_back_merge(q, rq, bio);
1435 if (ret)
1436 break;
1437 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1438 ret = bio_attempt_front_merge(q, rq, bio);
1439 if (ret)
1440 break;
1441 }
1442 }
1443out:
1444 return ret;
1445}
1446
86db1e29 1447void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1448{
4aff5e23 1449 req->cmd_type = REQ_TYPE_FS;
52d9e675 1450
7b6d91da
CH
1451 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1452 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1453 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1454
52d9e675 1455 req->errors = 0;
a2dec7b3 1456 req->__sector = bio->bi_sector;
52d9e675 1457 req->ioprio = bio_prio(bio);
bc1c56fd 1458 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1459}
1460
5a7bbad2 1461void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1462{
5e00d1b5 1463 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1464 struct blk_plug *plug;
1465 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1466 struct request *req;
56ebdaf2 1467 unsigned int request_count = 0;
1da177e4 1468
1da177e4
LT
1469 /*
1470 * low level driver can indicate that it wants pages above a
1471 * certain limit bounced to low memory (ie for highmem, or even
1472 * ISA dma in theory)
1473 */
1474 blk_queue_bounce(q, &bio);
1475
4fed947c 1476 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1477 spin_lock_irq(q->queue_lock);
ae1b1539 1478 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1479 goto get_rq;
1480 }
1481
73c10101
JA
1482 /*
1483 * Check if we can merge with the plugged list before grabbing
1484 * any locks.
1485 */
bd87b589 1486 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1487 return;
1da177e4 1488
73c10101 1489 spin_lock_irq(q->queue_lock);
2056a782 1490
73c10101
JA
1491 el_ret = elv_merge(q, &req, bio);
1492 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1493 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1494 elv_bio_merged(q, req, bio);
73c10101
JA
1495 if (!attempt_back_merge(q, req))
1496 elv_merged_request(q, req, el_ret);
1497 goto out_unlock;
1498 }
1499 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1500 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1501 elv_bio_merged(q, req, bio);
73c10101
JA
1502 if (!attempt_front_merge(q, req))
1503 elv_merged_request(q, req, el_ret);
1504 goto out_unlock;
80a761fd 1505 }
1da177e4
LT
1506 }
1507
450991bc 1508get_rq:
7749a8d4
JA
1509 /*
1510 * This sync check and mask will be re-done in init_request_from_bio(),
1511 * but we need to set it earlier to expose the sync flag to the
1512 * rq allocator and io schedulers.
1513 */
1514 rw_flags = bio_data_dir(bio);
1515 if (sync)
7b6d91da 1516 rw_flags |= REQ_SYNC;
7749a8d4 1517
1da177e4 1518 /*
450991bc 1519 * Grab a free request. This is might sleep but can not fail.
d6344532 1520 * Returns with the queue unlocked.
450991bc 1521 */
a06e05e6 1522 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1523 if (unlikely(!req)) {
1524 bio_endio(bio, -ENODEV); /* @q is dead */
1525 goto out_unlock;
1526 }
d6344532 1527
450991bc
NP
1528 /*
1529 * After dropping the lock and possibly sleeping here, our request
1530 * may now be mergeable after it had proven unmergeable (above).
1531 * We don't worry about that case for efficiency. It won't happen
1532 * often, and the elevators are able to handle it.
1da177e4 1533 */
52d9e675 1534 init_request_from_bio(req, bio);
1da177e4 1535
9562ad9a 1536 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1537 req->cpu = raw_smp_processor_id();
73c10101
JA
1538
1539 plug = current->plug;
721a9602 1540 if (plug) {
dc6d36c9
JA
1541 /*
1542 * If this is the first request added after a plug, fire
1543 * of a plug trace. If others have been added before, check
1544 * if we have multiple devices in this plug. If so, make a
1545 * note to sort the list before dispatch.
1546 */
1547 if (list_empty(&plug->list))
1548 trace_block_plug(q);
3540d5e8
SL
1549 else {
1550 if (!plug->should_sort) {
1551 struct request *__rq;
73c10101 1552
3540d5e8
SL
1553 __rq = list_entry_rq(plug->list.prev);
1554 if (__rq->q != q)
1555 plug->should_sort = 1;
1556 }
019ceb7d 1557 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1558 blk_flush_plug_list(plug, false);
019ceb7d
SL
1559 trace_block_plug(q);
1560 }
73c10101 1561 }
73c10101
JA
1562 list_add_tail(&req->queuelist, &plug->list);
1563 drive_stat_acct(req, 1);
1564 } else {
1565 spin_lock_irq(q->queue_lock);
1566 add_acct_request(q, req, where);
24ecfbe2 1567 __blk_run_queue(q);
73c10101
JA
1568out_unlock:
1569 spin_unlock_irq(q->queue_lock);
1570 }
1da177e4 1571}
c20e8de2 1572EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1573
1574/*
1575 * If bio->bi_dev is a partition, remap the location
1576 */
1577static inline void blk_partition_remap(struct bio *bio)
1578{
1579 struct block_device *bdev = bio->bi_bdev;
1580
bf2de6f5 1581 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1582 struct hd_struct *p = bdev->bd_part;
1583
1da177e4
LT
1584 bio->bi_sector += p->start_sect;
1585 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1586
d07335e5
MS
1587 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1588 bdev->bd_dev,
1589 bio->bi_sector - p->start_sect);
1da177e4
LT
1590 }
1591}
1592
1da177e4
LT
1593static void handle_bad_sector(struct bio *bio)
1594{
1595 char b[BDEVNAME_SIZE];
1596
1597 printk(KERN_INFO "attempt to access beyond end of device\n");
1598 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1599 bdevname(bio->bi_bdev, b),
1600 bio->bi_rw,
1601 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1602 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1603
1604 set_bit(BIO_EOF, &bio->bi_flags);
1605}
1606
c17bb495
AM
1607#ifdef CONFIG_FAIL_MAKE_REQUEST
1608
1609static DECLARE_FAULT_ATTR(fail_make_request);
1610
1611static int __init setup_fail_make_request(char *str)
1612{
1613 return setup_fault_attr(&fail_make_request, str);
1614}
1615__setup("fail_make_request=", setup_fail_make_request);
1616
b2c9cd37 1617static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1618{
b2c9cd37 1619 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1620}
1621
1622static int __init fail_make_request_debugfs(void)
1623{
dd48c085
AM
1624 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1625 NULL, &fail_make_request);
1626
1627 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1628}
1629
1630late_initcall(fail_make_request_debugfs);
1631
1632#else /* CONFIG_FAIL_MAKE_REQUEST */
1633
b2c9cd37
AM
1634static inline bool should_fail_request(struct hd_struct *part,
1635 unsigned int bytes)
c17bb495 1636{
b2c9cd37 1637 return false;
c17bb495
AM
1638}
1639
1640#endif /* CONFIG_FAIL_MAKE_REQUEST */
1641
c07e2b41
JA
1642/*
1643 * Check whether this bio extends beyond the end of the device.
