]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/blk-core.c
futex: revert back to the explicit waiter counting code
[mirror_ubuntu-zesty-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
55782138
LZ
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/block.h>
1da177e4 38
8324aa91 39#include "blk.h"
5efd6113 40#include "blk-cgroup.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
cbae8d45 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 47
a73f730d
TH
48DEFINE_IDA(blk_queue_ida);
49
1da177e4
LT
50/*
51 * For the allocated request tables
52 */
320ae51f 53struct kmem_cache *request_cachep = NULL;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
6728cb0e 58struct kmem_cache *blk_requestq_cachep;
1da177e4 59
1da177e4
LT
60/*
61 * Controlling structure to kblockd
62 */
ff856bad 63static struct workqueue_struct *kblockd_workqueue;
1da177e4 64
8324aa91 65void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
66{
67 int nr;
68
69 nr = q->nr_requests - (q->nr_requests / 8) + 1;
70 if (nr > q->nr_requests)
71 nr = q->nr_requests;
72 q->nr_congestion_on = nr;
73
74 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
75 if (nr < 1)
76 nr = 1;
77 q->nr_congestion_off = nr;
78}
79
1da177e4
LT
80/**
81 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
82 * @bdev: device
83 *
84 * Locates the passed device's request queue and returns the address of its
85 * backing_dev_info
86 *
87 * Will return NULL if the request queue cannot be located.
88 */
89struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90{
91 struct backing_dev_info *ret = NULL;
165125e1 92 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
93
94 if (q)
95 ret = &q->backing_dev_info;
96 return ret;
97}
1da177e4
LT
98EXPORT_SYMBOL(blk_get_backing_dev_info);
99
2a4aa30c 100void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 101{
1afb20f3
FT
102 memset(rq, 0, sizeof(*rq));
103
1da177e4 104 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 105 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 106 rq->cpu = -1;
63a71386 107 rq->q = q;
a2dec7b3 108 rq->__sector = (sector_t) -1;
2e662b65
JA
109 INIT_HLIST_NODE(&rq->hash);
110 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 111 rq->cmd = rq->__cmd;
e2494e1b 112 rq->cmd_len = BLK_MAX_CDB;
63a71386 113 rq->tag = -1;
b243ddcb 114 rq->start_time = jiffies;
9195291e 115 set_start_time_ns(rq);
09e099d4 116 rq->part = NULL;
1da177e4 117}
2a4aa30c 118EXPORT_SYMBOL(blk_rq_init);
1da177e4 119
5bb23a68
N
120static void req_bio_endio(struct request *rq, struct bio *bio,
121 unsigned int nbytes, int error)
1da177e4 122{
143a87f4
TH
123 if (error)
124 clear_bit(BIO_UPTODATE, &bio->bi_flags);
125 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
126 error = -EIO;
797e7dbb 127
143a87f4
TH
128 if (unlikely(rq->cmd_flags & REQ_QUIET))
129 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 130
f79ea416 131 bio_advance(bio, nbytes);
7ba1ba12 132
143a87f4 133 /* don't actually finish bio if it's part of flush sequence */
4f024f37 134 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
143a87f4 135 bio_endio(bio, error);
1da177e4 136}
1da177e4 137
1da177e4
LT
138void blk_dump_rq_flags(struct request *rq, char *msg)
139{
140 int bit;
141
5953316d 142 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 143 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 144 (unsigned long long) rq->cmd_flags);
1da177e4 145
83096ebf
TH
146 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
147 (unsigned long long)blk_rq_pos(rq),
148 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 149 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 150 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 151
33659ebb 152 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 153 printk(KERN_INFO " cdb: ");
d34c87e4 154 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
155 printk("%02x ", rq->cmd[bit]);
156 printk("\n");
157 }
158}
1da177e4
LT
159EXPORT_SYMBOL(blk_dump_rq_flags);
160
3cca6dc1 161static void blk_delay_work(struct work_struct *work)
1da177e4 162{
3cca6dc1 163 struct request_queue *q;
1da177e4 164
3cca6dc1
JA
165 q = container_of(work, struct request_queue, delay_work.work);
166 spin_lock_irq(q->queue_lock);
24ecfbe2 167 __blk_run_queue(q);
3cca6dc1 168 spin_unlock_irq(q->queue_lock);
1da177e4 169}
1da177e4
LT
170
171/**
3cca6dc1
JA
172 * blk_delay_queue - restart queueing after defined interval
173 * @q: The &struct request_queue in question
174 * @msecs: Delay in msecs
1da177e4
LT
175 *
176 * Description:
3cca6dc1
JA
177 * Sometimes queueing needs to be postponed for a little while, to allow
178 * resources to come back. This function will make sure that queueing is
70460571 179 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
180 */
181void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 182{
70460571
BVA
183 if (likely(!blk_queue_dead(q)))
184 queue_delayed_work(kblockd_workqueue, &q->delay_work,
185 msecs_to_jiffies(msecs));
2ad8b1ef 186}
3cca6dc1 187EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 188
1da177e4
LT
189/**
190 * blk_start_queue - restart a previously stopped queue
165125e1 191 * @q: The &struct request_queue in question
1da177e4
LT
192 *
193 * Description:
194 * blk_start_queue() will clear the stop flag on the queue, and call
195 * the request_fn for the queue if it was in a stopped state when
196 * entered. Also see blk_stop_queue(). Queue lock must be held.
197 **/
165125e1 198void blk_start_queue(struct request_queue *q)
1da177e4 199{
a038e253
PBG
200 WARN_ON(!irqs_disabled());
201
75ad23bc 202 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 203 __blk_run_queue(q);
1da177e4 204}
1da177e4
LT
205EXPORT_SYMBOL(blk_start_queue);
206
207/**
208 * blk_stop_queue - stop a queue
165125e1 209 * @q: The &struct request_queue in question
1da177e4
LT
210 *
211 * Description:
212 * The Linux block layer assumes that a block driver will consume all
213 * entries on the request queue when the request_fn strategy is called.
214 * Often this will not happen, because of hardware limitations (queue
215 * depth settings). If a device driver gets a 'queue full' response,
216 * or if it simply chooses not to queue more I/O at one point, it can
217 * call this function to prevent the request_fn from being called until
218 * the driver has signalled it's ready to go again. This happens by calling
219 * blk_start_queue() to restart queue operations. Queue lock must be held.
220 **/
165125e1 221void blk_stop_queue(struct request_queue *q)
1da177e4 222{
136b5721 223 cancel_delayed_work(&q->delay_work);
75ad23bc 224 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
225}
226EXPORT_SYMBOL(blk_stop_queue);
227
228/**
229 * blk_sync_queue - cancel any pending callbacks on a queue
230 * @q: the queue
231 *
232 * Description:
233 * The block layer may perform asynchronous callback activity
234 * on a queue, such as calling the unplug function after a timeout.
235 * A block device may call blk_sync_queue to ensure that any
236 * such activity is cancelled, thus allowing it to release resources
59c51591 237 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
238 * that its ->make_request_fn will not re-add plugging prior to calling
239 * this function.
240 *
da527770
VG
241 * This function does not cancel any asynchronous activity arising
242 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 243 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 244 *
1da177e4
LT
245 */
246void blk_sync_queue(struct request_queue *q)
247{
70ed28b9 248 del_timer_sync(&q->timeout);
f04c1fe7
ML
249
250 if (q->mq_ops) {
251 struct blk_mq_hw_ctx *hctx;
252 int i;
253
254 queue_for_each_hw_ctx(q, hctx, i)
255 cancel_delayed_work_sync(&hctx->delayed_work);
256 } else {
257 cancel_delayed_work_sync(&q->delay_work);
258 }
1da177e4
LT
259}
260EXPORT_SYMBOL(blk_sync_queue);
261
c246e80d
BVA
262/**
263 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
264 * @q: The queue to run
265 *
266 * Description:
267 * Invoke request handling on a queue if there are any pending requests.
268 * May be used to restart request handling after a request has completed.
269 * This variant runs the queue whether or not the queue has been
270 * stopped. Must be called with the queue lock held and interrupts
271 * disabled. See also @blk_run_queue.
272 */
273inline void __blk_run_queue_uncond(struct request_queue *q)
274{
275 if (unlikely(blk_queue_dead(q)))
276 return;
277
24faf6f6
BVA
278 /*
279 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
280 * the queue lock internally. As a result multiple threads may be
281 * running such a request function concurrently. Keep track of the
282 * number of active request_fn invocations such that blk_drain_queue()
283 * can wait until all these request_fn calls have finished.
284 */
285 q->request_fn_active++;
c246e80d 286 q->request_fn(q);
24faf6f6 287 q->request_fn_active--;
c246e80d
BVA
288}
289
1da177e4 290/**
80a4b58e 291 * __blk_run_queue - run a single device queue
1da177e4 292 * @q: The queue to run
80a4b58e
JA
293 *
294 * Description:
295 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 296 * held and interrupts disabled.
1da177e4 297 */
24ecfbe2 298void __blk_run_queue(struct request_queue *q)
1da177e4 299{
a538cd03
TH
300 if (unlikely(blk_queue_stopped(q)))
301 return;
302
c246e80d 303 __blk_run_queue_uncond(q);
75ad23bc
NP
304}
305EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 306
24ecfbe2
CH
307/**
308 * blk_run_queue_async - run a single device queue in workqueue context
309 * @q: The queue to run
310 *
311 * Description:
312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 313 * of us. The caller must hold the queue lock.
24ecfbe2
CH
314 */
315void blk_run_queue_async(struct request_queue *q)
316{
70460571 317 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 318 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 319}
c21e6beb 320EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 321
75ad23bc
NP
322/**
323 * blk_run_queue - run a single device queue
324 * @q: The queue to run
80a4b58e
JA
325 *
326 * Description:
327 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 328 * May be used to restart queueing when a request has completed.
75ad23bc
NP
329 */
330void blk_run_queue(struct request_queue *q)
331{
332 unsigned long flags;
333
334 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 335 __blk_run_queue(q);
1da177e4
LT
336 spin_unlock_irqrestore(q->queue_lock, flags);
337}
338EXPORT_SYMBOL(blk_run_queue);
339
165125e1 340void blk_put_queue(struct request_queue *q)
483f4afc
AV
341{
342 kobject_put(&q->kobj);
343}
d86e0e83 344EXPORT_SYMBOL(blk_put_queue);
483f4afc 345
e3c78ca5 346/**
807592a4 347 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 348 * @q: queue to drain
c9a929dd 349 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 350 *
c9a929dd
TH
351 * Drain requests from @q. If @drain_all is set, all requests are drained.
352 * If not, only ELVPRIV requests are drained. The caller is responsible
353 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 354 */
807592a4
BVA
355static void __blk_drain_queue(struct request_queue *q, bool drain_all)
356 __releases(q->queue_lock)
357 __acquires(q->queue_lock)
e3c78ca5 358{
458f27a9
AH
359 int i;
360
807592a4
BVA
361 lockdep_assert_held(q->queue_lock);
362
e3c78ca5 363 while (true) {
481a7d64 364 bool drain = false;
e3c78ca5 365
b855b04a
TH
366 /*
367 * The caller might be trying to drain @q before its
368 * elevator is initialized.
369 */
370 if (q->elevator)
371 elv_drain_elevator(q);
372
5efd6113 373 blkcg_drain_queue(q);
e3c78ca5 374
4eabc941
TH
375 /*
376 * This function might be called on a queue which failed
b855b04a
TH
377 * driver init after queue creation or is not yet fully
378 * active yet. Some drivers (e.g. fd and loop) get unhappy
379 * in such cases. Kick queue iff dispatch queue has
380 * something on it and @q has request_fn set.
4eabc941 381 */
b855b04a 382 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 383 __blk_run_queue(q);
c9a929dd 384
8a5ecdd4 385 drain |= q->nr_rqs_elvpriv;
24faf6f6 386 drain |= q->request_fn_active;
481a7d64
TH
387
388 /*
389 * Unfortunately, requests are queued at and tracked from
390 * multiple places and there's no single counter which can
391 * be drained. Check all the queues and counters.
392 */
393 if (drain_all) {
394 drain |= !list_empty(&q->queue_head);
395 for (i = 0; i < 2; i++) {
8a5ecdd4 396 drain |= q->nr_rqs[i];
481a7d64
TH
397 drain |= q->in_flight[i];
398 drain |= !list_empty(&q->flush_queue[i]);
399 }
400 }
e3c78ca5 401
481a7d64 402 if (!drain)
e3c78ca5 403 break;
807592a4
BVA
404
405 spin_unlock_irq(q->queue_lock);
406
e3c78ca5 407 msleep(10);
807592a4
BVA
408
409 spin_lock_irq(q->queue_lock);
e3c78ca5 410 }
458f27a9
AH
411
412 /*
413 * With queue marked dead, any woken up waiter will fail the
414 * allocation path, so the wakeup chaining is lost and we're
415 * left with hung waiters. We need to wake up those waiters.