1644 */
1645static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1646{
1647 sector_t maxsector;
1648
1649 if (!nr_sectors)
1650 return 0;
1651
1652 /* Test device or partition size, when known. */
77304d2a 1653 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1654 if (maxsector) {
1655 sector_t sector = bio->bi_sector;
1656
1657 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1658 /*
1659 * This may well happen - the kernel calls bread()
1660 * without checking the size of the device, e.g., when
1661 * mounting a device.
1662 */
1663 handle_bad_sector(bio);
1664 return 1;
1665 }
1666 }
1667
1668 return 0;
1669}
1670
27a84d54
CH
1671static noinline_for_stack bool
1672generic_make_request_checks(struct bio *bio)
1da177e4 1673{
165125e1 1674 struct request_queue *q;
5a7bbad2 1675 int nr_sectors = bio_sectors(bio);
51fd77bd 1676 int err = -EIO;
5a7bbad2
CH
1677 char b[BDEVNAME_SIZE];
1678 struct hd_struct *part;
1da177e4
LT
1679
1680 might_sleep();
1da177e4 1681
c07e2b41
JA
1682 if (bio_check_eod(bio, nr_sectors))
1683 goto end_io;
1da177e4 1684
5a7bbad2
CH
1685 q = bdev_get_queue(bio->bi_bdev);
1686 if (unlikely(!q)) {
1687 printk(KERN_ERR
1688 "generic_make_request: Trying to access "
1689 "nonexistent block-device %s (%Lu)\n",
1690 bdevname(bio->bi_bdev, b),
1691 (long long) bio->bi_sector);
1692 goto end_io;
1693 }
c17bb495 1694
e2a60da7
MP
1695 if (likely(bio_is_rw(bio) &&
1696 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1697 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1698 bdevname(bio->bi_bdev, b),
1699 bio_sectors(bio),
1700 queue_max_hw_sectors(q));
1701 goto end_io;
1702 }
1da177e4 1703
5a7bbad2
CH
1704 part = bio->bi_bdev->bd_part;
1705 if (should_fail_request(part, bio->bi_size) ||
1706 should_fail_request(&part_to_disk(part)->part0,
1707 bio->bi_size))
1708 goto end_io;
2056a782 1709
5a7bbad2
CH
1710 /*
1711 * If this device has partitions, remap block n
1712 * of partition p to block n+start(p) of the disk.
1713 */
1714 blk_partition_remap(bio);
2056a782 1715
5a7bbad2
CH
1716 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1717 goto end_io;
a7384677 1718
5a7bbad2
CH
1719 if (bio_check_eod(bio, nr_sectors))
1720 goto end_io;
1e87901e 1721
5a7bbad2
CH
1722 /*
1723 * Filter flush bio's early so that make_request based
1724 * drivers without flush support don't have to worry
1725 * about them.
1726 */
1727 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1728 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1729 if (!nr_sectors) {
1730 err = 0;
51fd77bd
JA
1731 goto end_io;
1732 }
5a7bbad2 1733 }
5ddfe969 1734
5a7bbad2
CH
1735 if ((bio->bi_rw & REQ_DISCARD) &&
1736 (!blk_queue_discard(q) ||
e2a60da7 1737 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1738 err = -EOPNOTSUPP;
1739 goto end_io;
1740 }
01edede4 1741
4363ac7c 1742 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1743 err = -EOPNOTSUPP;
1744 goto end_io;
1745 }
01edede4 1746
7f4b35d1
TH
1747 /*
1748 * Various block parts want %current->io_context and lazy ioc
1749 * allocation ends up trading a lot of pain for a small amount of
1750 * memory. Just allocate it upfront. This may fail and block
1751 * layer knows how to live with it.
1752 */
1753 create_io_context(GFP_ATOMIC, q->node);
1754
bc16a4f9
TH
1755 if (blk_throtl_bio(q, bio))
1756 return false; /* throttled, will be resubmitted later */
27a84d54 1757
5a7bbad2 1758 trace_block_bio_queue(q, bio);
27a84d54 1759 return true;
a7384677
TH
1760
1761end_io:
1762 bio_endio(bio, err);
27a84d54 1763 return false;
1da177e4
LT
1764}
1765
27a84d54
CH
1766/**
1767 * generic_make_request - hand a buffer to its device driver for I/O
1768 * @bio: The bio describing the location in memory and on the device.
1769 *
1770 * generic_make_request() is used to make I/O requests of block
1771 * devices. It is passed a &struct bio, which describes the I/O that needs
1772 * to be done.
1773 *
1774 * generic_make_request() does not return any status. The
1775 * success/failure status of the request, along with notification of
1776 * completion, is delivered asynchronously through the bio->bi_end_io
1777 * function described (one day) else where.
1778 *
1779 * The caller of generic_make_request must make sure that bi_io_vec
1780 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1781 * set to describe the device address, and the
1782 * bi_end_io and optionally bi_private are set to describe how
1783 * completion notification should be signaled.
1784 *
1785 * generic_make_request and the drivers it calls may use bi_next if this
1786 * bio happens to be merged with someone else, and may resubmit the bio to
1787 * a lower device by calling into generic_make_request recursively, which
1788 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1789 */
1790void generic_make_request(struct bio *bio)
1791{
bddd87c7
AM
1792 struct bio_list bio_list_on_stack;
1793
27a84d54
CH
1794 if (!generic_make_request_checks(bio))
1795 return;
1796
1797 /*
1798 * We only want one ->make_request_fn to be active at a time, else
1799 * stack usage with stacked devices could be a problem. So use
1800 * current->bio_list to keep a list of requests submited by a
1801 * make_request_fn function. current->bio_list is also used as a
1802 * flag to say if generic_make_request is currently active in this
1803 * task or not. If it is NULL, then no make_request is active. If
1804 * it is non-NULL, then a make_request is active, and new requests
1805 * should be added at the tail
1806 */
bddd87c7 1807 if (current->bio_list) {
bddd87c7 1808 bio_list_add(current->bio_list, bio);
d89d8796
NB
1809 return;
1810 }
27a84d54 1811
d89d8796
NB
1812 /* following loop may be a bit non-obvious, and so deserves some
1813 * explanation.
1814 * Before entering the loop, bio->bi_next is NULL (as all callers
1815 * ensure that) so we have a list with a single bio.
1816 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1817 * we assign bio_list to a pointer to the bio_list_on_stack,
1818 * thus initialising the bio_list of new bios to be
27a84d54 1819 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1820 * through a recursive call to generic_make_request. If it
1821 * did, we find a non-NULL value in bio_list and re-enter the loop
1822 * from the top. In this case we really did just take the bio
bddd87c7 1823 * of the top of the list (no pretending) and so remove it from
27a84d54 1824 * bio_list, and call into ->make_request() again.
d89d8796
NB
1825 */
1826 BUG_ON(bio->bi_next);
bddd87c7
AM
1827 bio_list_init(&bio_list_on_stack);
1828 current->bio_list = &bio_list_on_stack;
d89d8796 1829 do {
27a84d54
CH
1830 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1831
1832 q->make_request_fn(q, bio);
1833
bddd87c7 1834 bio = bio_list_pop(current->bio_list);
d89d8796 1835 } while (bio);
bddd87c7 1836 current->bio_list = NULL; /* deactivate */
d89d8796 1837}
1da177e4
LT
1838EXPORT_SYMBOL(generic_make_request);
1839
1840/**
710027a4 1841 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1842 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1843 * @bio: The &struct bio which describes the I/O
1844 *
1845 * submit_bio() is very similar in purpose to generic_make_request(), and
1846 * uses that function to do most of the work. Both are fairly rough
710027a4 1847 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1848 *
1849 */
1850void submit_bio(int rw, struct bio *bio)
1851{
22e2c507 1852 bio->bi_rw |= rw;
1da177e4 1853
bf2de6f5
JA
1854 /*
1855 * If it's a regular read/write or a barrier with data attached,
1856 * go through the normal accounting stuff before submission.
1857 */
e2a60da7 1858 if (bio_has_data(bio)) {
4363ac7c
MP
1859 unsigned int count;
1860
1861 if (unlikely(rw & REQ_WRITE_SAME))
1862 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1863 else
1864 count = bio_sectors(bio);
1865
bf2de6f5
JA
1866 if (rw & WRITE) {
1867 count_vm_events(PGPGOUT, count);
1868 } else {
1869 task_io_account_read(bio->bi_size);
1870 count_vm_events(PGPGIN, count);
1871 }
1872
1873 if (unlikely(block_dump)) {
1874 char b[BDEVNAME_SIZE];
8dcbdc74 1875 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1876 current->comm, task_pid_nr(current),
bf2de6f5
JA
1877 (rw & WRITE) ? "WRITE" : "READ",
1878 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1879 bdevname(bio->bi_bdev, b),
1880 count);
bf2de6f5 1881 }
1da177e4
LT
1882 }
1883
1884 generic_make_request(bio);
1885}
1da177e4
LT
1886EXPORT_SYMBOL(submit_bio);
1887
82124d60
KU
1888/**
1889 * blk_rq_check_limits - Helper function to check a request for the queue limit
1890 * @q: the queue
1891 * @rq: the request being checked
1892 *
1893 * Description:
1894 * @rq may have been made based on weaker limitations of upper-level queues
1895 * in request stacking drivers, and it may violate the limitation of @q.
1896 * Since the block layer and the underlying device driver trust @rq
1897 * after it is inserted to @q, it should be checked against @q before
1898 * the insertion using this generic function.
1899 *
1900 * This function should also be useful for request stacking drivers
eef35c2d 1901 * in some cases below, so export this function.
82124d60
KU
1902 * Request stacking drivers like request-based dm may change the queue
1903 * limits while requests are in the queue (e.g. dm's table swapping).
1904 * Such request stacking drivers should check those requests agaist
1905 * the new queue limits again when they dispatch those requests,
1906 * although such checkings are also done against the old queue limits
1907 * when submitting requests.
1908 */
1909int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1910{
e2a60da7 1911 if (!rq_mergeable(rq))
3383977f
S
1912 return 0;
1913
f31dc1cd 1914 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1915 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1916 return -EIO;
1917 }
1918
1919 /*
1920 * queue's settings related to segment counting like q->bounce_pfn
1921 * may differ from that of other stacking queues.
1922 * Recalculate it to check the request correctly on this queue's
1923 * limitation.
1924 */
1925 blk_recalc_rq_segments(rq);
8a78362c 1926 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1927 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1928 return -EIO;
1929 }
1930
1931 return 0;
1932}
1933EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1934
1935/**
1936 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1937 * @q: the queue to submit the request
1938 * @rq: the request being queued
1939 */
1940int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1941{
1942 unsigned long flags;
4853abaa 1943 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1944
1945 if (blk_rq_check_limits(q, rq))
1946 return -EIO;
1947
b2c9cd37
AM
1948 if (rq->rq_disk &&
1949 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1950 return -EIO;
82124d60
KU
1951
1952 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 1953 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
1954 spin_unlock_irqrestore(q->queue_lock, flags);
1955 return -ENODEV;
1956 }
82124d60
KU
1957
1958 /*
1959 * Submitting request must be dequeued before calling this function
1960 * because it will be linked to another request_queue
1961 */
1962 BUG_ON(blk_queued_rq(rq));
1963
4853abaa
JM
1964 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1965 where = ELEVATOR_INSERT_FLUSH;
1966
1967 add_acct_request(q, rq, where);
e67b77c7
JM
1968 if (where == ELEVATOR_INSERT_FLUSH)
1969 __blk_run_queue(q);
82124d60
KU
1970 spin_unlock_irqrestore(q->queue_lock, flags);
1971
1972 return 0;
1973}
1974EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1975
80a761fd
TH
1976/**
1977 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1978 * @rq: request to examine
1979 *
1980 * Description:
1981 * A request could be merge of IOs which require different failure
1982 * handling. This function determines the number of bytes which
1983 * can be failed from the beginning of the request without
1984 * crossing into area which need to be retried further.
1985 *
1986 * Return:
1987 * The number of bytes to fail.
1988 *
1989 * Context:
1990 * queue_lock must be held.
1991 */
1992unsigned int blk_rq_err_bytes(const struct request *rq)
1993{
1994 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1995 unsigned int bytes = 0;
1996 struct bio *bio;
1997
1998 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1999 return blk_rq_bytes(rq);
2000
2001 /*
2002 * Currently the only 'mixing' which can happen is between
2003 * different fastfail types. We can safely fail portions
2004 * which have all the failfast bits that the first one has -
2005 * the ones which are at least as eager to fail as the first
2006 * one.