416 */
417 if (q->request_fn) {
a051661c
TH
418 struct request_list *rl;
419
a051661c
TH
420 blk_queue_for_each_rl(rl, q)
421 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
422 wake_up_all(&rl->wait[i]);
458f27a9 423 }
e3c78ca5
TH
424}
425
d732580b
TH
426/**
427 * blk_queue_bypass_start - enter queue bypass mode
428 * @q: queue of interest
429 *
430 * In bypass mode, only the dispatch FIFO queue of @q is used. This
431 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 432 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
433 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
434 * inside queue or RCU read lock.
d732580b
TH
435 */
436void blk_queue_bypass_start(struct request_queue *q)
437{
b82d4b19
TH
438 bool drain;
439
d732580b 440 spin_lock_irq(q->queue_lock);
b82d4b19 441 drain = !q->bypass_depth++;
d732580b
TH
442 queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 spin_unlock_irq(q->queue_lock);
444
b82d4b19 445 if (drain) {
807592a4
BVA
446 spin_lock_irq(q->queue_lock);
447 __blk_drain_queue(q, false);
448 spin_unlock_irq(q->queue_lock);
449
b82d4b19
TH
450 /* ensure blk_queue_bypass() is %true inside RCU read lock */
451 synchronize_rcu();
452 }
d732580b
TH
453}
454EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
455
456/**
457 * blk_queue_bypass_end - leave queue bypass mode
458 * @q: queue of interest
459 *
460 * Leave bypass mode and restore the normal queueing behavior.
461 */
462void blk_queue_bypass_end(struct request_queue *q)
463{
464 spin_lock_irq(q->queue_lock);
465 if (!--q->bypass_depth)
466 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
467 WARN_ON_ONCE(q->bypass_depth < 0);
468 spin_unlock_irq(q->queue_lock);
469}
470EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
471
c9a929dd
TH
472/**
473 * blk_cleanup_queue - shutdown a request queue
474 * @q: request queue to shutdown
475 *
c246e80d
BVA
476 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
477 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 478 */
6728cb0e 479void blk_cleanup_queue(struct request_queue *q)
483f4afc 480{
c9a929dd 481 spinlock_t *lock = q->queue_lock;
e3335de9 482
3f3299d5 483 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 484 mutex_lock(&q->sysfs_lock);
3f3299d5 485 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 486 spin_lock_irq(lock);
6ecf23af 487
80fd9979 488 /*
3f3299d5 489 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
490 * that, unlike blk_queue_bypass_start(), we aren't performing
491 * synchronize_rcu() after entering bypass mode to avoid the delay
492 * as some drivers create and destroy a lot of queues while
493 * probing. This is still safe because blk_release_queue() will be
494 * called only after the queue refcnt drops to zero and nothing,
495 * RCU or not, would be traversing the queue by then.
496 */
6ecf23af
TH
497 q->bypass_depth++;
498 queue_flag_set(QUEUE_FLAG_BYPASS, q);
499
c9a929dd
TH
500 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
501 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 502 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
503 spin_unlock_irq(lock);
504 mutex_unlock(&q->sysfs_lock);
505
c246e80d
BVA
506 /*
507 * Drain all requests queued before DYING marking. Set DEAD flag to
508 * prevent that q->request_fn() gets invoked after draining finished.
509 */
43a5e4e2
ML
510 if (q->mq_ops) {
511 blk_mq_drain_queue(q);
512 spin_lock_irq(lock);
513 } else {
514 spin_lock_irq(lock);
515 __blk_drain_queue(q, true);
516 }
c246e80d 517 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 518 spin_unlock_irq(lock);
c9a929dd
TH
519
520 /* @q won't process any more request, flush async actions */
521 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
522 blk_sync_queue(q);
523
5e5cfac0
AH
524 spin_lock_irq(lock);
525 if (q->queue_lock != &q->__queue_lock)
526 q->queue_lock = &q->__queue_lock;
527 spin_unlock_irq(lock);
528
c9a929dd 529 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
530 blk_put_queue(q);
531}
1da177e4
LT
532EXPORT_SYMBOL(blk_cleanup_queue);
533
5b788ce3
TH
534int blk_init_rl(struct request_list *rl, struct request_queue *q,
535 gfp_t gfp_mask)
1da177e4 536{
1abec4fd
MS
537 if (unlikely(rl->rq_pool))
538 return 0;
539
5b788ce3 540 rl->q = q;
1faa16d2
JA
541 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
542 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
543 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
544 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 545
1946089a 546 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 547 mempool_free_slab, request_cachep,
5b788ce3 548 gfp_mask, q->node);
1da177e4
LT
549 if (!rl->rq_pool)
550 return -ENOMEM;
551
552 return 0;
553}
554
5b788ce3
TH
555void blk_exit_rl(struct request_list *rl)
556{
557 if (rl->rq_pool)
558 mempool_destroy(rl->rq_pool);
559}
560
165125e1 561struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 562{
c304a51b 563 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
564}
565EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 566
165125e1 567struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 568{
165125e1 569 struct request_queue *q;
e0bf68dd 570 int err;
1946089a 571
8324aa91 572 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 573 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
574 if (!q)
575 return NULL;
576
320ae51f
JA
577 if (percpu_counter_init(&q->mq_usage_counter, 0))
578 goto fail_q;
579
00380a40 580 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 581 if (q->id < 0)
320ae51f 582 goto fail_c;
a73f730d 583
0989a025
JA
584 q->backing_dev_info.ra_pages =
585 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
586 q->backing_dev_info.state = 0;
587 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 588 q->backing_dev_info.name = "block";
5151412d 589 q->node = node_id;
0989a025 590
e0bf68dd 591 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
592 if (err)
593 goto fail_id;
e0bf68dd 594
31373d09
MG
595 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
596 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 597 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 598 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 599 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 600 INIT_LIST_HEAD(&q->icq_list);
4eef3049 601#ifdef CONFIG_BLK_CGROUP
e8989fae 602 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 603#endif
ae1b1539
TH
604 INIT_LIST_HEAD(&q->flush_queue[0]);
605 INIT_LIST_HEAD(&q->flush_queue[1]);
606 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 607 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 608
8324aa91 609 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 610
483f4afc 611 mutex_init(&q->sysfs_lock);
e7e72bf6 612 spin_lock_init(&q->__queue_lock);
483f4afc 613
c94a96ac
VG
614 /*
615 * By default initialize queue_lock to internal lock and driver can
616 * override it later if need be.
617 */
618 q->queue_lock = &q->__queue_lock;
619
b82d4b19
TH
620 /*
621 * A queue starts its life with bypass turned on to avoid
622 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
623 * init. The initial bypass will be finished when the queue is
624 * registered by blk_register_queue().
b82d4b19
TH
625 */
626 q->bypass_depth = 1;
627 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
628
320ae51f
JA
629 init_waitqueue_head(&q->mq_freeze_wq);
630
5efd6113 631 if (blkcg_init_queue(q))
fff4996b 632 goto fail_bdi;
f51b802c 633
1da177e4 634 return q;
a73f730d 635
fff4996b
MP
636fail_bdi:
637 bdi_destroy(&q->backing_dev_info);
a73f730d
TH
638fail_id:
639 ida_simple_remove(&blk_queue_ida, q->id);
320ae51f
JA
640fail_c:
641 percpu_counter_destroy(&q->mq_usage_counter);
a73f730d
TH
642fail_q:
643 kmem_cache_free(blk_requestq_cachep, q);
644 return NULL;
1da177e4 645}
1946089a 646EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
647
648/**
649 * blk_init_queue - prepare a request queue for use with a block device
650 * @rfn: The function to be called to process requests that have been
651 * placed on the queue.
652 * @lock: Request queue spin lock
653 *
654 * Description:
655 * If a block device wishes to use the standard request handling procedures,
656 * which sorts requests and coalesces adjacent requests, then it must
657 * call blk_init_queue(). The function @rfn will be called when there
658 * are requests on the queue that need to be processed. If the device
659 * supports plugging, then @rfn may not be called immediately when requests
660 * are available on the queue, but may be called at some time later instead.
661 * Plugged queues are generally unplugged when a buffer belonging to one
662 * of the requests on the queue is needed, or due to memory pressure.
663 *
664 * @rfn is not required, or even expected, to remove all requests off the
665 * queue, but only as many as it can handle at a time. If it does leave
666 * requests on the queue, it is responsible for arranging that the requests
667 * get dealt with eventually.
668 *
669 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
670 * request queue; this lock will be taken also from interrupt context, so irq
671 * disabling is needed for it.
1da177e4 672 *
710027a4 673 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
674 * it didn't succeed.
675 *
676 * Note:
677 * blk_init_queue() must be paired with a blk_cleanup_queue() call
678 * when the block device is deactivated (such as at module unload).
679 **/
1946089a 680
165125e1 681struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 682{
c304a51b 683 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
684}
685EXPORT_SYMBOL(blk_init_queue);
686
165125e1 687struct request_queue *
1946089a
CL
688blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
689{
c86d1b8a 690 struct request_queue *uninit_q, *q;
1da177e4 691
c86d1b8a
MS
692 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
693 if (!uninit_q)
694 return NULL;
695
5151412d 696 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 697 if (!q)
7982e90c 698 blk_cleanup_queue(uninit_q);
18741986 699
7982e90c 700 return q;
01effb0d
MS
701}
702EXPORT_SYMBOL(blk_init_queue_node);
703
704struct request_queue *
705blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
706 spinlock_t *lock)
01effb0d 707{
1da177e4
LT
708 if (!q)
709 return NULL;
710
7982e90c
MS
711 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
712 if (!q->flush_rq)
713 return NULL;
714
a051661c 715 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
8669aafd 716 return NULL;
1da177e4
LT
717
718 q->request_fn = rfn;
1da177e4 719 q->prep_rq_fn = NULL;
28018c24 720 q->unprep_rq_fn = NULL;
60ea8226 721 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
722
723 /* Override internal queue lock with supplied lock pointer */
724 if (lock)
725 q->queue_lock = lock;
1da177e4 726
f3b144aa
JA
727 /*
728 * This also sets hw/phys segments, boundary and size
729 */
c20e8de2 730 blk_queue_make_request(q, blk_queue_bio);
1da177e4 731
44ec9542
AS
732 q->sg_reserved_size = INT_MAX;
733
eb1c160b
TS
734 /* Protect q->elevator from elevator_change */
735 mutex_lock(&q->sysfs_lock);
736
b82d4b19 737 /* init elevator */
eb1c160b
TS
738 if (elevator_init(q, NULL)) {
739 mutex_unlock(&q->sysfs_lock);
b82d4b19 740 return NULL;
eb1c160b
TS
741 }
742
743 mutex_unlock(&q->sysfs_lock);
744
b82d4b19 745 return q;
1da177e4 746}
5151412d 747EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 748
09ac46c4 749bool blk_get_queue(struct request_queue *q)
1da177e4 750{
3f3299d5 751 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
752 __blk_get_queue(q);
753 return true;
1da177e4
LT
754 }
755
09ac46c4 756 return false;
1da177e4 757}
d86e0e83 758EXPORT_SYMBOL(blk_get_queue);
1da177e4 759
5b788ce3 760static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 761{
f1f8cc94 762 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 763 elv_put_request(rl->q, rq);
f1f8cc94 764 if (rq->elv.icq)
11a3122f 765 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
766 }
767
5b788ce3 768 mempool_free(rq, rl->rq_pool);
1da177e4
LT
769}
770
1da177e4
LT
771/*
772 * ioc_batching returns true if the ioc is a valid batching request and
773 * should be given priority access to a request.
774 */
165125e1 775static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
776{
777 if (!ioc)
778 return 0;
779
780 /*
781 * Make sure the process is able to allocate at least 1 request
782 * even if the batch times out, otherwise we could theoretically
783 * lose wakeups.
784 */
785 return ioc->nr_batch_requests == q->nr_batching ||
786 (ioc->nr_batch_requests > 0
787 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
788}
789
790/*
791 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
792 * will cause the process to be a "batcher" on all queues in the system. This
793 * is the behaviour we want though - once it gets a wakeup it should be given
794 * a nice run.
795 */
165125e1 796static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
797{
798 if (!ioc || ioc_batching(q, ioc))
799 return;
800
801 ioc->nr_batch_requests = q->nr_batching;
802 ioc->last_waited = jiffies;
803}
804
5b788ce3 805static void __freed_request(struct request_list *rl, int sync)
1da177e4 806{
5b788ce3 807 struct request_queue *q = rl->q;
1da177e4 808
a051661c
TH
809 /*
810 * bdi isn't aware of blkcg yet. As all async IOs end up root
811 * blkcg anyway, just use root blkcg state.
812 */
813 if (rl == &q->root_rl &&
814 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 815 blk_clear_queue_congested(q, sync);
1da177e4 816
1faa16d2
JA
817 if (rl->count[sync] + 1 <= q->nr_requests) {
818 if (waitqueue_active(&rl->wait[sync]))
819 wake_up(&rl->wait[sync]);
1da177e4 820
5b788ce3 821 blk_clear_rl_full(rl, sync);
1da177e4
LT
822 }
823}
824
825/*
826 * A request has just been released. Account for it, update the full and
827 * congestion status, wake up any waiters. Called under q->queue_lock.
828 */
5b788ce3 829static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 830{
5b788ce3 831 struct request_queue *q = rl->q;
75eb6c37 832 int sync = rw_is_sync(flags);
1da177e4 833
8a5ecdd4 834 q->nr_rqs[sync]--;
1faa16d2 835 rl->count[sync]--;
75eb6c37 836 if (flags & REQ_ELVPRIV)
8a5ecdd4 837 q->nr_rqs_elvpriv--;
1da177e4 838
5b788ce3 839 __freed_request(rl, sync);
1da177e4 840
1faa16d2 841 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 842 __freed_request(rl, sync ^ 1);
1da177e4
LT
843}
844
9d5a4e94
MS
845/*
846 * Determine if elevator data should be initialized when allocating the
847 * request associated with @bio.