2007 */
2008 for (bio = rq->bio; bio; bio = bio->bi_next) {
2009 if ((bio->bi_rw & ff) != ff)
2010 break;
2011 bytes += bio->bi_size;
2012 }
2013
2014 /* this could lead to infinite loop */
2015 BUG_ON(blk_rq_bytes(rq) && !bytes);
2016 return bytes;
2017}
2018EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2019
bc58ba94
JA
2020static void blk_account_io_completion(struct request *req, unsigned int bytes)
2021{
c2553b58 2022 if (blk_do_io_stat(req)) {
bc58ba94
JA
2023 const int rw = rq_data_dir(req);
2024 struct hd_struct *part;
2025 int cpu;
2026
2027 cpu = part_stat_lock();
09e099d4 2028 part = req->part;
bc58ba94
JA
2029 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2030 part_stat_unlock();
2031 }
2032}
2033
2034static void blk_account_io_done(struct request *req)
2035{
bc58ba94 2036 /*
dd4c133f
TH
2037 * Account IO completion. flush_rq isn't accounted as a
2038 * normal IO on queueing nor completion. Accounting the
2039 * containing request is enough.
bc58ba94 2040 */
414b4ff5 2041 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2042 unsigned long duration = jiffies - req->start_time;
2043 const int rw = rq_data_dir(req);
2044 struct hd_struct *part;
2045 int cpu;
2046
2047 cpu = part_stat_lock();
09e099d4 2048 part = req->part;
bc58ba94
JA
2049
2050 part_stat_inc(cpu, part, ios[rw]);
2051 part_stat_add(cpu, part, ticks[rw], duration);
2052 part_round_stats(cpu, part);
316d315b 2053 part_dec_in_flight(part, rw);
bc58ba94 2054
6c23a968 2055 hd_struct_put(part);
bc58ba94
JA
2056 part_stat_unlock();
2057 }
2058}
2059
3bcddeac 2060/**
9934c8c0
TH
2061 * blk_peek_request - peek at the top of a request queue
2062 * @q: request queue to peek at
2063 *
2064 * Description:
2065 * Return the request at the top of @q. The returned request
2066 * should be started using blk_start_request() before LLD starts
2067 * processing it.
2068 *
2069 * Return:
2070 * Pointer to the request at the top of @q if available. Null
2071 * otherwise.
2072 *
2073 * Context:
2074 * queue_lock must be held.
2075 */
2076struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2077{
2078 struct request *rq;
2079 int ret;
2080
2081 while ((rq = __elv_next_request(q)) != NULL) {
2082 if (!(rq->cmd_flags & REQ_STARTED)) {
2083 /*
2084 * This is the first time the device driver
2085 * sees this request (possibly after
2086 * requeueing). Notify IO scheduler.
2087 */
33659ebb 2088 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2089 elv_activate_rq(q, rq);
2090
2091 /*
2092 * just mark as started even if we don't start
2093 * it, a request that has been delayed should
2094 * not be passed by new incoming requests
2095 */
2096 rq->cmd_flags |= REQ_STARTED;
2097 trace_block_rq_issue(q, rq);
2098 }
2099
2100 if (!q->boundary_rq || q->boundary_rq == rq) {
2101 q->end_sector = rq_end_sector(rq);
2102 q->boundary_rq = NULL;
2103 }
2104
2105 if (rq->cmd_flags & REQ_DONTPREP)
2106 break;
2107
2e46e8b2 2108 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2109 /*
2110 * make sure space for the drain appears we
2111 * know we can do this because max_hw_segments
2112 * has been adjusted to be one fewer than the
2113 * device can handle
2114 */
2115 rq->nr_phys_segments++;
2116 }
2117
2118 if (!q->prep_rq_fn)
2119 break;
2120
2121 ret = q->prep_rq_fn(q, rq);
2122 if (ret == BLKPREP_OK) {
2123 break;
2124 } else if (ret == BLKPREP_DEFER) {
2125 /*
2126 * the request may have been (partially) prepped.
2127 * we need to keep this request in the front to
2128 * avoid resource deadlock. REQ_STARTED will
2129 * prevent other fs requests from passing this one.
2130 */
2e46e8b2 2131 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2132 !(rq->cmd_flags & REQ_DONTPREP)) {
2133 /*
2134 * remove the space for the drain we added
2135 * so that we don't add it again
2136 */
2137 --rq->nr_phys_segments;
2138 }
2139
2140 rq = NULL;
2141 break;
2142 } else if (ret == BLKPREP_KILL) {
2143 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2144 /*
2145 * Mark this request as started so we don't trigger
2146 * any debug logic in the end I/O path.
2147 */
2148 blk_start_request(rq);
40cbbb78 2149 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2150 } else {
2151 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2152 break;
2153 }
2154 }
2155
2156 return rq;
2157}
9934c8c0 2158EXPORT_SYMBOL(blk_peek_request);
158dbda0 2159
9934c8c0 2160void blk_dequeue_request(struct request *rq)
158dbda0 2161{
9934c8c0
TH
2162 struct request_queue *q = rq->q;
2163
158dbda0
TH
2164 BUG_ON(list_empty(&rq->queuelist));
2165 BUG_ON(ELV_ON_HASH(rq));
2166
2167 list_del_init(&rq->queuelist);
2168
2169 /*
2170 * the time frame between a request being removed from the lists
2171 * and to it is freed is accounted as io that is in progress at
2172 * the driver side.
2173 */
9195291e 2174 if (blk_account_rq(rq)) {
0a7ae2ff 2175 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2176 set_io_start_time_ns(rq);
2177 }
158dbda0
TH
2178}
2179
9934c8c0
TH
2180/**
2181 * blk_start_request - start request processing on the driver
2182 * @req: request to dequeue
2183 *
2184 * Description:
2185 * Dequeue @req and start timeout timer on it. This hands off the
2186 * request to the driver.
2187 *
2188 * Block internal functions which don't want to start timer should
2189 * call blk_dequeue_request().
2190 *
2191 * Context:
2192 * queue_lock must be held.
2193 */
2194void blk_start_request(struct request *req)
2195{
2196 blk_dequeue_request(req);
2197
2198 /*
5f49f631
TH
2199 * We are now handing the request to the hardware, initialize
2200 * resid_len to full count and add the timeout handler.
9934c8c0 2201 */
5f49f631 2202 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2203 if (unlikely(blk_bidi_rq(req)))
2204 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2205
9934c8c0
TH
2206 blk_add_timer(req);
2207}
2208EXPORT_SYMBOL(blk_start_request);
2209
2210/**
2211 * blk_fetch_request - fetch a request from a request queue
2212 * @q: request queue to fetch a request from
2213 *
2214 * Description:
2215 * Return the request at the top of @q. The request is started on
2216 * return and LLD can start processing it immediately.
2217 *
2218 * Return:
2219 * Pointer to the request at the top of @q if available. Null
2220 * otherwise.
2221 *
2222 * Context:
2223 * queue_lock must be held.
2224 */
2225struct request *blk_fetch_request(struct request_queue *q)
2226{
2227 struct request *rq;
2228
2229 rq = blk_peek_request(q);
2230 if (rq)
2231 blk_start_request(rq);
2232 return rq;
2233}
2234EXPORT_SYMBOL(blk_fetch_request);
2235
3bcddeac 2236/**
2e60e022 2237 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2238 * @req: the request being processed
710027a4 2239 * @error: %0 for success, < %0 for error
8ebf9756 2240 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2241 *
2242 * Description:
8ebf9756
RD
2243 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2244 * the request structure even if @req doesn't have leftover.
2245 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2246 *
2247 * This special helper function is only for request stacking drivers
2248 * (e.g. request-based dm) so that they can handle partial completion.
2249 * Actual device drivers should use blk_end_request instead.
2250 *
2251 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2252 * %false return from this function.
3bcddeac
KU
2253 *
2254 * Return:
2e60e022
TH
2255 * %false - this request doesn't have any more data
2256 * %true - this request has more data
3bcddeac 2257 **/
2e60e022 2258bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2259{
5450d3e1 2260 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2261 struct bio *bio;
2262
2e60e022
TH
2263 if (!req->bio)
2264 return false;
2265
5f3ea37c 2266 trace_block_rq_complete(req->q, req);
2056a782 2267
1da177e4 2268 /*
6f41469c
TH
2269 * For fs requests, rq is just carrier of independent bio's
2270 * and each partial completion should be handled separately.
2271 * Reset per-request error on each partial completion.
2272 *
2273 * TODO: tj: This is too subtle. It would be better to let
2274 * low level drivers do what they see fit.
1da177e4 2275 */
33659ebb 2276 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2277 req->errors = 0;
2278
33659ebb
CH
2279 if (error && req->cmd_type == REQ_TYPE_FS &&
2280 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2281 char *error_type;
2282
2283 switch (error) {
2284 case -ENOLINK:
2285 error_type = "recoverable transport";
2286 break;
2287 case -EREMOTEIO:
2288 error_type = "critical target";
2289 break;
2290 case -EBADE:
2291 error_type = "critical nexus";
2292 break;
2293 case -EIO:
2294 default:
2295 error_type = "I/O";
2296 break;
2297 }
37d7b34f
YZ
2298 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2299 error_type, req->rq_disk ?
2300 req->rq_disk->disk_name : "?",
2301 (unsigned long long)blk_rq_pos(req));
2302
1da177e4
LT
2303 }
2304
bc58ba94 2305 blk_account_io_completion(req, nr_bytes);
d72d904a 2306
1da177e4
LT
2307 total_bytes = bio_nbytes = 0;
2308 while ((bio = req->bio) != NULL) {
2309 int nbytes;
2310
2311 if (nr_bytes >= bio->bi_size) {
2312 req->bio = bio->bi_next;
2313 nbytes = bio->bi_size;
5bb23a68 2314 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2315 next_idx = 0;
2316 bio_nbytes = 0;
2317 } else {
2318 int idx = bio->bi_idx + next_idx;
2319
af498d7f 2320 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2321 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2322 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2323 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2324 break;
2325 }
2326
2327 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2328 BIO_BUG_ON(nbytes > bio->bi_size);
2329
2330 /*
2331 * not a complete bvec done
2332 */
2333 if (unlikely(nbytes > nr_bytes)) {
2334 bio_nbytes += nr_bytes;
2335 total_bytes += nr_bytes;
2336 break;
2337 }
2338
2339 /*
2340 * advance to the next vector
2341 */
2342 next_idx++;
2343 bio_nbytes += nbytes;
2344 }
2345
2346 total_bytes += nbytes;
2347 nr_bytes -= nbytes;
2348
6728cb0e
JA
2349 bio = req->bio;
2350 if (bio) {
1da177e4
LT
2351 /*
2352 * end more in this run, or just return 'not-done'
2353 */
2354 if (unlikely(nr_bytes <= 0))
2355 break;
2356 }
2357 }
2358
2359 /*
2360 * completely done
2361 */
2e60e022
TH
2362 if (!req->bio) {
2363 /*
2364 * Reset counters so that the request stacking driver
2365 * can find how many bytes remain in the request
2366 * later.
2367 */
a2dec7b3 2368 req->__data_len = 0;
2e60e022
TH
2369 return false;
2370 }
1da177e4
LT
2371
2372 /*
2373 * if the request wasn't completed, update state
2374 */
2375 if (bio_nbytes) {
5bb23a68 2376 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2377 bio->bi_idx += next_idx;
2378 bio_iovec(bio)->bv_offset += nr_bytes;
2379 bio_iovec(bio)->bv_len -= nr_bytes;
2380 }
2381
a2dec7b3 2382 req->__data_len -= total_bytes;
2e46e8b2
TH
2383 req->buffer = bio_data(req->bio);
2384
2385 /* update sector only for requests with clear definition of sector */
e2a60da7 2386 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2387 req->__sector += total_bytes >> 9;
2e46e8b2 2388
80a761fd
TH
2389 /* mixed attributes always follow the first bio */
2390 if (req->cmd_flags & REQ_MIXED_MERGE) {
2391 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2392 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2393 }
2394
2e46e8b2
TH
2395 /*
2396 * If total number of sectors is less than the first segment
2397 * size, something has gone terribly wrong.
2398 */
2399 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2400 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2401 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2402 }
2403
2404 /* recalculate the number of segments */
1da177e4 2405 blk_recalc_rq_segments(req);
2e46e8b2 2406
2e60e022 2407 return true;
1da177e4 2408}
2e60e022 2409EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2410
2e60e022
TH
2411static bool blk_update_bidi_request(struct request *rq, int error,
2412 unsigned int nr_bytes,
2413 unsigned int bidi_bytes)
5efccd17 2414{
2e60e022
TH
2415 if (blk_update_request(rq, error, nr_bytes))
2416 return true;
5efccd17 2417
2e60e022
TH
2418 /* Bidi request must be completed as a whole */
2419 if (unlikely(blk_bidi_rq(rq)) &&
2420 blk_update_request(rq->next_rq, error, bidi_bytes))
2421 return true;
5efccd17 2422
e2e1a148
JA
2423 if (blk_queue_add_random(rq->q))
2424 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2425
2426 return false;
1da177e4
LT
2427}
2428
28018c24
JB
2429/**
2430 * blk_unprep_request - unprepare a request
2431 * @req: the request
2432 *
2433 * This function makes a request ready for complete resubmission (or
2434 * completion). It happens only after all error handling is complete,
2435 * so represents the appropriate moment to deallocate any resources
2436 * that were allocated to the request in the prep_rq_fn. The queue
2437 * lock is held when calling this.