848 */
849static bool blk_rq_should_init_elevator(struct bio *bio)
850{
851 if (!bio)
852 return true;
853
854 /*
855 * Flush requests do not use the elevator so skip initialization.
856 * This allows a request to share the flush and elevator data.
857 */
858 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
859 return false;
860
861 return true;
862}
863
852c788f
TH
864/**
865 * rq_ioc - determine io_context for request allocation
866 * @bio: request being allocated is for this bio (can be %NULL)
867 *
868 * Determine io_context to use for request allocation for @bio. May return
869 * %NULL if %current->io_context doesn't exist.
870 */
871static struct io_context *rq_ioc(struct bio *bio)
872{
873#ifdef CONFIG_BLK_CGROUP
874 if (bio && bio->bi_ioc)
875 return bio->bi_ioc;
876#endif
877 return current->io_context;
878}
879
da8303c6 880/**
a06e05e6 881 * __get_request - get a free request
5b788ce3 882 * @rl: request list to allocate from
da8303c6
TH
883 * @rw_flags: RW and SYNC flags
884 * @bio: bio to allocate request for (can be %NULL)
885 * @gfp_mask: allocation mask
886 *
887 * Get a free request from @q. This function may fail under memory
888 * pressure or if @q is dead.
889 *
890 * Must be callled with @q->queue_lock held and,
891 * Returns %NULL on failure, with @q->queue_lock held.
892 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 893 */
5b788ce3 894static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 895 struct bio *bio, gfp_t gfp_mask)
1da177e4 896{
5b788ce3 897 struct request_queue *q = rl->q;
b679281a 898 struct request *rq;
7f4b35d1
TH
899 struct elevator_type *et = q->elevator->type;
900 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 901 struct io_cq *icq = NULL;
1faa16d2 902 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 903 int may_queue;
88ee5ef1 904
3f3299d5 905 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
906 return NULL;
907
7749a8d4 908 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
909 if (may_queue == ELV_MQUEUE_NO)
910 goto rq_starved;
911
1faa16d2
JA
912 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
913 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
914 /*
915 * The queue will fill after this allocation, so set
916 * it as full, and mark this process as "batching".
917 * This process will be allowed to complete a batch of
918 * requests, others will be blocked.
919 */
5b788ce3 920 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 921 ioc_set_batching(q, ioc);
5b788ce3 922 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
923 } else {
924 if (may_queue != ELV_MQUEUE_MUST
925 && !ioc_batching(q, ioc)) {
926 /*
927 * The queue is full and the allocating
928 * process is not a "batcher", and not
929 * exempted by the IO scheduler
930 */
b679281a 931 return NULL;
88ee5ef1
JA
932 }
933 }
1da177e4 934 }
a051661c
TH
935 /*
936 * bdi isn't aware of blkcg yet. As all async IOs end up
937 * root blkcg anyway, just use root blkcg state.
938 */
939 if (rl == &q->root_rl)
940 blk_set_queue_congested(q, is_sync);
1da177e4
LT
941 }
942
082cf69e
JA
943 /*
944 * Only allow batching queuers to allocate up to 50% over the defined
945 * limit of requests, otherwise we could have thousands of requests
946 * allocated with any setting of ->nr_requests
947 */
1faa16d2 948 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 949 return NULL;
fd782a4a 950
8a5ecdd4 951 q->nr_rqs[is_sync]++;
1faa16d2
JA
952 rl->count[is_sync]++;
953 rl->starved[is_sync] = 0;
cb98fc8b 954
f1f8cc94
TH
955 /*
956 * Decide whether the new request will be managed by elevator. If
957 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
958 * prevent the current elevator from being destroyed until the new
959 * request is freed. This guarantees icq's won't be destroyed and
960 * makes creating new ones safe.
961 *
962 * Also, lookup icq while holding queue_lock. If it doesn't exist,
963 * it will be created after releasing queue_lock.
964 */
d732580b 965 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 966 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 967 q->nr_rqs_elvpriv++;
f1f8cc94
TH
968 if (et->icq_cache && ioc)
969 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 970 }
cb98fc8b 971
f253b86b
JA
972 if (blk_queue_io_stat(q))
973 rw_flags |= REQ_IO_STAT;
1da177e4
LT
974 spin_unlock_irq(q->queue_lock);
975
29e2b09a 976 /* allocate and init request */
5b788ce3 977 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 978 if (!rq)
b679281a 979 goto fail_alloc;
1da177e4 980
29e2b09a 981 blk_rq_init(q, rq);
a051661c 982 blk_rq_set_rl(rq, rl);
29e2b09a
TH
983 rq->cmd_flags = rw_flags | REQ_ALLOCED;
984
aaf7c680 985 /* init elvpriv */
29e2b09a 986 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 987 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
988 if (ioc)
989 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
990 if (!icq)
991 goto fail_elvpriv;
29e2b09a 992 }
aaf7c680
TH
993
994 rq->elv.icq = icq;
995 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
996 goto fail_elvpriv;
997
998 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
999 if (icq)
1000 get_io_context(icq->ioc);
1001 }
aaf7c680 1002out:
88ee5ef1
JA
1003 /*
1004 * ioc may be NULL here, and ioc_batching will be false. That's
1005 * OK, if the queue is under the request limit then requests need
1006 * not count toward the nr_batch_requests limit. There will always
1007 * be some limit enforced by BLK_BATCH_TIME.
1008 */
1da177e4
LT
1009 if (ioc_batching(q, ioc))
1010 ioc->nr_batch_requests--;
6728cb0e 1011
1faa16d2 1012 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1013 return rq;
b679281a 1014
aaf7c680
TH
1015fail_elvpriv:
1016 /*
1017 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1018 * and may fail indefinitely under memory pressure and thus
1019 * shouldn't stall IO. Treat this request as !elvpriv. This will
1020 * disturb iosched and blkcg but weird is bettern than dead.
1021 */
1022 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1023 dev_name(q->backing_dev_info.dev));
1024
1025 rq->cmd_flags &= ~REQ_ELVPRIV;
1026 rq->elv.icq = NULL;
1027
1028 spin_lock_irq(q->queue_lock);
8a5ecdd4 1029 q->nr_rqs_elvpriv--;
aaf7c680
TH
1030 spin_unlock_irq(q->queue_lock);
1031 goto out;
1032
b679281a
TH
1033fail_alloc:
1034 /*
1035 * Allocation failed presumably due to memory. Undo anything we
1036 * might have messed up.
1037 *
1038 * Allocating task should really be put onto the front of the wait
1039 * queue, but this is pretty rare.
1040 */
1041 spin_lock_irq(q->queue_lock);
5b788ce3 1042 freed_request(rl, rw_flags);
b679281a
TH
1043
1044 /*
1045 * in the very unlikely event that allocation failed and no
1046 * requests for this direction was pending, mark us starved so that
1047 * freeing of a request in the other direction will notice
1048 * us. another possible fix would be to split the rq mempool into
1049 * READ and WRITE
1050 */
1051rq_starved:
1052 if (unlikely(rl->count[is_sync] == 0))
1053 rl->starved[is_sync] = 1;
1054 return NULL;
1da177e4
LT
1055}
1056
da8303c6 1057/**
a06e05e6 1058 * get_request - get a free request
da8303c6
TH
1059 * @q: request_queue to allocate request from
1060 * @rw_flags: RW and SYNC flags
1061 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1062 * @gfp_mask: allocation mask
da8303c6 1063 *
a06e05e6
TH
1064 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1065 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1066 *
da8303c6
TH
1067 * Must be callled with @q->queue_lock held and,
1068 * Returns %NULL on failure, with @q->queue_lock held.
1069 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1070 */
a06e05e6
TH
1071static struct request *get_request(struct request_queue *q, int rw_flags,
1072 struct bio *bio, gfp_t gfp_mask)
1da177e4 1073{
1faa16d2 1074 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1075 DEFINE_WAIT(wait);
a051661c 1076 struct request_list *rl;
1da177e4 1077 struct request *rq;
a051661c
TH
1078
1079 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1080retry:
a051661c 1081 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1082 if (rq)
1083 return rq;
1da177e4 1084
3f3299d5 1085 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1086 blk_put_rl(rl);
a06e05e6 1087 return NULL;
a051661c 1088 }
1da177e4 1089
a06e05e6
TH
1090 /* wait on @rl and retry */
1091 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1092 TASK_UNINTERRUPTIBLE);
1da177e4 1093
a06e05e6 1094 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1095
a06e05e6
TH
1096 spin_unlock_irq(q->queue_lock);
1097 io_schedule();
d6344532 1098
a06e05e6
TH
1099 /*
1100 * After sleeping, we become a "batching" process and will be able
1101 * to allocate at least one request, and up to a big batch of them
1102 * for a small period time. See ioc_batching, ioc_set_batching
1103 */
a06e05e6 1104 ioc_set_batching(q, current->io_context);
05caf8db 1105
a06e05e6
TH
1106 spin_lock_irq(q->queue_lock);
1107 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1108
a06e05e6 1109 goto retry;
1da177e4
LT
1110}
1111
320ae51f
JA
1112static struct request *blk_old_get_request(struct request_queue *q, int rw,
1113 gfp_t gfp_mask)
1da177e4
LT
1114{
1115 struct request *rq;
1116
1117 BUG_ON(rw != READ && rw != WRITE);
1118
7f4b35d1
TH
1119 /* create ioc upfront */
1120 create_io_context(gfp_mask, q->node);
1121
d6344532 1122 spin_lock_irq(q->queue_lock);
a06e05e6 1123 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1124 if (!rq)
1125 spin_unlock_irq(q->queue_lock);
d6344532 1126 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1127
1128 return rq;
1129}
320ae51f
JA
1130
1131struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1132{
1133 if (q->mq_ops)
18741986 1134 return blk_mq_alloc_request(q, rw, gfp_mask);
320ae51f
JA
1135 else
1136 return blk_old_get_request(q, rw, gfp_mask);
1137}
1da177e4
LT
1138EXPORT_SYMBOL(blk_get_request);
1139
dc72ef4a 1140/**
79eb63e9 1141 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1142 * @q: target request queue
79eb63e9
BH
1143 * @bio: The bio describing the memory mappings that will be submitted for IO.
1144 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1145 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1146 *
79eb63e9
BH
1147 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1148 * type commands. Where the struct request needs to be farther initialized by
1149 * the caller. It is passed a &struct bio, which describes the memory info of
1150 * the I/O transfer.
dc72ef4a 1151 *
79eb63e9
BH
1152 * The caller of blk_make_request must make sure that bi_io_vec
1153 * are set to describe the memory buffers. That bio_data_dir() will return
1154 * the needed direction of the request. (And all bio's in the passed bio-chain
1155 * are properly set accordingly)
1156 *
1157 * If called under none-sleepable conditions, mapped bio buffers must not
1158 * need bouncing, by calling the appropriate masked or flagged allocator,
1159 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1160 * BUG.
53674ac5
JA
1161 *
1162 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1163 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1164 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1165 * completion of a bio that hasn't been submitted yet, thus resulting in a
1166 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1167 * of bio_alloc(), as that avoids the mempool deadlock.
1168 * If possible a big IO should be split into smaller parts when allocation
1169 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1170 */
79eb63e9
BH
1171struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1172 gfp_t gfp_mask)
dc72ef4a 1173{
79eb63e9
BH
1174 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1175
1176 if (unlikely(!rq))
1177 return ERR_PTR(-ENOMEM);
1178
1179 for_each_bio(bio) {
1180 struct bio *bounce_bio = bio;
1181 int ret;
1182
1183 blk_queue_bounce(q, &bounce_bio);
1184 ret = blk_rq_append_bio(q, rq, bounce_bio);
1185 if (unlikely(ret)) {
1186 blk_put_request(rq);
1187 return ERR_PTR(ret);
1188 }
1189 }
1190
1191 return rq;
dc72ef4a 1192}
79eb63e9 1193EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1194
1da177e4
LT
1195/**
1196 * blk_requeue_request - put a request back on queue
1197 * @q: request queue where request should be inserted
1198 * @rq: request to be inserted
1199 *
1200 * Description:
1201 * Drivers often keep queueing requests until the hardware cannot accept
1202 * more, when that condition happens we need to put the request back
1203 * on the queue. Must be called with queue lock held.
1204 */
165125e1 1205void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1206{
242f9dcb
JA
1207 blk_delete_timer(rq);
1208 blk_clear_rq_complete(rq);
5f3ea37c 1209 trace_block_rq_requeue(q, rq);
2056a782 1210
1da177e4
LT
1211 if (blk_rq_tagged(rq))
1212 blk_queue_end_tag(q, rq);
1213
ba396a6c
JB
1214 BUG_ON(blk_queued_rq(rq));
1215
1da177e4
LT
1216 elv_requeue_request(q, rq);
1217}
1da177e4
LT
1218EXPORT_SYMBOL(blk_requeue_request);
1219
73c10101
JA
1220static void add_acct_request(struct request_queue *q, struct request *rq,
1221 int where)
1222{
320ae51f 1223 blk_account_io_start(rq, true);
7eaceacc 1224 __elv_add_request(q, rq, where);
73c10101
JA
1225}
1226
074a7aca
TH
1227static void part_round_stats_single(int cpu, struct hd_struct *part,
1228 unsigned long now)
1229{
1230 if (now == part->stamp)
1231 return;
1232
316d315b 1233 if (part_in_flight(part)) {
074a7aca 1234 __part_stat_add(cpu, part, time_in_queue,
316d315b 1235 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1236 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1237 }
1238 part->stamp = now;
1239}
1240
1241/**
496aa8a9
RD
1242 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1243 * @cpu: cpu number for stats access
1244 * @part: target partition
1da177e4
LT
1245 *
1246 * The average IO queue length and utilisation statistics are maintained
1247 * by observing the current state of the queue length and the amount of
1248 * time it has been in this state for.