2438 */
2439void blk_unprep_request(struct request *req)
2440{
2441 struct request_queue *q = req->q;
2442
2443 req->cmd_flags &= ~REQ_DONTPREP;
2444 if (q->unprep_rq_fn)
2445 q->unprep_rq_fn(q, req);
2446}
2447EXPORT_SYMBOL_GPL(blk_unprep_request);
2448
1da177e4
LT
2449/*
2450 * queue lock must be held
2451 */
2e60e022 2452static void blk_finish_request(struct request *req, int error)
1da177e4 2453{
b8286239
KU
2454 if (blk_rq_tagged(req))
2455 blk_queue_end_tag(req->q, req);
2456
ba396a6c 2457 BUG_ON(blk_queued_rq(req));
1da177e4 2458
33659ebb 2459 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2460 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2461
e78042e5
MA
2462 blk_delete_timer(req);
2463
28018c24
JB
2464 if (req->cmd_flags & REQ_DONTPREP)
2465 blk_unprep_request(req);
2466
2467
bc58ba94 2468 blk_account_io_done(req);
b8286239 2469
1da177e4 2470 if (req->end_io)
8ffdc655 2471 req->end_io(req, error);
b8286239
KU
2472 else {
2473 if (blk_bidi_rq(req))
2474 __blk_put_request(req->next_rq->q, req->next_rq);
2475
1da177e4 2476 __blk_put_request(req->q, req);
b8286239 2477 }
1da177e4
LT
2478}
2479
3b11313a 2480/**
2e60e022
TH
2481 * blk_end_bidi_request - Complete a bidi request
2482 * @rq: the request to complete
2483 * @error: %0 for success, < %0 for error
2484 * @nr_bytes: number of bytes to complete @rq
2485 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2486 *
2487 * Description:
e3a04fe3 2488 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2489 * Drivers that supports bidi can safely call this member for any
2490 * type of request, bidi or uni. In the later case @bidi_bytes is
2491 * just ignored.
336cdb40
KU
2492 *
2493 * Return:
2e60e022
TH
2494 * %false - we are done with this request
2495 * %true - still buffers pending for this request
a0cd1285 2496 **/
b1f74493 2497static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2498 unsigned int nr_bytes, unsigned int bidi_bytes)
2499{
336cdb40 2500 struct request_queue *q = rq->q;
2e60e022 2501 unsigned long flags;
32fab448 2502
2e60e022
TH
2503 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2504 return true;
32fab448 2505
336cdb40 2506 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2507 blk_finish_request(rq, error);
336cdb40
KU
2508 spin_unlock_irqrestore(q->queue_lock, flags);
2509
2e60e022 2510 return false;
32fab448
KU
2511}
2512
336cdb40 2513/**
2e60e022
TH
2514 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2515 * @rq: the request to complete
710027a4 2516 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2517 * @nr_bytes: number of bytes to complete @rq
2518 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2519 *
2520 * Description:
2e60e022
TH
2521 * Identical to blk_end_bidi_request() except that queue lock is
2522 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2523 *
2524 * Return:
2e60e022
TH
2525 * %false - we are done with this request
2526 * %true - still buffers pending for this request
336cdb40 2527 **/
4853abaa 2528bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2529 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2530{
2e60e022
TH
2531 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2532 return true;
336cdb40 2533
2e60e022 2534 blk_finish_request(rq, error);
336cdb40 2535
2e60e022 2536 return false;
336cdb40 2537}
e19a3ab0
KU
2538
2539/**
2540 * blk_end_request - Helper function for drivers to complete the request.
2541 * @rq: the request being processed
710027a4 2542 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2543 * @nr_bytes: number of bytes to complete
2544 *
2545 * Description:
2546 * Ends I/O on a number of bytes attached to @rq.
2547 * If @rq has leftover, sets it up for the next range of segments.
2548 *
2549 * Return:
b1f74493
FT
2550 * %false - we are done with this request
2551 * %true - still buffers pending for this request
e19a3ab0 2552 **/
b1f74493 2553bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2554{
b1f74493 2555 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2556}
56ad1740 2557EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2558
2559/**
b1f74493
FT
2560 * blk_end_request_all - Helper function for drives to finish the request.
2561 * @rq: the request to finish
8ebf9756 2562 * @error: %0 for success, < %0 for error
336cdb40
KU
2563 *
2564 * Description:
b1f74493
FT
2565 * Completely finish @rq.
2566 */
2567void blk_end_request_all(struct request *rq, int error)
336cdb40 2568{
b1f74493
FT
2569 bool pending;
2570 unsigned int bidi_bytes = 0;
336cdb40 2571
b1f74493
FT
2572 if (unlikely(blk_bidi_rq(rq)))
2573 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2574
b1f74493
FT
2575 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2576 BUG_ON(pending);
2577}
56ad1740 2578EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2579
b1f74493
FT
2580/**
2581 * blk_end_request_cur - Helper function to finish the current request chunk.
2582 * @rq: the request to finish the current chunk for
8ebf9756 2583 * @error: %0 for success, < %0 for error
b1f74493
FT
2584 *
2585 * Description:
2586 * Complete the current consecutively mapped chunk from @rq.
2587 *
2588 * Return:
2589 * %false - we are done with this request
2590 * %true - still buffers pending for this request
2591 */
2592bool blk_end_request_cur(struct request *rq, int error)
2593{
2594 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2595}
56ad1740 2596EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2597
80a761fd
TH
2598/**
2599 * blk_end_request_err - Finish a request till the next failure boundary.
2600 * @rq: the request to finish till the next failure boundary for
2601 * @error: must be negative errno
2602 *
2603 * Description:
2604 * Complete @rq till the next failure boundary.
2605 *
2606 * Return:
2607 * %false - we are done with this request
2608 * %true - still buffers pending for this request
2609 */
2610bool blk_end_request_err(struct request *rq, int error)
2611{
2612 WARN_ON(error >= 0);
2613 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2614}
2615EXPORT_SYMBOL_GPL(blk_end_request_err);
2616
e3a04fe3 2617/**
b1f74493
FT
2618 * __blk_end_request - Helper function for drivers to complete the request.
2619 * @rq: the request being processed
2620 * @error: %0 for success, < %0 for error
2621 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2622 *
2623 * Description:
b1f74493 2624 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2625 *
2626 * Return:
b1f74493
FT
2627 * %false - we are done with this request
2628 * %true - still buffers pending for this request
e3a04fe3 2629 **/
b1f74493 2630bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2631{
b1f74493 2632 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2633}
56ad1740 2634EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2635
32fab448 2636/**
b1f74493
FT
2637 * __blk_end_request_all - Helper function for drives to finish the request.
2638 * @rq: the request to finish
8ebf9756 2639 * @error: %0 for success, < %0 for error
32fab448
KU
2640 *
2641 * Description:
b1f74493 2642 * Completely finish @rq. Must be called with queue lock held.
32fab448 2643 */
b1f74493 2644void __blk_end_request_all(struct request *rq, int error)
32fab448 2645{
b1f74493
FT
2646 bool pending;
2647 unsigned int bidi_bytes = 0;
2648
2649 if (unlikely(blk_bidi_rq(rq)))
2650 bidi_bytes = blk_rq_bytes(rq->next_rq);
2651
2652 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2653 BUG_ON(pending);
32fab448 2654}
56ad1740 2655EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2656
e19a3ab0 2657/**
b1f74493
FT
2658 * __blk_end_request_cur - Helper function to finish the current request chunk.