1249 *
1250 * Normally, that accounting is done on IO completion, but that can result
1251 * in more than a second's worth of IO being accounted for within any one
1252 * second, leading to >100% utilisation. To deal with that, we call this
1253 * function to do a round-off before returning the results when reading
1254 * /proc/diskstats. This accounts immediately for all queue usage up to
1255 * the current jiffies and restarts the counters again.
1256 */
c9959059 1257void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1258{
1259 unsigned long now = jiffies;
1260
074a7aca
TH
1261 if (part->partno)
1262 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1263 part_round_stats_single(cpu, part, now);
6f2576af 1264}
074a7aca 1265EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1266
c8158819
LM
1267#ifdef CONFIG_PM_RUNTIME
1268static void blk_pm_put_request(struct request *rq)
1269{
1270 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1271 pm_runtime_mark_last_busy(rq->q->dev);
1272}
1273#else
1274static inline void blk_pm_put_request(struct request *rq) {}
1275#endif
1276
1da177e4
LT
1277/*
1278 * queue lock must be held
1279 */
165125e1 1280void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1281{
1da177e4
LT
1282 if (unlikely(!q))
1283 return;
1da177e4 1284
6f5ba581
CH
1285 if (q->mq_ops) {
1286 blk_mq_free_request(req);
1287 return;
1288 }
1289
c8158819
LM
1290 blk_pm_put_request(req);
1291
8922e16c
TH
1292 elv_completed_request(q, req);
1293
1cd96c24
BH
1294 /* this is a bio leak */
1295 WARN_ON(req->bio != NULL);
1296
1da177e4
LT
1297 /*
1298 * Request may not have originated from ll_rw_blk. if not,
1299 * it didn't come out of our reserved rq pools
1300 */
49171e5c 1301 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1302 unsigned int flags = req->cmd_flags;
a051661c 1303 struct request_list *rl = blk_rq_rl(req);
1da177e4 1304
1da177e4 1305 BUG_ON(!list_empty(&req->queuelist));
9817064b 1306 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4 1307
a051661c
TH
1308 blk_free_request(rl, req);
1309 freed_request(rl, flags);
1310 blk_put_rl(rl);
1da177e4
LT
1311 }
1312}
6e39b69e
MC
1313EXPORT_SYMBOL_GPL(__blk_put_request);
1314
1da177e4
LT
1315void blk_put_request(struct request *req)
1316{
165125e1 1317 struct request_queue *q = req->q;
8922e16c 1318
320ae51f
JA
1319 if (q->mq_ops)
1320 blk_mq_free_request(req);
1321 else {
1322 unsigned long flags;
1323
1324 spin_lock_irqsave(q->queue_lock, flags);
1325 __blk_put_request(q, req);
1326 spin_unlock_irqrestore(q->queue_lock, flags);
1327 }
1da177e4 1328}
1da177e4
LT
1329EXPORT_SYMBOL(blk_put_request);
1330
66ac0280
CH
1331/**
1332 * blk_add_request_payload - add a payload to a request
1333 * @rq: request to update
1334 * @page: page backing the payload
1335 * @len: length of the payload.
1336 *
1337 * This allows to later add a payload to an already submitted request by
1338 * a block driver. The driver needs to take care of freeing the payload
1339 * itself.
1340 *
1341 * Note that this is a quite horrible hack and nothing but handling of
1342 * discard requests should ever use it.
1343 */
1344void blk_add_request_payload(struct request *rq, struct page *page,
1345 unsigned int len)
1346{
1347 struct bio *bio = rq->bio;
1348
1349 bio->bi_io_vec->bv_page = page;
1350 bio->bi_io_vec->bv_offset = 0;
1351 bio->bi_io_vec->bv_len = len;
1352
4f024f37 1353 bio->bi_iter.bi_size = len;
66ac0280
CH
1354 bio->bi_vcnt = 1;
1355 bio->bi_phys_segments = 1;
1356
1357 rq->__data_len = rq->resid_len = len;
1358 rq->nr_phys_segments = 1;
1359 rq->buffer = bio_data(bio);
1360}
1361EXPORT_SYMBOL_GPL(blk_add_request_payload);
1362
320ae51f
JA
1363bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1364 struct bio *bio)
73c10101
JA
1365{
1366 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1367
73c10101
JA
1368 if (!ll_back_merge_fn(q, req, bio))
1369 return false;
1370
8c1cf6bb 1371 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1372
1373 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1374 blk_rq_set_mixed_merge(req);
1375
1376 req->biotail->bi_next = bio;
1377 req->biotail = bio;
4f024f37 1378 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1379 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1380
320ae51f 1381 blk_account_io_start(req, false);
73c10101
JA
1382 return true;
1383}
1384
320ae51f
JA
1385bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1386 struct bio *bio)
73c10101
JA
1387{
1388 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1389
73c10101
JA
1390 if (!ll_front_merge_fn(q, req, bio))
1391 return false;
1392
8c1cf6bb 1393 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1394
1395 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1396 blk_rq_set_mixed_merge(req);
1397
73c10101
JA
1398 bio->bi_next = req->bio;
1399 req->bio = bio;
1400
1401 /*
1402 * may not be valid. if the low level driver said
1403 * it didn't need a bounce buffer then it better
1404 * not touch req->buffer either...
1405 */
1406 req->buffer = bio_data(bio);
4f024f37
KO
1407 req->__sector = bio->bi_iter.bi_sector;
1408 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1409 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1410
320ae51f 1411 blk_account_io_start(req, false);
73c10101
JA
1412 return true;
1413}
1414
bd87b589 1415/**
320ae51f 1416 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1417 * @q: request_queue new bio is being queued at
1418 * @bio: new bio being queued
1419 * @request_count: out parameter for number of traversed plugged requests
1420 *
1421 * Determine whether @bio being queued on @q can be merged with a request
1422 * on %current's plugged list. Returns %true if merge was successful,
1423 * otherwise %false.
1424 *
07c2bd37
TH
1425 * Plugging coalesces IOs from the same issuer for the same purpose without
1426 * going through @q->queue_lock. As such it's more of an issuing mechanism
1427 * than scheduling, and the request, while may have elvpriv data, is not
1428 * added on the elevator at this point. In addition, we don't have
1429 * reliable access to the elevator outside queue lock. Only check basic
1430 * merging parameters without querying the elevator.
73c10101 1431 */
320ae51f
JA
1432bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1433 unsigned int *request_count)
73c10101
JA
1434{
1435 struct blk_plug *plug;
1436 struct request *rq;
1437 bool ret = false;
92f399c7 1438 struct list_head *plug_list;
73c10101 1439
23779fbc
AH
1440 if (blk_queue_nomerges(q))
1441 goto out;
1442
bd87b589 1443 plug = current->plug;
73c10101
JA
1444 if (!plug)
1445 goto out;
56ebdaf2 1446 *request_count = 0;
73c10101 1447
92f399c7
SL
1448 if (q->mq_ops)
1449 plug_list = &plug->mq_list;
1450 else
1451 plug_list = &plug->list;
1452
1453 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1454 int el_ret;
1455
1b2e19f1
SL
1456 if (rq->q == q)
1457 (*request_count)++;
56ebdaf2 1458
07c2bd37 1459 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1460 continue;
1461
050c8ea8 1462 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1463 if (el_ret == ELEVATOR_BACK_MERGE) {
1464 ret = bio_attempt_back_merge(q, rq, bio);
1465 if (ret)
1466 break;
1467 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1468 ret = bio_attempt_front_merge(q, rq, bio);
1469 if (ret)
1470 break;
1471 }
1472 }
1473out:
1474 return ret;
1475}
1476
86db1e29 1477void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1478{
4aff5e23 1479 req->cmd_type = REQ_TYPE_FS;
52d9e675 1480
7b6d91da
CH
1481 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1482 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1483 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1484
52d9e675 1485 req->errors = 0;
4f024f37 1486 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1487 req->ioprio = bio_prio(bio);
bc1c56fd 1488 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1489}
1490
5a7bbad2 1491void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1492{
5e00d1b5 1493 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1494 struct blk_plug *plug;
1495 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1496 struct request *req;
56ebdaf2 1497 unsigned int request_count = 0;
1da177e4 1498
1da177e4
LT
1499 /*
1500 * low level driver can indicate that it wants pages above a
1501 * certain limit bounced to low memory (ie for highmem, or even
1502 * ISA dma in theory)
1503 */
1504 blk_queue_bounce(q, &bio);
1505
ffecfd1a
DW
1506 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1507 bio_endio(bio, -EIO);
1508 return;
1509 }
1510
4fed947c 1511 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1512 spin_lock_irq(q->queue_lock);
ae1b1539 1513 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1514 goto get_rq;
1515 }
1516
73c10101
JA
1517 /*
1518 * Check if we can merge with the plugged list before grabbing
1519 * any locks.
1520 */
320ae51f 1521 if (blk_attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1522 return;
1da177e4 1523
73c10101 1524 spin_lock_irq(q->queue_lock);
2056a782 1525
73c10101
JA
1526 el_ret = elv_merge(q, &req, bio);
1527 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1528 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1529 elv_bio_merged(q, req, bio);
73c10101
JA
1530 if (!attempt_back_merge(q, req))
1531 elv_merged_request(q, req, el_ret);
1532 goto out_unlock;
1533 }
1534 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1535 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1536 elv_bio_merged(q, req, bio);
73c10101
JA
1537 if (!attempt_front_merge(q, req))
1538 elv_merged_request(q, req, el_ret);
1539 goto out_unlock;
80a761fd 1540 }
1da177e4
LT
1541 }
1542
450991bc 1543get_rq:
7749a8d4
JA
1544 /*
1545 * This sync check and mask will be re-done in init_request_from_bio(),
1546 * but we need to set it earlier to expose the sync flag to the
1547 * rq allocator and io schedulers.
1548 */
1549 rw_flags = bio_data_dir(bio);
1550 if (sync)
7b6d91da 1551 rw_flags |= REQ_SYNC;
7749a8d4 1552
1da177e4 1553 /*
450991bc 1554 * Grab a free request. This is might sleep but can not fail.
d6344532 1555 * Returns with the queue unlocked.
450991bc 1556 */
a06e05e6 1557 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1558 if (unlikely(!req)) {
1559 bio_endio(bio, -ENODEV); /* @q is dead */
1560 goto out_unlock;
1561 }
d6344532 1562
450991bc
NP
1563 /*
1564 * After dropping the lock and possibly sleeping here, our request
1565 * may now be mergeable after it had proven unmergeable (above).
1566 * We don't worry about that case for efficiency. It won't happen
1567 * often, and the elevators are able to handle it.
1da177e4 1568 */
52d9e675 1569 init_request_from_bio(req, bio);
1da177e4 1570
9562ad9a 1571 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1572 req->cpu = raw_smp_processor_id();
73c10101
JA
1573
1574 plug = current->plug;
721a9602 1575 if (plug) {
dc6d36c9
JA
1576 /*
1577 * If this is the first request added after a plug, fire
7aef2e78 1578 * of a plug trace.
dc6d36c9 1579 */
7aef2e78 1580 if (!request_count)
dc6d36c9 1581 trace_block_plug(q);
3540d5e8 1582 else {
019ceb7d 1583 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1584 blk_flush_plug_list(plug, false);
019ceb7d
SL
1585 trace_block_plug(q);
1586 }
73c10101 1587 }
73c10101 1588 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1589 blk_account_io_start(req, true);
73c10101
JA
1590 } else {
1591 spin_lock_irq(q->queue_lock);
1592 add_acct_request(q, req, where);
24ecfbe2 1593 __blk_run_queue(q);
73c10101
JA
1594out_unlock:
1595 spin_unlock_irq(q->queue_lock);
1596 }
1da177e4 1597}
c20e8de2 1598EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1599
1600/*
1601 * If bio->bi_dev is a partition, remap the location
1602 */
1603static inline void blk_partition_remap(struct bio *bio)
1604{
1605 struct block_device *bdev = bio->bi_bdev;
1606
bf2de6f5 1607 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1608 struct hd_struct *p = bdev->bd_part;
1609
4f024f37 1610 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1611 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1612
d07335e5
MS
1613 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1614 bdev->bd_dev,
4f024f37 1615 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1616 }
1617}
1618
1da177e4
LT
1619static void handle_bad_sector(struct bio *bio)
1620{
1621 char b[BDEVNAME_SIZE];
1622
1623 printk(KERN_INFO "attempt to access beyond end of device\n");
1624 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1625 bdevname(bio->bi_bdev, b),
1626 bio->bi_rw,
f73a1c7d 1627 (unsigned long long)bio_end_sector(bio),
77304d2a 1628 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1629
1630 set_bit(BIO_EOF, &bio->bi_flags);
1631}
1632
c17bb495
AM
1633#ifdef CONFIG_FAIL_MAKE_REQUEST
1634
1635static DECLARE_FAULT_ATTR(fail_make_request);
1636
1637static int __init setup_fail_make_request(char *str)
1638{
1639 return setup_fault_attr(&fail_make_request, str);
1640}
1641__setup("fail_make_request=", setup_fail_make_request);
1642
b2c9cd37 1643static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1644{
b2c9cd37 1645 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1646}
1647
1648static int __init fail_make_request_debugfs(void)
1649{
dd48c085
AM
1650 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1651 NULL, &fail_make_request);
1652
1653 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1654}
1655
1656late_initcall(fail_make_request_debugfs);
1657
1658#else /* CONFIG_FAIL_MAKE_REQUEST */
1659
b2c9cd37
AM
1660static inline bool should_fail_request(struct hd_struct *part,
1661 unsigned int bytes)
c17bb495 1662{
b2c9cd37 1663 return false;
c17bb495
AM
1664}
1665
1666#endif /* CONFIG_FAIL_MAKE_REQUEST */
1667
c07e2b41
JA
1668/*
1669 * Check whether this bio extends beyond the end of the device.