2659 * @rq: the request to finish the current chunk for
8ebf9756 2660 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2661 *
2662 * Description:
b1f74493
FT
2663 * Complete the current consecutively mapped chunk from @rq. Must
2664 * be called with queue lock held.
e19a3ab0
KU
2665 *
2666 * Return:
b1f74493
FT
2667 * %false - we are done with this request
2668 * %true - still buffers pending for this request
2669 */
2670bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2671{
b1f74493 2672 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2673}
56ad1740 2674EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2675
80a761fd
TH
2676/**
2677 * __blk_end_request_err - Finish a request till the next failure boundary.
2678 * @rq: the request to finish till the next failure boundary for
2679 * @error: must be negative errno
2680 *
2681 * Description:
2682 * Complete @rq till the next failure boundary. Must be called
2683 * with queue lock held.
2684 *
2685 * Return:
2686 * %false - we are done with this request
2687 * %true - still buffers pending for this request
2688 */
2689bool __blk_end_request_err(struct request *rq, int error)
2690{
2691 WARN_ON(error >= 0);
2692 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2693}
2694EXPORT_SYMBOL_GPL(__blk_end_request_err);
2695
86db1e29
JA
2696void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2697 struct bio *bio)
1da177e4 2698{
a82afdfc 2699 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2700 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2701
fb2dce86
DW
2702 if (bio_has_data(bio)) {
2703 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2704 rq->buffer = bio_data(bio);
2705 }
a2dec7b3 2706 rq->__data_len = bio->bi_size;
1da177e4 2707 rq->bio = rq->biotail = bio;
1da177e4 2708
66846572
N
2709 if (bio->bi_bdev)
2710 rq->rq_disk = bio->bi_bdev->bd_disk;
2711}
1da177e4 2712
2d4dc890
IL
2713#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2714/**
2715 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2716 * @rq: the request to be flushed
2717 *
2718 * Description:
2719 * Flush all pages in @rq.
2720 */
2721void rq_flush_dcache_pages(struct request *rq)
2722{
2723 struct req_iterator iter;
2724 struct bio_vec *bvec;
2725
2726 rq_for_each_segment(bvec, rq, iter)
2727 flush_dcache_page(bvec->bv_page);
2728}
2729EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2730#endif
2731
ef9e3fac
KU
2732/**
2733 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2734 * @q : the queue of the device being checked
2735 *
2736 * Description:
2737 * Check if underlying low-level drivers of a device are busy.
2738 * If the drivers want to export their busy state, they must set own
2739 * exporting function using blk_queue_lld_busy() first.
2740 *
2741 * Basically, this function is used only by request stacking drivers
2742 * to stop dispatching requests to underlying devices when underlying
2743 * devices are busy. This behavior helps more I/O merging on the queue
2744 * of the request stacking driver and prevents I/O throughput regression
2745 * on burst I/O load.
2746 *
2747 * Return:
2748 * 0 - Not busy (The request stacking driver should dispatch request)
2749 * 1 - Busy (The request stacking driver should stop dispatching request)
2750 */
2751int blk_lld_busy(struct request_queue *q)
2752{
2753 if (q->lld_busy_fn)
2754 return q->lld_busy_fn(q);
2755
2756 return 0;
2757}
2758EXPORT_SYMBOL_GPL(blk_lld_busy);
2759
b0fd271d
KU
2760/**
2761 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2762 * @rq: the clone request to be cleaned up
2763 *
2764 * Description:
2765 * Free all bios in @rq for a cloned request.
2766 */
2767void blk_rq_unprep_clone(struct request *rq)
2768{
2769 struct bio *bio;
2770
2771 while ((bio = rq->bio) != NULL) {
2772 rq->bio = bio->bi_next;
2773
2774 bio_put(bio);
2775 }
2776}
2777EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2778
2779/*
2780 * Copy attributes of the original request to the clone request.
2781 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2782 */
2783static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2784{
2785 dst->cpu = src->cpu;
3a2edd0d 2786 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2787 dst->cmd_type = src->cmd_type;
2788 dst->__sector = blk_rq_pos(src);
2789 dst->__data_len = blk_rq_bytes(src);
2790 dst->nr_phys_segments = src->nr_phys_segments;
2791 dst->ioprio = src->ioprio;
2792 dst->extra_len = src->extra_len;
2793}
2794
2795/**
2796 * blk_rq_prep_clone - Helper function to setup clone request
2797 * @rq: the request to be setup
2798 * @rq_src: original request to be cloned
2799 * @bs: bio_set that bios for clone are allocated from
2800 * @gfp_mask: memory allocation mask for bio
2801 * @bio_ctr: setup function to be called for each clone bio.
2802 * Returns %0 for success, non %0 for failure.
2803 * @data: private data to be passed to @bio_ctr
2804 *
2805 * Description:
2806 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2807 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2808 * are not copied, and copying such parts is the caller's responsibility.
2809 * Also, pages which the original bios are pointing to are not copied
2810 * and the cloned bios just point same pages.
2811 * So cloned bios must be completed before original bios, which means
2812 * the caller must complete @rq before @rq_src.
2813 */
2814int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2815 struct bio_set *bs, gfp_t gfp_mask,
2816 int (*bio_ctr)(struct bio *, struct bio *, void *),
2817 void *data)
2818{
2819 struct bio *bio, *bio_src;
2820
2821 if (!bs)
2822 bs = fs_bio_set;
2823
2824 blk_rq_init(NULL, rq);
2825
2826 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2827 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2828 if (!bio)
2829 goto free_and_out;
2830
b0fd271d
KU
2831 if (bio_ctr && bio_ctr(bio, bio_src, data))
2832 goto free_and_out;
2833
2834 if (rq->bio) {
2835 rq->biotail->bi_next = bio;
2836 rq->biotail = bio;
2837 } else
2838 rq->bio = rq->biotail = bio;
2839 }
2840
2841 __blk_rq_prep_clone(rq, rq_src);
2842
2843 return 0;
2844
2845free_and_out:
2846 if (bio)
4254bba1 2847 bio_put(bio);
b0fd271d
KU
2848 blk_rq_unprep_clone(rq);
2849
2850 return -ENOMEM;
2851}
2852EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2853
18887ad9 2854int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2855{
2856 return queue_work(kblockd_workqueue, work);
2857}
1da177e4
LT
2858EXPORT_SYMBOL(kblockd_schedule_work);
2859
e43473b7
VG
2860int kblockd_schedule_delayed_work(struct request_queue *q,
2861 struct delayed_work *dwork, unsigned long delay)
2862{
2863 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2864}
2865EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2866
73c10101
JA
2867#define PLUG_MAGIC 0x91827364
2868
75df7136
SJ
2869/**
2870 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2871 * @plug: The &struct blk_plug that needs to be initialized
2872 *
2873 * Description:
2874 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2875 * pending I/O should the task end up blocking between blk_start_plug() and
2876 * blk_finish_plug(). This is important from a performance perspective, but
2877 * also ensures that we don't deadlock. For instance, if the task is blocking
2878 * for a memory allocation, memory reclaim could end up wanting to free a
2879 * page belonging to that request that is currently residing in our private
2880 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2881 * this kind of deadlock.