1670 */
1671static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1672{
1673 sector_t maxsector;
1674
1675 if (!nr_sectors)
1676 return 0;
1677
1678 /* Test device or partition size, when known. */
77304d2a 1679 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1680 if (maxsector) {
4f024f37 1681 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1682
1683 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1684 /*
1685 * This may well happen - the kernel calls bread()
1686 * without checking the size of the device, e.g., when
1687 * mounting a device.
1688 */
1689 handle_bad_sector(bio);
1690 return 1;
1691 }
1692 }
1693
1694 return 0;
1695}
1696
27a84d54
CH
1697static noinline_for_stack bool
1698generic_make_request_checks(struct bio *bio)
1da177e4 1699{
165125e1 1700 struct request_queue *q;
5a7bbad2 1701 int nr_sectors = bio_sectors(bio);
51fd77bd 1702 int err = -EIO;
5a7bbad2
CH
1703 char b[BDEVNAME_SIZE];
1704 struct hd_struct *part;
1da177e4
LT
1705
1706 might_sleep();
1da177e4 1707
c07e2b41
JA
1708 if (bio_check_eod(bio, nr_sectors))
1709 goto end_io;
1da177e4 1710
5a7bbad2
CH
1711 q = bdev_get_queue(bio->bi_bdev);
1712 if (unlikely(!q)) {
1713 printk(KERN_ERR
1714 "generic_make_request: Trying to access "
1715 "nonexistent block-device %s (%Lu)\n",
1716 bdevname(bio->bi_bdev, b),
4f024f37 1717 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1718 goto end_io;
1719 }
c17bb495 1720
e2a60da7
MP
1721 if (likely(bio_is_rw(bio) &&
1722 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1723 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1724 bdevname(bio->bi_bdev, b),
1725 bio_sectors(bio),
1726 queue_max_hw_sectors(q));
1727 goto end_io;
1728 }
1da177e4 1729
5a7bbad2 1730 part = bio->bi_bdev->bd_part;
4f024f37 1731 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1732 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1733 bio->bi_iter.bi_size))
5a7bbad2 1734 goto end_io;
2056a782 1735
5a7bbad2
CH
1736 /*
1737 * If this device has partitions, remap block n
1738 * of partition p to block n+start(p) of the disk.
1739 */
1740 blk_partition_remap(bio);
2056a782 1741
5a7bbad2
CH
1742 if (bio_check_eod(bio, nr_sectors))
1743 goto end_io;
1e87901e 1744
5a7bbad2
CH
1745 /*
1746 * Filter flush bio's early so that make_request based
1747 * drivers without flush support don't have to worry
1748 * about them.
1749 */
1750 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1751 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1752 if (!nr_sectors) {
1753 err = 0;
51fd77bd
JA
1754 goto end_io;
1755 }
5a7bbad2 1756 }
5ddfe969 1757
5a7bbad2
CH
1758 if ((bio->bi_rw & REQ_DISCARD) &&
1759 (!blk_queue_discard(q) ||
e2a60da7 1760 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1761 err = -EOPNOTSUPP;
1762 goto end_io;
1763 }
01edede4 1764
4363ac7c 1765 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1766 err = -EOPNOTSUPP;
1767 goto end_io;
1768 }
01edede4 1769
7f4b35d1
TH
1770 /*
1771 * Various block parts want %current->io_context and lazy ioc
1772 * allocation ends up trading a lot of pain for a small amount of
1773 * memory. Just allocate it upfront. This may fail and block
1774 * layer knows how to live with it.
1775 */
1776 create_io_context(GFP_ATOMIC, q->node);
1777
bc16a4f9
TH
1778 if (blk_throtl_bio(q, bio))
1779 return false; /* throttled, will be resubmitted later */
27a84d54 1780
5a7bbad2 1781 trace_block_bio_queue(q, bio);
27a84d54 1782 return true;
a7384677
TH
1783
1784end_io:
1785 bio_endio(bio, err);
27a84d54 1786 return false;
1da177e4
LT
1787}
1788
27a84d54
CH
1789/**
1790 * generic_make_request - hand a buffer to its device driver for I/O
1791 * @bio: The bio describing the location in memory and on the device.
1792 *
1793 * generic_make_request() is used to make I/O requests of block
1794 * devices. It is passed a &struct bio, which describes the I/O that needs
1795 * to be done.
1796 *
1797 * generic_make_request() does not return any status. The
1798 * success/failure status of the request, along with notification of
1799 * completion, is delivered asynchronously through the bio->bi_end_io
1800 * function described (one day) else where.
1801 *
1802 * The caller of generic_make_request must make sure that bi_io_vec
1803 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1804 * set to describe the device address, and the
1805 * bi_end_io and optionally bi_private are set to describe how
1806 * completion notification should be signaled.
1807 *
1808 * generic_make_request and the drivers it calls may use bi_next if this
1809 * bio happens to be merged with someone else, and may resubmit the bio to
1810 * a lower device by calling into generic_make_request recursively, which
1811 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1812 */
1813void generic_make_request(struct bio *bio)
1814{
bddd87c7
AM
1815 struct bio_list bio_list_on_stack;
1816
27a84d54
CH
1817 if (!generic_make_request_checks(bio))
1818 return;
1819
1820 /*
1821 * We only want one ->make_request_fn to be active at a time, else
1822 * stack usage with stacked devices could be a problem. So use
1823 * current->bio_list to keep a list of requests submited by a
1824 * make_request_fn function. current->bio_list is also used as a
1825 * flag to say if generic_make_request is currently active in this
1826 * task or not. If it is NULL, then no make_request is active. If
1827 * it is non-NULL, then a make_request is active, and new requests
1828 * should be added at the tail
1829 */
bddd87c7 1830 if (current->bio_list) {
bddd87c7 1831 bio_list_add(current->bio_list, bio);
d89d8796
NB
1832 return;
1833 }
27a84d54 1834
d89d8796
NB
1835 /* following loop may be a bit non-obvious, and so deserves some
1836 * explanation.
1837 * Before entering the loop, bio->bi_next is NULL (as all callers
1838 * ensure that) so we have a list with a single bio.
1839 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1840 * we assign bio_list to a pointer to the bio_list_on_stack,
1841 * thus initialising the bio_list of new bios to be
27a84d54 1842 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1843 * through a recursive call to generic_make_request. If it
1844 * did, we find a non-NULL value in bio_list and re-enter the loop
1845 * from the top. In this case we really did just take the bio
bddd87c7 1846 * of the top of the list (no pretending) and so remove it from
27a84d54 1847 * bio_list, and call into ->make_request() again.
d89d8796
NB
1848 */
1849 BUG_ON(bio->bi_next);
bddd87c7
AM
1850 bio_list_init(&bio_list_on_stack);
1851 current->bio_list = &bio_list_on_stack;
d89d8796 1852 do {
27a84d54
CH
1853 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1854
1855 q->make_request_fn(q, bio);
1856
bddd87c7 1857 bio = bio_list_pop(current->bio_list);
d89d8796 1858 } while (bio);
bddd87c7 1859 current->bio_list = NULL; /* deactivate */
d89d8796 1860}
1da177e4
LT
1861EXPORT_SYMBOL(generic_make_request);
1862
1863/**
710027a4 1864 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1865 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1866 * @bio: The &struct bio which describes the I/O
1867 *
1868 * submit_bio() is very similar in purpose to generic_make_request(), and
1869 * uses that function to do most of the work. Both are fairly rough
710027a4 1870 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1871 *
1872 */
1873void submit_bio(int rw, struct bio *bio)
1874{
22e2c507 1875 bio->bi_rw |= rw;
1da177e4 1876
bf2de6f5
JA
1877 /*
1878 * If it's a regular read/write or a barrier with data attached,
1879 * go through the normal accounting stuff before submission.
1880 */
e2a60da7 1881 if (bio_has_data(bio)) {
4363ac7c
MP
1882 unsigned int count;
1883
1884 if (unlikely(rw & REQ_WRITE_SAME))
1885 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1886 else
1887 count = bio_sectors(bio);
1888
bf2de6f5
JA
1889 if (rw & WRITE) {
1890 count_vm_events(PGPGOUT, count);
1891 } else {
4f024f37 1892 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1893 count_vm_events(PGPGIN, count);
1894 }
1895
1896 if (unlikely(block_dump)) {
1897 char b[BDEVNAME_SIZE];
8dcbdc74 1898 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1899 current->comm, task_pid_nr(current),
bf2de6f5 1900 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 1901 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
1902 bdevname(bio->bi_bdev, b),
1903 count);
bf2de6f5 1904 }
1da177e4
LT
1905 }
1906
1907 generic_make_request(bio);
1908}
1da177e4
LT
1909EXPORT_SYMBOL(submit_bio);
1910
82124d60
KU
1911/**
1912 * blk_rq_check_limits - Helper function to check a request for the queue limit
1913 * @q: the queue
1914 * @rq: the request being checked
1915 *
1916 * Description:
1917 * @rq may have been made based on weaker limitations of upper-level queues
1918 * in request stacking drivers, and it may violate the limitation of @q.
1919 * Since the block layer and the underlying device driver trust @rq
1920 * after it is inserted to @q, it should be checked against @q before
1921 * the insertion using this generic function.
1922 *
1923 * This function should also be useful for request stacking drivers
eef35c2d 1924 * in some cases below, so export this function.
82124d60
KU
1925 * Request stacking drivers like request-based dm may change the queue
1926 * limits while requests are in the queue (e.g. dm's table swapping).
1927 * Such request stacking drivers should check those requests agaist
1928 * the new queue limits again when they dispatch those requests,
1929 * although such checkings are also done against the old queue limits
1930 * when submitting requests.
1931 */
1932int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1933{
e2a60da7 1934 if (!rq_mergeable(rq))
3383977f
S
1935 return 0;
1936
f31dc1cd 1937 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1938 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1939 return -EIO;
1940 }
1941
1942 /*
1943 * queue's settings related to segment counting like q->bounce_pfn
1944 * may differ from that of other stacking queues.
1945 * Recalculate it to check the request correctly on this queue's
1946 * limitation.
1947 */
1948 blk_recalc_rq_segments(rq);
8a78362c 1949 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1950 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1951 return -EIO;
1952 }
1953
1954 return 0;
1955}
1956EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1957
1958/**
1959 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1960 * @q: the queue to submit the request
1961 * @rq: the request being queued
1962 */
1963int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1964{
1965 unsigned long flags;
4853abaa 1966 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1967
1968 if (blk_rq_check_limits(q, rq))
1969 return -EIO;
1970
b2c9cd37
AM
1971 if (rq->rq_disk &&
1972 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1973 return -EIO;
82124d60
KU
1974
1975 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 1976 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
1977 spin_unlock_irqrestore(q->queue_lock, flags);
1978 return -ENODEV;
1979 }
82124d60
KU
1980
1981 /*
1982 * Submitting request must be dequeued before calling this function
1983 * because it will be linked to another request_queue
1984 */
1985 BUG_ON(blk_queued_rq(rq));
1986
4853abaa
JM
1987 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1988 where = ELEVATOR_INSERT_FLUSH;
1989
1990 add_acct_request(q, rq, where);
e67b77c7
JM
1991 if (where == ELEVATOR_INSERT_FLUSH)
1992 __blk_run_queue(q);
82124d60
KU
1993 spin_unlock_irqrestore(q->queue_lock, flags);
1994
1995 return 0;
1996}
1997EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1998
80a761fd
TH
1999/**
2000 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2001 * @rq: request to examine
2002 *
2003 * Description:
2004 * A request could be merge of IOs which require different failure
2005 * handling. This function determines the number of bytes which
2006 * can be failed from the beginning of the request without
2007 * crossing into area which need to be retried further.
2008 *
2009 * Return:
2010 * The number of bytes to fail.
2011 *
2012 * Context:
2013 * queue_lock must be held.
2014 */
2015unsigned int blk_rq_err_bytes(const struct request *rq)
2016{
2017 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2018 unsigned int bytes = 0;
2019 struct bio *bio;
2020
2021 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2022 return blk_rq_bytes(rq);
2023
2024 /*
2025 * Currently the only 'mixing' which can happen is between
2026 * different fastfail types. We can safely fail portions
2027 * which have all the failfast bits that the first one has -
2028 * the ones which are at least as eager to fail as the first
2029 * one.
2030 */
2031 for (bio = rq->bio; bio; bio = bio->bi_next) {
2032 if ((bio->bi_rw & ff) != ff)
2033 break;
4f024f37 2034 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2035 }
2036
2037 /* this could lead to infinite loop */
2038 BUG_ON(blk_rq_bytes(rq) && !bytes);
2039 return bytes;
2040}
2041EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2042
320ae51f 2043void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2044{
c2553b58 2045 if (blk_do_io_stat(req)) {
bc58ba94
JA
2046 const int rw = rq_data_dir(req);
2047 struct hd_struct *part;
2048 int cpu;
2049
2050 cpu = part_stat_lock();
09e099d4 2051 part = req->part;
bc58ba94
JA
2052 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2053 part_stat_unlock();
2054 }
2055}
2056
320ae51f 2057void blk_account_io_done(struct request *req)
bc58ba94 2058{
bc58ba94 2059 /*
dd4c133f
TH
2060 * Account IO completion. flush_rq isn't accounted as a
2061 * normal IO on queueing nor completion. Accounting the
2062 * containing request is enough.
bc58ba94 2063 */
414b4ff5 2064 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2065 unsigned long duration = jiffies - req->start_time;
2066 const int rw = rq_data_dir(req);
2067 struct hd_struct *part;
2068 int cpu;
2069
2070 cpu = part_stat_lock();
09e099d4 2071 part = req->part;
bc58ba94
JA
2072
2073 part_stat_inc(cpu, part, ios[rw]);
2074 part_stat_add(cpu, part, ticks[rw], duration);
2075 part_round_stats(cpu, part);
316d315b 2076 part_dec_in_flight(part, rw);
bc58ba94 2077
6c23a968 2078 hd_struct_put(part);
bc58ba94
JA
2079 part_stat_unlock();
2080 }
2081}
2082
c8158819
LM
2083#ifdef CONFIG_PM_RUNTIME
2084/*
2085 * Don't process normal requests when queue is suspended
2086 * or in the process of suspending/resuming
2087 */
2088static struct request *blk_pm_peek_request(struct request_queue *q,
2089 struct request *rq)
2090{
2091 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2092 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2093 return NULL;
2094 else
2095 return rq;
2096}
2097#else
2098static inline struct request *blk_pm_peek_request(struct request_queue *q,
2099 struct request *rq)
2100{
2101 return rq;
2102}
2103#endif
2104
320ae51f
JA
2105void blk_account_io_start(struct request *rq, bool new_io)
2106{
2107 struct hd_struct *part;
2108 int rw = rq_data_dir(rq);
2109 int cpu;
2110
2111 if (!blk_do_io_stat(rq))
2112 return;
2113
2114 cpu = part_stat_lock();
2115
2116 if (!new_io) {
2117 part = rq->part;
2118 part_stat_inc(cpu, part, merges[rw]);
2119 } else {
2120 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2121 if (!hd_struct_try_get(part)) {
2122 /*
2123 * The partition is already being removed,
2124 * the request will be accounted on the disk only
2125 *
2126 * We take a reference on disk->part0 although that
2127 * partition will never be deleted, so we can treat
2128 * it as any other partition.
2129 */
2130 part = &rq->rq_disk->part0;
2131 hd_struct_get(part);
2132 }
2133 part_round_stats(cpu, part);
2134 part_inc_in_flight(part, rw);
2135 rq->part = part;
2136 }
2137
2138 part_stat_unlock();
2139}
2140
3bcddeac 2141/**
9934c8c0
TH
2142 * blk_peek_request - peek at the top of a request queue
2143 * @q: request queue to peek at
2144 *
2145 * Description:
2146 * Return the request at the top of @q. The returned request
2147 * should be started using blk_start_request() before LLD starts
2148 * processing it.
2149 *
2150 * Return:
2151 * Pointer to the request at the top of @q if available. Null
2152 * otherwise.
2153 *
2154 * Context:
2155 * queue_lock must be held.
2156 */
2157struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2158{
2159 struct request *rq;
2160 int ret;
2161
2162 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2163
2164 rq = blk_pm_peek_request(q, rq);
2165 if (!rq)
2166 break;
2167
158dbda0
TH
2168 if (!(rq->cmd_flags & REQ_STARTED)) {
2169 /*
2170 * This is the first time the device driver
2171 * sees this request (possibly after
2172 * requeueing). Notify IO scheduler.
2173 */
33659ebb 2174 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2175 elv_activate_rq(q, rq);
2176
2177 /*
2178 * just mark as started even if we don't start
2179 * it, a request that has been delayed should
2180 * not be passed by new incoming requests
2181 */
2182 rq->cmd_flags |= REQ_STARTED;
2183 trace_block_rq_issue(q, rq);
2184 }
2185
2186 if (!q->boundary_rq || q->boundary_rq == rq) {
2187 q->end_sector = rq_end_sector(rq);
2188 q->boundary_rq = NULL;
2189 }
2190
2191 if (rq->cmd_flags & REQ_DONTPREP)
2192 break;
2193
2e46e8b2 2194 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2195 /*
2196 * make sure space for the drain appears we
2197 * know we can do this because max_hw_segments
2198 * has been adjusted to be one fewer than the
2199 * device can handle
2200 */
2201 rq->nr_phys_segments++;
2202 }
2203
2204 if (!q->prep_rq_fn)
2205 break;
2206
2207 ret = q->prep_rq_fn(q, rq);
2208 if (ret == BLKPREP_OK) {
2209 break;
2210 } else if (ret == BLKPREP_DEFER) {
2211 /*
2212 * the request may have been (partially) prepped.
2213 * we need to keep this request in the front to
2214 * avoid resource deadlock. REQ_STARTED will
2215 * prevent other fs requests from passing this one.
2216 */
2e46e8b2 2217 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2218 !(rq->cmd_flags & REQ_DONTPREP)) {
2219 /*
2220 * remove the space for the drain we added
2221 * so that we don't add it again
2222 */
2223 --rq->nr_phys_segments;
2224 }
2225
2226 rq = NULL;
2227 break;
2228 } else if (ret == BLKPREP_KILL) {
2229 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2230 /*
2231 * Mark this request as started so we don't trigger
2232 * any debug logic in the end I/O path.
2233 */
2234 blk_start_request(rq);
40cbbb78 2235 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2236 } else {
2237 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2238 break;
2239 }
2240 }
2241
2242 return rq;
2243}
9934c8c0 2244EXPORT_SYMBOL(blk_peek_request);
158dbda0 2245
9934c8c0 2246void blk_dequeue_request(struct request *rq)
158dbda0 2247{
9934c8c0
TH
2248 struct request_queue *q = rq->q;
2249
158dbda0
TH
2250 BUG_ON(list_empty(&rq->queuelist));
2251 BUG_ON(ELV_ON_HASH(rq));
2252
2253 list_del_init(&rq->queuelist);
2254
2255 /*
2256 * the time frame between a request being removed from the lists
2257 * and to it is freed is accounted as io that is in progress at
2258 * the driver side.
2259 */
9195291e 2260 if (blk_account_rq(rq)) {
0a7ae2ff 2261 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2262 set_io_start_time_ns(rq);
2263 }
158dbda0
TH
2264}
2265
9934c8c0
TH
2266/**
2267 * blk_start_request - start request processing on the driver
2268 * @req: request to dequeue
2269 *
2270 * Description:
2271 * Dequeue @req and start timeout timer on it. This hands off the
2272 * request to the driver.
2273 *
2274 * Block internal functions which don't want to start timer should
2275 * call blk_dequeue_request().
2276 *
2277 * Context:
2278 * queue_lock must be held.
2279 */
2280void blk_start_request(struct request *req)
2281{
2282 blk_dequeue_request(req);
2283
2284 /*
5f49f631
TH
2285 * We are now handing the request to the hardware, initialize
2286 * resid_len to full count and add the timeout handler.
9934c8c0 2287 */
5f49f631 2288 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2289 if (unlikely(blk_bidi_rq(req)))
2290 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2291
4912aa6c 2292 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2293 blk_add_timer(req);
2294}
2295EXPORT_SYMBOL(blk_start_request);
2296
2297/**
2298 * blk_fetch_request - fetch a request from a request queue
2299 * @q: request queue to fetch a request from
2300 *
2301 * Description:
2302 * Return the request at the top of @q. The request is started on
2303 * return and LLD can start processing it immediately.
2304 *
2305 * Return:
2306 * Pointer to the request at the top of @q if available. Null
2307 * otherwise.
2308 *
2309 * Context:
2310 * queue_lock must be held.
2311 */
2312struct request *blk_fetch_request(struct request_queue *q)
2313{
2314 struct request *rq;
2315
2316 rq = blk_peek_request(q);
2317 if (rq)
2318 blk_start_request(rq);
2319 return rq;
2320}
2321EXPORT_SYMBOL(blk_fetch_request);
2322
3bcddeac 2323/**
2e60e022 2324 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2325 * @req: the request being processed
710027a4 2326 * @error: %0 for success, < %0 for error
8ebf9756 2327 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2328 *
2329 * Description:
8ebf9756
RD
2330 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2331 * the request structure even if @req doesn't have leftover.
2332 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2333 *
2334 * This special helper function is only for request stacking drivers
2335 * (e.g. request-based dm) so that they can handle partial completion.
2336 * Actual device drivers should use blk_end_request instead.
2337 *
2338 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2339 * %false return from this function.
3bcddeac
KU
2340 *
2341 * Return:
2e60e022
TH
2342 * %false - this request doesn't have any more data
2343 * %true - this request has more data
3bcddeac 2344 **/
2e60e022 2345bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2346{
f79ea416 2347 int total_bytes;
1da177e4 2348
2e60e022
TH
2349 if (!req->bio)
2350 return false;
2351
5f3ea37c 2352 trace_block_rq_complete(req->q, req);
2056a782 2353
1da177e4 2354 /*
6f41469c
TH
2355 * For fs requests, rq is just carrier of independent bio's
2356 * and each partial completion should be handled separately.
2357 * Reset per-request error on each partial completion.
2358 *
2359 * TODO: tj: This is too subtle. It would be better to let
2360 * low level drivers do what they see fit.
1da177e4 2361 */
33659ebb 2362 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2363 req->errors = 0;
2364
33659ebb
CH
2365 if (error && req->cmd_type == REQ_TYPE_FS &&
2366 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2367 char *error_type;
2368
2369 switch (error) {
2370 case -ENOLINK:
2371 error_type = "recoverable transport";
2372 break;
2373 case -EREMOTEIO:
2374 error_type = "critical target";
2375 break;
2376 case -EBADE:
2377 error_type = "critical nexus";
2378 break;
d1ffc1f8
HR
2379 case -ETIMEDOUT:
2380 error_type = "timeout";
2381 break;
a9d6ceb8
HR
2382 case -ENOSPC:
2383 error_type = "critical space allocation";
2384 break;
7e782af5
HR
2385 case -ENODATA:
2386 error_type = "critical medium";
2387 break;
79775567
HR
2388 case -EIO:
2389 default:
2390 error_type = "I/O";
2391 break;
2392 }
37d7b34f
YZ
2393 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2394 error_type, req->rq_disk ?
2395 req->rq_disk->disk_name : "?",
2396 (unsigned long long)blk_rq_pos(req));
2397
1da177e4
LT
2398 }
2399
bc58ba94 2400 blk_account_io_completion(req, nr_bytes);
d72d904a 2401
f79ea416
KO
2402 total_bytes = 0;
2403 while (req->bio) {
2404 struct bio *bio = req->bio;
4f024f37 2405 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2406
4f024f37 2407 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2408 req->bio = bio->bi_next;
1da177e4 2409
f79ea416 2410 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2411
f79ea416
KO
2412 total_bytes += bio_bytes;
2413 nr_bytes -= bio_bytes;
1da177e4 2414
f79ea416
KO
2415 if (!nr_bytes)
2416 break;
1da177e4
LT
2417 }
2418
2419 /*
2420 * completely done
2421 */
2e60e022
TH
2422 if (!req->bio) {
2423 /*
2424 * Reset counters so that the request stacking driver
2425 * can find how many bytes remain in the request
2426 * later.
2427 */
a2dec7b3 2428 req->__data_len = 0;
2e60e022
TH
2429 return false;
2430 }
1da177e4 2431
a2dec7b3 2432 req->__data_len -= total_bytes;
2e46e8b2
TH
2433 req->buffer = bio_data(req->bio);
2434
2435 /* update sector only for requests with clear definition of sector */
e2a60da7 2436 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2437 req->__sector += total_bytes >> 9;
2e46e8b2 2438
80a761fd
TH
2439 /* mixed attributes always follow the first bio */
2440 if (req->cmd_flags & REQ_MIXED_MERGE) {
2441 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2442 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2443 }
2444
2e46e8b2
TH
2445 /*
2446 * If total number of sectors is less than the first segment
2447 * size, something has gone terribly wrong.
2448 */
2449 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2450 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2451 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2452 }
2453
2454 /* recalculate the number of segments */
1da177e4 2455 blk_recalc_rq_segments(req);
2e46e8b2 2456
2e60e022 2457 return true;
1da177e4 2458}
2e60e022 2459EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2460
2e60e022
TH
2461static bool blk_update_bidi_request(struct request *rq, int error,
2462 unsigned int nr_bytes,
2463 unsigned int bidi_bytes)
5efccd17 2464{
2e60e022
TH
2465 if (blk_update_request(rq, error, nr_bytes))
2466 return true;
5efccd17 2467
2e60e022
TH
2468 /* Bidi request must be completed as a whole */
2469 if (unlikely(blk_bidi_rq(rq)) &&
2470 blk_update_request(rq->next_rq, error, bidi_bytes))
2471 return true;
5efccd17 2472
e2e1a148
JA
2473 if (blk_queue_add_random(rq->q))
2474 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2475
2476 return false;
1da177e4
LT
2477}
2478
28018c24
JB
2479/**
2480 * blk_unprep_request - unprepare a request
2481 * @req: the request
2482 *
2483 * This function makes a request ready for complete resubmission (or
2484 * completion). It happens only after all error handling is complete,
2485 * so represents the appropriate moment to deallocate any resources
2486 * that were allocated to the request in the prep_rq_fn. The queue
2487 * lock is held when calling this.