2882 */
73c10101
JA
2883void blk_start_plug(struct blk_plug *plug)
2884{
2885 struct task_struct *tsk = current;
2886
2887 plug->magic = PLUG_MAGIC;
2888 INIT_LIST_HEAD(&plug->list);
048c9374 2889 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2890 plug->should_sort = 0;
2891
2892 /*
2893 * If this is a nested plug, don't actually assign it. It will be
2894 * flushed on its own.
2895 */
2896 if (!tsk->plug) {
2897 /*
2898 * Store ordering should not be needed here, since a potential
2899 * preempt will imply a full memory barrier
2900 */
2901 tsk->plug = plug;
2902 }
2903}
2904EXPORT_SYMBOL(blk_start_plug);
2905
2906static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2907{
2908 struct request *rqa = container_of(a, struct request, queuelist);
2909 struct request *rqb = container_of(b, struct request, queuelist);
2910
975927b9
JM
2911 return !(rqa->q < rqb->q ||
2912 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
2913}
2914
49cac01e
JA
2915/*
2916 * If 'from_schedule' is true, then postpone the dispatch of requests
2917 * until a safe kblockd context. We due this to avoid accidental big
2918 * additional stack usage in driver dispatch, in places where the originally
2919 * plugger did not intend it.
2920 */
f6603783 2921static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2922 bool from_schedule)
99e22598 2923 __releases(q->queue_lock)
94b5eb28 2924{
49cac01e 2925 trace_block_unplug(q, depth, !from_schedule);
99e22598 2926
70460571 2927 if (from_schedule)
24ecfbe2 2928 blk_run_queue_async(q);
70460571 2929 else
24ecfbe2 2930 __blk_run_queue(q);
70460571 2931 spin_unlock(q->queue_lock);
94b5eb28
JA
2932}
2933
74018dc3 2934static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
2935{
2936 LIST_HEAD(callbacks);
2937
2a7d5559
SL
2938 while (!list_empty(&plug->cb_list)) {
2939 list_splice_init(&plug->cb_list, &callbacks);
048c9374 2940
2a7d5559
SL
2941 while (!list_empty(&callbacks)) {
2942 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
2943 struct blk_plug_cb,
2944 list);
2a7d5559 2945 list_del(&cb->list);
74018dc3 2946 cb->callback(cb, from_schedule);
2a7d5559 2947 }
048c9374
N
2948 }
2949}
2950
9cbb1750
N
2951struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2952 int size)
2953{
2954 struct blk_plug *plug = current->plug;
2955 struct blk_plug_cb *cb;
2956
2957 if (!plug)
2958 return NULL;
2959
2960 list_for_each_entry(cb, &plug->cb_list, list)
2961 if (cb->callback == unplug && cb->data == data)
2962 return cb;
2963
2964 /* Not currently on the callback list */
2965 BUG_ON(size < sizeof(*cb));
2966 cb = kzalloc(size, GFP_ATOMIC);
2967 if (cb) {
2968 cb->data = data;
2969 cb->callback = unplug;
2970 list_add(&cb->list, &plug->cb_list);
2971 }
2972 return cb;
2973}
2974EXPORT_SYMBOL(blk_check_plugged);
2975
49cac01e 2976void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2977{
2978 struct request_queue *q;
2979 unsigned long flags;
2980 struct request *rq;
109b8129 2981 LIST_HEAD(list);
94b5eb28 2982 unsigned int depth;
73c10101
JA
2983
2984 BUG_ON(plug->magic != PLUG_MAGIC);
2985
74018dc3 2986 flush_plug_callbacks(plug, from_schedule);
73c10101
JA
2987 if (list_empty(&plug->list))
2988 return;
2989
109b8129
N
2990 list_splice_init(&plug->list, &list);
2991
2992 if (plug->should_sort) {
2993 list_sort(NULL, &list, plug_rq_cmp);
2994 plug->should_sort = 0;
2995 }
73c10101
JA
2996
2997 q = NULL;
94b5eb28 2998 depth = 0;
18811272
JA
2999
3000 /*
3001 * Save and disable interrupts here, to avoid doing it for every
3002 * queue lock we have to take.
3003 */
73c10101 3004 local_irq_save(flags);
109b8129
N
3005 while (!list_empty(&list)) {
3006 rq = list_entry_rq(list.next);
73c10101 3007 list_del_init(&rq->queuelist);
73c10101
JA
3008 BUG_ON(!rq->q);
3009 if (rq->q != q) {
99e22598
JA
3010 /*
3011 * This drops the queue lock
3012 */
3013 if (q)
49cac01e 3014 queue_unplugged(q, depth, from_schedule);
73c10101 3015 q = rq->q;
94b5eb28 3016 depth = 0;
73c10101
JA
3017 spin_lock(q->queue_lock);
3018 }
8ba61435
TH
3019
3020 /*
3021 * Short-circuit if @q is dead
3022 */
3f3299d5 3023 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3024 __blk_end_request_all(rq, -ENODEV);
3025 continue;
3026 }
3027
73c10101
JA
3028 /*
3029 * rq is already accounted, so use raw insert
3030 */
401a18e9
JA
3031 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3032 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3033 else
3034 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3035
3036 depth++;
73c10101
JA
3037 }
3038
99e22598
JA
3039 /*
3040 * This drops the queue lock
3041 */
3042 if (q)
49cac01e 3043 queue_unplugged(q, depth, from_schedule);
73c10101 3044
73c10101
JA
3045 local_irq_restore(flags);
3046}
73c10101
JA
3047
3048void blk_finish_plug(struct blk_plug *plug)
3049{
f6603783 3050 blk_flush_plug_list(plug, false);
73c10101 3051
88b996cd
CH
3052 if (plug == current->plug)
3053 current->plug = NULL;
73c10101 3054}
88b996cd 3055EXPORT_SYMBOL(blk_finish_plug);
73c10101 3056
1da177e4
LT
3057int __init blk_dev_init(void)
3058{
9eb55b03
NK
3059 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3060 sizeof(((struct request *)0)->cmd_flags));
3061
89b90be2
TH
3062 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3063 kblockd_workqueue = alloc_workqueue("kblockd",
3064 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3065 if (!kblockd_workqueue)
3066 panic("Failed to create kblockd\n");
3067
3068 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3069 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3070
8324aa91 3071 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3072 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3073
d38ecf93 3074 return 0;
1da177e4 3075}