2488 */
2489void blk_unprep_request(struct request *req)
2490{
2491 struct request_queue *q = req->q;
2492
2493 req->cmd_flags &= ~REQ_DONTPREP;
2494 if (q->unprep_rq_fn)
2495 q->unprep_rq_fn(q, req);
2496}
2497EXPORT_SYMBOL_GPL(blk_unprep_request);
2498
1da177e4
LT
2499/*
2500 * queue lock must be held
2501 */
2e60e022 2502static void blk_finish_request(struct request *req, int error)
1da177e4 2503{
b8286239
KU
2504 if (blk_rq_tagged(req))
2505 blk_queue_end_tag(req->q, req);
2506
ba396a6c 2507 BUG_ON(blk_queued_rq(req));
1da177e4 2508
33659ebb 2509 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2510 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2511
e78042e5
MA
2512 blk_delete_timer(req);
2513
28018c24
JB
2514 if (req->cmd_flags & REQ_DONTPREP)
2515 blk_unprep_request(req);
2516
bc58ba94 2517 blk_account_io_done(req);
b8286239 2518
1da177e4 2519 if (req->end_io)
8ffdc655 2520 req->end_io(req, error);
b8286239
KU
2521 else {
2522 if (blk_bidi_rq(req))
2523 __blk_put_request(req->next_rq->q, req->next_rq);
2524
1da177e4 2525 __blk_put_request(req->q, req);
b8286239 2526 }
1da177e4
LT
2527}
2528
3b11313a 2529/**
2e60e022
TH
2530 * blk_end_bidi_request - Complete a bidi request
2531 * @rq: the request to complete
2532 * @error: %0 for success, < %0 for error
2533 * @nr_bytes: number of bytes to complete @rq
2534 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2535 *
2536 * Description:
e3a04fe3 2537 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2538 * Drivers that supports bidi can safely call this member for any
2539 * type of request, bidi or uni. In the later case @bidi_bytes is
2540 * just ignored.
336cdb40
KU
2541 *
2542 * Return:
2e60e022
TH
2543 * %false - we are done with this request
2544 * %true - still buffers pending for this request
a0cd1285 2545 **/
b1f74493 2546static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2547 unsigned int nr_bytes, unsigned int bidi_bytes)
2548{
336cdb40 2549 struct request_queue *q = rq->q;
2e60e022 2550 unsigned long flags;
32fab448 2551
2e60e022
TH
2552 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2553 return true;
32fab448 2554
336cdb40 2555 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2556 blk_finish_request(rq, error);
336cdb40
KU
2557 spin_unlock_irqrestore(q->queue_lock, flags);
2558
2e60e022 2559 return false;
32fab448
KU
2560}
2561
336cdb40 2562/**
2e60e022
TH
2563 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2564 * @rq: the request to complete
710027a4 2565 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2566 * @nr_bytes: number of bytes to complete @rq
2567 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2568 *
2569 * Description:
2e60e022
TH
2570 * Identical to blk_end_bidi_request() except that queue lock is
2571 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2572 *
2573 * Return:
2e60e022
TH
2574 * %false - we are done with this request
2575 * %true - still buffers pending for this request
336cdb40 2576 **/
4853abaa 2577bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2578 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2579{
2e60e022
TH
2580 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2581 return true;
336cdb40 2582
2e60e022 2583 blk_finish_request(rq, error);
336cdb40 2584
2e60e022 2585 return false;
336cdb40 2586}
e19a3ab0
KU
2587
2588/**
2589 * blk_end_request - Helper function for drivers to complete the request.
2590 * @rq: the request being processed
710027a4 2591 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2592 * @nr_bytes: number of bytes to complete
2593 *
2594 * Description:
2595 * Ends I/O on a number of bytes attached to @rq.
2596 * If @rq has leftover, sets it up for the next range of segments.
2597 *
2598 * Return:
b1f74493
FT
2599 * %false - we are done with this request
2600 * %true - still buffers pending for this request
e19a3ab0 2601 **/
b1f74493 2602bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2603{
b1f74493 2604 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2605}
56ad1740 2606EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2607
2608/**
b1f74493
FT
2609 * blk_end_request_all - Helper function for drives to finish the request.
2610 * @rq: the request to finish
8ebf9756 2611 * @error: %0 for success, < %0 for error
336cdb40
KU
2612 *
2613 * Description:
b1f74493
FT
2614 * Completely finish @rq.
2615 */
2616void blk_end_request_all(struct request *rq, int error)
336cdb40 2617{
b1f74493
FT
2618 bool pending;
2619 unsigned int bidi_bytes = 0;
336cdb40 2620
b1f74493
FT
2621 if (unlikely(blk_bidi_rq(rq)))
2622 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2623
b1f74493
FT
2624 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2625 BUG_ON(pending);
2626}
56ad1740 2627EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2628
b1f74493
FT
2629/**
2630 * blk_end_request_cur - Helper function to finish the current request chunk.
2631 * @rq: the request to finish the current chunk for
8ebf9756 2632 * @error: %0 for success, < %0 for error
b1f74493
FT
2633 *
2634 * Description:
2635 * Complete the current consecutively mapped chunk from @rq.
2636 *
2637 * Return:
2638 * %false - we are done with this request
2639 * %true - still buffers pending for this request
2640 */
2641bool blk_end_request_cur(struct request *rq, int error)
2642{
2643 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2644}
56ad1740 2645EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2646
80a761fd
TH
2647/**
2648 * blk_end_request_err - Finish a request till the next failure boundary.
2649 * @rq: the request to finish till the next failure boundary for
2650 * @error: must be negative errno
2651 *
2652 * Description:
2653 * Complete @rq till the next failure boundary.
2654 *
2655 * Return:
2656 * %false - we are done with this request
2657 * %true - still buffers pending for this request
2658 */
2659bool blk_end_request_err(struct request *rq, int error)
2660{
2661 WARN_ON(error >= 0);
2662 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2663}
2664EXPORT_SYMBOL_GPL(blk_end_request_err);
2665
e3a04fe3 2666/**
b1f74493
FT
2667 * __blk_end_request - Helper function for drivers to complete the request.
2668 * @rq: the request being processed
2669 * @error: %0 for success, < %0 for error
2670 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2671 *
2672 * Description:
b1f74493 2673 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2674 *
2675 * Return:
b1f74493
FT
2676 * %false - we are done with this request
2677 * %true - still buffers pending for this request
e3a04fe3 2678 **/
b1f74493 2679bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2680{
b1f74493 2681 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2682}
56ad1740 2683EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2684
32fab448 2685/**
b1f74493
FT
2686 * __blk_end_request_all - Helper function for drives to finish the request.
2687 * @rq: the request to finish
8ebf9756 2688 * @error: %0 for success, < %0 for error
32fab448
KU
2689 *
2690 * Description:
b1f74493 2691 * Completely finish @rq. Must be called with queue lock held.
32fab448 2692 */
b1f74493 2693void __blk_end_request_all(struct request *rq, int error)
32fab448 2694{
b1f74493
FT
2695 bool pending;
2696 unsigned int bidi_bytes = 0;
2697
2698 if (unlikely(blk_bidi_rq(rq)))
2699 bidi_bytes = blk_rq_bytes(rq->next_rq);
2700
2701 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2702 BUG_ON(pending);
32fab448 2703}
56ad1740 2704EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2705
e19a3ab0 2706/**
b1f74493
FT
2707 * __blk_end_request_cur - Helper function to finish the current request chunk.
2708 * @rq: the request to finish the current chunk for
8ebf9756 2709 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2710 *
2711 * Description:
b1f74493
FT
2712 * Complete the current consecutively mapped chunk from @rq. Must
2713 * be called with queue lock held.
e19a3ab0
KU
2714 *
2715 * Return:
b1f74493
FT
2716 * %false - we are done with this request
2717 * %true - still buffers pending for this request
2718 */
2719bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2720{
b1f74493 2721 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2722}
56ad1740 2723EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2724
80a761fd
TH
2725/**
2726 * __blk_end_request_err - Finish a request till the next failure boundary.
2727 * @rq: the request to finish till the next failure boundary for
2728 * @error: must be negative errno
2729 *
2730 * Description:
2731 * Complete @rq till the next failure boundary. Must be called
2732 * with queue lock held.
2733 *
2734 * Return:
2735 * %false - we are done with this request
2736 * %true - still buffers pending for this request
2737 */
2738bool __blk_end_request_err(struct request *rq, int error)
2739{
2740 WARN_ON(error >= 0);
2741 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2742}
2743EXPORT_SYMBOL_GPL(__blk_end_request_err);
2744
86db1e29
JA
2745void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2746 struct bio *bio)
1da177e4 2747{
a82afdfc 2748 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2749 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2750
fb2dce86
DW
2751 if (bio_has_data(bio)) {
2752 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2753 rq->buffer = bio_data(bio);
2754 }
4f024f37 2755 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2756 rq->bio = rq->biotail = bio;
1da177e4 2757
66846572
N
2758 if (bio->bi_bdev)
2759 rq->rq_disk = bio->bi_bdev->bd_disk;
2760}
1da177e4 2761
2d4dc890
IL
2762#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2763/**
2764 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2765 * @rq: the request to be flushed
2766 *
2767 * Description:
2768 * Flush all pages in @rq.
2769 */
2770void rq_flush_dcache_pages(struct request *rq)
2771{
2772 struct req_iterator iter;
7988613b 2773 struct bio_vec bvec;
2d4dc890
IL
2774
2775 rq_for_each_segment(bvec, rq, iter)
7988613b 2776 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2777}
2778EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2779#endif
2780
ef9e3fac
KU
2781/**
2782 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2783 * @q : the queue of the device being checked
2784 *
2785 * Description:
2786 * Check if underlying low-level drivers of a device are busy.
2787 * If the drivers want to export their busy state, they must set own
2788 * exporting function using blk_queue_lld_busy() first.
2789 *
2790 * Basically, this function is used only by request stacking drivers
2791 * to stop dispatching requests to underlying devices when underlying
2792 * devices are busy. This behavior helps more I/O merging on the queue
2793 * of the request stacking driver and prevents I/O throughput regression
2794 * on burst I/O load.
2795 *
2796 * Return:
2797 * 0 - Not busy (The request stacking driver should dispatch request)
2798 * 1 - Busy (The request stacking driver should stop dispatching request)
2799 */
2800int blk_lld_busy(struct request_queue *q)
2801{
2802 if (q->lld_busy_fn)
2803 return q->lld_busy_fn(q);
2804
2805 return 0;
2806}
2807EXPORT_SYMBOL_GPL(blk_lld_busy);
2808
b0fd271d
KU
2809/**
2810 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2811 * @rq: the clone request to be cleaned up
2812 *
2813 * Description:
2814 * Free all bios in @rq for a cloned request.
2815 */
2816void blk_rq_unprep_clone(struct request *rq)
2817{
2818 struct bio *bio;
2819
2820 while ((bio = rq->bio) != NULL) {
2821 rq->bio = bio->bi_next;
2822
2823 bio_put(bio);
2824 }
2825}
2826EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2827
2828/*
2829 * Copy attributes of the original request to the clone request.
2830 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2831 */
2832static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2833{
2834 dst->cpu = src->cpu;
3a2edd0d 2835 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2836 dst->cmd_type = src->cmd_type;
2837 dst->__sector = blk_rq_pos(src);
2838 dst->__data_len = blk_rq_bytes(src);
2839 dst->nr_phys_segments = src->nr_phys_segments;
2840 dst->ioprio = src->ioprio;
2841 dst->extra_len = src->extra_len;
2842}
2843
2844/**
2845 * blk_rq_prep_clone - Helper function to setup clone request
2846 * @rq: the request to be setup
2847 * @rq_src: original request to be cloned
2848 * @bs: bio_set that bios for clone are allocated from
2849 * @gfp_mask: memory allocation mask for bio
2850 * @bio_ctr: setup function to be called for each clone bio.
2851 * Returns %0 for success, non %0 for failure.
2852 * @data: private data to be passed to @bio_ctr
2853 *
2854 * Description:
2855 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2856 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2857 * are not copied, and copying such parts is the caller's responsibility.
2858 * Also, pages which the original bios are pointing to are not copied
2859 * and the cloned bios just point same pages.
2860 * So cloned bios must be completed before original bios, which means
2861 * the caller must complete @rq before @rq_src.
2862 */
2863int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2864 struct bio_set *bs, gfp_t gfp_mask,
2865 int (*bio_ctr)(struct bio *, struct bio *, void *),
2866 void *data)
2867{
2868 struct bio *bio, *bio_src;
2869
2870 if (!bs)
2871 bs = fs_bio_set;
2872
2873 blk_rq_init(NULL, rq);
2874
2875 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2876 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2877 if (!bio)
2878 goto free_and_out;
2879
b0fd271d
KU
2880 if (bio_ctr && bio_ctr(bio, bio_src, data))
2881 goto free_and_out;
2882
2883 if (rq->bio) {
2884 rq->biotail->bi_next = bio;
2885 rq->biotail = bio;
2886 } else
2887 rq->bio = rq->biotail = bio;
2888 }
2889
2890 __blk_rq_prep_clone(rq, rq_src);
2891
2892 return 0;
2893
2894free_and_out:
2895 if (bio)
4254bba1 2896 bio_put(bio);
b0fd271d
KU
2897 blk_rq_unprep_clone(rq);
2898
2899 return -ENOMEM;
2900}
2901EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2902
18887ad9 2903int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2904{
2905 return queue_work(kblockd_workqueue, work);
2906}
1da177e4
LT
2907EXPORT_SYMBOL(kblockd_schedule_work);
2908
e43473b7
VG
2909int kblockd_schedule_delayed_work(struct request_queue *q,
2910 struct delayed_work *dwork, unsigned long delay)
2911{
2912 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2913}
2914EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2915
73c10101
JA
2916#define PLUG_MAGIC 0x91827364
2917
75df7136
SJ
2918/**
2919 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2920 * @plug: The &struct blk_plug that needs to be initialized
2921 *
2922 * Description:
2923 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2924 * pending I/O should the task end up blocking between blk_start_plug() and
2925 * blk_finish_plug(). This is important from a performance perspective, but
2926 * also ensures that we don't deadlock. For instance, if the task is blocking
2927 * for a memory allocation, memory reclaim could end up wanting to free a
2928 * page belonging to that request that is currently residing in our private
2929 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2930 * this kind of deadlock.
2931 */
73c10101
JA
2932void blk_start_plug(struct blk_plug *plug)
2933{
2934 struct task_struct *tsk = current;
2935
2936 plug->magic = PLUG_MAGIC;
2937 INIT_LIST_HEAD(&plug->list);
320ae51f 2938 INIT_LIST_HEAD(&plug->mq_list);
048c9374 2939 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2940
2941 /*
2942 * If this is a nested plug, don't actually assign it. It will be
2943 * flushed on its own.
2944 */
2945 if (!tsk->plug) {
2946 /*
2947 * Store ordering should not be needed here, since a potential
2948 * preempt will imply a full memory barrier
2949 */
2950 tsk->plug = plug;
2951 }
2952}
2953EXPORT_SYMBOL(blk_start_plug);
2954
2955static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2956{
2957 struct request *rqa = container_of(a, struct request, queuelist);
2958 struct request *rqb = container_of(b, struct request, queuelist);
2959
975927b9
JM
2960 return !(rqa->q < rqb->q ||
2961 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
2962}
2963
49cac01e
JA
2964/*
2965 * If 'from_schedule' is true, then postpone the dispatch of requests
2966 * until a safe kblockd context. We due this to avoid accidental big
2967 * additional stack usage in driver dispatch, in places where the originally
2968 * plugger did not intend it.
2969 */
f6603783 2970static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2971 bool from_schedule)
99e22598 2972 __releases(q->queue_lock)
94b5eb28 2973{
49cac01e 2974 trace_block_unplug(q, depth, !from_schedule);
99e22598 2975
70460571 2976 if (from_schedule)
24ecfbe2 2977 blk_run_queue_async(q);
70460571 2978 else
24ecfbe2 2979 __blk_run_queue(q);
70460571 2980 spin_unlock(q->queue_lock);
94b5eb28
JA
2981}
2982
74018dc3 2983static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
2984{
2985 LIST_HEAD(callbacks);
2986
2a7d5559
SL
2987 while (!list_empty(&plug->cb_list)) {
2988 list_splice_init(&plug->cb_list, &callbacks);
048c9374 2989
2a7d5559
SL
2990 while (!list_empty(&callbacks)) {
2991 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
2992 struct blk_plug_cb,
2993 list);
2a7d5559 2994 list_del(&cb->list);
74018dc3 2995 cb->callback(cb, from_schedule);
2a7d5559 2996 }
048c9374
N
2997 }
2998}
2999
9cbb1750
N
3000struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3001 int size)
3002{
3003 struct blk_plug *plug = current->plug;
3004 struct blk_plug_cb *cb;
3005
3006 if (!plug)
3007 return NULL;
3008
3009 list_for_each_entry(cb, &plug->cb_list, list)
3010 if (cb->callback == unplug && cb->data == data)
3011 return cb;
3012
3013 /* Not currently on the callback list */
3014 BUG_ON(size < sizeof(*cb));
3015 cb = kzalloc(size, GFP_ATOMIC);
3016 if (cb) {
3017 cb->data = data;
3018 cb->callback = unplug;
3019 list_add(&cb->list, &plug->cb_list);
3020 }
3021 return cb;
3022}
3023EXPORT_SYMBOL(blk_check_plugged);
3024
49cac01e 3025void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3026{
3027 struct request_queue *q;
3028 unsigned long flags;
3029 struct request *rq;
109b8129 3030 LIST_HEAD(list);
94b5eb28 3031 unsigned int depth;
73c10101
JA
3032
3033 BUG_ON(plug->magic != PLUG_MAGIC);
3034
74018dc3 3035 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3036
3037 if (!list_empty(&plug->mq_list))
3038 blk_mq_flush_plug_list(plug, from_schedule);
3039
73c10101
JA
3040 if (list_empty(&plug->list))
3041 return;
3042
109b8129
N
3043 list_splice_init(&plug->list, &list);
3044
422765c2 3045 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3046
3047 q = NULL;
94b5eb28 3048 depth = 0;
18811272
JA
3049
3050 /*
3051 * Save and disable interrupts here, to avoid doing it for every
3052 * queue lock we have to take.
3053 */
73c10101 3054 local_irq_save(flags);
109b8129
N
3055 while (!list_empty(&list)) {
3056 rq = list_entry_rq(list.next);
73c10101 3057 list_del_init(&rq->queuelist);
73c10101
JA
3058 BUG_ON(!rq->q);
3059 if (rq->q != q) {
99e22598
JA
3060 /*
3061 * This drops the queue lock
3062 */
3063 if (q)
49cac01e 3064 queue_unplugged(q, depth, from_schedule);
73c10101 3065 q = rq->q;
94b5eb28 3066 depth = 0;
73c10101
JA
3067 spin_lock(q->queue_lock);
3068 }
8ba61435
TH
3069
3070 /*
3071 * Short-circuit if @q is dead
3072 */
3f3299d5 3073 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3074 __blk_end_request_all(rq, -ENODEV);
3075 continue;
3076 }
3077
73c10101
JA
3078 /*
3079 * rq is already accounted, so use raw insert
3080 */
401a18e9
JA
3081 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3082 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3083 else
3084 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3085
3086 depth++;
73c10101
JA
3087 }
3088
99e22598
JA
3089 /*
3090 * This drops the queue lock
3091 */
3092 if (q)
49cac01e 3093 queue_unplugged(q, depth, from_schedule);
73c10101 3094
73c10101
JA
3095 local_irq_restore(flags);
3096}
73c10101
JA
3097
3098void blk_finish_plug(struct blk_plug *plug)
3099{
f6603783 3100 blk_flush_plug_list(plug, false);
73c10101 3101
88b996cd
CH
3102 if (plug == current->plug)
3103 current->plug = NULL;
73c10101 3104}
88b996cd 3105EXPORT_SYMBOL(blk_finish_plug);
73c10101 3106
6c954667
LM
3107#ifdef CONFIG_PM_RUNTIME
3108/**
3109 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3110 * @q: the queue of the device
3111 * @dev: the device the queue belongs to
3112 *
3113 * Description:
3114 * Initialize runtime-PM-related fields for @q and start auto suspend for
3115 * @dev. Drivers that want to take advantage of request-based runtime PM
3116 * should call this function after @dev has been initialized, and its
3117 * request queue @q has been allocated, and runtime PM for it can not happen
3118 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3119 * cases, driver should call this function before any I/O has taken place.
3120 *
3121 * This function takes care of setting up using auto suspend for the device,
3122 * the autosuspend delay is set to -1 to make runtime suspend impossible
3123 * until an updated value is either set by user or by driver. Drivers do
3124 * not need to touch other autosuspend settings.
3125 *
3126 * The block layer runtime PM is request based, so only works for drivers
3127 * that use request as their IO unit instead of those directly use bio's.
3128 */
3129void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3130{
3131 q->dev = dev;
3132 q->rpm_status = RPM_ACTIVE;
3133 pm_runtime_set_autosuspend_delay(q->dev, -1);
3134 pm_runtime_use_autosuspend(q->dev);
3135}
3136EXPORT_SYMBOL(blk_pm_runtime_init);
3137
3138/**
3139 * blk_pre_runtime_suspend - Pre runtime suspend check
3140 * @q: the queue of the device
3141 *
3142 * Description:
3143 * This function will check if runtime suspend is allowed for the device
3144 * by examining if there are any requests pending in the queue. If there
3145 * are requests pending, the device can not be runtime suspended; otherwise,
3146 * the queue's status will be updated to SUSPENDING and the driver can
3147 * proceed to suspend the device.
3148 *
3149 * For the not allowed case, we mark last busy for the device so that
3150 * runtime PM core will try to autosuspend it some time later.
3151 *
3152 * This function should be called near the start of the device's
3153 * runtime_suspend callback.
3154 *
3155 * Return:
3156 * 0 - OK to runtime suspend the device
3157 * -EBUSY - Device should not be runtime suspended
3158 */
3159int blk_pre_runtime_suspend(struct request_queue *q)
3160{
3161 int ret = 0;
3162
3163 spin_lock_irq(q->queue_lock);
3164 if (q->nr_pending) {
3165 ret = -EBUSY;
3166 pm_runtime_mark_last_busy(q->dev);
3167 } else {
3168 q->rpm_status = RPM_SUSPENDING;
3169 }
3170 spin_unlock_irq(q->queue_lock);
3171 return ret;
3172}
3173EXPORT_SYMBOL(blk_pre_runtime_suspend);
3174
3175/**
3176 * blk_post_runtime_suspend - Post runtime suspend processing
3177 * @q: the queue of the device
3178 * @err: return value of the device's runtime_suspend function
3179 *
3180 * Description:
3181 * Update the queue's runtime status according to the return value of the
3182 * device's runtime suspend function and mark last busy for the device so
3183 * that PM core will try to auto suspend the device at a later time.
3184 *
3185 * This function should be called near the end of the device's
3186 * runtime_suspend callback.
3187 */
3188void blk_post_runtime_suspend(struct request_queue *q, int err)
3189{
3190 spin_lock_irq(q->queue_lock);
3191 if (!err) {
3192 q->rpm_status = RPM_SUSPENDED;
3193 } else {
3194 q->rpm_status = RPM_ACTIVE;
3195 pm_runtime_mark_last_busy(q->dev);
3196 }
3197 spin_unlock_irq(q->queue_lock);
3198}
3199EXPORT_SYMBOL(blk_post_runtime_suspend);
3200
3201/**
3202 * blk_pre_runtime_resume - Pre runtime resume processing
3203 * @q: the queue of the device
3204 *
3205 * Description:
3206 * Update the queue's runtime status to RESUMING in preparation for the
3207 * runtime resume of the device.
3208 *
3209 * This function should be called near the start of the device's
3210 * runtime_resume callback.
3211 */
3212void blk_pre_runtime_resume(struct request_queue *q)
3213{
3214 spin_lock_irq(q->queue_lock);
3215 q->rpm_status = RPM_RESUMING;
3216 spin_unlock_irq(q->queue_lock);
3217}
3218EXPORT_SYMBOL(blk_pre_runtime_resume);
3219
3220/**
3221 * blk_post_runtime_resume - Post runtime resume processing
3222 * @q: the queue of the device
3223 * @err: return value of the device's runtime_resume function
3224 *
3225 * Description:
3226 * Update the queue's runtime status according to the return value of the
3227 * device's runtime_resume function. If it is successfully resumed, process
3228 * the requests that are queued into the device's queue when it is resuming
3229 * and then mark last busy and initiate autosuspend for it.
3230 *
3231 * This function should be called near the end of the device's
3232 * runtime_resume callback.
3233 */
3234void blk_post_runtime_resume(struct request_queue *q, int err)
3235{
3236 spin_lock_irq(q->queue_lock);
3237 if (!err) {
3238 q->rpm_status = RPM_ACTIVE;
3239 __blk_run_queue(q);
3240 pm_runtime_mark_last_busy(q->dev);
c60855cd 3241 pm_request_autosuspend(q->dev);
6c954667
LM
3242 } else {
3243 q->rpm_status = RPM_SUSPENDED;
3244 }
3245 spin_unlock_irq(q->queue_lock);
3246}
3247EXPORT_SYMBOL(blk_post_runtime_resume);
3248#endif
3249
1da177e4
LT
3250int __init blk_dev_init(void)
3251{
9eb55b03
NK
3252 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3253 sizeof(((struct request *)0)->cmd_flags));
3254
89b90be2
TH
3255 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3256 kblockd_workqueue = alloc_workqueue("kblockd",
695588f9
VK
3257 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3258 WQ_POWER_EFFICIENT, 0);
1da177e4
LT
3259 if (!kblockd_workqueue)
3260 panic("Failed to create kblockd\n");
3261
3262 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3263 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3264
8324aa91 3265 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3266 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3267
d38ecf93 3268 return 0;
1da177e4 3269}